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ABSTRACT

Interfaces with enhanced dry adhesion have applications in various fields, including robotic grasping
and microtransfer printing. Arrays of pillars or fibers with mushroom-like geometries and variations
on these have been used to achieve relatively strong adhesion to a broad range of surfaces via surface
forces. Here, we investigate the optimal geometries for adhesive pillars through a gradient-based
optimization scheme. The scheme minimizes an objective function based on the strain energy release
rate of a crack at the pillar edge. The optimal design yields a stress distribution at the interface that
is nearly-uniform and free from edge stress singularities. Experiments were performed on millimeter-
scale pillars to evaluate the efficacy of the designs. A maximum adhesion enhancement of 2x was
achieved for a pillar with a stalk radius equal to half of the contact radius. The location of crack
initiation was shifted to the center of the pillar from the edge, indicating that the optimal design
does indeed significantly reduce the stress concentration in the near-edge region. This geometric
optimization scheme is versatile and can be extended to other scenarios where the control of stresses
through geometry can be used to improve the performance of adhered interfaces and bonded joints.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Dry adhesives exploit surface forces (e.g., van der Waals) and
the engineering of interfacial stress states to achieve interfaces
with high adhesion and releasability [1]. They have applications
in multiple areas, including robotic grasping and climbing [2-6],
temporary adhesives [7-10] and microtransfer printing [11-14].
Much of the work on fibrillar adhesives has been inspired by
attachment structures found on lizards, notably the gecko, and
insects [15,16]. It has been shown that the exceptional adhe-
sive performance of these natural systems is due in part to the
spatula-shaped and mushroom-shaped geometries of the indi-
vidual fibrils [17]. This shape reduces the stress concentration
at the edge of the fibril and enhances the pull-off force. Based
on this observation, many engineered adhesive structures with
mushroom-shaped pillars have been demonstrated; this tip ge-
ometry redistributes stresses at the interface such that the stress
in the central region increases and the stress concentration at
the edge decreases [18-20]. As detachment typically initiates at
the edge of the pillar, this reduction in edge stress increases the
effective adhesion strength of the pillar. An alternate approach to
manipulate the stress distribution via a composite pillar structure
with a soft tip and a stiff core has also been demonstrated
[21-23]. This configuration results in a reduction of the stress
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concentration at the edge, leading to enhanced adhesive per-
formance relative to a homogeneous cylindrical pillar. In addi-
tion, various other geometries that employ similar principles to
enhance adhesion have been reported [24-26].

To optimize the shape of fibrils/pillars for improved perfor-
mance, Gao et al. [27] noted that the interfacial stress distribution
should be uniform as this would allow the theoretical adhesion
strength of the interface to be achieved. There have been multiple
efforts to identify a pillar design that achieves an optimal stress
distribution. This has included optimization of the mushroom-
tip thickness to eliminate the edge singularity [18] as well as
the use of a mushroom-shaped pillar with an angled tip [24].
However, these efforts were based on parametric studies and thus
did not explore the full design space. Various design optimization
frameworks have been developed to explore larger design spaces
to determine optimal shapes [28] and surface textures [29], for
example. Design optimization and machine learning techniques
provide new opportunities for the design of structures with opti-
mal adhesion [30,31]. Recently, Kim et al. [32] and Son et al. [33]
applied machine learning techniques to determine the optimal
shape of adhesive pillars. In this letter, we determine the optimal
pillar geometry via a gradient-based optimization approach and
experimentally evaluate the designs.

