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ARTICLE INFO ABSTRACT

Keywords: Dial-a-ride (DAR) is a shared-ride service that provides mobility to transportation-disadvantaged
Dial-a-ride individuals who are unable to use public transit. While most DAR studies focus on optimizing
Ride sharing operations, our research explores the feasibility and benefits of outsourcing outlier trips to

Mathematical programming
Heuristics
Case study

transportation network companies (TNCs) to minimize the combined service delivery cost. To
achieve this goal, we formulate a multi-vehicle DAR problem (DARP) with trip outsourcing to
TNCs, which can be solved optimally for small scale instances. To solve larger instances, we
propose a two-stage solution framework to improve DAR routes from commercially available
software. Firstly, we develop an integer programming model to re-optimize individual routes
with trip outsourcing. Secondly, we design a multi-vehicle heuristic that considers reinserting
trips initially designated for outsourcing back into the DAR fleet, as well as reinsertion and
exchange of remaining trips among routes. We apply the approach to a medium-sized DAR
operator in Maryland and achieve cost reductions of 7%-13% depending on the TNC volume
discount negotiated by the DAR company.

1. Introduction

The Americans with Disabilities Act (ADA) of 1990 requires transit agencies across the United States to provide door-to-door
transportation services for individuals who cannot use conventional transit. These ride-sharing services, commonly known as dial-
a-ride (DAR) or ADA paratransit, are typically provided through subcontractors (Rodman and High, 2018). However, although
DAR customers are required to pay a fare similar to conventional transit, the actual cost of a DAR trip can be 10 times higher
due to low vehicle occupancy, specialized vehicles, and increased labor per passenger (Gonzales et al., 2019). Consequently, DAR
services are heavily subsidized, and service providers are under pressure to reduce their operating costs. To address this challenge,
algorithms have been developed to efficiently route and schedule DAR vehicles, which is known as the DAR problem (or DARP) in
the literature (Cordeau and Laporte, 2003a, 2007).

In addition to developing efficient vehicle routing algorithms, researchers and practitioners have explored innovative solutions,
strategies, and partnerships to further reduce service costs. One such strategy involves integrating DAR with transportation network
companies (TNCs), which has been adopted by some transit agencies such as the Massachusetts Bay Transportation Authority’s
collaboration with Uber in the RIDE Flex program and The Big Blue Bus (BBB) partnership with Lyft in the Mobility on Demand
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Fig. 1. Example of a route and benefits of outsourcing a trip that represents a spatio-temporal outlier.

Everyday (MODE) program in Santa Monica, California. A review of relevant partnerships in the U.S. is available in Section 2.2,
highlighting the significance of considering modal integration in the context of the DARP.

The benefits of integrating DAR with TNCs depend on the spatio-temporal distribution of demand, which consists of thousands
of diverse requests every day. A trip request includes the pickup address, drop-off location, and the desired pickup or drop-off time.
Requests that have similar spatio-temporal characteristics facilitate ridesharing and significantly reduce service costs. However,
requests that are incompatible with the rest of the demand may result in excessive costs due to extended operating hours in the
case of temporal outliers and significant deadheading in the case of spatial outliers. This raises the question of whether outsourcing
some of the outlier trips to TNCs would be more cost-effective for the DAR service provider.

Our main hypothesis is that the cost of DAR services can be substantially reduced by identifying and outsourcing trips that are
spatio-temporal outliers from the rest of the demand. To illustrate this phenomenon, we consider the example route shown in Fig. 1.
From Fig. 1(a), we can see that outsourcing the first trip could be economical because its origin and destination are far away from
the depot and other demand locations. Additionally, the user-imposed service time windows for this trip produce extensive idle
time in the vehicle schedule, as shown in Fig. 1(b), making it a suitable candidate for outsourcing. By outsourcing this trip, we can
reduce routing distance and duration, as illustrated in Figs. 1(c) and 1(d), respectively.

This illustrative example suggests that integrating DAR with TNC could be a viable approach to reduce the overall cost of
the transportation service. However, this promising modal integration has not yet been systematically studied in the literature,
particularly in the context of using real-world data to inform the decision-making of transit agencies.

