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Abstract

Model studies play an important role for the understanding and elucidation of the nonperturbative prop-

erties of transverse momentum dependent parton distribution functions (TMDs). The parton model is often 

a helpful framework and starting point for first explorations of TMD properties and the description of deep-

inelastic processes in which TMDs can be accessed. Based on a systematic exploration of the parton model 

concept, we reconcile the claims in literature that there are 2 independent structures in the quark correla-

tor in the parton model vs the claim that there are 3, and explain the underlying assumptions leading to 

the different conclusions. We also systematically explore the antiquark correlator and, to the best of our 

knowledge, for the first time derive the model expressions for all T-even leading and subleading antiquark 

TMDs. We demonstrate the consistency of the framework which can be generalized in future studies for 

more sophisticated TMD modeling.

 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Feynman’s intuitive parton model concept [1,2] played an important role in establishing QCD 

as the theory of strong interactions. In many situations, the parton model can be considered a 

“zeroth order approximation” to QCD [3,4]. As such it constitutes a valuable starting point for 

explorations. This was also the case for TMDs. Based on a rigorous TMD factorization and 
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evolution framework [4–10], the recent past has witnessed impressive progress in modern phe-

nomenology of deep-inelastic scattering (DIS) processes [11–19]. But the way to this progress 

was paved by, among others, important phenomenological work based on the “generalized parton 

model” in works like [20–24].

A systematic exploration of the parton model concept not for the purpose of describing DIS 

processes but the nonperturbative properties of TMDs per se was undertaken in Refs. [25–39], 

interestingly with conflicting results. Starting from the parton model concept in one approach, 

for which the name Covariant Parton Model (CMP) has been coined, the nucleon structure is 

described in terms of two independent covariant functions [25–38]. Starting from the very same 

parton model concept, the nucleon structure is described in terms of three such independent 

covariant functions in another parton model framework, namely that of Ref. [39].

While technical details and especially notations may easily differ in independent treatments 

in literature, one would expect agreement within a given approach on such an important point 

like the number of linearly independent structures in the quark correlator [38,39] in terms of 

which TMDs are defined. Surprisingly, there is a disagreement in literature on this fundamental 

question which remains not understood for more than a decade [33–39].

In this work we will show that both treatments are correct, but based on different assumptions 

about the state of polarization of a quark in the nucleon. For that we will systematically explore 

the consequences of the parton model concept for the description of the nucleon structure and 

show that there are not “different parton model approaches” but only one unifying parton model 

— in which, however, there is a choice on how to treat quark polarization effects. Our study will 

establish a bridge also to other works in literature, including applications of the parton model 

to studies of target mass corrections or weak structure functions [39–42], early studies of quark 

transverse motion [44,43] and extensions of the parton model concept to the free-quark ensemble 

model [45], gluon polarization effects [46], or the statistical parton model approach of Refs. [47–

51].

The structure of this work is as follows. In Sec. 2 we will review the description of quark 

and antiquark correlators and TMDs in models with no explicit gauge degrees of freedom and 

discuss the simplifications compared to QCD. In general, even in simpler non-gauge field theories 

care might be needed due to complications from UV divergences, but in the parton model also 

this point is simplified and the correlators are UV-finite. In Sec. 3 we will introduce the parton 

model concept and explore the nontrivial formal consequences arising from the (free) equations 

of motion for the quark correlator in massive (Sec. 4) and massless (Sec. 5) case following 

[39] where, however, only the massless case was considered. In practice quark mass effects are 

negligible in DIS processes. But the distinction of massive vs massless partons is important when 

considering polarization effects which will turn out to be the key to understand and reconcile the 

conflicting results in literature. In Sec. 6, we will study quark TMDs in the parton model with due 

care to the treatment of polarization effects and reconcile the parton model approaches of [38,39]. 

In Sec. 7, we will repeat the above program for the antiquark correlator and antiquark TMDs. 

The quark and antiquark correlators are related to each other in a specific way in field theory. But 

we will treat the quark and antiquark cases independently, and use their field theoretic connection 

to demonstrate in Sec. 8 the consistency of the approach. In Sec. 9 we will solve the model and 

evaluate the parton model expressions reproducing prior results for quark TMDs in literature and 

presenting new results for antiquark TMDs. Finally, Sec. 10 contains the conclusions.
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2. Quark and antiquark correlators and TMDs in quark models

In this section, we will review the properties of the correlators, and the definitions of TMDs. 

We will specifically indicate the simplifications arising in quark models by which we mean a 

model or effective theory with quark and antiquark degrees of freedom, but without explicit 

gauge field degrees of freedom.

2.1. Quark and antiquark correlators

In quark model approaches, the quark and antiquark correlation functions of the nucleon are 

defined as

�
q

ij (k,P,S) =
∫

d4z

(2π)4
eik·z 〈N |�q

j (0) �
q

i (z) |N〉 , (1a)

�
q̄

ij (k,P,S) =
∫

d4z

(2π)4
eik·z 〈N |�q

i (0) �
q

j (z) |N〉, (1b)

where kμ is the quark 4-momentum and |N〉 = |P, S〉 denotes a covariantly normalized nucleon 

state with 4-momentum P μ and polarization Sμ with P 2 = M2, S2 = −1, P ·S = 0. In QCD and 

in models, the correlators in (1) are connected to each other as �
q̄
ij (k, P, S) = − �

q
ij (−k, P, S). 

For our purposes it will, however, be convenient not to explore this connection and treat the quark 

and antiquark cases independently in the next sections, until in Sec. 8 we will come back to this 

connection and make use of it to demonstrate the consistency of the approach.

In QCD, the quark fields in the correlators (1) are connected by Wilson lines which can be cho-

sen along process-dependent paths dictated by factorization theorems such that the correlators, 

upon integration over k− and tracing with the relevant Dirac matrices Ŵ, yield TMDs describing 

semi-inclusive DIS, Drell-Yan or other processes [52–60]. In quark models, the Wilson lines are 

absent which brings simplifications to the structure of the correlators.

One of the simplifications is that the correlators �a
ij (k, P, S) with a = q, q̄ have expansions 

in terms of only 12 Lorentz-invariant amplitudes Aa
i as follows [54]

�a(k,P,S) = MAa
1 + /PAa

2 + /kAa
3 + i

2M
[ /P , /k] Aa

4 + i(k · S)γ5 Aa
5

+ M/Sγ5 Aa
6 + (k · S)

M
/Pγ5 Aa

7 + (k · S)

M
/kγ5 Aa

8

+ [ /P , /S]
2

γ5 Aa
9 + [/k, /S]

2
γ5 Aa

10 + (k · S)

2M2
[ /P , /k]γ5 Aa

11

+ 1

M
εμνρσ γμPνkρSσ Aa

12 , (2)

where ε0123 = 1. Notice that the correlators depend at most linearly on the nucleon polarization 

vector Sμ.

In QCD, besides k, P , S the correlators depend on an additional 4-vector nμ characterizing 

the lightcone direction of the Wilson-lines (nμ itself is slightly off-lightcone to regularize rapidity 

divergences) [4]. The presence of the vector nμ in QCD makes more Lorentz structures possible 

in the decomposition (2) which are described in terms of 20 additional amplitudes, often called 

Ba
i amplitudes [60], which are absent in quark models.
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The amplitudes Aa
i in (2) are real functions of the Lorentz scalars P · k and k2 [53,54]. The 

amplitudes Aa
i for i = 2, 3, 6, 7, 8, 12 are chiral even, those for i = 1, 4, 5, 9, 10, 11 are chiral 

odd. Another simplification in quark models is that the T-odd amplitudes Aa
i for i = 4, 5, 12

vanish [61]. We include them in (2) for completeness.

The correlators (1) can be used to define “fully unintegrated” parton distributions which have 

important applications [62–65]. In QCD the correlators contain divergences which simplifies in 

the parton model as will follow up in the next section where we will introduce TMDs.

2.2. Definition of TMDs

The TMDs of quarks and antiquarks are defined in terms of the correlators as follows. Intro-

ducing the lightcone coordinates, kμ = (k+, k−, �kT ) with k± = 1√
2
(k0 ± k1) and analogously for 

other vectors, it is convenient to define

�a[Ŵ] ≡ �a[Ŵ](x, �kT ,P ,S) =
∫∫

dk+dk− δ(k+ − xP +)
1

2
tr

[

�a(k,P,S)Ŵ

]

. (3)

The leading twist TMDs are defined as

�a[γ +] = ζV

[

f a
1 − εjkk

j
T Sk

T

M
f ⊥a

1T

]

, (4a)

�a[γ +γ5] = ζA

[

SL ga
1 +

�kT · �ST

M
g⊥a

1T

]

, (4b)

�a[iσ j+γ5] = ζT

[

S
j

T ha
1 + SL

k
j

T

M
h⊥a

1L + κjkSk
T

M2
h⊥a

1T + εjkkk
T

M
h⊥a

1

]

, (4c)

and the twist-3 quark TMDs are given by

�a[1] = ζS

M

P +

[

ea − εjkk
j

T Sk
T

M
e⊥a
T

]

, (4d)

�a[iγ 5] = ζP

M

P +

[

SL ea
L +

�kT · �ST

M
ea
T

]

, (4e)

�a[γ j ] = ζV

M

P +

[

k
j

T

M
f ⊥a + εjkSk

T f a
T + SL

εjkkk
T

M
f ⊥a

L − κjkεklSl
T

M2
f ⊥a

T

]

, (4f)

�a[γ j γ 5] = ζA

M

P +

[

S
j

T ga
T + SL

k
j
T

M
g⊥a

L + κjkSk
T

M2
g⊥a

T + εjkkk
T

M
g⊥a

]

, (4g)

�a[iσ jkγ 5] = ζT

M

P +

[

S
j

T kk
T − Sk

T k
j

T

M
h⊥a

T − εjk ha

]

, (4h)

�a[iσ+−γ 5] = ζT

M

P +

[

SL ha
L +

�kT · �ST

M
ha

T

]

. (4i)

The spatial indices j, k are transverse with respect to the lightcone which is chosen along 0-

and 1-directions, and we defined κjk = (k
j

T kk
T − 1

2
δjk �k2

T ), and ε23 = −ε32 = 1 and zero else. 
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The T-even TMDs are highlighted in blue color and can be computed in quark models. The T-

odd TMDs highlighted in red color require explicit gauge field degrees of freedom, and are not 

studied in this work. The factors

ζV = ζT = ζP = +1 for a = q, q̄,

ζS = ζA =

⎧

⎨

⎩

+1 for a = q,

−1 for a = q̄,
(4j)

reflect the different C-parities of the quark bilinear operators �̄Ŵ� which are even in the vector 

(V), tensor (T) and pseudo-scalar (P) cases Ŵ = γ μ, iσμνγ5, iγ5, and odd in the scalar (S) and 

axial-vector (A) cases Ŵ = 1, γ μγ5. The arguments of TMDs in (4) are omitted for brevity with 

the understanding that f a
1 = f a

1 (x, kT ) where kT = |�kT |, etc.

We remark that in QCD factorization, TMDs depend on two scales commonly denoted as 

μ2 (renormalization scale) and ζ (scale at which lightcone divergences are regulated). In gen-

eral, also in models divergences may occur and require careful treatment [66]. But in the parton 

model, the correlators and TMDs are finite, and we will throughout refrain from indicating the 

dependence on the scales μ2, ζ and comment on them when necessary. Because of these simplifi-

cations in contrast to QCD, in the parton model TMDs and colinear parton distribution functions 

(PDFs) are simply related as, e.g., f a
1 (x) =

∫

d2kT f a
1 (x, kT ) where the integration over kT is 

finite.