The goal of this study is to maximize the effective adhesion
strength of single fibril contacts through geometric optimization
of the fibril shape to control the stress distribution and strain
energy release rate at the adhered interface. This is achieved
through a gradient-based design optimization framework. The
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Fig. 1. (a) Schematic of an arbitrary axisymmetric pillar geometry with radius R and stalk radius R;, adhered to a rigid substrate. The Bézier control points are
shown as red points. Note that the Bézier curve does not pass through the control points, but its shape is determined by them. (b) The workflow of the optimization
scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

shape of the pillar is defined by a fixed number of control points,
and the coordinates of these points are determined by a min-
imization function (Fig. 1a). The framework consists of a con-
strained minimization function, which minimizes an objective
function that is calculated through finite element (FE) analysis of
the parameterized pillar geometry. Optimized pillar geometries
and their interfacial stress distributions were determined for
pillars with various stalk diameters and compared. Elastomer ad-
hesive pillars (mm-scale) were fabricated based on the optimized
designs and their performance was evaluated.

2. Methods

Ideally, the analytic form of the function to be minimized
is known, and the gradient can be calculated directly, resulting
in quick identification of local minima in optimization schemes.
However, in this problem there is no simple analytical relation-
ship between the shape of the pillar and the stress distribution
and strain energy release rate at the interface. Thus, the finite
difference method is used to calculate gradients. Each function
evaluation calls an FE analysis to calculate the stresses at the
interface. The objective function is then evaluated using this in-
formation, and the coordinates of the control points are adjusted
to minimize the objective function. The convergence criteria are
checked after each iteration, and the optimization routine is
terminated when the convergence criteria are met. Constraints
were imposed on the design parameters (i.e. the radial positions
of the control points) to limit their range between the stalk radius
and the radius of the pillar. This is done to prevent unrealis-
tic geometries that are difficult to fabricate. The optimization
framework was constructed in MATLAB, with the constrained
non-linear optimization function fmincon from the Optimization
Toolbox [34]. This function uses the interior-point method [35]
to calculate gradients. No equality or inequality constraints were
used. The initial point assumed is the midpoint between the stalk
radius and the radius of the pillar, which are the lower and upper
bounds of the design variables. Optimization hyperparameters,
including step-size, optimality criteria and convergence tolerance,
were chosen on a case-by-case basis, depending upon the stalk
radius (R;) of the pillar being optimized to avoid the scheme
stalling in the initial few iterations.

2.1. Finite element model

Finite element modeling (ABAQUS 2018, Providence, RI) was
used to calculate the stress distribution and the strain-energy
release rate for each pillar geometry. The pillars were modeled as
a two-dimensional axisymmetric problem, with the pillar height-
to-radius ratio fixed at h/R = 2. This ratio was chosen because
the height does not affect the interface stress distribution for
h > 2R [21]. The material was assumed to be linear elastic
with Young’s modulus E = 2 MPa and Poisson ratio v = 0.49,
representative of polydimethylsiloxane (PDMS). The model pre-
sented here is linear elastic, therefore, only these two material
parameters are necessary. While PDMS does exhibit non-linear
behavior at high strains, the dry adhesion of PDMS to other sur-
faces is weak leading to strains at failure (Fig. S5, Supplementary
Information) that are well below the linear elastic limit of PDMS,
which is quite high at approximately 40% strain [36].

To perform pillar shape optimization, the FE script accepts
design parameters as arguments and generates a pillar geometry
(Fig. 1(a)). The design parameters are the control points (red
points in Fig. 1(a)) of a Bézier curve [37], the shape of which is
defined by the coordinates of the control points. This approach
is chosen because it results in smooth and, in general, manu-
facturable shapes. This method also reduces the likelihood of
meshing errors arising due to complicated geometries with sharp
features. For all of the results shown here, five control points were
used with coordinates [(r{, 0.1R), (12, 0.2R), (13, 0.4R), (14, 0.6R),
(rs, 0.8R)]. Two points are placed close to the interface as they
will have the strongest influence on how stress is distributed at
the interface. The endpoints of the Bézier curve were the tip of the
pillar (R, 0) and the base of the pillar stalk (Rs, R). The geometry is
only varied over half of the pillar via the Bézier curve, as the inter-
facial stress only weakly depends on the geometry of the upper
part of the pillar (z > R). The model is meshed with linear ax-
isymmetric elements. An average element size of 0.01R was used
in all simulations, corresponding to approximately 20,000-30,000
elements per model. The element size was determined through
a convergence study (e.g., Fig. S3, Supplementary Information).
Both quadrilateral and triangular hybrid elements CAX4RH and
CAX3RH were used to mesh the model. The lower edge of the
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pillar was fixed to simulate no-slip adhesion to a rigid substrate.
The nodes on the top of the pillar were coupled and displaced
upwards by 0.02R, generating tensile stresses at the interface.
These stresses were calculated and normalized by the average
stress at the interface, which is calculated as 0, g = % fA 0,,dA,
where A is the interfacial area. The net force P applied at the top
of the pillar is calculated by summing the reaction forces on all
of the nodes on the top boundary (0;,_q,s = P/A by equilibrium).