The lack of systematic evaluation of the benefits of integrating DAR with TNC could be attributed to methodological and
computational barriers. Even the DARP without any modal integration is notoriously difficult, and the largest instance solved
optimally only includes 8 routes and 96 trips (Ropke et al., 2007; Rist and Forbes, 2021). Consequently, various heuristics are
used to tackle real-world DARP instances with thousands of trips, producing quality solutions that are near-optimal at best. DAR
operators have access to these heuristics through software suites like Trapeze' and Mobile Resource Management System (MRMS),>

1 http://www.trapezegroup.com/
2 http://itcurves.net/
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which allow them to route thousands of trips into hundreds of routes in a short time. However, these heuristics do not consider
the integration of DAR with other services or transportation modes. To address this issue, we propose a two-stage approach to
improve DAR routes from commercially available software. First, we develop methods to re-optimize routes one at a time while
also allowing for the outsourcing of trips to TNC. Second, we propose a multi-vehicle heuristic that considers the reinsertion of trips
initially designated for outsourcing back to the DAR fleet, as well as the reinsertion and exchange of remaining DAR trips among
the routes to further reduce operational costs.

The main contributions of the paper are described as follows:

1. We consider the DARP with trip outsourcing to TNC as a means to reduce the combined service delivery cost of both the
DAR and TNC systems. In contrast to related studies that have mainly treated taxis as a backup option for when the DAR
system capacity is exceeded or DAR vehicles are delayed, we explore the integration of DAR with TNC for cost reduction.
Additionally, we consider the cost of DAR vehicle idle time, which is often ignored in previous studies, but is an important
factor that needs to be accounted for when optimizing the tradeoff between DAR and TNC costs.

2. We propose a two-stage heuristic approach to improve DAR routes generated by commercially available software by
identifying and outsourcing outlier trips to TNC. Our approach is evaluated on small-scale instances that can be solved
optimally using mathematical programming methods. Through comparisons with optimal solutions, we demonstrate that
our two-stage heuristic approach quickly returns near-optimal solutions. Our performance evaluation demonstrates that our
approach is effective and efficient for real-world instances.

3. We demonstrate the application of our proposed two-stage approach to a dataset from a mid-size DAR operator in Maryland.
We compare the results to the original MRMS routes and find considerable cost reductions, with total savings ranging from
7% to 13%, depending on the volume discount negotiated by the DAR operator with a TNC. Since these savings are estimated
based on real-world DAR and TNC data, our results provide critical insights for transportation authorities that are considering
the integration of these types of services.

The paper is organized as follows. Section 2 reviews the relevant literature and highlights our contributions. Section 3 presents
a two-stage algorithmic framework for integrating DAR with TNC. Section 4 provides a description of the data used in this study.
Section 5 applies the developed model to DAR operations in Maryland and explores the resulting economic benefits. Finally, Section 6
draws conclusions and suggests future extensions of this work.

2. Literature review

We begin by reviewing different variants of DARP and their solution approaches, highlighting a significant gap between academic
literature and industry practice. Next, we focus on the integration of DARP and TNC, and review the current state of practice. After
examining studies that consider the integration of DAR with taxis and conventional transit, we highlight our contributions to the
literature.

2.1. State-of-the-art in DARP modeling and solution methods

The DARP deals with designing routes and schedules for demand-responsive vehicles to serve passengers requesting pickups and
drop-offs between origins and destinations (Cordeau and Laporte, 2003a). Typically, a solution is sought to minimize the cost of
vehicle routes, subject to a set of constraints that ensure operational requirements and service quality (Heilporn et al., 2011). With
the increasing demand for demand-responsive vehicles, additional efforts are required to make their operations more economical
while maintaining high service quality (Rahimi et al., 2018). Therefore, a large number of studies are devoted to optimizing routes
and schedules in demand-responsive vehicle operations to improve cost efficiency. As the DARP problem generalizes the NP-hard
Vehicle Routing Problem with Pickup and Delivery (Cordeau, 2006) and often deals with a large number of requests, various
(meta)heuristics have been developed to address the problem in a reasonable amount of time (Reinhardt et al., 2013). Interested
readers are referred to Cordeau and Laporte (2007), Molenbruch et al. (2017b), and Ho et al. (2018) for comprehensive reviews
of various solution approaches to DARP. Some of the recent solution approaches are discussed briefly in the remainder of this
subsection.