In this work, we will focus on T-even TMDs which are expressed in terms of the A
q
i ampli-

tudes as follows

f
q

1 (x, kT ) = 2P +
∫

dk−(A
q

2 + xA
q

3) , (5a)

g
q

1 (x, kT ) = 2P +
∫

dk−
(

−A
q

6 − P · k − M2x

M2
(A

q
7 + xA

q

8)

)

, (5b)

g
⊥q

1T (x, kT ) = 2P +
∫

dk−(A
q
7 + xA

q

8) , (5c)

h
q

1(x, kT ) = 2P +
∫

dk−
(

−A
q

9 − xA
q

10 +
�k 2
T

2M2
A

q

11

)

, (5d)

h
⊥q

1L (x, kT ) = 2P +
∫

dk−
(

A
q

10 − P · k − M2x

M2
A

q

11

)

, (5e)

h
⊥q

1T (x, kT ) = 2P +
∫

dk−A
q

11 , (5f)

eq(x, kT ) = 2P +
∫

dk−A
q

1 , (5g)

f ⊥q(x, kT ) = 2P +
∫

dk−A
q

3 , (5h)

g
q

T (x, kT ) = 2P +
∫

dk−
(

−A
q

6 +
�k 2
T

2M2
A

q

8

)

, (5i)

g
⊥q
L (x, kT ) = 2P +

∫

dk−
(

−P · k − M2x

M2
A

q

8

)

, (5j)

5
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g
⊥q

T (x, kT ) = 2P +
∫

dk−A
q

8 , (5k)

h
q
L(x, kT ) = 2P +

∫

dk−
(

−A
q

9 − P · k
M2

A
q

10 +
(

P · k − M2x

M2

)2

A
q

11

)

, (5l)

h
q
T (x, kT ) = 2P +

∫

dk−
(

−P · k − M2x

M2
A

q

11

)

, (5m)

h
⊥q

T (x, kT ) = 2P +
∫

dk−(−A
q

10) , (5n)

where it is understood that k+ = xP + is fixed. We remind that these expressions are valid in 

quark models. In QCD also the B
q
i amplitudes contribute, see for instance Ref. [67]. The anti-

quark TMDs are given by

f
q̄

1 (x, kT ) = 2P +
∫

dk−
(

A
q̄

2 + xA
q̄

3

)

, (6a)

g
q̄

1 (x, kT ) = 2P +
∫

dk−
(

A
q̄

6 + P · k − M2x

M2
(A

q̄
7 + xA

q̄

8)

)

, (6b)

g
⊥q̄

1T (x, kT ) = 2P +
∫

dk−
(

−A
q̄
7 − xA

q̄

8

)

, (6c)

h
q̄

1(x, kT ) = 2P +
∫

dk−
(

−A
q̄

9 − xA
q̄

10 +
�k 2
T

2M2
A

q̄

11

)

, (6d)

h
⊥q̄

1L (x, kT ) = 2P +
∫

dk−
(

A
q̄

10 − P · k − M2x

M2
A

q̄

11

)

, (6e)

h
⊥q̄

1T (x, kT ) = 2P +
∫

dk−A
q̄

11 , (6f)

eq̄(x, kT ) = 2P +
∫

dk−
(

−A
q̄

1

)

, (6g)

f ⊥q̄(x, kT ) = 2P +
∫

dk−A
q̄

3 , (6h)

g
q̄

T (x, kT ) = 2P +
∫

dk−
(

A
q̄

6 −
�k 2
T

2M2
A

q̄

8

)

, (6i)

g
⊥q̄

L (x, kT ) = 2P +
∫

dk−
(

P · k − M2x

M2
A

q̄

8

)

, (6j)

g
⊥q̄

T (x, kT ) = 2P +
∫

dk−
(

−A
q̄

8

)

, (6k)

h
q̄

L(x, kT ) = 2P +
∫

dk−
(

−A
q̄

9 − P · k
M2

A
q̄

10 +
(

P · k − M2x

M2

)2

A
q̄

11

)

, (6l)

h
⊥q̄
T (x, kT ) = 2P +

∫

dk−
(

−A
q̄

10

)

, (6m)

h
q̄
T (x, kT ) = 2P +

∫

dk−
(

−P · k − M2x

M2
A

q̄

11

)

. (6n)

6
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3. Constraints on amplitudes from equations of motion in parton model

In this section we discuss how the equations of motion relate the amplitudes in the parton 

model. A similar analysis was presented in [39] for massless quarks. Here we keep track of mass 

terms and extend the analysis to antiquarks.

3.1. Quark case

In the parton model the quark fields satisfy the Dirac equation (i /∂ − mq) �q(z) = 0. Writing 

out all Dirac indices and performing an integration by parts, we obtain

∫

d4z

(2π)4
eikz 〈N |�q

j (0) Ŵj l

[

(i
−→
/∂ − mq)li�

q
i (z)

]

|N〉

= Ŵj l(/k − mq)li

∫

d4z

(2π)4
eikz 〈N |�q

j (0)�
q
i (z) |N〉

= Ŵj l(/k − mq)li�
q
ij (k,P,S) = tr

[

Ŵ(/k − mq)�q(k,P,S)

]

= 0 , (7)

where Ŵ can be any Dirac matrix. It is convenient to define identities for the quark correlator (2)

as follows

Trq [Ŵ] ≡ 1

4
tr

[

(/k − mq)�q(k,P,S)Ŵ

]

= 0 . (8)

Exploring these identities for Ŵ = 1, γ5, γ
μ, γ μγ5, i σμνγ5 yields relations among the ampli-

tudes in the parton model. It is instructive to show the derivation of these relations in detail. Let 

us consider first Ŵ = γ μ which yields

Trq [γ μ] = kμ

{

MA
q

1 − mqA
q

3 + i
(P · k)

M
A

q

4

}

− P μmq

{

A
q

2 + i
mq

M
A

q

4

}

+ εμαβγ kαPβSγ

{

iA
q

9 − mq

M
A

q

12

}

= 0 . (9)

As the four-vectors kμ, Pμ, Sμ and εμρστk
ρP σ Sτ are linearly independent, each of the expres-

sions in the curly brackets must vanish separately. Since the Ai’s are real, in each of the curly 

brackets the real and the imaginary parts must vanish separately. In this way, we find the relations

A
q

1 = mq

M
A

q

3 , A
q

2 = 0, A
q

4 = 0, A
q

9 = 0, A
q

12 = 0. (10)

Exploring Trq [1] yields no new information beyond what we found in (10). Considering Ŵ =
γ μγ5 yields

Trq [γ μγ5] = kμ(k · S)

{

−iA
q

5 + mq

M
A

q

8 + A
q

10 − (P · k)

M2
A

q

11

}

+ P μ(k · S)

{

mq

M
A

q
7 + A

q

9 + k2

M2
A

q

11

}

+ Sμ

{

mqMA
q

6 − (P · k)A
q

9 − k2A
q

10

}

= 0 . (11)

7
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We again explore that the A
q

i ’s are real and kμ, Pμ, Sμ, εμρστ k
ρP σ Sτ are linearly independent 

such that the real and imaginary parts in each curly bracket in (11) vanish. Considering that 

k2 = m2
q and using A

q

9 = 0 from (10) we obtain

A
q

5 = 0, A
q

6 = mq

M
A

q

10, A
q
7 = −mq

M
A

q

11, A
q

10 = (P · k)

M2
A

q

11 − mq

M
A

q

8 . (12)

Considering Trq [γ5] or Trq [iσμνγ5] gives no new information beyond (12).

Several comments are in order. The T-odd amplitudes A
q

4 , A
q

5 , A
q

12 vanish in the parton model 

which is expected as we deal with a quark model without explicit gauge field degrees of freedom 

[61]. Interestingly, in the parton model also the T-even amplitudes A
q

2 and A
q

9 vanish. In QCD, 

these amplitudes receive contributions from “genuine twist-3” quark-gluon correlators and are 

non-zero. In the parton model, the amplitudes A
q

1 , A
q

6 , A
q
7 are proportional to current quark 

masses. In QCD, these amplitudes contain, besides mass terms, also contributions from quark-

gluon correlators.

For our purposes it is important to notice that, after exploring the equations of motion, all 

non-zero amplitudes are related in one or another way to A
q

3 , A
q

8 , A
q

11, i.e. to one unpolarized 

amplitude (A
q

3 ), one chiral even polarized amplitude (A
q

8), and one chiral odd polarized ampli-

tude (A
q

11).

3.2. Antiquark case

In the antiquark case, we start from the free Dirac equation �̄q(z)(i
←−
/∂ + mq) = 0 where the 

arrow indicates which field is differentiated. Proceeding similarly to the quark case, we have

∫

d4z

(2π)4
eik·z 〈N |Ŵli�

q
i (0)

[

�
q

j (z)(i
←−
/∂ + mq)j l

]

|N〉

= Ŵli

∫

d4z

(2π)4
eik·z 〈N |�q

i (0) �
q

j (z)|N〉 (/k + mq)j l

= Ŵli�
q̄

ij (k,P,S)(/k + mq)j l = tr

[

Ŵ�q̄(k,P,S)(/k + mq)

]

= 0 . (13)

It is convenient to introduce the notation for the identities

Trq̄ [Ŵ] ≡ 1

4
tr

[

Ŵ�q̄(k,P,S) (/k + mq)

]

= 0 , (14)

where Ŵ can be again any Dirac matrix. Proceeding analog to the quark correlator case, we obtain 

from (14) the following relations among the antiquark amplitudes,

A
q̄

1 = − mq

M
A

q̄

3 , A
q̄

2 = 0, A
q̄

4 = 0, A
q̄

5 = 0, A
q̄

6 = −mq

M
A

q̄

10, (15)

A
q̄
7 = mq

M
A

q̄

11, A
q̄

9 = 0, A
q̄

10 = (P · k)

M2
A

q̄

11 + mq

M
A

q̄

8 , A
q̄

12 = 0. (16)

Analogously to the quark case, also the T-odd antiquark amplitudes A
q̄

4 , A
q̄

5 , A
q̄

12 vanish and so 

do the T-even amplitudes A
q̄

2 and A
q̄

9 . All non-zero amplitudes are related in one or another way 

to three amplitudes A
q̄

3 , A
q̄

8 , A
q̄

11 which remain unconstrained by the equations of motion. The 

relations of the antiquark amplitudes in (15), (16) resemble those in the quark case in (10), (12)

except that the current quark mass mq enters with opposite sign.

8
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4. Quark correlator in the massive case

Inserting the relations in (10), (12) in the quark correlator in (2) we obtain

�q(k,P,S) = �q(k,P,S)unp + �q(k,P,S)pol (17)

where

�q(k,P,S)unp = (/k + mq)A
q
unp with A

q
unp = A

q

3 ,

�q(k,P,S)pol = (/k + mq)γ5

{

/P
(k · S)

M2
A

q

11 − /S
(P · k)A

q

11 − mqM A
q

8

M2

+ (k · S)

M
A

q

8

}

. (18)

In the parton model /k/k = k2 = m2
q and the last term in the curly bracket of (18) can be written 

for mq �= 0 as

(/k + mq)γ5
(k · S)

M
A

q

8 = −(/k + mq)γ5

/k

mq

(k · S)

M
A

q

8 . (19)

Inserting the relation (19) into (18) allows us to write the polarization-dependent part of the 

correlator as

�q(k,P,S)pol = (/k + mq)γ5 /w A
q

pol (20)

where we introduce the polarized amplitude A
q

pol and the axial 4-vector w
μ
q defined as

A
q

pol = − (P · k)A
q

11 − mqM A
q

8

M2
, (21a)

wμ
q = Sμ − P μ (k · S)A

q

11

(P · k)A
q

11 − mqM A
q

8

+ kμ M

mq

(k · S)A
q

8

(P · k)A
q

11 − mqM A
q

8

. (21b)

We note that for w
μ
q to be well-defined in (21) it must be mq �= 0 (which is the case in this section) 

and the condition (P · k) A
q

11 − mqM A
q

8 �= 0 must hold. We will follow up on this shortly.

4.1. Quark polarization vector

The 4-vector w
μ
q has the following important properties. It has the transformation properties 

of a polarization vector, i.e. of an axial 4-vector, and satisfies the condition

wq · k = 0 . (22)

These 2 properties are necessary conditions for w
μ
q to be a candidate expression for a quark 

polarization vector. Remarkably, the condition wq · k = 0 holds for any A
q

8 and A
q

11 without 

imposing a relation between these amplitudes.

In order to be a quark polarization vector, w
μ
q must in addition satisfy the requirements

Condition (A) − 1 < w2
q < 0 mixed-spin state,

Condition (B) w2
q = −1 pure-spin state.

The square of the quark polarization vector is given by

9
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w2
q = S2 + (k · S)2M2

[(P · k)A
q

11 − mqM A
q

8 ]2

(

(A
q

11)
2 − (A

q

8)2

)

. (23)

In the following, we will explore both possibilities (A) to which we will refer as the mixed-spin 

version of the model, and (B) to which we will refer as the pure-spin version of the model.

4.2. Mixed-spin model

Let us first discuss the mixed-spin version of the model which requires −1 < ω2
q < 0. The 

condition ω2
q > −1 is equivalent to |Aq

11| > |Aq

8 |. The condition ω2
q < 0 is satisfied as long as 

(P · k A
q

11 − mqMA
q

8)2 > 0 which is always the case because we had to assume in (21) that 

(P · k)A
q

11 −mqMA
q

8 �= 0. Thus, in the mixed-spin case, besides the inequality |Aq

11| > |Aq

8 |, the 

amplitudes A
q

8 and A
q

11 remain unrelated.

In this approach, the quark correlator is described in terms of 3 independent amplitudes, 

namely A
q

3 , A
q

8 , A
q

11, i.e. in terms of one unpolarized amplitude and two polarized amplitudes: 

one chiral even and one chiral odd.

4.3. Pure-spin state model

If we demand the quarks to be in a pure-spin state, w
μ
q must be normalized as w2

q = −1 in 

(23). This means that the second term on the right-hand-side of (23) must vanish which implies 

the following condition

w2
q = −1 ⇔ A

q

11 = ±A
q

8 . (24a)

The 2 solutions in (24a) lead to 2 different solutions for A
q

pol± and w
μ
q±. One way of writing the 

pertinent solutions consists in eliminating the chiral odd amplitude A
q

11 which yields

A
q

pol± = − (±P · k) − mqM

M2
A

q

8 , (24b)

w
μ
q± = Sμ − (±k · S)

(±P · k) − mqM
P μ + M

mq

(±k · S)

(±P · k) − mqM
(±kμ) . (24c)

This is not the most economic notation, but we have chosen it to avoid the usage of ∓ and in 

this way the ± always appear together with k. We will show below in Sec. 6 that one of the 2 

solutions is physical, and the other one is unphysical. Before that, however, we will discuss the 

massless case.

5. Quark correlator in the massless case

When mq = 0, the analysis of the previous section cannot be carried out because for massless 

quarks a polarization vector w
μ
q cannot be defined, see e.g. [68,4]. This can be seen directly in 

(24b) where for mq → 0 one would encounter a 1/mq -singularity. In the case mq = 0, one has 

to proceed in a different way as shown below.

The relations derived from the equations of motion in (10), (12) are of course valid also for 

mq = 0. Inserting these relations for mq = 0 in the quark correlator in (2) yields an unpolarized 

and a polarized contribution to the quark correlator in (17) which are given by

10
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�q(k,P,S)unp = /k A
q
unp ,

�q(k,P,S)pol = /k γ5

{

−λ + /bT

}

A
q

pol (25)

where, assuming A
q
8 �= 0, we defined

A
q
unp = A

q

3 ,

A
q

pol = − (P · k)

M2
A

q

8 , λ = M(k · S)

(P · k)
, b

μ
T =

(

Sμ − P μ (k · S)

(P · k)

)

A
q

11

A
q

8

. (26)

The quantities λ and b
μ
T are defined in (26) following the common conventions in literature, see 

for instance (2.3.8) in Ref. [68] or Appendix A of Ref. [4]. Their properties are discussed in the 

next section.

5.1. Spin density matrix of massless quarks

The quantities λ and b
μ
T in (26) have the following properties.

(i) In the high-energy limit when the nucleon moves very fast, i.e. P μ → ∞, and is po-

larized along its direction of motion, the nucleon polarization vector is given by Sμ =
λNP μ/M + . . . where λN = ±1 is (twice) the helicity of the nucleon [68] (see Sec. 9.5

for a reminder) and the dots indicate terms suppressed in the high-energy limit. In such an 

infinite momentum frame, the quantity λ defined in (26) is given by λ = λN , i.e. depending 

on the sign of A
q

pol, the massless quark has the same or opposite helicity as the nucleon. 

Thus in the infinite momentum frame, λ has the expected intuitive interpretation as (twice) 

the quark helicity.

(ii) In the general case, a quark may of course have transverse polarization. In the massless case, 

this is described by the vector b
μ
T which is transverse with respect to the quark momentum 

kμ. It is important to stress that b
μ
T introduced in (26) has the property k · bT = 0 for any A

q

8

and A
q

11.

(iii) Also in the massless case, we can distinguish pure-spin and mixed-spin states. They are 

defined as follows:

Condition (A) − 1 < b2
T − λ2 < 0 mixed-spin state,

Condition (B) b2
T − λ2 = −1 pure-spin state. (27)

5.2. Massless mixed-spin model

If one chooses to work with massless quarks in a mixed-spin state, then −1 < b2
T − λ2 < 0

must hold. The condition b2
T − λ2 > −1 will always be satisfied as long as |Aq

11| > |Aq

8 |. The 

condition b2
T − λ2 < 0 is trivial and always satisfied without imposing any new requirements. 

Recalling that we had to exclude the case A
q

8 = 0 from the very beginning, we conclude that 

the mixed-spin parton model is consistently defined provided 0 < |Aq

8 | < |Aq

11|. Similarly to 

the massive case, in this approach the quark correlator is described in terms of 3 independent 

amplitudes, namely the unpolarized A
q

3 , chiral even polarized A
q

8 , and chiral odd polarized A
q

11

amplitude. In practice, these 3 independent amplitudes can be determined from, for instance 

f
q

1 (x), g
q

1 (x), h
q

1(x) at some scale which is part of the model. This corresponds to the parton 

model version discussed in Ref. [39].

11
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5.3. Massless pure-spin model

If we choose to work with a parton model of massless quarks in a pure-spin state, then the 

condition (B) in (27) implies

b2
T − λ2 = − M2(k · S)2

(P · k)2

(

1 − (A
q

11)
2

(A
q

8)2

)

+ S2 = −1 ⇔ A
q

8 = ±A
q

11 . (28)

Also in the massless case, we have two choices for a pure-spin state parton model, one of which 

will turn out to be physical and the other unphysical. We will discuss this in the next section.

6. Quark TMDs

In this section we will discuss the results for TMDs following from the quark correlator in 

the parton model derived in the previous sections. We will keep mq �= 0 and comment on the 

massless case where necessary.

6.1. Unpolarized TMDs

The results for the T-even unpolarized TMDs are of course independent of the (mixed-spin or 

pure-spin state) polarization of partons, and can be uniquely expressed in terms of the amplitude 

A
q

3 in the following way

f
q

1 (x, kT ) = 2P +
∫

dk−
[

xA
q

3(P · k)

]

k+=xP+
, (29a)

f ⊥q(x, kT ) = 2P +
∫

dk−
[

A
q

3(P · k)

]

k+=xP+
, (29b)

eq(x, kT ) = 2P +
∫

dk−
[

mq

M
A

q

3(P · k)

]

k+=xP+
. (29c)

Here and in the following we shall abbreviate the notation for the amplitudes as A
q

3(P · k, k2) =
A

q

3(P · k) because in the parton model k2 = m2
q is fixed (but we will reinstate the notation A

q

3(P ·
k, k2) when it will become important to stress the specific k2 dependence in the parton model).

We see that eq(x, kT ) is proportional to the current quark mass and becomes zero if one 

considers the parton model with massless quarks. This is the only TMD in the parton model with 

this property.

6.2. Polarized TMDs for partons in mixed-spin state

The T-even chiral even polarized TMDs in the mixed-spin state parton model with massive 

quarks are expressed in terms of the chiral even amplitude A
q

8 and the chiral odd amplitude A
q

11

entering as current quark mass effect. The model expressions are given by

g
q

1 (x, kT ) = 2P +
∫

dk−
[

x2M2 − x P · k + m2
q

M2
A

q

8(P · k) − mq

M
x A

q

11(P · k)

]

k+=xP+
,

(30a)

12
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g
⊥q

1T (x, kT ) = 2P +
∫

dk−
[

xA
q

8(P · k) − mq

M
A

q

11(P · k)

]

k+=xP+
, (30b)

g
q

T (x, kT ) = 2P +
∫

dk−
[ �k2

T + 2m2
q

2M2
A

q

8(P · k) − mq

M

P · k
M2

A
q

11(P · k)

]

k+=xP+
, (30c)

g
⊥q

L (x, kT ) = 2P +
∫

dk−
[

x M2 − P · k
M2

A
q

8(P · k)

]

k+=xP+
, (30d)

g
⊥q

T (x, kT ) = 2P +
∫

dk−
[

A
q

8(P · k)

]

k+=xP+
. (30e)

For the T-even chiral odd polarized TMDs the situation is opposite: they are given in terms of 

the chiral odd amplitude A
q

11 while the chiral even amplitude A
q

8 enters as current quark mass 

effect. The model expressions read

h
q

1(x, kT ) = 2P +
∫

dk−
[ �k2

T − 2x P · k
2M2

A
q

11(P · k) + x
mq

M
A

q

8(P · k)

]

k+=xP+
, (31a)

h
⊥q

1L (x, kT ) = 2P +
∫

dk−
[

xA
q

11(P · k) − mq

M
A

q

8(P · k)

]

k+=xP+
, (31b)

h
⊥q

1T (x, kT ) = 2P +
∫

dk−
[

A
q

11(P · k)

]

k+=xP+
, (31c)

h
q

L(x, kT ) = 2P +
∫

dk−
[

x2M2 − 2x P · k
M2

A
q

11(P · k) + mq

M

P · k
M2

A
q

8(P · k)

]

k+=xP+
,

(31d)

h
q

T (x, kT ) = 2P +
∫

dk−
[

x M2 − P · k
M2

A
q

11(P · k)

]

k+=xP+
, (31e)

h
⊥q

T (x, kT ) = 2P +
∫

dk−
[

−P · k
M2

A
q

11(P · k) + mq

M
A

q

8(P · k)

]

k+=xP+
. (31f)

For massless partons the situation simplifies. Then all chiral even polarized TMDs are expressed 

in terms of the amplitude A
q

8 , while all chiral odd polarized TMDs are expressed in terms of the 

amplitude A
q

11.

6.3. Polarized TMDs for partons in pure-spin state

In the pure-spin state parton model all polarized (chiral even and chiral odd) TMDs, can be ex-

pressed in terms of one single amplitude. We choose A
q

8 for that, and replace A
q

11 by A
q

11 = ±A
q

8 . 

In the following the upper (lower) sign in (±) is associated with the upper (lower) sign in the two 

solutions w
q
± for the quark polarization vector and polarized amplitude A

q

pol± which correspond 

to the choices A
q

11 = ±A
q

8 . For massive partons in a pure-spin state, the model expressions for 

the chiral even polarized TMDs are given by

13
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g
q

1 (x, kT ) = 2P +
∫

dk−
[

x2M2 − x P · k + m2
q

M2
A

q

8(P · k)

− mq

M
x

[

±A
q

8(P · k)

]

]

k+=xP+
, (32a)

g
⊥q

1T (x, kT ) = 2P +
∫

dk−
[

x A
q

8(P · k) − mq

M

[

±A
q

8(P · k)

]

]

k+=xP+
, (32b)

g
q

T (x, kT ) = 2P +
∫

dk−
[ �k2

T + 2m2
q

2M2
A

q

8(P · k) − mq

M

[

± P · k
M2

A
q

8(P · k)

]

]

k+=xP+
,

(32c)

where we do not quote the expressions for g
⊥q

L (x, kT ) and g
⊥q

T (x, kT ) since they do not depend 

on A
q

11 and are the same as in (30d), (30e). Since mq ≪ M , the difference between the two 

solutions for w
q
± and A

q

pol± is in practice numerically negligibly small, and disappears in the 

massless case. In fact, in the massless case the mixed-spin and pure-spin versions of the parton 

model give exactly the same results for the chiral even polarized TMDs.

The model expressions for the polarized chiral odd TMDs are given by

h
q

1(x, kT ) = 2P +
∫

dk−
[

±
�k2
T − 2x P · k

2M2
A

q

8(P · k) + mq

M
x A

q

8(P · k)

]

k+=xP+
,

(33a)

h
⊥q

1L (x, kT ) = 2P +
∫

dk−
[

±x A
q

8(P · k) − mq

M
A

q

8(P · k)

]

k+=xP+
, (33b)

h
⊥q
1T (x, kT ) = 2P +

∫

dk−
[

±A
q
8(P · k)

]

k+=xP+
, (33c)

h
q

L(x, kT ) = 2P +
∫

dk−
[

± x2M2 − 2x P · k
M2

A
q

8(P · k) + mq

M

P · k
M2

A
q

8(P · k)

]

k+=xP+
,

(33d)

h
q
T (x, kT ) = 2P +

∫

dk−
[

± x M2 − P · k
M2

A
q

8(P · k)

]

k+=xP+
, (33e)

h
⊥q

T (x, kT ) = 2P +
∫

dk−
[

±
(

− P · k
M2

A
q

8(P · k)

)

+ mq

M
A

q

8(P · k)

]

k+=xP+
. (33f)

If we consider that quark mass effects are negligible in practical applications, we notice that 

the signs ± associated with the solutions for w
q
± and A

q

pol± yield different predictions for the 

overall signs of the chiral odd polarized TMDs. For massless quarks, the two choices give exactly 

opposite signs for chiral odd polarized TMDs.

The negative-sign solution for w
q
± and A

q

pol± in (24) coincides with the conventions in [26–

38] and predicts transversity and helicity quark TMDs to have equal signs in agreement with 

14
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other models and lattice QCD [69–94,96,95,98,97].1 We therefore conclude that the negative-

sign solution in (24) is physical. From the positive-sign solution w
q
+ and A

q

pol+ in (24), one would 

obtain transversity and helicity quark TMDs with opposite signs. This has not been observed in 

any model or lattice study we are aware of. We therefore discard the positive-sign solution in 

(24) as unphysical.

It is natural to encounter two solutions because the pure-spin state condition w2
q = −1 is a 

quadratic equation. Interestingly, the pure-spin state parton model by itself cannot distinguish 

which solution is physical and which one is unphysical, and thus does not predict the sign of 

transversity and other chiral odd TMDs. We have to determine the physical solution using results 

from other models or lattice QCD as a guideline.2

Thus, the physical (negative-sign) solution corresponds to the covariant parton model in [26–

38] and is given by

A
q

8 = −A
q

11 , A
q

pol− = (P · k) + mqM

M2
A

q

8 ,

w
μ
q− = Sμ − (k · S)

(P · k) + mqM
P μ − M

mq

(k · S)

(P · k) + mqM
kμ . (34)

The final model expressions for the polarized TMDs in the pure-spin state version of the model 

are given by

g
q

1 (x, kT ) = 2P +
∫

dk−
[

x2M2 − x P · k + x mqM + m2
q

M2
A

q

8(P · k)

]

k+=xP+
, (35a)

g
⊥q

1T (x, kT ) = 2P +
∫

dk−
[

x M + mq

M
A

q

8(P · k)

]

k+=xP+
, (35b)

g
q
T (x, kT ) = 2P +

∫

dk−
[

M �k2
T + 2mq P · k + 2m2

qM

2M3
A

q

8(P · k)

]

k+=xP+
, (35c)

g
⊥q
L (x, kT ) = 2P +

∫

dk−
[

x M2 − P · k
M2

A
q

8(P · k)

]

k+=xP+
, (35d)

g
⊥q

T (x, kT ) = 2P +
∫

dk−
[

A
q

8(P · k)

]

k+=xP+
. (35e)

h
q

1(x, kT ) = 2P +
∫

dk−
[

2x P · k − �k2
T + 2xmqM

2M2
A

q

8(P · k)

]

k+=xP+
, (35f)

h
⊥q

1L (x, kT ) = 2P +
∫

dk−
[

−x M + mq

M
A

q

8(P · k)

]

k+=xP+
, (35g)

1 We remark that one can determine the physical sign solution for h
q
1
(x) also from model and lattice QCD studies of 

the nucleon tensor charge 
∫ 1

0 dx(h
q
1

− h
q̄
1
)(x) [99–108], under the safe assumption that the sign of the tensor charge is 

determined by h
q
1
(x).

2 Let us recall that the sign of ha
1
(x) cannot be inferred from experiment because chiral odd (TMDs, fragmentation, etc) 

functions enter observables paired with other chiral odd functions. The positive sign of hu
1
(x) in parametrizations (see, 

e.g., [15] for a recent extraction) is a convention based models and lattice QCD predictions [69–94,96,95,98,97,99–108].
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h
⊥q

1T (x, kT ) = 2P +
∫

dk−
[

−A
q

8(P · k)

]

k+=xP+
, (35h)

h
q
L(x, kT ) = 2P +

∫

dk−
[

2x M P · k − x2M3 + mq P · k
M3

A
q

8(P · k)

]

k+=xP+
, (35i)

h
q
T (x, kT ) = 2P +

∫

dk−
[

P · k − x M2

M2
A

q
8(P · k)

]

]

k+=xP+
, (35j)

h
⊥q
T (x, kT ) = 2P +

∫

dk−
[

P · k + mqM

M2
A

q

8(P · k)

]

k+=xP+
. (35k)

Above, we explored theoretical studies of h
q

1 to determine the physical sign solution, because 

transversity is arguably the most widely studied chiral odd nucleon distribution function. For 

completeness, let us remark that in principle we could have used any other chiral odd quark 

distribution function, for instance h
q

L(x) for which some model and lattice studies are available 

in literature [69,72,73,89,109–111]. One obtains the same result from h
q
L(x). It is important 

to remark that there is more than one way to determine the physical sign — including further 

possibilities to use chiral odd TMDs like pretzelosity h
⊥q

1T , the gear-worm function h
⊥q

1L , or other 

polarized chiral odd TMDs. The fact that one concludes unanimously the same relative (negative) 

sign between the amplitudes A
q

8 and A
q

11 using the different methods supports the consistency of 

the approach.

7. Antiquarks in the parton model

The discussion of the antiquark correlator parallels that of the quark correlator such that we 

can abbreviate many details and focus on showing the main results.

7.1. Correlator for massive antiquarks

Inserting the relations in (15), (16) in the antiquark correlator in (2) and performing exactly 

the same steps as in the polarized correlator as in (17)-(21) we obtain

�q̄(k,P,S) = �q̄(k,P,S)unp + �q̄(k,P,S)pol (36a)

with

�q̄(k,P,S)unp = (/k − mq)A
q̄
unp , (36b)

�q̄(k,P,S)pol = (/k − mq)γ5 /wq̄ A
q̄

pol (36c)

where we introduced A
q̄
unp, A

q̄

pol, w
μ
q̄ defined as3

A
q̄
unp = A

q̄

3 ,

3 We recall that by convention antifermions are polarized opposite to the polarization vector, cf. Sec. 9.5. We stress 

that this has no practical relevance for our results and the TMDs of both quarks and antiquarks have their usual partonic 

interpretations.
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A
q̄

pol = − (P · k)A
q̄

11 + mqM A
q̄

8

M2
, (36d)

w
μ
q̄ = Sμ − P μ (k · S)A

q̄

11

(P · k)A
q̄

11 + mqM A
q̄

8

− kμ M

mq

(k · S)A
q̄

8

(P · k)A
q̄

11 + mqM A
q̄

8

. (36e)

In (36e) we assumed that mq �= 0 and (P · k) A
q̄

11 + mqM A
q̄

8 �= 0. The axial 4-vector wq̄ plays 

the role of the antiquark polarization vector. It satisfies k · wq̄ = 0 for any A
q̄

8 and A
q̄

11.

In the mixed-spin version of the parton model, we have

−1 < w2
q̄ < 0 (37)

where the upper bound is always satisfied. The lower bound is satisfied provided |Aq̄

11| < |Aq̄

8 |. 
In this version of the model, the antiquark correlator is described in terms of three independent 

amplitudes A
q̄

3 , A
q̄

8 , A
q̄

11.

In the pure-spin state version of the model, the polarized amplitudes A
q̄

8 and A
q̄

11 are related 

as

w2
q̄ = −1 ⇔ A

q̄

11 = ±A
q̄

8 . (38a)

The two solutions A
q̄

8 = ±A
q̄

11 imply

A
q̄

pol± = − (±P · k) + mqM

M2
A

q̄

8 , (38b)

w
μ
q̄± = Sμ − P μ (±k · S)

(±P · k) + mqM
− M

mq

(±k · S)

(±P · k) + mqM
(±kμ) . (38c)

7.2. Correlator for massless antiquarks

In the massless case, the unpolarized and polarized parts of the antiquark correlator in (36b)

are described as4

�q̄(k,P,S)unp = /k A
q̄
unp , �q̄(k,P,S)pol = /k γ5

{

−λ + /bT

}

A
q̄

pol (39a)

where, assuming A
q̄

8 �= 0, we introduced

A
q̄
unp = A

q̄

3 ,

A
q̄

pol = − (P · k)

M2
A

q̄

8 , λ = M(k · S)

(P · k)
, b

μ
T =

(

Sμ − P μ (k · S)

(P · k)

)

A
q̄

11

A
q̄

8

. (39b)

The condition −1 < b2
T − λ2 < 0 defining the massless spin state model holds provided |Aq̄

11| <
|Aq̄

8 |. In this case, the model is characterized in terms of three independent amplitudes A
q̄

3 , A
q̄

8 , 

A
q̄

11.

4 In our notation, the helicity of the antiquark is given by (−λ), cf. footnote 3, the reminder in Sec. 9.5, and the “mental 

health warning” in Sec. 6.4 of Ref. [4].
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In the pure-spin case for antiquarks, it is required that b2
T − λ2 = −1 which implies A

q̄

11 =
± A

q̄

8 . The description of the antiquark correlator proceeds then in terms of two independent 

amplitudes which can be chosen to be A
q̄

3 , A
q̄

8 .

7.3. Unpolarized antiquark TMDs

The T-even unpolarized antiquark TMDs are uniquely expressed in terms of the amplitude A
q̄

3

as follows, cf. (6),

f
q̄

1 (x, kT ) = 2P +
∫

dk−
[

xA
q̄

3(P · k)

]

k+=xP+
, (40a)

f ⊥q̄(x, kT ) = 2P +
∫

dk−
[

A
q̄

3(P · k)

]

k+=xP+
, (40b)

eq̄(x, kT ) = 2P +
∫

dk−
[

mq

M
A

q̄

3(P · k)

]

k+=xP+
. (40c)

7.4. Polarized chiral even antiquark TMDs in mixed-spin case

The polarized chiral even TMDs in the mixed-spin model are given by

g
q̄

1 (x, kT ) = 2P +
∫

dk−
[

x P · k − x2M2 − m2
q

M2
A

q̄

8 − mq

M
x A

q̄

11

]

k+=xP+
, (41a)

g
⊥q̄

1T (x, kT ) = 2P +
∫

dk−
[

−x A
q̄

8 − mq

M
A

q̄

11

]

k+=xP+
, (41b)

g
q̄
T (x, kT ) = 2P +

∫

dk−
[

−
�k 2
T + 2m2

q

2M2
A

q̄

8 − mq

M

P · k
M2

A
q̄

11

]

k+=xP+
, (41c)

g
⊥q̄
L (x, kT ) = 2P +

∫

dk−
[

− xM2 − P · k
M2

A
q̄

8

]

k+=xP+
, (41d)

g
⊥q̄

T (x, kT ) = 2P +
∫

dk−
[

−A
q̄

8

]

k+=xP+
. (41e)

7.5. Polarized chiral odd antiquark TMDs in mixed-spin state case

The polarized chiral odd TMDs in the mixed-spin model are given by

h
q̄

1(x, kT ) = 2P +
∫

dk−
[ �k 2

T − 2x P · k
2M2

A
q̄

11 − mq

M
x A

q̄

8

]

k+=xP+
, (42a)

h
⊥q̄

1L (x, kT ) = 2P +
∫

dk−
[

x A
q̄

11 + mq

M
A

q̄

8

]

k+=xP+
, (42b)

h
⊥q̄

1T (x, kT ) = 2P +
∫

dk−
[

A
q̄

11

]

k+=xP+
, (42c)
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h
q̄
L(x, kT ) = 2P +

∫

dk−
[

x2M2 − 2x P · k
M2

A
q̄

11 − mq

M

P · k
M2

A
q̄

8

]

k+=xP+
, (42d)

h
⊥q̄

T (x, kT ) = 2P +
∫

dk−
[

− P · k
M2

A
q̄

11 − mq

M
A

q̄

8

]

k+=xP+
, (42e)

h
q̄

T (x, kT ) = 2P +
∫

dk−
[

x M2 − P · k
M2

A
q̄

11

]

k+=xP+
. (42f)

7.6. Polarized chiral even antiquark TMDs in pure-spin state case

The polarized chiral even TMDs in the mixed-spin model are given by

g
q̄

1 (x, kT ) = 2P +
∫

dk−
[

x P · k − x2M2 − m2
q

M2
A

q̄

8 − mq

M
x

(

±A
q̄

8

)

]

k+=xP+
, (43a)

g
⊥q̄

1T (x, kT ) = 2P +
∫

dk−
[

−x A
q̄

8 − mq

M

(

±A
q̄

8

)

]

k+=xP+
, (43b)

g
q̄

T (x, kT ) = 2P +
∫

dk−
[

−
�k 2
T + 2m2

q

2M2
A

q̄

8 − mq

M

P · k
M2

(

±A
q̄

8

)

]

k+=xP+
, (43c)

while g
⊥q̄
L (x, kT ) and g

⊥q̄
T (x, kT ) which do not depend on the amplitude A

q̄

11 are still given by 

the expressions (41d), (41e).

7.7. Polarized chiral odd antiquark TMDs in pure-spin state case

The polarized chiral odd TMDs in the pure-spin state model are given by

h
q̄

1(x, kT ) = 2P +
∫

dk−
[ �k 2

T − 2x P · k
2M2

(

±A
q̄

8

)

− mq

M
x A

q̄

8

]

k+=xP+
, (44a)

h
⊥q̄

1L (x, kT ) = 2P +
∫

dk−
[

x

(

±A
q̄

8

)

+ mq

M
A

q̄

8

]

k+=xP+
, (44b)

h
⊥q̄

1T (x, kT ) = 2P +
∫

dk−
[

(

±A
q̄

8

)

]

k+=xP+
, (44c)

h
q̄

L(x, kT ) = 2P +
∫

dk−
[

x2M2 − 2x P · k
M2

(

±A
q̄

8

)

− mq

M

P · k
M2

A
q̄

8

]

k+=xP+
, (44d)

h
⊥q̄

T (x, kT ) = 2P +
∫

dk−
[

−P · k
M2

(

±A
q̄

8

)

− mq

M
A

q̄

8

]

k+=xP+
, (44e)

h
q̄
T (x, kT ) = 2P +

∫

dk−
[

x M2 − P · k
M2

(

±A
q̄

8

)

]

k+=xP+
. (44f)

Keeping in mind that quark mass effects are practically negligible for the light u- and d-flavors, 

we see that the two ± solutions for w
q̄
± and A

q̄

pol± in (38a)–(38c), predict opposite signs of the 
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chiral odd polarized antiquark TMDs. In order to determine the physical solution, we will again 

rely on results from model and lattice calculations.

In order to determine the physical solution for w
q̄
± and A

q̄

pol± in (38a)–(38c) we proceed ana-

log to the quark case and consult theory results from literature. Far fewer studies are available for 

antiquark distributions as compared to quarks, but they unanimously yield h
q̄

1 and g
q̄

1 of opposite 

signs for a given flavor q̄ [71,78,80,90,92,96,95,98,97]. Now, the positive-sign solution w
q̄
+ and 

A
q̄
+ yields transversity and helicity antiquark TMDs of equal signs, i.e. this is the unphysical so-

lution in antiquark case. The negative-sign solution w
q̄
− and A

q̄
− in (38a)–(38c) gives transversity 

and helicity antiquark TMDs of opposite sign which is in agreement with results from literature. 

We therefore choose the negative-sign solution in (38a)–(38c) as the physical solution which is 

given by

A
q̄

11 = −A
q̄

8 ,

A
q̄

pol− = P · k − mqM

M2
A

q̄

8 ,

w
μ
q̄− = Sμ − k · S

P · k − mqM
P μ + M

mq

k · S
P · k − mqM

kμ . (45)

The final model expressions in the pure-spin state model are given by

g
q̄

1 (x, kT ) = 2P +
∫

dk−
[

x P · k − x2M2 + x mqM − m2
q

M2
A

q̄

8

]

k+=xP+
, (46a)

g
⊥q̄

1T (x, kT ) = 2P +
∫

dk−
[

− x M − mq

M
A

q̄

8

]

k+=xP+
, (46b)

g
q̄

T (x, kT ) = 2P +
∫

dk−
[

−
M �k 2

T − 2mqP · k + 2m2
qM

2M3
A

q̄

8

]

k+=xP+
, (46c)

g
⊥q̄

L (x, kT ) = 2P +
∫

dk−
[

P · k − x M2

M2
A

q̄

8

]

k+=xP+
, (46d)

g
⊥q̄

T (x, kT ) = 2P +
∫

dk−
[

−A
q̄

8

]

k+=xP+
, (46e)

h
q̄

1(x, kT ) = 2P +
∫

dk−
[

2x P · k − �k 2
T − 2x mqM

2M2
A

q̄

8

]

k+=xP+
, (46f)

h
⊥q̄

1L (x, kT ) = 2P +
∫

dk−
[

− x M − mq

M
A

q̄

8

]

k+=xP+
, (46g)

h
⊥q̄

1T (x, kT ) = 2P +
∫

dk−
[

−A
q̄

8

]

k+=xP+
, (46h)

h
q̄

L(x, kT ) = 2P +
∫

dk−
[

2x M P · k − x2M3 − mq P · k
M3

A
q̄

8

]

k+=xP+
, (46i)
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h
⊥q̄
T (x, kT ) = 2P +

∫

dk−
[

P · k − mqM

M2
A

q̄

8

]

k+=xP+
, (46j)

h
q̄

T (x, kT ) = 2P +
∫

dk−
[

P · k − M2x

M2
A

q̄

8

]

k+=xP+
. (46k)

8. Consistency of the approach

In this section we demonstrate the internal consistency of the approach.

8.1. Sum rule of ea(x)

As a first consistency test we consider the sum rule for the twist-3 function eq(x) [69,113]. 

Introducing the integrated functions ea(x) =
∫

d2kT ea(x, kT ) and f a
1 (x) =

∫

d2kT f a
1 (x, kT )

(we recall that in the parton model TMDs and PDFs are simply related, see Sec. 2.2), we obtain 

from (29, 40) the result

1
∫

0

dx

(

x eq(x) + x eq̄(x)

)

= mq

M

1
∫

0

dx

(

f
q

1 (x) − f
q̄

1 (x)

)

. (47)

Using the customary “continuation” to negative x according to eq̄(x) = eq(−x) and f
q̄

1 (x) =
−f

q

1 (−x), (47) can be expressed as

1
∫

−1

dx x eq(x) = mq

M
Nq , (48)

where Nq =
∫ 1
−1 dxf

q

1 (x) is the number of valence quarks of flavor q in the nucleon. This is a 

consistency test for the amplitude relations derived from the equations of motion for respectively 

�q and �̄q in Secs. 3.1 and 3.2. The sum rule in (48) is correctly satisfied due to the opposite 

signs in the relations A
q

1 = mq

M
A

q

3 and A
q̄

1 = −mq

M
A

q̄

3 . We will follow up below on the negative-x

continuation also for the other TMDs.

8.2. Equation of motion (EOM) relations

From the QCD equations of motion, one obtains the so-called EOM relations. Below we quote 

only the EOM relation for T-even functions relevant in this work. The EOM relations among the 

unpolarized TMDs are given by

x f ⊥a(x, kT ) = x f̃ ⊥a(x, kT ) + f
q

1 (x, kT ), (49a)

x ea(x, kT ) = x ẽa(x, kT ) + mq

M
f a

1 (x, kT ), (49b)

where a = q, q̄ . The EOM relations among the polarized TMDs read

xg⊥a
L (x, kT ) = xg̃⊥a

L (x, kT ) + ga
1 (x, kT ) + mq

M
h⊥a

1L (x, kT ), (50a)

xga
T (x, kT ) = xg̃a

T (x, kT ) + g
⊥(1)a
1T (x, kT ) + mq

M
ha

1(x, kT ), (50b)
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xg⊥a
T (x, kT ) = xg̃⊥a

T (x, kT ) + g⊥a
1T (x, kT ) + mq

M
h⊥a

1T (x, kT ), (50c)

xha
L(x, kT ) = xh̃a

L(x, kT ) − 2h
⊥(1)a
1L (x, kT ) + mq

M
ga

1 (x, kT ), (50d)

xha
T (x, kT ) = xh̃a

T (x, kT ) − ha
1(x, kT ) − h

⊥(1)a
1T (x, kT ) + mq

M
g⊥a

1T (x, kT ), (50e)

xh⊥a
T (x, kT ) = xh̃⊥a

T (x, kT ) + ha
1(x, kT ) − h

⊥(1)a
1T (x, kT ), (50f)

where the (1)-moments of TMDs are defined, for instance, as

g
⊥(1)q

1T (x, kT ) =
�k2
T

2M2
g

⊥q

1T (x, kT ) (51)

and analogously for other TMDs. In QCD, the tilde terms in (49, 50) are related to quark-gluon 

correlators [59]. In quark models, despite the absence of gluonic degrees of freedom, the tilde 

terms are in general nonzero as they can arise from the respective model interactions.

In the parton model, the tilde terms are expected to be zero. One readily verifies that the model 

expressions for quark and antiquark TMDs in (29, 30, 35, 40, 41, 42, 43, 44) in mixed-spin and 

pure-spin version of the model satisfy the EOM relations with the tilde terms set to zero. This is 

another important consistency test of the approach.

8.3. Relation between quark and antiquark correlators and its consequences

In order to carry out further tests of the consistency of the approach, we explore the field-

theoretical relation between the quark and antiquark correlators in (1) given by [45,53]

�
q̄
ij (k,P,S) = −�

q
ij (−k,P,S) (52)

The relation in (52) shows that the amplitudes A
q

i and A
q̄

i are related to each other by a “contin-

uation” of P · k to (− P · k). From the expansions of the correlators �a(k, P, S) in terms of the 

amplitudes in (2) and the relation in (52) we read off

A
q̄

i (P · k) =
{

+A
q
i (−P · k) for i = 3, 4, 5, 7, 10, 12,

−A
q

i (−P · k) for i = 1, 2, 6, 8, 9, 11.
(53)

As a first consistency test, let us rederive the relations among the antiquark amplitudes in 

(15), (16) from the relations among the quark amplitudes Aq(P · k) in (10), (12). This is ac-

complished by continuing k → (−k) in (10), (12). Using (53) to express the A
q

i (−P · k) in terms 

of the A
q̄

i (P · k) yields the antiquark amplitude relations in (15), (16). This test demonstrates 

the consistency of the derivations of the relations (10), (12) among the quark amplitudes and the 

derivations of the relations (15), (16) among antiquark amplitudes.

As a second test related to the amplitudes, let us consider the final results for the correlators 

in the pure-spin state model with massive partons which are given by

�q(k,P,S) = (/k + mq)

[

A
q
unp(P · k) + γ5 /wq(k)A

q

pol(P · k)

]

(54a)

�q̄(k,P,S) = (/k − mq)

[

A
q̄
unp(P · k) + γ5 /wq̄(k)A

q̄

pol(P · k)

]

(54b)

Aa
unp(P · k) = Aa

3(P · k) , (54c)
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A
q

pol(P · k) = P · k + mqM

M2
A

q

8(P · k) , (54d)

A
q̄

pol(P · k) = P · k − mqM

M2
A

q̄

8(P · k) , (54e)

wμ
q (k) = Sμ − k · S

P · k + mqM
P μ − M

mq

k · S
P · k + mqM

kμ , (54f)

w
μ
q̄ (k) = Sμ − k · S

P · k − mqM
P μ + M

mq

k · S
P · k − mqM

kμ = wμ
q (−k) . (54g)

From (53), (54) we see that A
q̄
unp(P · k) = A

q
unp(−P · k) and A

q̄

pol(P · k) = A
q

pol(−P · k) while 

w
μ
q̄ (k) = w

μ
q (−k). With these preparations, we see that the quark and antiquark correlators are 

related to each other by the field-theoretical relation in (52). This test is non-trivial, because we 

have independently chosen the signs of the solutions in the quark and antiquark cases in (24, 38). 

In the same way, one can show that the quark and antiquark correlators are consistently described 

also in the mixed-spin state and massless versions of the model.

8.4. Continuation of quark TMDs to negative x

The model expression for f
q

1 (x, kT ) in (29a) can be expressed as

f
q

1 (x, kT ) = 2P +
∫

dk−
∫

dk+ δ(k+ − xP +)

[

xA
q

3(P · k)

]

. (55a)

In this expression, we replace x by (−x), and perform the substitutions5 k± → −k±. This yields

f
q

1 (−x, kT ) = −2P +
∫

dk−
∫

dk+ δ(k+ − xP +)

[

xA
q

3(−P · k)

]

= −2P +
∫

dk−
∫

dk+ δ(k+ − xP +)

[

xA
q̄

3(P · k)

]

(55b)

where in the last step we made use of (53). Comparing to (40a) we recognize the expression for 

(−1) f
q̄

1 (x, kT ). We can proceed analogously with the other TMDs. Summarizing the results, we 

find the familiar relations

f
q̄

1 (x, kT ) =− f
q

1 (−x, kT ) , (56a)

g
q̄

1 (x, kT ) = g
q

1 (−x, kT ) , (56b)

h
q̄

1(x, kT ) =− h
q

1(−x, kT ) , (56c)

g
⊥q̄

1T (x, kT ) =−g
⊥q

1T (−x, kT ) , (56d)

h
⊥q̄

1L (x, kT ) = h
⊥q

1L (−x, kT ) , (56e)

h
⊥q̄

1T (x, kT ) =−h
⊥q

1T (−x, kT ) , (56f)

eq̄(x, kT ) = eq(−x, kT ) , (56g)

f ⊥q̄(x, kT ) = f ⊥q(−x, kT ) , (56h)

5 Notice that under the substitutions k± → −k± in the integrals in (55a), the product P ·k changes sign P ·k → −P ·k. 

This is so because P ·k = P+k− +P−k+ is independent of kT as by definition the nucleon momentum has no transverse 

component.
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g
q̄

T (x, kT ) = g
q

T (−x, kT ) , (56i)

g
⊥q̄
T (x, kT ) = g

⊥q
T (−x, kT ) , (56j)

g
⊥q̄
L (x, kT ) =−g

⊥q
L (−x, kT ) , (56k)

h
q̄

L(x, kT ) =− h
q

L(−x, kT ) , (56l)

h
⊥q̄

T (x, kT ) = h
⊥q

T (−x, kT ) , (56m)

h
q̄

T (x, kT ) = h
q

T (−x, kT ) . (56n)

In these relations x is always in the range 0 < x < 1. We remark that based on these relations it 

is customary to introduce TMDs defined on the domain −1 < x < 1 with the understanding that 

quark TMD functions of (−x) mean (±1) of the respective antiquark TMD functions of x with 

the signs as specified in (56), e.g., h
q

1(x, kT ) for 0 < (−x) < 1 means − h
q̄

1(x, kT ) for 0 < x < 1, 

etc, cf. also Sec. 8.1.

9. Evaluation of TMDs in covariant parton model

In this section we will show that the pure-spin state parton model derived in this work corre-

sponds to the CPM of Refs. [25–38]. For that we will introduce the notation of [25–27], explore 

consequences of the equation of motion [39], consider kinematic DIS constraints, and rederive 

the model expressions for quark TMDs from prior studies [30,33,38] and present new results for 

antiquark TMDs.

9.1. Model expressions

Starting from the equation of motion (i /∂ −mq) �q(z) = 0, one obtains for the quark correlator 

the relation [39],

0 =
∫

d4z

(2π)4
eikz 〈N |�q

j (0)

[

(i
−→
/∂ + mq)ik(i

−→
/∂ − mq)kl�

q
l (z)

]

|N〉

=
∫

d4z

(2π)4
eikz 〈N |�q

j (0)

[

(−�− m2
q )1il�

q

l (z)

]

|N〉 ,

= (k2 − m2)�
q

ij (k,P,S) , (57)

where in the intermediate step we have performed twice integration by parts. The antiquark 

correlator satisfies an analogous relation. Since the Lorentz structures in the decompositions of 

the correlators are linearly independent, the result (57) and the analogous result for the antiquark 

correlator imply that the amplitudes satisfy

(k2 − m2)Aa
i (P · k, k2) = 0, a = q, q̄ . (58)

Keeping in mind that in the pure-spin-state version of the model we only have 2 independent 

amplitudes which can be expressed as Aa
unp(P · k, k2) and Aa

pol(P · k, k2), cf. (54), the solutions 

to (58) can be stated as

Aa
unp(P · k, k2) = M δ(k2 − m2

q)�kin(P · k)Ga(P · k) ,

Aa
pol(P · k, k2) = M δ(k2 − m2

q)�kin(P · k)Ha(P · k) , (59)
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where a = q, q̄ . Several comments are in order. The delta-function δ(k2 − m2
q) ensures that (58)

is satisfied, and puts the partons on shell. The functions Gq(P · k) and Hq(P · k) are Lorentz-

invariant functions of the variable P · k and are defined following the notation of [25–27]. In 

(59), the factor M was introduced for convenience such that Gq(P · k) and Hq(P · k) have the 

dimension (mass)−3 and can be interpreted as 3D momentum densities [25–27]. Finally, the 

function �kin(P · k) incorporates the kinematic constraints on the partons and is defined as

�kin(P · k) = �+
kin(P · k) + �−

kin(P · k), �±
kin(P · k) = �(±P · k) �

(

(P ∓ k)2
)

. (60)

Below we shall see that only �+
kin(P · k) in (60) contributes to quark or antiquark TMDs. How-

ever, although it drops out from TMDs, the presence of �−
kin(P · k) in (60) is nevertheless of 

importance for the analytic structure of the amplitudes and completeness of the model. We will 

follow up on this shortly. Let us mention here merely that due to �(P · k) = �(k0), the role of 

�(P ·k) in �+
kin(P ·k) is to project out positive energy solutions [38], while �((P −k)2) ensures 

that the nucleon remnant has positive energy and constitutes a physical state [39,112].

The scalar product P · k is positive (since it can be evaluated in any frame including nucleon 

rest frame where it is Mk0; and for a real, on-shell parton the energy k0 is of course positive). 

But it is convenient to define the “analytical continuation” of the covariant functions at negative 

values of P · k as follows

Gq(−P · k) = G q̄(P · k), Hq(−P · k) = Hq̄(P · k). (61a)

With this definition, we see that the amplitudes defined in (59) satisfy

A
q
unp(−P · k, k2) = A

q̄
unp(P · k, k2) , A

q

pol(−P · k, k2) = A
q̄

pol(P · k, k2) . (61b)

We also see that with these definitions the model expressions for the quark and anti-quark corre-

lators are given by

�q(k,P,S) = (/k + mq)

(

Gq(P · k) +Hq(P · k) γ5 /wq(k)

)

× M δ(k2 − m2
q)�kin(P · k) (61c)

�q̄(k,P,S) = (/k − mq)

(

G
q̄(P · k) +H

q̄(P · k) γ5 /wq̄(k)

)

× M δ(k2 − m2
q)�kin(P · k) (61d)

with w
μ
a (k) defined in (54), and satisfy (52). This is important for the internal consistency of the 

model. Notice that a consistent description of the quark and antiquark correlators is guaranteed 

by the specific structure of �kin(P · k) as defined in (60).

In the quark case, the result in (61c) coincides with the expression for the quark correlator in 

Ref. [38].6 Notice that the step function �((P − k)2) was implicitly understood in Refs. [25–38]

(and explicitly formulated in [39]). With the above remarks in mind, the result in (61c) practically 

reproduces the results for quark TMDs from [38]. In the antiquark case, the result in (61c) is new 

and was not given in prior studies.

6 At this occasion, let us remark that in Ref. [38] instead of nucleon mass M the nucleon energy P 0 was used to 

give Gq (P · k) and Hq (P · k) the desired dimension. This choice is incorrect as it would imply incorrect Lorentz-

transformation properties for the amplitudes. But in [38] the TMD expressions were evaluated in the nucleon rest frame 

where P 0 = M , so the practical results from [38] are correct.
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Let us explicitly carry out the calculation of the unpolarized leading-twist quark TMD. Start-

ing from (29a) and inserting for A
q

3(P · k, k2) = A
q
unp(P · k, k2) the result in (59) we obtain

f
q

1 (x, kT ) = 2P +
∫

dk−
∫

dk+ δ(k+ − xP +) xM δ(k2 − m2
q)�kin(P · k)Gq(P · k)

= (part 1) + (part 2) (62a)

with the two parts arising from respectively the two contributions �±
kin(P · k) in (60). The first 

part in (62a) is evaluated by noticing that �(P · k) = �(k0) and using δ(k2 − m2
q) �(k0) =

δ(k0 − Eq) / (2Eq) with

Eq =
√

�k2 + m2
q (62b)

denoting the parton energy. Recalling that k± = (k0 ±k1)/
√

2, changing the integration variables 

dk+dk− → dk0dk1 and choosing for convenience to work in the nucleon rest frame, we obtain

(part 1) = xM

∫

dk0

∫

dk1 δ

(

x − k+

P +

)

δ(k0 − Eq)

Eq

�+
kin(P · k) Gq(P · k) (62c)

= x M

∫

dk1

Eq

δ

(

x − Eq + k1

M

)

�
(

M2 + m2
q − 2MEq

)

Gq(MEq) . (62d)

The “part 2” is evaluated similarly except that now we pick �(−P · k) = �(−k0) from 

�kin(P · k) in (60). We then get δ(k2 − m2
q) �(−k0) = δ(k0 + Eq) / (2Eq) which yields, us-

ing the nucleon rest frame for convenience, the result

(part 2) = xM

∫

dk1

Eq

δ

(

x + Eq − k1

M

)

�(M2 + m2
q + 2MEq)Gq(−MEq) = 0 . (62e)

The “part 2” vanishes because x is positive and (Eq − k1)/M is also always positive for an 

on-shell particle such that the delta-function under the k1-integral in (62e) is always zero.

The result for f
q

1 (x, kT ) due to “part 1” in (62a) coincides exactly with the expression from 

prior studies [25–38] (notice that in prior studies Gq(P · k) was often denoted in the nucleon 

rest frame as Gq(Eq) or Gq(k0) for simplicity). The calculation of f
q̄

1 (x, kT ) is analog to the 

above calculation of the quark TMD with the labels q ↔ q̄ interchanged, and other quark and 

antiquark TMDs are evaluated analogously. In order to list the final results and abbreviate the 

model expressions, it is convenient to introduce a compact notation for the flavor-dependent 

integration measures [30]

{dk1}aunp = dk1

Eq

Ga(MEq)

Eq + mq

δ

(

x − Eq + k1

M

)

�(M2 + m2
q − 2MEq) , (63a)

{dk1}apol = dk1

Eq

Ha(MEq)

Eq + mq

δ

(

x − Eq + k1

M

)

�(M2 + m2
q − 2MEq) , (63b)

Summarizing all results in the compact notation of (63), we obtain

f a
1 (x, kT ) =

∫

{dk1}aunp

[

xM(Eq + mq)

]

, (64a)

ga
1 (x, kT ) =

∫

{dk1}apol

[

x2M2 − xEqM + xmqM + m2
q

]

, (64b)
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g⊥a
1T (x, kT ) =

∫

{dk1}apol

[

xM2 + mqM

]

, (64c)

ha
1(x, kT ) =

∫

{dk1}apol

[

2xEqM − �k2
T + 2xmqM

]

, (64d)

h⊥a
1L (x, kT ) =

∫

{dk1}apol

[

−xM2 − mqM

]

, (64e)

h⊥a
1T (x, kT ) =

∫

{dk1}apol

[

−M2

]

, (64f)

ea(x, kT ) =
∫

{dk1}aunp

[

mq(Eq + mq)

]

, (64g)

f ⊥a(x, kT ) =
∫

{dk1}aunp

[

M(Eq + mq)

]

, (64h)

ga
T (x, kT ) =

∫

{dk1}apol

[

�k2
T + 2mqEq + 2m2

q

]

, (64i)

g⊥a
L (x, kT ) =

∫

{dk1}apol

[

xM2 − EqM

]

, (64j)

g⊥a
T (x, kT ) =

∫

{dk1}apol

[

M2

]

, (64k)

ha
L(x, kT ) =

∫

{dk1}apol

[

2xMEq − x2M2 + mqEq

]

, (64l)

ha
T (x, kT ) =

∫

{dk1}apol

[

EqM − xM2

]

, (64m)

h⊥a
T (x, kT ) =

∫

{dk1}apol

[

M(Eq + mq)

]

. (64n)

These results are valid for a = q, q̄ . The results for quark TMDs were obtained before in [30]

in twist-2 and in [38] in twist-3 case. The results for antiquark TMDs are presented for the first 

time in this work. It should be noted that equivalent expressions can be obtained for the TMDs 

[30] by exploring E2
q = k2

1 + �k2
T + m2

q and Eq + k1 = xM due to the on-shell condition and the 

delta-function present in the compact definition of the integration measure (63).

The model expression for quark and antiquark TMDs satisfy (56). This follows immediately 

from the properties of the amplitudes in (61b). It can also be verified explicitly by working with 

the model expressions at the level of (62c) before the k0-integration is carried out and the con-

tribution of “part 2” explicitly drops out. In fact, when we continue the expression for the quark 

TMD to negative x values, then the roles of �+
kin and �−

kin in (60) interchange: when evaluat-

ing f
q

1 (−x, kT ) the contribution from �+
kin drops out and that of �−

kin yields a non-zero result. 

In order to show that f
q

1 (−x, kT ) = −f
q̄

1 (x, kT ) one needs to perform substitutions k0 → −k0

and k1 → −k1 (or equivalently k± → −k± in lightcone coordinates). Under these substitutions 

P · k → −P · k, cf. footnote 5, such that �+
kin(P · k) is transformed into �−

kin(P · k) and vice 

versa. Thus, we see that the full analytical structure of �kin(P · k) is crucial for the proof of the 

relations in (56). Once the integration over k0 is carried out and the “part 2” contribution drops 

out in (62e), the relations (56) are implicit and cannot be easily verified.
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9.2. Relations among antiquark TMDs in the CPM

In QCD all TMDs are independent functions. But simpler model dynamics or additional 

model symmetries can generate relations between TMDs in models. In the quark case, rela-

tions among TMDs were found in several models. Based on the results of the previous section 

we present relations among antiquark TMDs which to the best of our knowledge have not been 

derived before. In fact, as shown in the previous section, the antiquark TMDs are formally given 

by same expressions as the quark TMDs with Gq(P · k) replaced by G q̄(P · k) and analog for 

Hq̄(P · k). Therefore, the antiquark TMDs and quark TMDs satisfy in the CPM the same model 

relations. Considering how little is known from models about nonperturbative properties of anti-

quark TMDs, the new relations are of interest.

In Sec. 8.2 we already discussed the EOM relations (49, 50), which are satisfied in the model 

with the tilde terms absent also in the antiquark case. Next, we consider the so-called quark model 

Lorentz invariance relations (qLIRs) which arise in effective theories without gluonic degrees of 

freedom where T-odd Aa
i amplitudes are absent and the 14 T-even TMDs are described in terms 

of 9 T-even amplitudes implying 5 relations given for antiquarks by [53]

g
q̄

T (x)
qLIR= g

q̄

1 (x) + d

dx
g

⊥(1)q̄

1T (x) , (65a)

h
q̄

L(x)
qLIR= h

q̄

1(x) − d

dx
h

⊥(1)q̄

1L (x) , (65b)

h
q̄

T (x)
qLIR= − d

dx
h

⊥(1)q̄

1T (x) , (65c)

g
⊥q̄

L (x) + d

dx
g

⊥(1)q̄

T (x)
qLIR= 0 , (65d)

h
q̄

T (x,pT ) − h
⊥q̄

T (x,pT )
qLIR= h

⊥q̄

1L (x,pT ) . (65e)

The qLIRs are written such that twist-3 TMDs appear on the left-hand sides and twist-2 TMDs (if 

any) on the right-hand-sides. The CPM model expressions for antiquark TMDs (64) satisfy the 

qLIRs (65). The proofs are identical to the proofs of the corresponding qLIRs for quark TMDs 

and can be found in Ref. [30].

While the qLIRs (65) must be valid in all models with no explicit gluon degrees of freedom, 

in specific models further model relations may hold. In the CPM, the antiquark TMDs obey the 

following model-specific relations

g
⊥q̄

1T (x,pT ) = −h
⊥q̄

1L (x,pT ), (66a)

g
⊥q̄
T (x,pT ) = −h

⊥q̄

1T (x,pT ), (66b)

g
⊥q̄

L (x,pT ) = −h
q̄

T (x,pT ), (66c)

g
q̄

1 (x,pT ) − h
q̄

1(x,pT ) = h
⊥(1)q̄

1T (x,pT ), (66d)

g
q̄
T (x,pT ) − h

q̄
L(x,pT ) = h

⊥(1)q̄

1T (x,pT ), (66e)

and one more relation which coincides with the qLIR (65e). The quark-model relations are ver-

ified by directly inserting the model expressions (64). The analogous relations among quark 

TMDs were derived in CPM in [89] and are valid also in spectator, bag, and light-front constituent 

quark model [73,88,89,85,114]. The CPM also supports the following non-linear relations among 

antiquark TMDs
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1

2

[

h
⊥q̄

1L (x,pT )

]2

= −h
q̄

1(x,pT )h
⊥q̄

1T (x,pT ) , (66f)

1

2

[

g
⊥q̄

1T (x,pT )

]2

= g
⊥q̄

1T (x,pT ) g
⊥q̄

L (x,pT ) + g
q̄

T (x,pT ) g
⊥q̄

T (x,pT ) . (66g)

The linear and nonlinear relations were derived for quark TMDs in [30] in twist-2 and in [38] in 

twist-3 case.

For twist-2 quark TMDs, the deeper reason underlying the model relations (66a), (66d), (66g), 

can be traced back to a rotational symmetry of the lightcone wave functions in independent-

particle models with quarks bound by mean fields [114]. It will be interesting to see whether the 

same arguments can be generalized to antiquark TMDs. Not all models support such relations 

with quark-target models [82] being one counter-example. However, we see that in the CPM the 

quark model relations are satisfied not only by quark TMDs but also by antiquark TMDs.

Let us remark that if one would impose in addition the SU(4) spin-flavor symmetry of the 

nucleon wave function, then additional relations would hold in the CPM for antiquark TMDs the 

same way they hold for quark TMDs [30,38]. In the quark case, the SU(4) spin-flavor symmetry 

is a useful approximate concept, but it is unclear whether it is a useful concept for antiquark 

TMDs. We therefore refrain from showing the results here, but it will be interesting to test the 

SU(4) symmetry in antiquark TMDs in future studies.

Last not least, let us remark that the Wandzura-Wilczek (WW) approximations for the PDFs 

g
q̄

T (x) and h
q̄

L(x) [115,69] are exact in the CPM in the antiquark case analogously to the quark 

case [26,38]. Similarly, the similar approximate “WW-type” relations for the transverse moments 

of the TMDs g
⊥q̄

1T and h
⊥q̄

1L [116] hold exactly in the CPM. Again, the proof is analogous to the 

quark case [30].

9.3. Kinematic constraints, and limitations of the approach

The partonic interpretation of TMDs in QCD is done in infinite momentum frame where 

f a
1 (x, kT )dx is interpreted as the probability to find a parton of flavor a carrying a fraction of 

the longitudinal nucleon momentum in the interval [x, x + dx] and a transverse momentum 

kT = | �kT |. The other twist-2 TMDs have analogous interpretations, albeit involving polarization 

of the parton and/or the nucleon [54]. Bjorken-x is a Lorentz scalar, and transverse momenta 

are not affected by longitudinal boosts. Thus, we of course have the same x and kT also in the 

nucleon rest frame (where, however, we no longer a partonic interpretation is applicable in QCD). 

If x and kT are specified for an on-shell parton, then the parton 4-momentum kμ = (Eq , k1, �kT )

with �kT = (k2, k3) is completely fixed, and we have [34]

Eq = xM

2
+

�k2
T + m2

q

2xM
, (67a)

k1 = xM

2
−

�k2
T + m2

q

2xM
. (67b)

In the nucleon rest frame, the step function �+(P · k) introduced in (60) can be expressed and 

rewritten thank to the on-shell condition as follows

�+(P · k) = �(M2 + m2
q − 2MEq) = �(M2 − m2

q − 2M|�k|) . (68)

Hence we see that Eq < (M2 + m2
q)/(2M) and |�k| ≤ (M2 − m2

q)/(2M), i.e. the parton energy 

and parton 3-momentum are constrained in the nucleon rest frame [34]. From these bounds and 
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the relations (67) we see that x and kT constrain each other. For instance, for a given kT the 

Bjorken variable is in the range

1 + xmin

2
−

√

(1 − xmin

2

)2
+ k2

T

M2
< x <

1 + xmin

2
+

√

(1 − xmin

2

)2
+ k2

T

M2
(69a)

where xmin is the smallest kinematically possible x-value

xmin =
m2

q

M2
. (69b)

The extreme x-values in (69a) are assumed only when kT = 0. The allowed x-range is then

xmin < x < 1 . (69c)

This is also the x-range in which colinear PDFs have a finite support. In QCD, the range is 

0 < x < 1. Neglecting quark masses (as it is done in all practical applications in QCD and in the 

CMP), we see that the model respects this constraint. When mq is finite or kT is non-zero, then 

the x-range is more restricted according to (69a). Considering a fixed value of x, we also obtain 

a bound on the allowed transverse parton momenta, namely [34]

k2
T < (1 − x) (x − xmin)M2 . (69d)

This result shows a limitation of the model. In QCD, a necessary condition for the applicability 

of TMD factorization is that kT ≪ Q. The hard scale Q can in practice be large enough, such that 

transverse momenta kT ∼ M and larger may be relevant for the phenomenological description 

of a DIS reaction [117]. However, from (69d) we see that in the CMP the transverse parton 

momenta cannot exceed the bound kT < 1
2
M . In fact, the CMP yields for the mean transverse 

momenta 〈kT 〉 ∼ 0.1 GeV [31]. The consideration of offshellness effects is of importance for a 

more realistic description of nonperturbative TMD properties.

9.4. Determination of covariant functions, and the scale of the model

For completeness, let us briefly review the determination of the covariant functions Ga(P · k)

and Ha(P · k) needed to obtain model predictions. The covariant functions are Lorentz-scalars 

and can be evaluated in any frame. It is convenient to work in the nucleon rest frame where 

P · k = MEq . The parton energy defined in (62b) depends only on the modulus of the parton 3-

momentum. Thus, Ga(P · k) and Ha(P · k) are effectively functions of |�k|, and the CMP exhibits 

a 3D symmetry in momentum space which tightly connects longitudinal and transverse parton 

momenta7 and gives predictive power to the approach allowing one, e.g., to make predictions 

for the x- and kT -dependence of TMDs based on the knowledge of the x-dependence of the 

corresponding parton distribution functions.

More precisely, the knowledge of the x-dependence of two PDFs (for each of the flavors a =
u, d, ū, d̄, . . . ) is required to determine the covariant functions in the CMP and hence to predict 

all TMDs. The obvious choice are f a
1 (x) and ga

1 (x). From f a
1 (x) one can uniquely determine 

Ga(P · k) and from ga
1 (x) one can uniquely determine Ha(P · k). The corresponding inversion 

7 The underlying symmetry is a 3D symmetry in the nucleon rest frame. In any other frame, longitudinal and transverse 

parton momenta are still tightly connected, but we would not call it a 3D symmetry.
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formulas have been derived in 3 independent ways, in Refs. [31,32] and [33] as well as in [39]. 

For the light flavors a = u, d, ū, d̄ the parton masses can be neglected, and one obtains

Gq(P · k) = − 1

πM3

[

d

dx

f a
1 (x)

x

]

(70a)

Hq(P · k) = 1

πx2M3

[

3ga
1 (x) + 2

1
∫

x

dy

y
ga

1 (y) − x
dga

1 (x)

dx

]

(70b)

where it is understood that P · k = 1
2
xM2. Due to the kinematics constraints (67), the variable 

P · k is for massless parton 0 < P · k < 1
2
M2 when mq is neglected (or mqM < P · k < 1

2
(M2 −

m2
q) if we keep track of parton masses).

Numerical predictions for quark TMDs in the pure-spin version of the model were presented 

in [33,38]. In the mixed-spin version of the parton model, one needs to introduce one additional 

covariant function which describes the chiral odd polarized TMDs and which can be determined 

from, e.g., transversity [39] similarly to (70).

In order to determine the covariant functions in (70) it is necessary to use f a
1 (x) and ga

1 (x)

from a phenomenological parametrization at some chosen scale μ2 which must be high enough 

for the parton model concept to be valid. But its exact value of this scale is unknown. In [33] the 

scale was chosen to be μ2 = 4 GeV2 and in [38] it was chosen to be μ2 = 2.5 GeV2. As different 

TMDs obey different evolution equations, the model and the relations among TMDs are valid 

only at this scale. TMDs strictly speaking depend on two scales, cf. Sec. 2.2, but one choice is 

ζ = μ2.

9.5. Comparison to other approaches in literature

It is instructive to review first the spinor description in free theory. The spinors of a spin- 1
2

fermion or antifermion of mass mq and momentum kμ polarized along the spacelike vector nμ

with k · n = 0 are customarily denoted by u(k, n) and v(k, n) where we suppress an additional 

index which can assume 2 values and indicates a spin-up or spin-down state. If n2 = −1 it is a 

pure-spin state, and if −1 < n2 < 0 it is a mixed-spin state. The spinors satisfy

(/k − mq)u(k,n) = 0 , (/k + mq) v(k,n) = 0 . (71)

We choose the normalization ū(k, n)u(k, n) = −v̄(k, n)v(k, n) = 2mq . The polarization is re-

vealed by acting on the spinors with the Pauli-Lubanski vector Wμ = − 1
2
εμνρσ Ĵ νρ P̂ σ , where 

Ĵμν and P̂ ν are respectively the generators of rotations and translations of the Poincaré group, 

projected on nμ as follows

(−W · n)

mq

u(k,n) = ± 1

2
u(k,n) ,

(−W · n)

mq

v(k,n) = ± 1

2
v(k,n) , (72)

with the two signs depending on whether the particles are spin-up or spin-down. If in the particle 

rest frame one chooses nμ = (0, 0, 0, 1), then the operator (−W · n)/mq coincides with the z-

component of the familiar intrinsic spin operator. The spinors satisfy the completeness relations

u(k,n) ⊗ ū(k, n) = (/k + mq)P (n) , (73a)

v(k,n) ⊗ v̄(k, n) = (/k − mq)P (n) . (73b)
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In (73a), (73b) a summation over spin-up and spin-down states is understood (we recall that we 

suppress the corresponding index, see above), and we introduced the matrix

P(n) = 1

2
(1 + γ5/n) (73c)

For a pure-spin state, P(n) is a projector, i.e. P(n)2 = P(n). Notice that P(n) projects out a 

fermion in a spin-up state with respect to nμ but an antifermion in a spin-down state, cf. the 

footnotes 3 and 4. For a mixed-spin state, P(n) is a spin density matrix with the properties 

trP(n) = 2 and trP(n)2 < 4.

At this occasion it is useful to review also the concept of helicity defined as expectation value 

of the Pauli-Lubanski spin operator projected on �k/|�k| for a particle with non-zero 3-momentum 

[4]. A spin- 1
2

particle polarized along (opposite to) its direction of motion has the helicity + 1
2

(− 1
2

). Thus, λ in (26) denotes twice the helicity of a quark, while in (39a) it denotes (-1)×twice 

the helicity, see footnote 4. Notice that longitudinal boosts do not affect helicity with the obvious 

exception, for massive particles, of boosts into frames where the particles move backwards (in 

which case the helicity flips sign) and boosts into particle rest frames (in which case helicity is 

undefined).

We shall not review the massless case here in detail, but only remark that λ is a Lorentz-scalar 

for massless particles, while the transverse spin is not affected by longitudinal boost. This leads 

to the description of massless quarks and antiquarks introduced (26) and (39a) where λ is twice 

the helicity of a quark and b
μ
T the transverse polarization vector for a quark (with opposite signs 

for an antiquark).

This mini-review paves the way to the description of the quark correlator �q(k, P, S) in the 

free-quark-target model [45] where P μ, Sμ denote momentum and spin vector of the quark 

target while kμ and nμ are the momentum and spin vector of the parton inside the quark target. 

Based on (73a), the quark correlator is given by [45]

�q(k,P,S) = u(k,n) ⊗ ū(k, n) δ(4)(P − k) = (/k + mq)
1 + γ5/n

2
δ(4)(P − k) (74)

The antiquark correlator �q̄(k, P, S) is zero, because the probability to find an antiquark in a 

quark target is of course zero in a free theory. The quark target model becomes non-trivial and 

then much more interesting when gluon interactions are included and treated with perturbative 

QCD methods [82].

From (74) one can obtain a formulation of Feynman’s parton model [1,2] by replacing the 

quark target with a nucleon target. This is customarily formulated in terms of lightcone co-

ordinates and sometimes referred to as the “free quark ensemble model” [45]. Instead of the 

δ4(P − k) in (74) one has some probabilities Pq(k) to find quarks with momentum kμ and po-

larization s
μ
q (k) inside the nucleon target with momentum P μ and polarization Sμ. Now there 

is also a non-zero chance to find antiquarks with the corresponding antiquark probabilities de-

scribed by Pq̄(k) and a polarization vector s
μ
q̄ (k). For quarks, the polarization 4-vector is given 

by

sμ
q (k) = λq nμ

q + s
μ
qT (75)

where λq is the lightcone helicity, and the helicity vector n
μ
q satisfies n2

q = −1 and nq ·k = 0, and 

it is also k · sqT = 0. For antiquarks, one has analogous definitions. λq and s
μ
qT may depend on 

parton momenta. The correlators of quarks and antiquarks can be compactly expressed as [45]
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�q(k,P,S) = δ(k2 − m2
q)

[

�(k+)Pq(k)
(

/k − mq

)(

1 + γ5/sq(k)
)

+�(−k+)Pq̄(k)
(

/k + mq

)(

1 + γ5/s q̄(k)
)

]

. (76)

Except for the lightcone formulation and different notation, this is equivalent to the description 

of quark and antiquark correlators in this work: Pq(k) is basically equivalent to A
q

3 in our work, 

λqPq to A
q

8 and the momentum dependence of s
μ
qTPq(k) is contained in A

q

11, and similarly 

for antiquarks. However, to the best of our knowledge no attempt was made in the free-quark 

ensemble model to consequently explore the free equation of motion and practically determine 

the covariant functions.

The program of practically exploring the parton model to describe the nucleon structure 

was pioneered in [25–27]. In these works, the starting point was a covariant description of 

the hadronic tensor and unpolarized and polarized DIS structure functions considering exact 

kinematics of free, relativistic, on-shell partons whose momentum distributions are governed by 

covariant functions Ga(P · k) (for unpolarized partons) and Ha(P · k) (for polarized partons). 

The polarization vector w
μ
q was constructed starting from w

μ
q = A P μ + B Cμ + C kμ and the 

coefficients A, B , C (in general functions of k · S and/or P · k) were determined by imposing 

the constraints k · wq = 0 and w2
q = −1 (which corresponds to a pure-spin state) [26], see also 

[35]. The Callan-Gross relation between unpolarized structure functions and the WW relation 

between polarized structure functions, which are both approximations in QCD, become exact in 

the approach [25–29] which also generates the Cahn effect [31] and makes specific predictions 

about quark orbital angular momentum solely from the relativistic motion of quarks [35].

In Ref. [28], by exploring an auxiliary polarized process due to the interference of vector and 

scalar currents, the approach was used to compute a hypothetical chiral odd structure function 

and the transversity PDF h
q

1(x). In [30] the model was extended to TMDs, by introducing the 

concept of “unintegrated structure functions” which lead to the description of twist-2 T-even 

TMDs f
q

1 (x, kT ), g
q

1 (x, kT ), h
q

1(x, kT ), g
⊥q

1T (x, kT ), h
⊥q

1L (x, kT ), h
⊥q

1T (x, kT ), and the twist-3 

TMD g
q

T (x, kT ) which has a colinear counterpart but it was unclear how to describe other twist-

3 TMDs. This was accomplished and a systematic description of all twist-2 and twist-3 TMDs 

in [38], where the starting point was the quark spinor description (73a) in combination with the 

covariant functions Ga(P · k) and Ha(P · k).

Prior to the latter work, in Ref. [39] a parton model framework was developed based on the 

same concepts as in Ref. [25–38], but centered around a consequent exploration of the equation 

of motion in the quark correlator language with the puzzling result that in “one parton model” the 

nucleon structure is described in terms of 2 independent covariant functions [25–38] in “another 

parton model” 3 independent covariant functions are necessary for that [39]. (As explained in 

Sec. 1, the motivation of our study was to resolve the puzzle and we extended [39] by systemati-

cally including quark mass effects, the antiquark correlator, and pure-spin vs mixed-spin parton 

polarization states.)

The exploration of covariant parton models dates back earlier works [40–42,44,43] where 

structure functions in electron-nucleon DIS or electro-weak reactions as well as target mass 

corrections were studied. An interesting extension of the parton model was carried out in the 

quantum statistical approach of Refs. [47–51] where the nucleon was treated as a gas of massless 

partons (quarks, antiquarks, gluons) in a finite size volume in thermal equilibrium at a common 

temperature. The model exhibits in the nucleon case a total of 8 parameters which were fixed 
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through fits to DIS data. This number of free parameters should be compared with the typically 

O(20-25) free parameters in global fits of PDF parametrizations, and it was argued that the statis-

tical model provides a physically motivated and streamlined Ansatz for global fits [47–51]. The 

possibility to associate partonic motion and mean transverse momenta 〈kT 〉 with temperature 

was explored in [118].

10. Conclusions

We have studied the description of TMDs in the parton model. We have explored the equations 

of motion to show that the quark correlator can be expressed in terms of a spin density matrix 

which must be treated differently in the cases of massive and massless quarks. In either case, one 

has a choice how to describe the quark polarization state.

If one chooses to work with quarks in a pure-spin state, the nonperturbative information con-

tent of the quark correlator is described in terms of two independent amplitudes, which can 

be chosen to be A
q

3 describing unpolarized TMDs and A
q

8 describing polarized TMDs. If one 

chooses to work with quarks in a mixed-spin state, the nonperturbative information is described 

in terms of three independent amplitudes, which can be chosen to be A
q

3 describing unpolarized 

TMDs and A
q

8 and A
q

11 describing, respectively, polarized chiral even and chiral odd TMDs.

One central result of our work is that we have reconciled conflicting results in literature re-

garding how many independent covariant functions are needed to describe the nonperturbative 

information contained in the quark correlator in the parton model, namely 2 vs 3 in Refs. [38]

vs [39]. In fact, there really is only one unifying parton model framework to which we refer as 

Covariant Parton Model (CPM) where, however, one can choose to work with quarks in pure-

or mixed-spin states. The pure-spin state version of the CPM was explored in Refs. [25–38] and 

describes the nucleon structure in terms of two independent amplitudes. The mixed-spin version 

of the CPM was studied in Ref. [39] for massless partons and describes quark TMDs in terms of 

3 independent amplitudes.

The assumption of massless quarks is natural since in DIS processes current quark mass ef-

fects are suppressed by powers of mq/Q ≪ 1 where Q is the hard scale of the process. In this 

work, we have considered mq �= 0 and mq = 0. The results for TMDs are the same whether one 

keeps mq �= 0 and neglects current quark mass effects at the end [25–38] or works with massless 

quarks from the very beginning [39]. But the description of the quark spin-density matrix differs 

in the two cases. Keeping track of current quark mass effects has the advantage that one can 

use the QCD equations-of-motion (EOM) relations to check consistency. In the CPM, the quarks 

are non-interacting and TMDs must satisfy the EOM relations with (pure twist-3) tilde terms 

neglected which we have shown to be the case. In the quark case, we have rederived previous 

model results [25–39].

Interestingly, the CPM cannot predict the sign of polarized chiral odd TMDs. Information 

from other nonperturbative methods (models, lattice) is necessary to inform the CPM and choose 

the physical sign for chiral odd polarized TMDs. Once the physical solution is chosen using 

one function as input, the CPM predicts unambiguously the signs of all other polarized chiral 

odd TMDs in agreement with other models. The results from many quark models refer to a low 

initial scale. The precise scale at which, e.g., PDFs should be evaluated in the CPM is not known. 

But the parton model concept is valid at high energies, and the initial scale of the CPM was, e.g., 

chosen to be μ2
0 = 4 GeV2 [25–38]. The choice of the scale is part of the model.

Another important result is that we have extended the treatment to include antiquarks. The 

quark and antiquark correlators are connected to each other by a field theoretical relation which, 
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however, we have not imposed. Rather, we have studied the TMDs of quarks and antiquarks in-

dependently and used the field theoretical connection in the end of day to verify the theoretical 

consistency. To the best of our knowledge, we have presented for the first time a complete discus-

sion of all T-even leading and subleading antiquark TMDs in a consistent framework. We have 

shown that in the CPM the antiquark TMDs satisfy the same linear and non-linear relations as 

quark TMDs. This result might be of interest for modeling of antiquark effects in phenomenol-

ogy. It will be interesting to use the model for numerical predictions of antiquark TMDs and 

study their impact in phenomenology which we leave to future studies.

The simple covariant parton model for quark and antiquark correlators obtained in this work 

may provide the basis for the modeling of unintegrated parton densities and may help to consis-

tently implement TMD effects in Monte Carlo event generators [63–65]. The approach receives 

general support from the fact that the WW approximation for ga
T (x) is supported by data with an 

accuracy of 40 % or better [119], and according to first phenomenological studies the WW-type 

approximation for g⊥a
1T seems to work similarly well [120]. Further phenomenological applica-

tions of the Wandzura-Wilczek-type approximation were practically implemented in [121]. It 

will be interesting to see whether the TMDs in nature can be better approximated in terms of a 

pure-spin or mixed-spin state model.

The model results may also be of interest to study TMDs at small transverse momenta kT ≪
M where M denotes the nucleon mass. In the Collins-Soper-Sterman equations governing the 

evolution of TMDs, the region of small kT is correlated with large impact parameters bT . Not 

much is known about TMDs in bT -space in the region of large bT � 1 fm. Here the model results 

could provide useful insights which will be explored elsewhere.

When kT is not small, the model becomes less realistic. In fact, due to the absence of inter-

actions, the partons are on mass-shell and as a consequence of that their transverse momenta are 

bound from above by kT < 1
2
M . It would be interesting to explore the possibility of introducing 

in the CPM a way to include offshellness effects and investigate whether this can lead to a more 

realistic modeling of kT -dependencies of TMDs.

The model also does not exhibit the initial- or final-state interactions as encoded in Wilson 

lines which can generate phases and give rise to T-odd TMDs like Sivers function [52] or Boer-

Mulders function [54]. The modeling of T-odd TMDs is therefore beyond the scope of the CPM. 

It would be very interesting to explore the possibility of introducing the necessary phases and 

extend the approach to the modeling of T-odd TMDs. These topics will be left to future investi-

gations.
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