2.2. Objective function

The dominant factors that control the detachment load are
the presence of defects, the stress singularity at the edge [38],
and the uniformity of the interface stress distribution. To de-
sign pillars based on these factors in an optimization scheme,
three objective functions were considered. (1) Edge singularity
strength: The analytical form of the edge stress singularity was
used by Balijepalli et al. [19] to quantify the adhesion enhance-
ment in mushroom-shaped pillars relative to a fibril with a simple
cylindrical geometry. The strength of this edge singularity is a
good candidate for the objective function, however for the com-
parison between different geometries to be valid, the contact
angle between the pillar and surface must be the same, as the
order of the singularity changes with the contact angle [39].
(2) Stress uniformity: To obtain a uniform stress distribution,
an objective function that is equal to the variance of the stress
from the mean stress is the most direct approach. However, the
stress distribution obtained via this objective function is sensitive
to defects at the edge (Fig. S6, Supplementary Information). (3)
Strain energy release rate G of a crack at the pillar edge: The G
is a function of both the size of crack/defect and the local stress
at the crack. G was calculated through the virtual crack closure
technique [40], for an edge crack with length a = 0.02R. By
minimizing G, the optimization scheme returns geometries with
lower driving forces for interface delamination. Note, we are able
to use a simple linear elastic fracture mechanics criterion based
on G rather than a more complex cohesive zone representation of
adhesion because the combination of adhesive/elastic properties
and size of the structures here is known to lead to fracture-
dominated rather than strength-dominated failures. Specifically,
previous work [41] has shown that dry-adhered PDMS pillars will
delaminate in a fracture-dominated manner if the pillar radius is
greater than R ~ 0.2 pm.

The third objective function based on G was chosen for the
design optimization studies because it allowed the effects of edge
defects to be included and did not require a fixed contact angle
as the edge singularity method does.

2.3. Experimental methods

To evaluate the performance of the optimized pillar designs,
millimeter-scale pillars were fabricated using the two-step mold-
ing process outlined in Fig. S1 (Supplementary Information). Sim-
ple cylindrical pillars for the control experiments (R = 1.5 mm,
H = 3 mm) and optimized Bézier pillars with the same base
radius and height were machined from brass on a lathe to make
a mold. To avoid rounding due to the tool radius at the tip of
the pillars, the pillars were machined with 5 mm of additional
height and inserted into a second piece with holes of the same
radius, through an interference fit. This machined mold was then
treated with trichloro(1H,1H,2H,2H-perflurooctyl) silane (Sigma-
Aldrich, St.Louis, MO) to facilitate release. A reverse mold was
then fabricated using PDMS (Sylgard 184, Dow Corning Corpo-
ration, Midland, MI) with a 5:1 weight ratio of base elastomer to
curing agent. This mold was cured in an oven at 85 °C for 4 h. This
PDMS mold was silane-treated, attached to a glass slide, and filled
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with 10:1 PDMS to mold the pillars. Air-bubbles were removed by
placing the filled mold in a vacuum chamber and the PDMS was
cured using the parameters noted earlier. The pillars were then
removed from the mold.