Cordeau and Laporte (2003b) developed a tabu search heuristic based on passengers’ origin—destination specifications, time
windows, and a fleet of vehicles with a common depot. They proposed a procedure to verify the maximum ride time constraints,
which is still widely used today. Mathematical programming-based heuristics such as branch-and-cut (BC) were proposed by Cordeau
(2006) and Ropke et al. (2007), while a branch-cut-and-price algorithm was put forward by Gschwind and Irnich (2015) and Qu
and Bard (2015). Several studies have utilized insertion heuristics Diana and Dessouky, 2004; Luo and Schonfeld, 2007; Markovié¢
et al., 2015; Vallée et al., 2020 to solve DARP. Parragh et al. (2010) used a variable neighborhood search (VNS) procedure for
DARP, which was further extended in their later study (Parragh, 2011) to consider heterogeneous users and vehicles. A multi-depot
DARP was addressed via a Local Neighborhood Search (LNS) algorithm by Molenbruch et al. (2017a).

Hybrid algorithms have also been gaining popularity for solving different variants of the DARP. Zidi et al. (2012) utilized
a Simulated Annealing algorithm combined with other heuristics to solve a multi-objective DARP, while Braekers et al. (2014)
implemented BC and deterministic annealing algorithms for dealing with multi-depot DARP. Masmoudi et al. (2016) proposed
three heuristic solution methods for addressing multi-depot heterogeneous DARP based on Adaptive Large Neighborhood Search
(ALNS) and Hybrid Bees Algorithm. Masmoudi et al. (2017) later proposed a genetic algorithm combined with a local search
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Table 1
Innovative pilot programs for paratransit riders.
Agency Program Location Partner (s) Launch
BBB Mobility on Demand Everyday Santa Monica, CA Lyft 2018
rabbittransit Paratransit Central Pennsylvania Lyft, Uber 2017
NYC Transit Access-a-Ride E-hail New York City, NY Uber, Lyft 2017
Omnitrans Uber RIDE San Bernardino, CA Lyft 2016
PSTA P4-MOD Pinellas County, FL Uber 2016

for solving heterogeneous DARP. More recently, Gschwind and Drexl (2019) implemented an adaptive LNS combined with a set
covering approach, while Malheiros et al. (2021) utilized a combination of iterative local search with a set partitioning approach for
addressing heterogeneous DARP. In the context of shared autonomous vehicles with flow-dependent travel times, Liang et al. (2020)
applied a customized Lagrangian relaxation algorithm within a rolling horizon framework to solve DARP for shared autonomous
vehicles. Recent studies Dong et al., 2022; Azadeh et al., 2022 incorporated users’ preferences in the DARP framework via logit
models, where user requests accept/reject decisions are made using profit maximization as the optimization objective.

In a conventional DAR system in the United States, the fare collected from riders must be comparable to the cost of a similar
fixed-route transit trip. However, the cost of providing the DAR trip can be ten times larger (Gonzales et al., 2019), which means that
DAR operations in the U.S. are never profitable and heavily subsidized. Therefore, a common optimization objective is to minimize
the total operating cost while requiring that each rider is served e.g., Vodopivec et al., 2015. Conversely, a few studies e.g., Parragh
et al., 2015; Jafari et al., 2016; Tafreshian et al., 2021; Zhao et al., 2022 have considered maximizing the profit by rejecting trips
that are not profitable. This is tackled in a mathematical program through a modified objective that maximizes the profit and by
adding additional constraints to accept/reject trips based on a binary decision variable. Given the differences in the optimization
objective and assumption, it is likely that a heuristic designed for a for-profit operation may not work well for non-profit operations.

The above review demonstrates that researchers in the fields of transportation and operations research have developed various
DAR formulations and proposed different types of solution algorithms, which have significantly advanced the DAR practice.
However, a gap remains between the academic community and practitioners. For example, the trade-off between vehicle idling and
vehicle miles has rarely been explored. Seeking a solution that only minimizes vehicle miles may yield excessive vehicle idle time
(as shown in Appendix A) and thus a significant waste of drivers’ time (Xiang et al., 2006). In practice, vehicle idling is a key issue
that must be addressed, as demonstrated in this paper by considering the operations of Challenger Transportation, a DAR operator
serving the Washington, D.C. metro area. In addition, due to the negative impact of vehicle idling on the environment (e.g., air
pollution), an eco-routing strategy for paratransit has been introduced by researchers (Li et al., 2022) and many municipalities have
enacted regulations to mitigate vehicle idling (USDOE, 2022). Second, the potential of improving the DAR routes and schedules
through collaborative strategies, such as the integration of DAR and TNC, is not explored in these studies. The practical aspects of
such integration will be discussed next.

2.2. Survey of DAR-TNC integration in practice

The Federal Transit Administration (FTA) has been a strong supporter of innovative partnerships involving public transit, as
evidenced by its Mobility on Demand (MOD) Sandbox Program announced in 2016 (FTA, 2022). One such partnership supported
by the program involved collaboration between the Pinellas Suncoast Transit Authority (PSTA) in Florida and Lyft, with the objective
of improving the cost-effectiveness and quality of PSTA’s paratransit services. An independent evaluation report (Martin et al., 2022)
confirmed substantial benefits of the innovative service partnership, such as increased ridership, improved satisfaction, and reduced
idle time.

In another notable example, the Massachusetts Bay Transportation Authority (MBTA) offers two choices for its paratransit
customers: RIDE and RIDE Flex. The latter represents a collaboration between MBTA and two ride-hailing companies, Uber and
Lyft, with the objective of improving the flexibility and cost-effectiveness of the MBTA’s paratransit services (MBTA, 2022). The
two programs are operated independently, and the services provided also differ. For instance, drivers in the RIDE program will
assist customers with embarking and disembarking vehicles, while Lyft or Uber drivers are not required to provide such assistance.
Eligible customers pay differently for the service. For example, customers pay a flat fare of $3 per trip while the MBTA covers the
rest of the cost up to $40. One clear advantage of Lyft or Uber is that advanced trip bookings are no longer needed due to the high
responsiveness of these TNC services. When customers book with The RIDE Access Center (TRAC), their trips may be transferred to
Lyft or Uber unless they request to opt-out of the RIDE Flex program.

Table 1 provides additional examples of pilot programs for paratransit riders involving partnerships between transit agencies and
TNCs. The launch dates indicate that such partnerships are still in their infancy, and a series of challenges still need to be addressed.
For example, it may be difficult to require all TNC partners to accept cash payments and make additional accommodations for
customers with special needs. Moreover, transit agencies may require a call center for customers without smartphones, while TNCs
may not be willing to offer such a service. For further discussion about the partnerships between public transit agencies and TNCs,
readers may refer to Terra et al. (2019) and Shurna and Schwieterman (2020).
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2.3. Integration of DAR with taxis

While the integration of DAR and TNC has not been systematically examined in the literature, some relevant studies have explored
the complementary role of taxis in serving paratransit demand as a recourse or overflow option when a paratransit vehicle is delayed
or capacity is exceeded. These studies are discussed below.

A few studies have investigated the integration of taxis with DAR in the context of using taxis as a backup option to serve trips
that would have been delayed due to traffic conditions or other disruptions in vehicle schedules (Cremers et al., 2009; Heilporn et al.,
2011; Vodopivec et al., 2015). For example, Heilporn et al. (2011) studied a single-vehicle DARP with stochastic passenger delays,
where a passenger missing a DAR trip is served with alternative taxi services. They considered the expected cost of a delay from
the absent passenger in the objective function of the single-vehicle DARP, which was solved using an integer L-shaped algorithm. In
another study, Vodopivec et al. (2015) integrated DAR with taxis based on decision policies of the probability of delay and expected
cost of recourse. They conducted extensive numerical experiments with varying parameters to evaluate taxi recourse options under
different decision policies. Finally, in the context of a day-ahead paratransit planning problem, Cremers et al. (2009) considered the
integration of taxis with DAR in their two-stage integer recourse model. The first stage considers all early requests, and the second
stage considers the late requests that can be outsourced to taxis. Clustering and assignment heuristics were utilized in the two stages
to deal with the preparation of routes and assigning DAR vehicles and taxis to the routes.

Other studies have also explored the integration of taxis with DAR to serve trips that could not be accommodated by the existing
fleet due to capacity constraints. For example, Toth and Vigo (1996) considered transportation of people with disabilities and
used taxi services to supplement the DAR fleet and serve isolated demand. However, their solution approach relied on heuristics
only. Rahimi et al. (2018) employed continuum approximation models to identify the level of paratransit demand where taxis could
be integrated with paratransit to reduce operating costs. Although their method can define service areas covered efficiently by
paratransit and areas where taxis could be used to supplement the service, it uses an aggregate analytical model for the outsourcing
decision to taxis, rather than an integer program that can handle the problem at a disaggregate level. More recently, Schenekemberg
et al. (2022) proposed using an in-house fleet or a common carrier to jointly cover DAR travel requests and developed a branch-
and-cut algorithm to solve the resulting mixed integer program. They also proposed a hybrid genetic algorithm and Q-learning
metaheuristic to tackle large instances of the problem. However, similar to other DAR studies, they only considered the routing cost
for the DAR vehicles and did not explicitly model vehicle idling costs. This is an important aspect to consider when optimizing the
trade-off between DAR and TNC costs since removing idle time cost from the objective results in loss of savings, as discussed in
Section 5.3.

2.4. Integration of DAR with public transit

Several studies have investigated the integration of DAR and public transit. At the operational level, Aldaihani and Dessouky
(2003) explored a hybrid system consisting of DAR and transit, where they minimized two metrics: the DAR vehicle driving distance
and passenger travel time. They used a construction-then-improvement procedure to generate initial solutions for tabu search, which
was then used for further optimization. Hall et al. (2009) introduced the concept of integrated DARP, where a part of a DAR trip
can be covered by public transit. They developed a vehicle-arc formulation and solved it for four rider requests. In a follow-up
study, Posada et al. (2017) improved the modeling realism of transfers between DAR and transit by explicitly considering waiting
time at the transfer location. However, in their numerical experiments, they found it computationally challenging to solve instances
consisting of more than six requests within two hours. Therefore, the operational integration of DAR and transit remains challenging,
and only small instances (with fewer than six requests) can be solved.

A few related studies considered integration of DAR and public transit at the planning level. In a transit network design study
considering demand uncertainty, An and Lo (2014) determined the network structure and service frequencies for fixed-route transit
in the first stage and optimized the deployment of flexible services, such as DAR, in the second stage. They demonstrated their
proposed method on a ten-node network. Chu et al. (2022) tackled a related problem with a two-stage stochastic program involving
a single transit line. It was assumed that DAR was used only when public transit was unavailable. In situations where neither DAR
nor transit was available, a penalty was incurred. In contrast with the studies that considered integration with public transit at the
operational level, the aforementioned planning studies considered DAR as a supplementary element in the design.

2.5. Summary

Despite the extensive research on DARP in the past few decades, a major research gap remains unaddressed, which is the cost
trade-off between DAR and TNC during the routing and scheduling stage. To fill this gap, we propose a two-stage framework to
integrate TNC into DAR operations and explore the potential savings from outsourcing spatio-temporal outlier trips. In the first
stage, we formulate an integer program for a single-route DAR problem with trip outsourcing to re-optimize individual routes. In
the second stage, we develop a multi-vehicle improvement procedure that considers reinsertion of some trips initially designated
for outsourcing into the DAR fleet, while also reinserting and exchanging the remaining trips among the routes.

3. Methodology

The proposed research methodology is structured as follows. In the first part, we introduce a formulation of the multi-vehicle
DARP with trip outsourcing, which can be solved optimally for small-scale instances. For larger instances, we propose a two-stage
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framework. The first stage optimizes individual routes by solving a single-route DARP with trip outsourcing. This problem can be
solved optimally within a reasonable amount of time, and we also propose an effective heuristic to speed up computations. In the
second stage, we present a multi-vehicle heuristic that considers reinserting trips initially designated for outsourcing back into the
DAR fleet. The multi-vehicle heuristic also considers the reinsertion and exchange of remaining DAR trips among the routes to
further reduce operating costs.

3.1. Multi-vehicle DARP with TNC

Graph. Using the notation from Ropke et al. (2007), we let n denote the number of passengers that were initially assigned
to the route. The multi-vehicle DARP with outsourcing to TNC is defined on a complete directed graph G = (N, A), where
N=PuDuU({0,2n+1}, P={l1,...,n}, and D = {n+1,...,2n}. Subsets P and D contain pick-up and drop-off nodes, respectively,
while nodes 0 and 2n + 1 represent the depot. Associated with each user i are thus an origin node i and a destination node n + i.

Parameters. Let K denote the set of DAR vehicles. Each DAR vehicle k € K has a capacity of Q™ passengers, and the total
duration of its route cannot exceed a known time limit 7™2*, Each node i € N is associated with a load ¢; and a non-negative
service duration d; such that, for i = 1,...,n, we have ¢, = ¢,,,; = 0, ