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Abstract

Model studies play an important role for the understanding and elucidation of the nonperturbative prop-
erties of transverse momentum dependent parton distribution functions (TMDs). The parton model is often
a helpful framework and starting point for first explorations of TMD properties and the description of deep-
inelastic processes in which TMDs can be accessed. Based on a systematic exploration of the parton model
concept, we reconcile the claims in literature that there are 2 independent structures in the quark correla-
tor in the parton model vs the claim that there are 3, and explain the underlying assumptions leading to
the different conclusions. We also systematically explore the antiquark correlator and, to the best of our
knowledge, for the first time derive the model expressions for all T-even leading and subleading antiquark
TMDs. We demonstrate the consistency of the framework which can be generalized in future studies for
more sophisticated TMD modeling.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Feynman’s intuitive parton model concept [1,2] played an important role in establishing QCD
as the theory of strong interactions. In many situations, the parton model can be considered a
“zeroth order approximation” to QCD [3,4]. As such it constitutes a valuable starting point for
explorations. This was also the case for TMDs. Based on a rigorous TMD factorization and
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evolution framework [4—10], the recent past has witnessed impressive progress in modern phe-
nomenology of deep-inelastic scattering (DIS) processes [11-19]. But the way to this progress
was paved by, among others, important phenomenological work based on the “generalized parton
model” in works like [20-24].

A systematic exploration of the parton model concept not for the purpose of describing DIS
processes but the nonperturbative properties of TMDs per se was undertaken in Refs. [25-39],
interestingly with conflicting results. Starting from the parton model concept in one approach,
for which the name Covariant Parton Model (CMP) has been coined, the nucleon structure is
described in terms of two independent covariant functions [25-38]. Starting from the very same
parton model concept, the nucleon structure is described in terms of three such independent
covariant functions in another parton model framework, namely that of Ref. [39].

While technical details and especially notations may easily differ in independent treatments
in literature, one would expect agreement within a given approach on such an important point
like the number of linearly independent structures in the quark correlator [38,39] in terms of
which TMDs are defined. Surprisingly, there is a disagreement in literature on this fundamental
question which remains not understood for more than a decade [33-39].

In this work we will show that both treatments are correct, but based on different assumptions
about the state of polarization of a quark in the nucleon. For that we will systematically explore
the consequences of the parton model concept for the description of the nucleon structure and
show that there are not “different parton model approaches” but only one unifying parton model
— in which, however, there is a choice on how to treat quark polarization effects. Our study will
establish a bridge also to other works in literature, including applications of the parton model
to studies of target mass corrections or weak structure functions [39-42], early studies of quark
transverse motion [44,43] and extensions of the parton model concept to the free-quark ensemble
model [45], gluon polarization effects [46], or the statistical parton model approach of Refs. [47—
511

The structure of this work is as follows. In Sec. 2 we will review the description of quark
and antiquark correlators and TMDs in models with no explicit gauge degrees of freedom and
discuss the simplifications compared to QCD. In general, even in simpler non-gauge field theories
care might be needed due to complications from UV divergences, but in the parton model also
this point is simplified and the correlators are UV-finite. In Sec. 3 we will introduce the parton
model concept and explore the nontrivial formal consequences arising from the (free) equations
of motion for the quark correlator in massive (Sec. 4) and massless (Sec. 5) case following
[39] where, however, only the massless case was considered. In practice quark mass effects are
negligible in DIS processes. But the distinction of massive vs massless partons is important when
considering polarization effects which will turn out to be the key to understand and reconcile the
conflicting results in literature. In Sec. 6, we will study quark TMDs in the parton model with due
care to the treatment of polarization effects and reconcile the parton model approaches of [38,39].
In Sec. 7, we will repeat the above program for the antiquark correlator and antiquark TMDs.
The quark and antiquark correlators are related to each other in a specific way in field theory. But
we will treat the quark and antiquark cases independently, and use their field theoretic connection
to demonstrate in Sec. 8 the consistency of the approach. In Sec. 9 we will solve the model and
evaluate the parton model expressions reproducing prior results for quark TMDs in literature and
presenting new results for antiquark TMDs. Finally, Sec. 10 contains the conclusions.
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2. Quark and antiquark correlators and TMDs in quark models

In this section, we will review the properties of the correlators, and the definitions of TMDs.
We will specifically indicate the simplifications arising in quark models by which we mean a
model or effective theory with quark and antiquark degrees of freedom, but without explicit
gauge field degrees of freedom.

2.1. Quark and antiquark correlators

In quark model approaches, the quark and antiquark correlation functions of the nucleon are
defined as

4

Wk, P.5) = [ 525N T O 9@ M), (1)
q Az iz 400y 04

Wk P = [ N0 T @ N, (1b)

where k" is the quark 4-momentum and |N) = | P, S) denotes a covariantly normalized nucleon
state with 4-momentum P* and polarization S* with P2=M?82=—-1,P.S=0.In QCD and
in models, the correlators in (1) are connected to each other as Cquj (k,P,S)=— CIJ?J. (—k, P,S).
For our purposes it will, however, be convenient not to explore this connection and treat the quark
and antiquark cases independently in the next sections, until in Sec. 8 we will come back to this
connection and make use of it to demonstrate the consistency of the approach.

In QCD, the quark fields in the correlators (1) are connected by Wilson lines which can be cho-
sen along process-dependent paths dictated by factorization theorems such that the correlators,
upon integration over k~ and tracing with the relevant Dirac matrices I', yield TMDs describing
semi-inclusive DIS, Drell-Yan or other processes [52—00]. In quark models, the Wilson lines are
absent which brings simplifications to the structure of the correlators.

One of the simplifications is that the correlators <I>§-‘j (k, P, S) with a = q, g have expansions
in terms of only 12 Lorentz-invariant amplitudes A{ as follows [54]

i
DUk, P,S) = MA{ + PAS + KA + i [P KIAG +i(k-S)ys AS

k-S - S
+M$V5A‘6’+ul”y5A‘7’ (k- )k s Ag
[P, 8] [£, 51 (k S)
s AG + = ys Ao + o [P Klys A7
1
+ MEWW YuPok,Ss A, 2)
where 9123 = 1. Notice that the correlators depend at most linearly on the nucleon polarization
vector S¥.

In QCD, besides k, P, S the correlators depend on an additional 4-vector n** characterizing
the lightcone direction of the Wilson-lines (n* itself is slightly off-lightcone to regularize rapidity
divergences) [4]. The presence of the vector n** in QCD makes more Lorentz structures possible
in the decomposition (2) which are described in terms of 20 additional amplitudes, often called
B amplitudes [60], which are absent in quark models.

3
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The amplitudes A? in (2) are real functions of the Lorentz scalars P - k and k2 [53,54]. The
amplitudes A? fori =2, 3, 6,7, 8, 12 are chiral even, those fori =1, 4, 5, 9, 10, 11 are chiral
odd. Another simplification in quark models is that the T-odd amplitudes A{ for i =4, 5, 12
vanish [61]. We include them in (2) for completeness.

The correlators (1) can be used to define “fully unintegrated” parton distributions which have
important applications [62-65]. In QCD the correlators contain divergences which simplifies in
the parton model as will follow up in the next section where we will introduce TMDs.

2.2. Definition of TMDs
The TMDs of quarks and antiquarks are defined in terms of the correlators as follows. Intro-

ducing the lightcone coordinates, k* = (kT, k~, 757) with k* = % (k° £ k") and analogously for
other vectors, it is convenient to define

- 1
oM = @M (x kp, P, S) :// dktdk= sk —xP+)§tr[q>“(k, P.S) r]. 3)
The leading twist TMDs are defined as
I ek sk
o= oy | fff - T #T“}, (4a)
. I kr - St
ol — ¢l s, g?+—M gIJ_Taj|7 (4b)
. M J Jjk ok jkik
i+ . ko KST o . &0k
W = or| Sp R+ LSS+ st g (4c)
and the twist-3 quark TMDs are given by
M eIkk]. sk
oM = ¢ F[e“ - e#“}, (4d)
‘ MT kr - S
U = gp Sl Spef + = e‘%], (de)
_ e _ eik ik ik gkl gl
aly’] _ T rla jk ok ra T pla T rla
@ —§VP+_Mf +eSrfr + 5L v L T e T ]v (4f)
i MT K Ik sk eIk Kk
a[yfys]_ Tl ,a T la T la T la
P ={A P _STgT+SLM8L + w2 8T + Vi 8 ], (4g)
o M’Sjkk_skkj )
A T Th%”—s’kh“] (4h)
e MT kr- S
@i V1 — g, =7 |Suhi + TM ! h“T]. (4i)

The spatial indices j, k are transverse with respect to the lightcone which is chosen along 0-
and 1-directions, and we defined x/% = (kj.k% — 18/%k2), and &23 = —&32 = 1 and zero else.
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The T-even TMDs are highlighted in blue color and can be computed in quark models. The T-
odd TMDs highlighted in red color require explicit gauge field degrees of freedom, and are not
studied in this work. The factors

fv=¢r=¢p=+1 for a=gq,q,

+1 for a=gq,

s =¢a 1 for a=g. C3)

reflect the different C-parities of the quark bilinear operators WI'W which are even in the vector
(V), tensor (T) and pseudo-scalar (P) cases I' = y#, io""ys, iys, and odd in the scalar (S) and
axial-vector (A) cases I' = 1, y*ys. The arguments of TMDs in (4) are omitted for brevity with
the understanding that f{ = f{'(x, k) where k7 = |k |, etc.

We remark that in QCD factorization, TMDs depend on two scales commonly denoted as
w? (renormalization scale) and ¢ (scale at which lightcone divergences are regulated). In gen-
eral, also in models divergences may occur and require careful treatment [66]. But in the parton
model, the correlators and TMDs are finite, and we will throughout refrain from indicating the
dependence on the scales 12, ¢ and comment on them when necessary. Because of these simplifi-
cations in contrast to QCD, in the parton model TMDs and colinear parton distribution functions
(PDFs) are simply related as, e.g., f{'(x) = fdzkrfl“ (x, kr) where the integration over kr is
finite.

In this work, we will focus on T-even TMDs which are expressed in terms of the A? ampli-
tudes as follows

e k) = 2P+/dk*(A;’ +xAY), (5a)
P-k—M?*x

gl kr) = 2P+/dk* (—Ag T(Aq +x Aq)) (5b)

gl e, kr) = 2P+/dk—(A‘71 +xAd), (5¢)
]‘('2

W (x, k) = 2P+fdk_ (-Ag —xAl, + 21‘;2 Al ) (5d)
_ P-k—M?x

e kr) = 2P+/dk (A?O— —— A‘f1>, (S5e)

hid (x, k) = 2P+/dk_A‘171, (50

el (x, kr) = 2P+/dk—A‘{, (52)

fH(x, k) = 2P+/dk’A§’, (5h)

122

gh(x, kr) = 2P+fdk ( AG+ 30 A‘1> (51)

([ P-k—Mx _

g1l (x k) = 2P+/dk (—T AZ), (5)
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gl kr) = 2P+/dk*Ag, (5k)
. o @ Pk o4 (Pk—Mx\*,
Wy (k) = 2P [k (=AY~ — Afg+ (5 ) AT ). (51)
P-k—M?x
h(x, k) = 2P+/dk—(—T A‘{1>, (5m)
hyd (x, kr) = 2P+/dk—(—A?O), (5n)

where it is understood that k+ = x P is fixed. We remind that these expressions are valid in
quark models. In QCD also the Blg amplitudes contribute, see for instance Ref. [67]. The anti-
quark TMDs are given by

fie k) = 2PT [ dk™ A§+xA§>, (6a)

gl (c,kp) = 2P (AT + xAé)) : (6b)

g7 (x, k) = 2P

(
(
dk~ (— Al —xAg7>, (6¢)
(
(

/
/
/

W (x, kr) = 2P+fdk_ —A? —xAl 4 % A‘{l), (6d)
hd e k) = 2P+/dk_ ai P kﬁzzsz A‘ﬁ), (6¢)
hid(x,kr) = 2P+/dk—A‘{1, (6f)

el (x, kr) = 2P+/dk— (— A?), (62)
fHkr) = 2P+/dk*Ag7, (6h)

] R

gh(x,kr) = 2P+/dk* (Ag — 2—1\22 Ag>, (61)
g1l (e ky) = 2P* / dk(P kﬁ;zsz AZ), (6))
el (e kr) = 2P+/dk— (— AZ), (6k)

hd (x ky) = 2P+/dk_ (_Ag - PTZ’{ Al + (%)2#{1), (61)
hyd (x, kp) = 2P / dk~ (—Aj?()), (6m)

W (x, kr) = 2P+/dk—(—%f42x A?1>. (6n)

=)}
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3. Constraints on amplitudes from equations of motion in parton model

In this section we discuss how the equations of motion relate the amplitudes in the parton
model. A similar analysis was presented in [39] for massless quarks. Here we keep track of mass
terms and extend the analysis to antiquarks.

3.1. Quark case

In the parton model the quark fields satisfy the Dirac equation (i§ — m,) W9(z) = 0. Writing
out all Dirac indices and performing an integration by parts, we obtain

d*z _

d*z _
=T =y [ s € NI 0w 1)
=Tk —mg)y Y, (k. P.S) = tr[F(k — mg) @ (k, P, S)} —o0, %)

where I" can be any Dirac matrix. It is convenient to define identities for the quark correlator (2)
as follows

Trq[F]Eitr[(k—mq)dﬂ(k,P,S)F] =0. ®)

Exploring these identities for I' = 1, y5, y*, y*ys, i "' y5 yields relations among the ampli-
tudes in the parton model. It is instructive to show the derivation of these relations in detail. Let
us consider first I' = y#* which yields

Pk
Trl[y"] = k“{MAq—quq+z(M) Z}—P“mq{Aq+z—Aq}

+ Y, Py, {iAg - %A‘fz} =0. ©)

As the four-vectors k, Py, S, and €,,6-k” P°S* are linearly independent, each of the expres-
sions in the curly brackets must vanish separately. Since the A;’s are real, in each of the curly
brackets the real and the imaginary parts must vanish separately. In this way, we find the relations

Mq
A?:HA;], Al=0, Al=0, Al=0, Al =0. (10)
Exploring Tr?[1] yields no new information beyond what we found in (10). Considering I' =
yHys yields
Pk
Tr [y ysl=k" (k- S) {—iAq + —Aq + A, (M ) Al }
q K?
+P“(k~S){ —L AT+ AT+ Vel A?l}
+ s+ {quAg — (P kAL - sz‘l’O}

=0. (11)
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We again explore that the Aiq ’s are real and k., Py, Sy, €p0-k” P? ST are linearly independent
such that the real and imaginary parts in each curly bracket in (11) vanish. Considering that
k2= mg and using A¢ =0 from (10) we obtain

al=0. al="0gn ag= Mgt ag =0 Mg )
Considering Tr?[ys] or Tr? [io*"y5] gives no new information beyond (12).

Several comments are in order. The T-odd amplitudes A, AZ, A7, vanish in the parton model
which is expected as we deal with a quark model without explicit gauge field degrees of freedom
[61]. Interestingly, in the parton model also the T-even amplitudes Ag and Ag vanish. In QCD,
these amplitudes receive contributions from “genuine twist-3" quark-gluon correlators and are
non-zero. In the parton model, the amplitudes A?, Ag, Ag are proportional to current quark
masses. In QCD, these amplitudes contain, besides mass terms, also contributions from quark-
gluon correlators.

For our purposes it is important to notice that, after exploring the equations of motion, all
non-zero amplitudes are related in one or another way to Al Ag, A(fl, i.e. to one unpolarized
amplitude (A;’), one chiral even polarized amplitude (Ag), and one chiral odd polarized ampli-

tude (A7)

3.2. Antiquark case

- <~
In the antiquark case, we start from the free Dirac equation W9 (z)(i § + mg) = 0 where the
arrow indicates which field is differentiated. Proceeding similarly to the quark case, we have

d*z

‘ _ <«
o) M TN I‘”\Il?(O) |:‘I’7(Z)(i d +mq)jl:||N)

d4Z ik- -
-y | S SN O T @IN) E )

= r,,~c1>?j (k, P, )k +mg); = tr[rcbq(k, P, S)(k+ mq)] =0. (13)
It is convenient to introduce the notation for the identities
P g
Tr [F]:ZU ro?k, P,S)(k+my)| =0, (14)

where I" can be again any Dirac matrix. Proceeding analog to the quark correlator case, we obtain
from (14) the following relations among the antiquark amplitudes,

Af=--TA] AT=0. Af=0. A{=0. Af=-—TAf, (15)
g Mg g q q (P -k) q Mg ,q q
Ar=, A Ag=0. Ay=—m= Ay + 5 Ag. A =0. (16)

Analogously to the quark case, also the T-odd antiquark amplitudes Aé, Ag, A?z vanish and so
do the T-even amplitudes Ag and Ag. All non-zero amplitudes are related in one or another way

to three amplitudes Aq, Ag, A(fl which remain unconstrained by the equations of motion. The
relations of the antiquark amplitudes in (15), (16) resemble those in the quark case in (10), (12)
except that the current quark mass m,, enters with opposite sign.

8
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4. Quark correlator in the massive case

Inserting the relations in (10), (12) in the quark correlator in (2) we obtain
D9k, P, S) =Dk, P, S)unp + P (k, P, S)pol a7
where
DIk, P, S)ump = (K +mg) Al with Al =AY,

(P-k) AT, —mgM Al
M?2

k-S
9 (k, PvS)polz(k+mq)V5{lb( )A?l 5
L&5 Ag}. (18)

In the parton model ¥ = k2 =m?

7 and the last term in the curly bracket of (18) can be written
for my # 0 as

Af == +mgys — —— A (19)

(k-S) K (k-S)
(k"‘mq)VS M m, M

Inserting the relation (19) into (18) allows us to write the polarization-dependent part of the
correlator as
®4(k, P, S)pol =+ mg)ys Agol (20)

where we introduce the polarized amplitude Agol and the axial 4-vector w,’; defined as

q q
(P-k) Al —mgM A

Agolz— 72 , (21a)

b gh_ ph (k- 8) A, WM (k- S)Ad o1b

e = T P AT —m, M A PyAl —m M AL (21b)
( ) Aj —mg 8 mg ( )Aj —mg 8

We note that for wg to be well-defined in (21) it must be m, # 0 (which is the case in this section)
and the condition (P - k) A(fl —mgM Ag % 0 must hold. We will follow up on this shortly.

4.1. Quark polarization vector

The 4-vector wg has the following important properties. It has the transformation properties
of a polarization vector, i.e. of an axial 4-vector, and satisfies the condition

wy k=0, (22)

These 2 properties are necessary conditions for wq to be a candidate expression for a quark
polarization vector. Remarkably, the condition w, - k = 0 holds for any Aq and A?l without
imposing a relation between these amplitudes.

In order to be a quark polarization vector, wﬁ,‘ must in addition satisfy the requirements

Condition (A) —1< wg <0 mixed-spin state,
2

Condition (B) w, =—1  pure-spin state.

The square of the quark polarization vector is given by

9
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k- S)*M?
V=S AT S e (At = ap2). 23)

In the following, we will explore both possibilities (A) to which we will refer as the mixed-spin
version of the model, and (B) to which we will refer as the pure-spin version of the model.

4.2. Mixed-spin model

Let us first discuss the mixed-spin version of the model which requires —1 < wfl < 0. The

2 2
q q

(P -k A‘fl — quAg)2 > 0 which is always the case because we had to assume in (21) that
(P-k)A]; —myM A # 0. Thus, in the mixed-spin case, besides the inequality |A{, | > |A]], the
amplitudes Af and A7, remain unrelated.

In this approach, the quark correlator is described in terms of 3 independent amplitudes,
namely A%, A, A, i.c. in terms of one unpolarized amplitude and two polarized amplitudes:
one chiral even and one chiral odd.

condition w; > —1 is equivalent to |A‘f1| > |A‘§|. The condition w? < 0 is satisfied as long as

4.3. Pure-spin state model

If we demand the quarks to be in a pure-spin state, wff must be normalized as w; = —1 in
(23). This means that the second term on the right-hand-side of (23) must vanish which implies
the following condition

2

wy,=—1 & Af =+A]. (24a)

The 2 solutions in (24a) lead to 2 different solutions for Agol 4 and wgi. One way of writing the

pertinent solutions consists in eliminating the chiral odd amplitude A(fl which yields

(P -k)—mgM

Ape == — A% (24b)
k- S M (K-S
wh =g - GRS p (M GRS g (240)
a (EP k) —mgM = my (£P k) —myM

This is not the most economic notation, but we have chosen it to avoid the usage of F and in
this way the + always appear together with k. We will show below in Sec. 6 that one of the 2
solutions is physical, and the other one is unphysical. Before that, however, we will discuss the
massless case.

5. Quark correlator in the massless case

When m, = 0, the analysis of the previous section cannot be carried out because for massless
quarks a polarization vector wﬁ; cannot be defined, see e.g. [68,4]. This can be seen directly in
(24b) where for my; — 0 one would encounter a 1/m,-singularity. In the case m, = 0, one has
to proceed in a different way as shown below.

The relations derived from the equations of motion in (10), (12) are of course valid also for
mg = 0. Inserting these relations for m, = 0 in the quark correlator in (2) yields an unpolarized
and a polarized contribution to the quark correlator in (17) which are given by

10
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q)q(ka P, S)unp = kAgnp ’

D4 (k, P, $)pol :kys{—x +16T} Agol (25)
where, assuming AZ # 0, we defined
Aznp = Aq,
(P-k) M(k-S) (k-8)\ Af
q _ q _ w_ | on _ pur 11
pol — M2 8> - (P -k) ’ bT—<S P (P.k)) AZ : (26)

The quantities A and b‘T‘ are defined in (26) following the common conventions in literature, see
for instance (2.3.8) in Ref. [68] or Appendix A of Ref. [4]. Their properties are discussed in the
next section.

5.1. Spin density matrix of massless quarks
The quantities A and b? in (26) have the following properties.

(1) In the high-energy limit when the nucleon moves very fast, i.e. P* — oo, and is po-
larized along its direction of motion, the nucleon polarization vector is given by S* =
ANPH/M + ... where Ay = =£1 is (twice) the helicity of the nucleon [68] (see Sec. 9.5
for a reminder) and the dots indicate terms suppressed in the high-energy limit. In such an
infinite momentum frame, the quantity A defined in (26) is given by A = Ay, i.e. depending
on the sign of Agol’ the massless quark has the same or opposite helicity as the nucleon.
Thus in the infinite momentum frame, A has the expected intuitive interpretation as (twice)
the quark helicity.

(ii) In the general case, a quark may of course have transverse polarization. In the massless case,
this is described by the vector b’TL which is transverse with respect to the quark momentum
k™. It is important to stress that b# introduced in (26) has the property k - b7 = 0 for any Ag
and A(fl .

(iii) Also in the massless case, we can distinguish pure-spin and mixed-spin states. They are
defined as follows:

Condition (A) —1< b% -2 <0 mixed-spin state,
Condition (B) b% —A2=-1 pure-spin state. 27)

5.2. Massless mixed-spin model

If one chooses to work with massless quarks in a mixed-spin state, then —1 < b% -2 <0
must hold. The condition sz — A2 > —1 will always be satisfied as long as |A(f1| > |A§|. The
condition b% — 2% < 0 is trivial and always satisfied without imposing any new requirements.
Recalling that we had to exclude the case Ag = 0 from the very beginning, we conclude that
the mixed-spin parton model is consistently defined provided 0 < |Ag| < |A‘171|. Similarly to
the massive case, in this approach the quark correlator is described in terms of 3 independent
amplitudes, namely the unpolarized A;’, chiral even polarized AZ, and chiral odd polarized A‘f 1
amplitude. In practice, these 3 independent amplitudes can be determined from, for instance
flq (x), gi’ (x), h(f (x) at some scale which is part of the model. This corresponds to the parton
model version discussed in Ref. [39].

11
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5.3. Massless pure-spin model

If we choose to work with a parton model of massless quarks in a pure-spin state, then the
condition (B) in (27) implies

) _MZ(/«S)Z( @y’

b — 22 = §?=—1 Al =+ A9 . 28
! (P k)2 (A’é)2>+ < n (28)

Also in the massless case, we have two choices for a pure-spin state parton model, one of which
will turn out to be physical and the other unphysical. We will discuss this in the next section.

6. Quark TMDs

In this section we will discuss the results for TMDs following from the quark correlator in
the parton model derived in the previous sections. We will keep m, # 0 and comment on the
massless case where necessary.

6.1. Unpolarized TMDs
The results for the T-even unpolarized TMDs are of course independent of the (mixed-spin or

pure-spin state) polarization of partons, and can be uniquely expressed in terms of the amplitude
Ag in the following way

flq(x,kT)=2P+/dk_ xAg(P«k)} : (29a)
L kt=xPt
flq(x,kT)=2P+/dk’ A%(P-k)} , (29b)
L kt=xPt
eq(x,kT)=2P+/dk— ﬂAg(P-k)} . (29¢)
_M kt=xPt

Here and in the following we shall abbreviate the notation for the amplitudes as Ag (P -k, k%) =
Ag (P - k) because in the parton model K= mé is fixed (but we will reinstate the notation Ag (P-
k, k*) when it will become important to stress the specific k> dependence in the parton model).

We see that 9 (x, kr) is proportional to the current quark mass and becomes zero if one
considers the parton model with massless quarks. This is the only TMD in the parton model with
this property.

6.2. Polarized TMDs for partons in mixed-spin state
The T-even chiral even polarized TMDs in the mixed-spin state parton model with massive

quarks are expressed in terms of the chiral even amplitude Ag and the chiral odd amplitude A?l
entering as current quark mass effect. The model expressions are given by

2472 2
X“M*—xP-k+m
g?(x,kn:zP*/dk‘[ L AY(P k) %xA%(P-k)} ,

kt=xPt

(30a)

12
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ng(x kT)_2P+/dk— xAG(P k) — %A?l(P~k):| , (30b)

L kt=xPt
q + - k2 2 q Pk q

gh(x, kr) =2P /dk TA (P- k)—ﬁ 77 AP B ., (30c)
L kt=xP+t
[xM?2— Pk

gjq(x,k7)=2p+/dk— XTA"(P k)} : (30d)
L kt=xPt

giq(x,kT)=2P+/dk— AZ(P-k)} . (30e)
L kt=xPt

For the T-even chiral odd polarized TMDs the situation is opposite: they are given in terms of
the chiral odd amplitude A‘fl while the chiral even amplitude Ag enters as current quark mass
effect. The model expressions read

q + - k —2xP-k 4 Mg .q
WGk =2P% | dk™ | L AL (P k) +x —L AL(P - k) ., (3la)
2M?2 M
L kt=xPt
Lg + - q Mg q
hif (x, kr) =2P /dk xA? (P k) — ﬁAg(P-k)} , (31b)
L kt=xPt
h#(x,kT)=2P+/dk— AL (P -k)] , (31c)
L kt=xPt+
. o [*mM2—2xpP ok, mg P-k
Wy (k) = 2P [ dk | e S AT (PR + L AYCP ) ,
L kt=xPt
(31d)
¢ o [xm—Pk,
e (x, kr) =2PF [ dk TA (P k) , (31e)
L kt=xPt
wi e kpy =20 [ar| =LK 4t by + a1 31
T (x,kr) = _W 11( : )+ﬁ 8( -k) . (311)
L kt=xPt

For massless partons the situation simplifies. Then all chiral even polarized TMDs are expressed
in terms of the amplitude A?, while all chiral odd polarized TMDs are expressed in terms of the
amplitude A{,

6.3. Polarized TMDs for partons in pure-spin state

In the pure-spin state parton model all polarized (chiral even and chiral odd) TMDs, can be ex-
pressed in terms of one single amplitude. We choose Ag for that, and replace A? 1 by A(111 = :I:Ag.
In the following the upper (lower) sign in (£) is associated with the upper (lower) sign in the two

solutions wY. for the quark polarization vector and polarized amplitude Apo1 . which correspond

to the choices Ai’l = :E:Ag. For massive partons in a pure-spin state, the model expressions for
the chiral even polarized TMDs are given by

13
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XZM?2—xP -k+m
g?(x,kr)zzp+/dk—[ e "y AL(P k)
g | £A9(P -k 32
T 9Pk , (32a)
kt=xPt
ngq(x,kT)zszr/dk— |:x Al k) - %[iAg(P -k)H , (32b)
kt=xP+
k3 + 2m? k
g‘;(x,kT)=2P+/dk—[Tzf’A‘1(P [t |:j:—A"(P k)] ,
kT=xPt+

32c)

where we do not quote the expressions for gi‘q (x,kr) and g#q (x, k1) since they do not depend
on A‘fl and are the same as in (30d), (30e). Since m; < M, the difference between the two
solutions for wi and Agol . is in practice numerically negligibly small, and disappears in the
massless case. In fact, in the massless case the mixed-spin and pure-spin versions of the parton
model give exactly the same results for the chiral even polarized TMDs.

The model expressions for the polarized chiral odd TMDs are given by

. o[ B—2xpr ek, g
hi(x,kr) =2P /dk iiA P k)+—xA (P-k) ,
2M? M
L kt=xPt+
(33a)
hfg(x,kT)=2P+/dk— +x AL(P k) — %AZ(P-k)} , (33b)
L kt=xPt
h#(x,kT)=2P+/dk— iAq(P~k)i| , (33¢)
L kt=xpPt
2xP k my Pk
hg(x,kT)=2P+ [ s AP+ AZ(P-k)} :
kt=xPt+
(33d)
h‘;(x,kT)=2P+ [ Aq(P k):| , (33e)
kt=xP*t
Wiy = 2P [a | < (= 2K a1p i)+ ™2 40P -k 33)
T(x’T— _Wg')‘i‘ﬁg(') . (
kt=xP*t

If we consider that quark mass effects are negligible in practical applications, we notice that
the signs & associated with the solutions for w% and Agol . yield different predictions for the
overall signs of the chiral odd polarized TMDs. For massless quarks, the two choices give exactly
opposite signs for chiral odd polarized TMDs.

The negative-sign solution for w?. and Agol . in (24) coincides with the conventions in [26—
38] and predicts transversity and helicity quark TMDs to have equal signs in agreement with

14
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other models and lattice QCD [69—94,96,95,98,97].1 We therefore conclude that the negative-
sign solution in (24) is physical. From the positive-sign solution wf{_ and Agol 4 in(24), one would
obtain transversity and helicity quark TMDs with opposite signs. This has not been observed in
any model or lattice study we are aware of. We therefore discard the positive-sign solution in
(24) as unphysical.

It is natural to encounter two solutions because the pure-spin state condition ws =—lisa
quadratic equation. Interestingly, the pure-spin state parton model by itself cannot distinguish
which solution is physical and which one is unphysical, and thus does not predict the sign of
transversity and other chiral odd TMDs. We have to determine the physical solution using results
from other models or lattice QCD as a guideline.”

Thus, the physical (negative-sign) solution corresponds to the covariant parton model in [26—
38] and is given by

al=—at, ar = LM,

11° pol— — M2 8"
wﬂ_zsﬂ_&pﬂ_ﬂﬁkﬂ_ 34)
g (P-k)+myM my (P-k)+myM

The final model expressions for the polarized TMDs in the pure-spin state version of the model
are given by

p N __x2M2—xP~k+xqu+m(21 q
! (x, kr) =2P /dk 7 AL(P k) ., (35a)
L kt=xP+t
M
gf;f(x,kT)=2P+/dk— % Ag(P.k)] , (35b)
L kt=xPt
(MK} +2my P-k+2m2M
g;(x,kT)=2P+/dk— L §M3 9 AL(P k) : (35¢)
L kt=xPt
g N |fxM>P—P-k ,
g1 k) =2P [ dk™| === AY(P k) : (35d)
L kt=xP+t
g%q(x,kT)=2P+/dk_ Ag(P'k)} : (35¢)
L kt=xPt
[2x Pk — K2 +2xmyM
h (x.kr) =2PF / o 2]‘2; M AZ(P~k)i| : (350)
L kt=xPt
M
hif (v k) = 2P f S A%(PJ«)} , (35¢)
L kt=xPt

' We remark that one can determine the physical sign solution for hcf (x) also from model and lattice QCD studies of

the nucleon tensor charge fol dx(h(f — h‘ll)(x) [99-108], under the safe assumption that the sign of the tensor charge is
determined by h‘ll (x).

2 Let us recall that the sign of h‘l’ (x) cannot be inferred from experiment because chiral odd (TMDs, fragmentation, etc)
functions enter observables paired with other chiral odd functions. The positive sign of hbl‘ (x) in parametrizations (see,
e.g., [15] for a recent extraction) is a convention based models and lattice QCD predictions [69-94,96,95,98,97,99-108].
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hll;?(x,kT):2P+/dk_ —Ag(P~k):| , (35h)
L kt=xPt
[oxM P -k —x2M3 Pk
h%(x,kﬂ:ZP*/dk’ al ;43 g TR qap -k)i| . G5i)
L kt=xPt
[P k—xm? _
h‘;(x,kT)=2P+/dk TA@(P-k)H , (35))
L kt=xPt
Pk M
h#q(x,kT)=2P+/dk— %A%(Pk)} . (35K)
L kt=xPt

Above, we explored theoretical studies of h‘f to determine the physical sign solution, because
transversity is arguably the most widely studied chiral odd nucleon distribution function. For
completeness, let us remark that in principle we could have used any other chiral odd quark
distribution function, for instance h‘i (x) for which some model and lattice studies are available
in literature [69,72,73,89,109-111]. One obtains the same result from hi(x). It is important
to remark that there is more than one way to determine the physical sign — including further
possibilities to use chiral odd TMDs like pretzelosity h# , the gear-worm function hlqu , or other
polarized chiral odd TMDs. The fact that one concludes unanimously the same relative (negative)
sign between the amplitudes Ag and A?l using the different methods supports the consistency of
the approach.

7. Antiquarks in the parton model

The discussion of the antiquark correlator parallels that of the quark correlator such that we
can abbreviate many details and focus on showing the main results.

7.1. Correlator for massive antiquarks

Inserting the relations in (15), (16) in the antiquark correlator in (2) and performing exactly
the same steps as in the polarized correlator as in (17)-(21) we obtain

Y (k, P, S) = D (k, P, S)unp + DI (k, P, $)pol (36a)
with

7 (k, P, S)unp = (K — mg) Alup , (36b)

7 (k, P, S)pot = (k —mg)ys g Al (36¢)

where we introduced Afyp, AZ

I3 3
pol> W5 defined as

Y
Aunp = A3 >
3 We recall that by convention antifermions are polarized opposite to the polarization vector, cf. Sec. 9.5. We stress

that this has no practical relevance for our results and the TMDs of both quarks and antiquarks have their usual partonic
interpretations.
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(P-k)AY, +myM Al

Al =- e : (36d)
k-S)A? M k-S)Al
T VI L L RV R L W (36¢)

(P-k) A, +myM A} Mg (P -k) A, +myM A}

In (36e) we assumed that m, # 0 and (P - k) All +myM A'; # 0. The axial 4-vector wg plays

the role of the antiquark polarization vector. It satisfies k - w; = 0 for any Aq and A(fl
In the mixed-spin version of the parton model, we have

—1<w§<0 37

where the upper bound is always satisfied. The lower bound is satisfied provided |A‘1i1| < |Ag .
In this version of the model, the antiquark correlator is described in terms of three independent
amplitudes A9, A%, AY,.

In the pure-spin state version of the model, the polarized amplitudes Ag and A?l are related
as

wi=-1 & Af ==+af. (382)

The two solutions Ag = :l:A‘li1 imply

(£P k) +myM
A== A (38b)
kS M (Ek-S
po_gn_pn D M GRS g (380)
g (P k)t mgM  my (£P k) +mgM

7.2. Correlator for massless antiquarks

In the massless case, the unpolarized and polarized parts of the antiquark correlator in (36b)
are described as*

@1 (k, P, S)unp = kAgnp ) P (k, P, S)pol = K VS{_)\ + %T} Agol (39a)

where, assuming AZ # 0, we introduced

Al =AL
; (P-k) Mk - S) (k- S)
Agolz—WAg, ,\:W, b#:(SM P TE k)) “. (39b)

The condition —1 < b2 — A2 < 0 defining the massless spin state model holds provided |A 1| <
IAq| In this case, the model is characterized in terms of three independent amplitudes Aq, Aq
Al

11

4 In our notation, the helicity of the antiquark is given by (—A), cf. footnote 3, the reminder in Sec. 9.5, and the “mental
health warning” in Sec. 6.4 of Ref. [4].
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In the pure-spin case for antiquarks, it is required that b% — A2 = —1 which implies A?l =
:l:Ag. The description of the antiquark correlator proceeds then in terms of two independent
amplitudes which can be chosen to be A%, AZ.

7.3. Unpolarized antiquark TMDs

The T-even unpolarized antiquark TMDs are uniquely expressed in terms of the amplitude Ag
as follows, cf. (6),

fl‘?(x,kT)=2P+/dk— xA;;(P-k)} : (40a)
L kt=xP+
fi‘?(x,kT)=2P+/dk— AZ(P-k):| : (40b)
L kt=xPt+
eé(x,kT)=2P+/dk— %A{Z(P ~k)} . (40¢)
L kt=xPt

7.4. Polarized chiral even antiquark TMDs in mixed-spin case

The polarized chiral even TMDs in the mixed-spin model are given by

- [(x P k—x>M?>—m2 . m G
gl (x kr) = 2P+/dk’ e L A% - ﬁxA‘f] : (41a)
L kt=xP*t
&l e, kr) = 2p+fdk— —x Al - %A?l] : (41b)
L kt=xPt+
- [ k2Z+2md o om, Pk
- q q
gl(x kr) = 2P+/dk — Al — o WA‘{l , (41c)
L kt=xP+
z M?>—P-k .
gl (. kr) = 2P* f dk™ | — XT A‘é} , (41d)
L kt=xPt
gl (e kr) = 2P+/dk’ —AZ:| . (41e)
L kt=xP+
7.5. Polarized chiral odd antiquark TMDs in mixed-spin state case
The polarized chiral odd TMDs in the mixed-spin model are given by
_ (2 oxp ok -
h(x, kr) = 2P+fdk— % Al - %mg} : (42a)
L kt=xpPt
pid _ opt - g 4, Mg 4q
lL(x’kT) = 2P dk XAH‘I—ﬁAg 5 (42b)
L kt=xPt
hiA (k) = 2P+/dk— A?l:| : (42¢)
L kt=xPt+
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202
a N x*Me =2xP -k ; myg P-k 5
h (x,kr) = 2P+fdk TA‘{I b vieviy Ag] , (42d)
L kt=xpP*t
14 | Pk i my g
h (x k) = 2P+/dk - WA?I — ﬁ"Ag} , (42¢)
L kt=xPt
_ B M2 - Pk -
hi.(x, kr) = 2P+/dk— xT A‘{l} . (42f)
L kt=xPt
7.6. Polarized chiral even antiquark TMDs in pure-spin state case
The polarized chiral even TMDs in the mixed-spin model are given by
, xP-k—x’M>—m?2 . m G
g’{(x,kT)=2P+/dk_|: e 1AL - ﬁqx<iAg) ., (43a)
kt=xP+
e kr) = 2p+/dk— |:—x Al % (:I: AZ>:| , (43b)
kt=xPt+
. I}? +2m2 - m, P-k =
- q q
kt=xpP*t

while gfq (x,kr) and g;‘q (x, kr) which do not depend on the amplitude A?l are still given by
the expressions (41d), (41e).

7.7. Polarized chiral odd antiquark TMDs in pure-spin state case

The polarized chiral odd TMDs in the pure-spin state model are given by

; (k2 —2xP -k ) _
h(ll(xakT) = 2P+/dk_ % (iAg) — %XAZ} s (44a)
kt=xPt
Lg + - q Mg 4q
hyp (x,kr) = 2P /dk X <:i:A8) + HAS] , (44b)
L kt=xP+
hd e k) = 2P+/dk‘ (iAZ)} ; (44c)
L kt=xPt
2202
G _| x*M*—-2xP -k 7 mg Pk ;
hp (e kr) = 2P*/dk T(:{:Ag) ~ 2 Ag} . (44d)
kt=xPt+
p Pk _ _
hyd (x, k) = 2P+fdk— 7 <:|:Ag> = %Ag} : (44e)
L kt=xPt+
g i | xMP—P -k g
hy(x, kr) = 2P dk a2 :i:AS . (44f)
L kt=xPt+

Keeping in mind that quark mass effects are practically negligible for the light u- and d-flavors,

q 4 in (38a)—~(38c), predict opposite signs of the

we see that the two = solutions for wf and Aol
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chiral odd polarized antiquark TMDs. In order to determine the physical solution, we will again
rely on results from model and lattice calculations.

In order to determine the physical solution for wft and Agol 4 in (38a)—(38c) we proceed ana-
log to the quark case and consult theory results from literature. Far fewer studies are available for

antiquark distributions as compared to quarks, but they unanimously yield h? and g? of opposite
signs for a given flavor g [71,78,80,90,92,96,95,98,97]. Now, the positive-sign solution w; and
Aq yields transversity and helicity antiquark TMDs of equal signs, i.e. this is the unphysical so-
lution in antiquark case. The negative-sign solution w? and A% in (38a)—(38c¢) gives transversity
and helicity antiquark TMDs of opposite sign which is in agreement with results from literature.
We therefore choose the negative-sign solution in (382)—(38c) as the physical solution which is
given by

q q
Al =—4g,
P-k—m,M ;
q q q
Apolf M?2 AS’
k-S M k-S
Wl — g _ pug M 45)
4 P-k—myM mg P-k—myM

The final model expressions in the pure-spin state model are given by

_ xP-k—x*M?*+xm,M — m?
gl (x, kr) =2P* / dk~ [ e 1 1 A : (46a)
kt=xPt
- M — .
gl kp) = 2P* / dk~| == A‘g’} , (46b)
L kt=xPt
[ MEk2—2m,P-k+2m*M -
gl (x,kr) = 2P / dk=| - —T ! 1 Af : (46¢)
2M3 tept
L kt=xP
- [P k—xM?
gfq(x,kr) = 2P+/dk’ sz Ag] , (46d)
L kt=xPt
g7l (e, kr) = 2P+/dk— —Ag} , (46¢)
L kt=xPt
) JoxPk—k2—2xm,M
hi(x,kr) = 2PF / dk 23 . Ag} : (46f)
L kt=xP*t
_ M — -
i G kr) = 2P+/dk— —wAg} , (46g)
L M kt=xPt
hid e, kr) = 2P+/dk— —AZ} : (46h)
L kt=xPt
N 2xMP k—x*M3—mgP-k .
he (x,kr) = 2PF [ dik™ . Al , (46i)
L kt=xPt+
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. P k—mM
WE (x k) = 2P+/dk_|:qu Ag] , (46j)
kt=xPt+
g + | Pk—Mx
Wy(ekr) = 2P [ dik”| ———— A] . (46K)
kt=xP+

8. Consistency of the approach
In this section we demonstrate the internal consistency of the approach.
8.1. Sum rule of e*(x)

As a first consistency test we consider the sum rule for the twist-3 function e?(x) [69,113].
Introducing the integrated functions e“(x) = [ d%kr e“(x, kr) and f{'(x) = [ d’kr f{(x,kr)
(we recall that in the parton model TMDs and PDFs are simply related, see Sec. 2.2), we obtain
from (29, 40) the result

1 1
/dx (x e(x) +xeé(x)> = %/dx (flq(x) — flq(x)). 47)
0 0

Using the customary “continuation” to negative x according to el (x) =e9(—x) and flq (x) =
—flq (—x), (47) can be expressed as

1
q My
dx xe (x):ﬁNq, (48)
-1
where N, = f_ll dx flq (x) is the number of valence quarks of flavor ¢ in the nucleon. This is a

consistency test for the amplitude relations derived from the equations of motion for respectively
W, and ¥, in Secs. 3.1 and 3.2. The sum rule in (48) is correctly satisfied due to the opposite

signs in the relations A = 5% A9 and AY = —Z¢ A%. We will follow up below on the negative-x
continuation also for the other TMDs.

8.2. Equation of motion (EOM) relations
From the QCD equations of motion, one obtains the so-called EOM relations. Below we quote

only the EOM relation for T-even functions relevant in this work. The EOM relations among the
unpolarized TMDs are given by

x frx k) =x fHC k) + £ Gk, (49a)
xe“(x,kT)zxé”(x,kT)+%ff(x,kr), (49b)

where a = g, g. The EOM relations among the polarized TMDs read
xg e, kr) = xGE (e, kr) + g1 (x.kr) + L i (x. k), (50)
x84 (x k) = xgh (e kr) + g7 (e, k) + % he (x, kr), (50b)
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xg79(x, kr) = x g7 (x, k) + g (x, kr) + % hif (x, kr), (50¢)
xh® (e, kp) = xh (k) — 200 (e k) + % g9 (x, k), (50d)
xS (x, kr) = xh% (e, kr) — hS (e, k) — ht 2 O, kr) + % g (x, kr), (50e)
Xh (x, k) = xhF (6, kr) + b (e, kr) — i (x, k), (50f)

where the (1)-moments of TMDs are defined, for instance, as
72

k
1(1) T L
g7 q(x,kT)=W8u?(x,kT) (51

and analogously for other TMDs. In QCD, the tilde terms in (49, 50) are related to quark-gluon
correlators [59]. In quark models, despite the absence of gluonic degrees of freedom, the tilde
terms are in general nonzero as they can arise from the respective model interactions.

In the parton model, the tilde terms are expected to be zero. One readily verifies that the model
expressions for quark and antiquark TMDs in (29, 30, 35, 40, 41, 42, 43, 44) in mixed-spin and
pure-spin version of the model satisfy the EOM relations with the tilde terms set to zero. This is
another important consistency test of the approach.

8.3. Relation between quark and antiquark correlators and its consequences

In order to carry out further tests of the consistency of the approach, we explore the field-
theoretical relation between the quark and antiquark correlators in (1) given by [45,53]

o (k. P.S) = — ®f.(—k, P.S) (52

The relation in (52) shows that the amplitudes A? and A? are related to each other by a “contin-
uation” of P - k to (— P - k). From the expansions of the correlators ®¢(k, P, S) in terms of the
amplitudes in (2) and the relation in (52) we read off

+A! (=P k) for i=3,4,5,7,10, 12,

AYP k)= : _
—AY (=P -k) for i=1,2,689 11.

(53)
As a first consistency test, let us rederive the relations among the antiquark amplitudes in
(15), (16) from the relations among the quark amplitudes A9(P - k) in (10), (12). This is ac-
complished by continuing k — (—k) in (10), (12). Using (53) to express the Al.q (—P -k) in terms
of the A;’(P - k) yields the antiquark amplitude relations in (15), (16). This test demonstrates
the consistency of the derivations of the relations (10), (12) among the quark amplitudes and the
derivations of the relations (15), (16) among antiquark amplitudes.

As a second test related to the amplitudes, let us consider the final results for the correlators
in the pure-spin state model with massive partons which are given by

Ok, P, ) = (k+my) [Aﬁnpw )+ s g () AL (P -k)} (54a)
O (k, P, S) = (k — my) [Aénp(P )+ s g () AL (P ~k>} (54b)
Alnp(P k) = A5(P - k), (54¢)
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P-k+myM

Agol(P k)= e AP k), (54d)
Al (p.k)_MA‘?(p.k) (54e)
pol - M?2 8 ’
k-S M k-S
wrk)y=S# — ————— pH - — — — — M, (54f)
4 P-k+myM myg P-k+myM
k-S M k-S
Hky=SF — ————— PP 4 — ————_ H =wh(—k). 54
wg ) Pk—mt " o, Pok—mgm =P 42

From (53), (54) we see that Aln, (P - k) = Afyp(—P - k) and Agol(P k) = Agol(—P - k) while
wg (k) = w’qL (—k). With these preparations, we see that the quark and antiquark correlators are
related to each other by the field-theoretical relation in (52). This test is non-trivial, because we
have independently chosen the signs of the solutions in the quark and antiquark cases in (24, 38).
In the same way, one can show that the quark and antiquark correlators are consistently described
also in the mixed-spin state and massless versions of the model.

8.4. Continuation of quark TMDs to negative x
The model expression for flq (x, k7) in (29a) can be expressed as
e kr) = 2P+/dk* / dktT skt — xP+)|:xA‘31(P ~k)i| ) (55a)
In this expression, we replace x by (—x), and perform the substitutions® k* — —k™. This yields
fl(=xkry=—-2pP% / dk~ / dkt skt — xP+)|:xA§1(—P : k)]

=—2P+/dk—/dk+ sk —xP+)[xA§(P-k)] (55b)

where in the last step we made use of (53). Comparing to (40a) we recognize the expression for
(-1 flq (x, k7). We can proceed analogously with the other TMDs. Summarizing the results, we
find the familiar relations

flekry =— fl(—x,kr), (56a)
gl k) = gl(—xkp), (56b)
hl(x,kr) =— kY (=x,kr), (56¢)
g (v k) =— g1 (—x,kr), (56d)
hlxkp) = by (—x,kp), (56¢)
hyf (e kr) =— by (—x, kr), (56f)
el kr)= €l(—x,kr), (562)
[ k)= fH(—x k), (56h)

5 Notice that under the substitutions k¥ — —k= in the integrals in (55a), the product P - k changes sign P -k — —P -k.
This is so because P -k = PTk™ 4+ P~k™ is independent of k7 as by definition the nucleon momentum has no transverse
component.
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g k)= gh(—x,kr), (56i)
g7l k) = g7t (—x kr), (56))
g 0, kr) =— g7 (—x, k), (56K)
e (e, kr) =— h%(—x, k), (561)
hyl(eokr) = byl (—x,kp), (56m)
Wi k)= hb(—x,kr). (56n)

In these relations x is always in the range 0 < x < 1. We remark that based on these relations it
is customary to introduce TMDs defined on the domain —1 < x < 1 with the understanding that
quark TMD functions of (—x) mean (%1) of the respective antiquark TMD functions of x with
the signs as specified in (56), e.g., h{ (x, kr) for 0 < (—x) < 1 means —h{ (x, k7) for 0 < x < 1,
etc, cf. also Sec. 8.1.

9. Evaluation of TMDs in covariant parton model

In this section we will show that the pure-spin state parton model derived in this work corre-
sponds to the CPM of Refs. [25-38]. For that we will introduce the notation of [25-27], explore
consequences of the equation of motion [39], consider kinematic DIS constraints, and rederive
the model expressions for quark TMDs from prior studies [30,33,38] and present new results for
antiquark TMDs.

9.1. Model expressions

Starting from the equation of motion (i § — mg) W (z) = 0, one obtains for the quark correlator
the relation [39],

a4 ) _ — —
OZ/ﬁe”{Z <N|‘I”;1(0) |:(i d +mg) (i @ —mq)k1W7(Z)i||N>

d*z —
= ﬁ ek (N1 T (0) [(— O-m;) ]lil\IJ;’(z):| IN),
= (kK> —m®*) @}, (k, P, S), (57)

where in the intermediate step we have performed twice integration by parts. The antiquark
correlator satisfies an analogous relation. Since the Lorentz structures in the decompositions of
the correlators are linearly independent, the result (57) and the analogous result for the antiquark
correlator imply that the amplitudes satisfy

(K> —m*) AY(P -k, k) =0, a=gq,§. (58)

Keeping in mind that in the pure-spin-state version of the model we only have 2 independent
amplitudes which can be expressed as Aﬁnp(P -k, k%) and Agol(P -k, k%), cf. (54), the solutions
to (58) can be stated as

AL (P -k K?) = M 8(K> —m]) Oin(P - k) G*(P - k),
AL (P -k, k) =M8(k> —m}) Oin(P - k) H (P - k), (59)
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where a = g, q. Several comments are in order. The delta-function § (k* — mé) ensures that (58)
is satisfied, and puts the partons on shell. The functions G9(P - k) and H?(P - k) are Lorentz-
invariant functions of the variable P - k and are defined following the notation of [25-27]. In
(59), the factor M was introduced for convenience such that G4(P - k) and H9(P - k) have the
dimension (mass)~> and can be interpreted as 3D momentum densities [25-27]. Finally, the
function Oy, (P - k) incorporates the kinematic constraints on the partons and is defined as

On(P k) = O (P-) + O, (P k), Of,(P-0)=0GP -k O ((PFL?). (60

Below we shall see that only G)]'gn(P - k) in (60) contributes to quark or antiquark TMDs. How-
ever, although it drops out from TMDs, the presence of ©; (P - k) in (60) is nevertheless of
importance for the analytic structure of the amplitudes and completeness of the model. We will
follow up on this shortly. Let us mention here merely that due to ®(P - k) = O(k%), the role of
O(P-k)in @f{in(P -k) is to project out positive energy solutions [38], while ®((P — k)?) ensures
that the nucleon remnant has positive energy and constitutes a physical state [39,112].

The scalar product P - k is positive (since it can be evaluated in any frame including nucleon
rest frame where it is Mk°; and for a real, on-shell parton the energy £° is of course positive).
But it is convenient to define the “analytical continuation” of the covariant functions at negative
values of P - k as follows

GI(—P -k)=Gi(P-k), HI(—P -k)y=HI(P k). (61a)
With this definition, we see that the amplitudes defined in (59) satisfy
Alnp(—P -k, k?) = Alp(P -k, k?), Aly(=P -k, k%) = Al(P -k, k%). (61b)

We also see that with these definitions the model expressions for the quark and anti-quark corre-
lators are given by

®9(k, P, S) = (¥ +mq)(gq<P k) +HIU(P k) ys wq<k>>
X M 8(k* —m}) Oyin(P - k) (61c)
&9 (k, P, S) = (¥ —mq>(g4<P k) +HI(P k) ys wq(k)>

x M 8(k* —m;) Oxin(P - k) (61d)

with wf (k) defined in (54), and satisfy (52). This is important for the internal consistency of the
model. Notice that a consistent description of the quark and antiquark correlators is guaranteed
by the specific structure of Oy, (P - k) as defined in (60).

In the quark case, the result in (61c) coincides with the expression for the quark correlator in
Ref. [38].° Notice that the step function @ ((P — k)2) was implicitly understood in Refs. [25-38]
(and explicitly formulated in [39]). With the above remarks in mind, the result in (61c) practically
reproduces the results for quark TMDs from [38]. In the antiquark case, the result in (61c) is new
and was not given in prior studies.

6 At this occasion, let us remark that in Ref. [38] instead of nucleon mass M the nucleon energy PO was used to
give G4(P - k) and HY (P - k) the desired dimension. This choice is incorrect as it would imply incorrect Lorentz-
transformation properties for the amplitudes. But in [38] the TMD expressions were evaluated in the nucleon rest frame
where PO = M , so the practical results from [38] are correct.
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Let us explicitly carry out the calculation of the unpolarized leading-twist quark TMD. Start-
ing from (29a) and inserting for A;](P kK = Aﬁnp(P -k, k?) the result in (59) we obtain

flx kr) = 2P+/dk—fdk+5(k+ —xP)xM8(k* —m}) Owin(P - k) G (P - k)
= (part 1) + (part 2) (62a)

with the two parts arising from respectively the two contributions G)fin(P - k) in (60). The first
part in (62a) is evaluated by noticing that ®(P - k) = ©(k?) and using §(k* — m}) O(K") =
8(k° — E;) / 2E,) with

= Jk2 +m2 (62b)

denoting the parton energy. Recalling that k* = (k® £ k') /+/2, changing the integration variables
dktdk~ — dk%dk! and choosing for convenience to work in the nucleon rest frame, we obtain

= 0 8K —ED o ooy gicp.

(part 1) = xM/dk /dk 5( P+) E, O, (P -k)GI(P k) (62c)
1

_fodk < ~ Eq;]-k >@(M2+m§_zMEq) GIME).  (62d)

The “part 2” is evaluated similarly except that now we pick ®(—P - k) = @(—ko) from
Okin(P - k) in (60). We then get §(k* — m2) ©(—k) = 8(k° + E;) / RE,) which yields, us-
ing the nucleon rest frame for convenience, the result

dk! E,— k' 5, .
(part2) =xM E—qa X = |OM +mg +2MEg) G (~MEy) =0 (62¢)

The “part 2” vanishes because x is positive and (E; — k')/M is also always positive for an
on-shell particle such that the delta-function under the k!-integral in (62¢) is always zero.

The result for flq (x, k7) due to “part 1” in (62a) coincides exactly with the expression from
prior studies [25-38] (notice that in prior studies G4 (P - k) was often denoted in the nucleon
rest frame as G7(E,) or G4 (k%) for simplicity). The calculation of flq (x, kr) is analog to the
above calculation of the quark TMD with the labels ¢ <> ¢ interchanged, and other quark and
antiquark TMDs are evaluated analogously. In order to list the final results and abbreviate the
model expressions, it is convenient to introduce a compact notation for the flavor-dependent
integration measures [30]

dk' G*(ME,) E, + k!
{dk" Yo = E ﬁ 8<x - qT) O(M? +mj —2ME,), (63a)
q
dk! H*(ME,) E,+k!
(k) = E, E +my, (x_qT> O+ my —2MEy) (630)
q

Summarizing all results in the compact notation of (63), we obtain
i, k)= /{dk Yanp |:xM(Eq +mq)], (64a)
g0 (x, k) = [{dkl [ [xZMZ — xE,M + xmyM + mfli| (64b)

26



F. Aslan, S. Bastami and P. Schweitzer Nuclear Physics B 984 (2022) 115947

sif (k) = [ 1ak')gy _xM2+qu}, (640)
Y (x, kr) = / {dk'}e,, _2xEqM—i£% +2xqu:|, (64d)
(e, kr) = / (dk'Ya, _—xMz —m,,M], (64e)

hi (x, kT)_/{dk Kol _—MZ], (64f)
e xkr) = [ (k') —mq<Eq +mq>}, (642)
Pk = [k, —M<Eq +m,,)}, (64h)
g4 (x, kr) = / {dk'Ya, _k% +2my E, +2m$i|, (64)
g (x, kT)—/{dk Yool | M2 — EqM:|, (64j)
g7 (x k) = / {dk'Ya, _MZ}, (64K)
hY (x,kr) = / {dk'Ye, _2xMEq —x2M2+quq], (641)
hé-(x, kr) = / {dk'ye, _EqM—xM2:|, (64m)
h7 (x, kr) = / {dk'ye, _M(Eq +mq)] (64n)

These results are valid for a = g, g. The results for quark TMDs were obtained before in [30]
in twist-2 and in [38] in twist-3 case. The results for antiquark TMDs are presented for the first
time in this work. It should be noted that equivalent expressions can be obtained for the TMDs
[30] by exploring E 2 k2 + k2 + m and £, + k' = xM due to the on-shell condition and the
delta-function present in the compact deﬁnmon of the integration measure (63).

The model expression for quark and antiquark TMDs satisfy (56). This follows immediately
from the properties of the amplitudes in (61b). It can also be verified explicitly by working with
the model expressions at the level of (62c) before the k-integration is carried out and the con-
tribution of “part 2” explicitly drops out. In fact, when we continue the expression for the quark
TMD to negative x values, then the roles of @;n and O in (60) interchange: when evaluat-
ing flq (—x, kT) the contribution from @;n drops out and that of ®; yields a non-zero result.
In order to show that f}(—x, kr) = — f{ (x, kr) one needs to perform substitutions k% — —k°
and k! — —k! (or equivalently k* — —k¥ in lightcone coordinates). Under these substitutions
P -k — —P -k, cf. footnote 5, such that ®f(rin(P - k) is transformed into ©; (P - k) and vice
versa. Thus, we see that the full analytical structure of G, (P - k) is crucial for the proof of the
relations in (56). Once the integration over k° is carried out and the “part 2” contribution drops
out in (62e), the relations (56) are implicit and cannot be easily verified.
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9.2. Relations among antiquark TMDs in the CPM

In QCD all TMDs are independent functions. But simpler model dynamics or additional
model symmetries can generate relations between TMDs in models. In the quark case, rela-
tions among TMDs were found in several models. Based on the results of the previous section
we present relations among antiquark TMDs which to the best of our knowledge have not been
derived before. In fact, as shown in the previous section, the antiquark TMDs are formally given
by same expressions as the quark TMDs with G4(P - k) replaced by G4(P - k) and analog for
H4(P - k). Therefore, the antiquark TMDs and quark TMDs satisfy in the CPM the same model
relations. Considering how little is known from models about nonperturbative properties of anti-
quark TMDs, the new relations are of interest.

In Sec. 8.2 we already discussed the EOM relations (49, 50), which are satisfied in the model
with the tilde terms absent also in the antiquark case. Next, we consider the so-called quark model
Lorentz invariance relations (qLIRs) which arise in effective theories without gluonic degrees of
freedom where T-odd A¢ amplitudes are absent and the 14 T-even TMDs are described in terms
of 9 T-even amplitudes implying 5 relations given for antiquarks by [53]

5 LIR ; d =

gl = gl + —g“”‘f(x), (652)
R () T hd (x) — —h““‘% ). (65b)

d
hq( ) LR - J_(l)q( ). (65¢)

G d ;i LIR

gl () + ag#“)q(x) =0, (65d)

7l g LIR g
he(x, pr) — iyl (x, pr) =" bt (x, pr). (65¢)

The qLIRs are written such that twist-3 TMDs appear on the left-hand sides and twist-2 TMDs (if
any) on the right-hand-sides. The CPM model expressions for antiquark TMDs (64) satisfy the
gLIRs (65). The proofs are identical to the proofs of the corresponding qLIRs for quark TMDs
and can be found in Ref. [30].

While the qLIRs (65) must be valid in all models with no explicit gluon degrees of freedom,
in specific models further model relations may hold. In the CPM, the antiquark TMDs obey the
following model-specific relations

g (x. pr) = —hi (x. pr), (66a)
g7 (x, pr) = —h2(x, pr),s (66b)
g (x, pr) = —hd(x, pr), (66¢)
gl e, pr) —hlx, pr) = “”%c p1), (66d)
gd (. pr) — hd(x, pr) = M x, pr), (66¢)

and one more relation which coincides with the qLIR (65¢). The quark-model relations are ver-
ified by directly inserting the model expressions (64). The analogous relations among quark
TMDs were derived in CPM in [89] and are valid also in spectator, bag, and light-front constituent
quark model [73,88,89,85,114]. The CPM also supports the following non-linear relations among
antiquark TMDs

28



F. Aslan, S. Bastami and P. Schweitzer Nuclear Physics B 984 (2022) 115947

1T 1s 2 ; ;

5[hfg(x, PT)} =—nI(x, pr)hii(x, pr), (66f)
1T 15 2 ; ; ; ;

E[g#(x,m} =g (x, pr) g1l (x, pr) + g4 (x, pr) g7 (x, pr) . (662)

The linear and nonlinear relations were derived for quark TMDs in [30] in twist-2 and in [38] in
twist-3 case.

For twist-2 quark TMDs, the deeper reason underlying the model relations (66a), (66d), (66g),
can be traced back to a rotational symmetry of the lightcone wave functions in independent-
particle models with quarks bound by mean fields [114]. It will be interesting to see whether the
same arguments can be generalized to antiquark TMDs. Not all models support such relations
with quark-target models [82] being one counter-example. However, we see that in the CPM the
quark model relations are satisfied not only by quark TMDs but also by antiquark TMDs.

Let us remark that if one would impose in addition the SU(4) spin-flavor symmetry of the
nucleon wave function, then additional relations would hold in the CPM for antiquark TMDs the
same way they hold for quark TMDs [30,38]. In the quark case, the SU(4) spin-flavor symmetry
is a useful approximate concept, but it is unclear whether it is a useful concept for antiquark
TMDs. We therefore refrain from showing the results here, but it will be interesting to test the
SU(4) symmetry in antiquark TMDs in future studies.

_Last not least, let us remark that the Wandzura-Wilczek (WW) approximations for the PDFs
g‘; (x) and h%(x) [115,69] are exact in the CPM in the antiquark case analogously to the quark
case [26,38]. Similarly, the similar approximate “WW-type” relations for the transverse moments
of the TMDs glqu and hf‘lf’ [116] hold exactly in the CPM. Again, the proof is analogous to the
quark case [30].

9.3. Kinematic constraints, and limitations of the approach

The partonic interpretation of TMDs in QCD is done in infinite momentum frame where
f{ (x,kr)dx is interpreted as the probability to find a parton of flavor a carrying a fraction of
the longitudinal nucleon momentum in the interval [x, x + dx] and a transverse momentum
k7 = |kr|. The other twist-2 TMDs have analogous interpretations, albeit involving polarization
of the parton and/or the nucleon [54]. Bjorken-x is a Lorentz scalar, and transverse momenta
are not affected by longitudinal boosts. Thus, we of course have the same x and k7 also in the
nucleon rest frame (where, however, we no longer a partonic interpretation is applicable in QCD).
If x and k7 are specified for an on-shell parton, then the parton 4-momentum k* = (E,, kL kp)

with I;T = (kz, k3) is completely fixed, and we have [34]

72 2
_ﬂ kT —l—mq

E, = Ty 67
177 %M (672)
M KR+ m?
M= = (67b)
X

In the nucleon rest frame, the step function ®, (P - k) introduced in (60) can be expressed and
rewritten thank to the on-shell condition as follows

OL(P k) =O(M*+m} —2ME,) =0M* —m, —2MIK)). (68)

Hence we see that £, < (M?* + mg)/(ZM) and |/€| < (M?*— mé)/(ZM), i.e. the parton energy
and parton 3-momentum are constrained in the nucleon rest frame [34]. From these bounds and
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the relations (67) we see that x and k7 constrain each other. For instance, for a given k7 the
Bjorken variable is in the range

1 ; 1 —xmin\2 k2 1 ; 1 —xgn\2 k2
(gt e

where xp;n 1S the smallest kinematically possible x-value

(69b)

Xmin =

% ’ »&SN

The extreme x-values in (69a) are assumed only when k7 = 0. The allowed x-range is then

Xmin < x < 1. (69¢)

This is also the x-range in which colinear PDFs have a finite support. In QCD, the range is
0 < x < 1. Neglecting quark masses (as it is done in all practical applications in QCD and in the
CMP), we see that the model respects this constraint. When m, is finite or kr is non-zero, then
the x-range is more restricted according to (69a). Considering a fixed value of x, we also obtain
a bound on the allowed transverse parton momenta, namely [34]

k2 < (1= x)(x — Xmin) M2. (69d)

This result shows a limitation of the model. In QCD, a necessary condition for the applicability
of TMD factorization is that k7 << Q. The hard scale Q can in practice be large enough, such that
transverse momenta k7 ~ M and larger may be relevant for the phenomenological description
of a DIS reaction [117]. However, from (69d) we see that in the CMP the transverse parton
momenta cannot exceed the bound k7 < % M. In fact, the CMP yields for the mean transverse
momenta (kr) ~ 0.1 GeV [31]. The consideration of offshellness effects is of importance for a
more realistic description of nonperturbative TMD properties.

9.4. Determination of covariant functions, and the scale of the model

For completeness, let us briefly review the determination of the covariant functions G4(P - k)
and H¢(P - k) needed to obtain model predictions. The covariant functions are Lorentz-scalars
and can be evaluated in any frame. It is convenient to work in the nucleon rest frame where
P -k = ME,. The parton energy defined in (62b) depends only on the modulus of the parton 3-
momentum. Thus, G*(P - k) and H* (P - k) are effectively functions of |l€| , and the CMP exhibits
a 3D symmetry in momentum space which tightly connects longitudinal and transverse parton
momenta’ and gives predictive power to the approach allowing one, e.g., to make predictions
for the x- and kr-dependence of TMDs based on the knowledge of the x-dependence of the
corresponding parton distribution functions.

More precisely, the knowledge of the x-dependence of two PDFs (for each of the flavors a =
u,d, i, d, ... ) is required to determine the covariant functions in the CMP and hence to predict
all TMDs. The obvious choice are f{'(x) and g{ (x). From f'(x) one can uniquely determine
G*(P - k) and from g? (x) one can uniquely determine H“(P - k). The corresponding inversion

7 The underlying symmetry is a 3D symmetry in the nucleon rest frame. In any other frame, longitudinal and transverse
parton momenta are still tightly connected, but we would not call it a 3D symmetry.
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formulas have been derived in 3 ir_ldependent ways, in Refs. [31,32] and [33] as well as in [39].
For the light flavors a = u, d, u, d the parton masses can be neglected, and one obtains

1 [d ffx
9Py = —— | &
gi(P-k aM3 [dx X ] (70a)
1 u dy , dgf(x)
Hq(p.k)zm[3g1(x)+2/7g1(y)—x - } (70b)

X

where it is understood that P - k = %xM 2. Due to the kinematics constraints (67), the variable
P - k is for massless parton 0 < P - k < %MZ when m, is neglected (or mgM < P -k < %(M2 —
mé) if we keep track of parton masses).

Numerical predictions for quark TMDs in the pure-spin version of the model were presented
in [33,38]. In the mixed-spin version of the parton model, one needs to introduce one additional
covariant function which describes the chiral odd polarized TMDs and which can be determined
from, e.g., transversity [39] similarly to (70).

In order to determine the covariant functions in (70) it is necessary to use f'(x) and g{ (x)
from a phenomenological parametrization at some chosen scale > which must be high enough
for the parton model concept to be valid. But its exact value of this scale is unknown. In [33] the
scale was chosen to be uz =4GeV? and in [38] it was chosen to be uz =2.5GeV?. As different
TMDs obey different evolution equations, the model and the relations among TMDs are valid
only at this scale. TMDs strictly speaking depend on two scales, cf. Sec. 2.2, but one choice is

2
{=n.
9.5. Comparison to other approaches in literature

It is instructive to review first the spinor description in free theory. The spinors of a spin-%
fermion or antifermion of mass m, and momentum k* polarized along the spacelike vector n*
with k - n = 0 are customarily denoted by u(k, n) and v(k,n) where we suppress an additional
index which can assume 2 values and indicates a spin-up or spin-down state. If n2 = —1 it is a
pure-spin state, and if —1 < n? < 0 it is a mixed-spin state. The spinors satisfy

k—mg)utk,n) =0, HK+my)vk,n)=0. (71)
We choose the normalization i(k, n)u(k, n) = —v(k,n)v(k, n) = 2mg,. The polarization is re-
vealed by acting on the spinors with the Pauli-Lubanski vector W,, = —%swpo JVP P where

J"V and PV are respectively the generators of rotations and translations of the Poincaré group,
projected on n* as follows

(=W-n)

mq

(=W-n)

1
uk,n) ==x-u(k,n),
2 q

v(k,n) =+ % v(k,n), (72)

with the two signs depending on whether the particles are spin-up or spin-down. If in the particle
rest frame one chooses n* = (0, 0, 0, 1), then the operator (—W - n)/m, coincides with the z-
component of the familiar intrinsic spin operator. The spinors satisfy the completeness relations

uk,n) @ u(k,n) = (k+mgy)P(n), (73a)
vk,n) @ v(k,n) =F—my)P(n) . (73b)
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In (73a), (73b) a summation over spin-up and spin-down states is understood (we recall that we
suppress the corresponding index, see above), and we introduced the matrix

1
P(m) =21+ ysih) (73c)

For a pure-spin state, P(n) is a projector, i.e. P(n)? = P(n). Notice that P(n) projects out a
fermion in a spin-up state with respect to n* but an antifermion in a spin-down state, cf. the
footnotes 3 and 4. For a mixed-spin state, P(n) is a spin density matrix with the properties
tr P(n) =2 and tr P(n)* < 4.

At this occasion it is useful to review also the concept of helicity defined as expectation value
of the Pauli-Lubanski spin operator projected on k/|k| for a particle with non-zero 3-momentum
[4]. A spin—% particle polarized along (opposite to) its direction of motion has the helicity —l—%
(—%). Thus, A in (26) denotes twice the helicity of a quark, while in (392) it denotes (-1) x twice
the helicity, see footnote 4. Notice that longitudinal boosts do not affect helicity with the obvious
exception, for massive particles, of boosts into frames where the particles move backwards (in
which case the helicity flips sign) and boosts into particle rest frames (in which case helicity is
undefined).

We shall not review the massless case here in detail, but only remark that X is a Lorentz-scalar
for massless particles, while the transverse spin is not affected by longitudinal boost. This leads
to the description of massless quarks and antiquarks introduced (26) and (39a) where A is twice
the helicity of a quark and b? the transverse polarization vector for a quark (with opposite signs
for an antiquark).

This mini-review paves the way to the description of the quark correlator ®4(k, P, S) in the
free-quark-target model [45] where P*, S* denote momentum and spin vector of the quark
target while k" and n** are the momentum and spin vector of the parton inside the quark target.
Based on (73a), the quark correlator is given by [45]

9 (k, P, S) = u(k,n) @ii(k,n)8W (P — k) = (k + my) $D(P —k) (74)

1+ ysit

2
The antiquark correlator ®9(k, P, S) is zero, because the probability to find an antiquark in a
quark target is of course zero in a free theory. The quark target model becomes non-trivial and
then much more interesting when gluon interactions are included and treated with perturbative
QCD methods [82].

From (74) one can obtain a formulation of Feynman’s parton model [1,2] by replacing the
quark target with a nucleon target. This is customarily formulated in terms of lightcone co-
ordinates and sometimes referred to as the “free quark ensemble model” [45]. Instead of the
8*(P — k) in (74) one has some probabilities P, (k) to find quarks with momentum k* and po-
larization sf; (k) inside the nucleon target with momentum P# and polarization S*. Now there
is also a non-zero chance to find antiquarks with the corresponding antiquark probabilities de-
scribed by Pz (k) and a polarization vector s(’; (k). For quarks, the polarization 4-vector is given
by

si (k) = kg nlf + s};T (75)

where A is the lightcone helicity, and the helicity vector n/qL satisfies né =—landng -k =0, and
it is also k - 5,7 = 0. For antiquarks, one has analogous definitions. A, and SZT may depend on
parton momenta. The correlators of quarks and antiquarks can be compactly expressed as [45]
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Sk, P, S) =5 (K> — m2) [@(H) P, (k)(k —mg) (1 + 54, (k))

+®(—k+)7?g(k)(k+mq>(1 + ysxq(k))]. (76)

Except for the lightcone formulation and different notation, this is equivalent to the description
of quark and antiquark correlators in this work: P, (k) is basically equivalent to Ag in our work,
APy to A and the momentum dependence of sf;TPq (k) is contained in A?,, and similarly
for antiquarks. However, to the best of our knowledge no attempt was made in the free-quark
ensemble model to consequently explore the free equation of motion and practically determine
the covariant functions.

The program of practically exploring the parton model to describe the nucleon structure
was pioneered in [25-27]. In these works, the starting point was a covariant description of
the hadronic tensor and unpolarized and polarized DIS structure functions considering exact
kinematics of free, relativistic, on-shell partons whose momentum distributions are governed by
covariant functions G*(P - k) (for unpolarized partons) and H(P - k) (for polarized partons).
The polarization vector w(’; was constructed starting from wf; =AP* + BCH* 4+ Ck" and the
coefficients A, B, C (in general functions of k - S and/or P - k) were determined by imposing
the constraints k - w, = 0 and w{? = —1 (which corresponds to a pure-spin state) [26], see also
[35]. The Callan-Gross relation between unpolarized structure functions and the WW relation
between polarized structure functions, which are both approximations in QCD, become exact in
the approach [25-29] which also generates the Cahn effect [31] and makes specific predictions
about quark orbital angular momentum solely from the relativistic motion of quarks [35].

In Ref. [28], by exploring an auxiliary polarized process due to the interference of vector and
scalar currents, the approach was used to compute a hypothetical chiral odd structure function
and the transversity PDF h(f (x). In [30] the model was extended to TMDs, by introducing the
concept of “unintegrated structure functions” which lead to the description of twist-2 T-even
TMDs f{ (x, kr), g (x,kr), % (x, kr), gi7 (x. kr), hif (x, kr), hif(x, kr), and the twist-3
TMD g‘% (x, k) which has a colinear counterpart but it was unclear how to describe other twist-
3 TMDs. This was accomplished and a systematic description of all twist-2 and twist-3 TMDs
in [38], where the starting point was the quark spinor description (73a) in combination with the
covariant functions G4(P - k) and H*(P - k).

Prior to the latter work, in Ref. [39] a parton model framework was developed based on the
same concepts as in Ref. [25-38], but centered around a consequent exploration of the equation
of motion in the quark correlator language with the puzzling result that in “one parton model” the
nucleon structure is described in terms of 2 independent covariant functions [25-38] in “another
parton model” 3 independent covariant functions are necessary for that [39]. (As explained in
Sec. 1, the motivation of our study was to resolve the puzzle and we extended [39] by systemati-
cally including quark mass effects, the antiquark correlator, and pure-spin vs mixed-spin parton
polarization states.)

The exploration of covariant parton models dates back earlier works [40-42,44,43] where
structure functions in electron-nucleon DIS or electro-weak reactions as well as target mass
corrections were studied. An interesting extension of the parton model was carried out in the
quantum statistical approach of Refs. [47-51] where the nucleon was treated as a gas of massless
partons (quarks, antiquarks, gluons) in a finite size volume in thermal equilibrium at a common
temperature. The model exhibits in the nucleon case a total of 8 parameters which were fixed
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through fits to DIS data. This number of free parameters should be compared with the typically
0O(20-25) free parameters in global fits of PDF parametrizations, and it was argued that the statis-
tical model provides a physically motivated and streamlined Ansatz for global fits [47-51]. The
possibility to associate partonic motion and mean transverse momenta (k7) with temperature
was explored in [118].

10. Conclusions

We have studied the description of TMDs in the parton model. We have explored the equations
of motion to show that the quark correlator can be expressed in terms of a spin density matrix
which must be treated differently in the cases of massive and massless quarks. In either case, one
has a choice how to describe the quark polarization state.

If one chooses to work with quarks in a pure-spin state, the nonperturbative information con-
tent of the quark correlator is described in terms of two independent amplitudes, which can
be chosen to be A? describing unpolarized TMDs and A describing polarized TMDs. If one
chooses to work with quarks in a mixed-spin state, the nonperturbative information is described
in terms of three independent amplitudes, which can be chosen to be Ag describing unpolarized
TMDs and Ag and AC{] describing, respectively, polarized chiral even and chiral odd TMDs.

One central result of our work is that we have reconciled conflicting results in literature re-
garding how many independent covariant functions are needed to describe the nonperturbative
information contained in the quark correlator in the parton model, namely 2 vs 3 in Refs. [38]
vs [39]. In fact, there really is only one unifying parton model framework to which we refer as
Covariant Parton Model (CPM) where, however, one can choose to work with quarks in pure-
or mixed-spin states. The pure-spin state version of the CPM was explored in Refs. [25-38] and
describes the nucleon structure in terms of two independent amplitudes. The mixed-spin version
of the CPM was studied in Ref. [39] for massless partons and describes quark TMDs in terms of
3 independent amplitudes.

The assumption of massless quarks is natural since in DIS processes current quark mass ef-
fects are suppressed by powers of m,/Q <« 1 where Q is the hard scale of the process. In this
work, we have considered my # 0 and m; = 0. The results for TMDs are the same whether one
keeps m, # 0 and neglects current quark mass effects at the end [25-38] or works with massless
quarks from the very beginning [39]. But the description of the quark spin-density matrix differs
in the two cases. Keeping track of current quark mass effects has the advantage that one can
use the QCD equations-of-motion (EOM) relations to check consistency. In the CPM, the quarks
are non-interacting and TMDs must satisfy the EOM relations with (pure twist-3) tilde terms
neglected which we have shown to be the case. In the quark case, we have rederived previous
model results [25-39].

Interestingly, the CPM cannot predict the sign of polarized chiral odd TMDs. Information
from other nonperturbative methods (models, lattice) is necessary to inform the CPM and choose
the physical sign for chiral odd polarized TMDs. Once the physical solution is chosen using
one function as input, the CPM predicts unambiguously the signs of all other polarized chiral
odd TMDs in agreement with other models. The results from many quark models refer to a low
initial scale. The precise scale at which, e.g., PDFs should be evaluated in the CPM is not known.
But the parton model concept is valid at high energies, and the initial scale of the CPM was, e.g.,
chosen to be /1,(2) =4GeV? [25-38]. The choice of the scale is part of the model.

Another important result is that we have extended the treatment to include antiquarks. The
quark and antiquark correlators are connected to each other by a field theoretical relation which,

34



F. Aslan, S. Bastami and P. Schweitzer Nuclear Physics B 984 (2022) 115947

however, we have not imposed. Rather, we have studied the TMDs of quarks and antiquarks in-
dependently and used the field theoretical connection in the end of day to verify the theoretical
consistency. To the best of our knowledge, we have presented for the first time a complete discus-
sion of all T-even leading and subleading antiquark TMDs in a consistent framework. We have
shown that in the CPM the antiquark TMDs satisfy the same linear and non-linear relations as
quark TMDs. This result might be of interest for modeling of antiquark effects in phenomenol-
ogy. It will be interesting to use the model for numerical predictions of antiquark TMDs and
study their impact in phenomenology which we leave to future studies.

The simple covariant parton model for quark and antiquark correlators obtained in this work
may provide the basis for the modeling of unintegrated parton densities and may help to consis-
tently implement TMD effects in Monte Carlo event generators [63—65]. The approach receives
general support from the fact that the WW approximation for g7 (x) is supported by data with an
accuracy of 40 % or better [119], and according to first phenomenological studies the WW-type
approximation for g# seems to work similarly well [120]. Further phenomenological applica-
tions of the Wandzura-Wilczek-type approximation were practically implemented in [121]. It
will be interesting to see whether the TMDs in nature can be better approximated in terms of a
pure-spin or mixed-spin state model.

The model results may also be of interest to study TMDs at small transverse momenta k7 <
M where M denotes the nucleon mass. In the Collins-Soper-Sterman equations governing the
evolution of TMDs, the region of small k7 is correlated with large impact parameters br. Not
much is known about TMDs in br-space in the region of large b7 2 1 fm. Here the model results
could provide useful insights which will be explored elsewhere.

When k7 is not small, the model becomes less realistic. In fact, due to the absence of inter-
actions, the partons are on mass-shell and as a consequence of that their transverse momenta are
bound from above by k7 < % M . Tt would be interesting to explore the possibility of introducing
in the CPM a way to include offshellness effects and investigate whether this can lead to a more
realistic modeling of kr-dependencies of TMDs.

The model also does not exhibit the initial- or final-state interactions as encoded in Wilson
lines which can generate phases and give rise to T-odd TMDs like Sivers function [52] or Boer-
Mulders function [54]. The modeling of T-odd TMDs is therefore beyond the scope of the CPM.
It would be very interesting to explore the possibility of introducing the necessary phases and
extend the approach to the modeling of T-odd TMDs. These topics will be left to future investi-
gations.
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