Pull-off adhesion tests on individual pillars were performed
using a custom mechanical test system comprised of a stepper-
motor driven translation stage (Aerotech Inc., Pittsburgh, USA), a
load cell with a full-scale range of 20 N (Cooper Instruments and
Systems, Warrenton, VA), and a tip-tilt stage for alignment. The
force-displacement data was recorded via a DAQ (NI USB-6211,
National Instruments, Austin, TX) interfaced through LabVIEW
(National Instruments, Austin, TX). To perform a pull-off test, a
glass slide attached to the translation stage was brought into
contact with the contact surface of the adhesive pillar, at a speed
of 10 wm/s. The slide was aligned to the pillar using the tilt-
tip stage, through observation of the nature of crack propagation
upon pull-off. A well-aligned pillar will have axisymmetric crack
propagation. The adhesive interface was imaged through the glass
slide using a 2.5x objective mounted on a tube microscope
connected to a CMOS (1024 x 1280) camera (Pixelink A741,
Ottawa, Canada). A preload of 300 mN (average contact pressure
of 42.4 kPa) was applied in all tests to ensure conformal contact.
This preload was held for 30 s, and then the glass slide was
retracted at a speed of 10 wm/s. The peak tensile force during
retraction is recorded as the pull-off force of the pillar specimen.

3. Results and discussion
3.1. Simulations

The results of the geometric optimization are summarized in
Fig. 2. Optimized pillar designs for stalk radii Ry, = 0.5R, 0.8R
and the stress distributions at the interface of each design under
an applied normal force are shown, along with the evolution of
the normalized objective function G = GER?/P? for each geom-
etry during the optimization process (Fig. 2(c)). G as function
of crack length, a/R, for the these designs is shown in Fig. S2,
(Supplementary Information). In all cases, G increases with crack
length suggesting that it is appropriate to optimize based on
G at the edge (i.e. G at a short crack length of 0.02R). For the
case of the cylindrical pillar, there is a stress singularity at the
edge that significantly reduces the effective adhesion strength
(Fig. 2(b)). The stress distributions for the optimized pillars are
free from singularities and the stress decreases monotonically as
it approaches the edge. The stress distribution for the optimal
pillar design with R; = 0.8R is quite similar to that obtained from
the machine learning-based model in Kim et al. [32]. While the
optimal designs and stress distributions obtained are similar, the
gradient-based optimization scheme required 25 iterations (150
FE simulations) while the machine-learning model was trained
with 200,000 FE simulations. This illustrates that gradient-based
optimization techniques can be quite data-efficient. The absence
of a singularity is primarily due to the shape of the pillar profile
near the edge in which the contact angle ranged from 40°-45°
for the optimized designs. Aksak et al. [24] showed that adhesive
pillars with a tip angle of 45° had no singular stresses near the
edge, similar to what is observed in these optimized cases. A
similar free-form pillar shape was also reported by Son et al. [33]
who used a Bayesian optimization approach.

The redistribution of stress in the optimized pillars leads to
elevated stresses away from the edge. This is similar to the
mushroom and composite pillars. For the case of Ry = 0.8R,
the stress distribution is nearly uniform from the center of the
pillar to r = 0.9R, followed by a decrease in stress close to
the edge. This is a near-ideal stress distribution that is both free
of regions of high stress and has low stress in the edge region
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Fig. 2. (a) Optimized pillar geometries for Ry = 0.5R, 0.8R. (b) Interface stress distributions of optimized pillars compared to the control pillar (c) Evolution of the
normalized objective function G with iteration number for the two cases considered, Rs = 0.8R (black) and R; = 0.5R (red). (d) Optimal stress distributions obtained
for various stalk diameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where defects are likely to be present. Geometric optimization
was performed for multiple stalk radii, and as R; was increased,
the stalk transferred more load to and resulted in higher stresses
in the central region of the pillar (Fig. 2(d)).

As the stress in the central region increases, the probability
of failure from an edge crack decreases, and it becomes more
likely that detachment will initiate in the center. Whether or not
detachment initiates in the center is determined by the stress in
this region as well as the size of defects. The optimization was
repeated with an objective function of fopjecrive = (Gedge + Geenter )»
considering two defects of equal size at the center and the edge.
The optimized result had a lower stress at the center of the pillar
compared to the case optimized for an edge crack alone, although
the change was small (~3% reduction in the stress at the center).
However, the results depend strongly on the size of the defect at
the center. If a larger center crack is assumed, the optimization
scheme will result in a design that has lower stress in the center
region. The sensitivity of the design to Poisson’s ratio was also
studied, with the optimal geometry and stress distribution being
nominally unchanged for v from 0.45 to 0.49, which encompasses
the typical range of Poisson’s ratios for elastomers.

The optimized pillar designs in this work are compared to
previous designs reported in the literature. Stress distributions for
several different reported geometries were calculated via FE and
are compared in Fig. 3(a).

The two benchmark geometries used for comparison are the
mushroom geometry and the angled-tip geometry, schematics of
which are shown in Fig. 3(b) and (c) respectively. The mushroom
geometry has a stalk radius of Ry = 0.5R and tip-thickness of

0.2R, based on work by Carbone et al. [18,42]. The angled-tip
geometry was adapted from Aksak et al. [24], with a tip-angle of
45° and Ry = 0.8R, in order to compare it with the optimized
designs in this study. Note the different ways in which these
geometries redistribute stress. In the mushroom design, there is a
high stress (3x the average) at the center of the pillar, while the
angled-tip pillar has a near-uniform stress distribution. Assuming
a uniform defect size across the interface, center crack initiation
is more likely in both cases. The angled-tip pillar is expected to
have a higher pull-off force due to lower peak stress in the central
region.

The optimal pillar design in the present work (R, = 0.8R),
when compared to the angled-tip design, has an 8% lower stress
fromr = 0tor = 0.7R, and a lower stress in the near-edge region
as r — R. Therefore, for both center and edge crack initiation,
the optimal design should have higher pull-off forces For small
values of stalk radii like Ry = 0.5R, it is most appropriate to
compare the results to the mushroom geometry with the same
Rs. The optimal design has a more uniform stress distribution and
no edge singularity, which is expected to lead to higher adhesive
load capacity.

3.2. Experiments

PDMS pillars (mm-scale) with three geometries were fab-
ricated: the two optimized designs with stalk radii of Ry, =
0.5R, 0.8R and a cylindrical pillar as a control. R = 1.5 mm for all
pillars. Adhesive pull-off experiments were performed on these
pillars. The mm-scale pillars are used to allow for optical imaging
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Supplementary Information.

of crack initiation and propagation during the experiment; such
observations are difficult in micron-scale pillars like those studied
by Son et al. [33]. Representative force-displacement data and
average pull-off forces for each geometry are shown in Fig. 4(a)
and (b), which shows that the optimized design with R; = 0.5R
has the best adhesive performance, with an average pull-off force
almost twice of that of the control pillar. The optimized pillar
with R; = 0.8R shows little adhesion enhancement, with an
average pull-off force nearly the same as the control pillar. Note

that the stiffness of the pull-off curve decreases as R; of the pillar
is reduced. This is a potential advantage as the higher compliance
will require a lower preload to achieve conformal contact if these
pillars are fabricated in an array. Also, notably, the displacement
to full detachment for this pillar from the substrate is three times
greater than the case of Ry = 0.8R and the area under the force-
displacement curve is also larger. This is a significant advantage,
as this design has both increased adhesive strength and energy
dissipation.
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The location of crack initiation and the progression of the
crack front is important in understanding the adhesive behavior
of the pillar. For the control pillar, the crack front initiates at the
edge and then progresses in a near-axisymmetric manner. For the
optimized pillars, in the Ry = 0.8R case, edge crack initiation
is observed, and for the Ry = 0.5R pillar, center crack initiation
was observed. Sequential images of interface crack initiation and
propagation for both the center and edge cases are shown in
Fig. 4(c) and (d). The shift of crack initiation from the edge to
the center for the case of R; = 0.5R is due to the low near-edge
stresses in the optimized stress distribution.

The modeling results suggest that the optimized pillar with
Rs = 0.8R should also fail via a center crack, because of the
absence of the stress singularity and the near-uniform stress
distribution. This is clearly not the case and is likely due to
the limited accuracy of the machined pillar mold and the pillar
fabrication technique. In the case of Ry = 0.8R, the contours
of the pillar are subtle and may not be faithfully replicated in
the machining and molding process. For the stress singularity to
vanish, the contact angle at the edge should be well-defined and
sharp. However, due to manufacturing, slightly rounded edges
are obtained. This results in a sub-optimal geometry and stress
distribution, decreasing the adhesive strength, as observed by
Aksak et al. [24]. A highly accurate fabrication technique, such
as two-photon lithography, may be able to overcome these chal-
lenges and allow for the fabrication of optimized pillar shapes
with higher adhesion strength.

3.3. Defect sensitivity

The presence of defects or cracks at the interface significantly
influences the degree of adhesion enhancement. To understand
this effect, the adhesion enhancement ratio Pc_op/Pc—res Of an
optimized pillar relative to the reference control pillar is shown
as a function of the crack length at the interface of the optimized
pillar (aop) and the control pillar (ays) in Fig. 5. This ratio is cal-
culated from the normalized FE-calculated strain energy release
rate values:

Pcfop/Pcfref = (E"ref/aop)u2 (1)

By calculating an adhesion enhancement ratio, we avoid the
need to assume a critical strain energy release rate G., which for
PDMS-glass can vary with test conditions. A similar approach was
adopted by Luo & Turner to understand the location of interface
failure in transfer printing [43]. Further details of this approach
can be found in the Supplementary Information.

Fig. 5(a) shows P._qp/Pc_r for the optimized pillar with R; =
0.8R. The defect size may vary between the optimized and control

pillars, therefore a contour plot is used to show the effect of
various crack length combinations. The cracks considered here
are edge cracks, as this is the failure mode seen in experiments
for the optimized pillar with Ry = 0.8R and the control pillar.
The largest enhancement is obtained for the smallest defect sizes,
and P._qp/Pc_ref — 1 for optimal pillars with larger defect sizes,
showing that it is difficult to achieve enhancement unless the
defect sizes in the optimized pillars are small. In the case of
the optimized pillar with Ry = 0.5R, the enhancement ratio
is calculated with a range of center cracks in the optimized
pillar, and a range of edge cracks in the control pillar, consistent
with experimental observations. As is evident in Fig. 5(b), high
enhancement ratios (~50x ) can be obtained at small defect sizes,
however, the enhancement decays quickly as the defect size
increases, implying high defect sensitivity. As mentioned before,
using a high-precision manufacturing technique like two-photon
lithography may result in pillars with smaller defects, potentially
leading to better adhesive performance [27].

4. Conclusions

In summary, we report optimal adhesive pillar designs with
near-ideal stress distributions obtained via a data-efficient
gradient-based geometric optimization scheme. The optimal de-
signs have interface stress distributions with no singularities
in the near-edge region, which is often the dominant factor in
the failure of adhesive pillars. The designs were also compared
to previously reported pillar geometries and the optimized ge-
ometries obtained here have stress distributions that are more
uniform, with lower peak stresses. These optimized pillars are
also free from any sharp corners (e.g. the intersection of the cap
and stalk in mushroom pillars), which can lead to failure in use.
Experiments on mm-scale pillars with these optimal designs were
performed, with an adhesion enhancement of 2x achieved in the
optimal design with stalk radius R; = 0.5R. The location of crack
initiation was also shifted to the center from the edge region, due
to the low stresses at the edge. The essential mechanics of these
geometries is expected to hold for pillars at the micrometer scale,
in which case the adhesion enhancement is expected to be larger
due to lower defect densities. More generally, the geometric
optimization scheme implemented in this study can be applied to
other systems where the bulk or interface stress distribution can
be modified through changes in geometry, improving mechanical
performance.
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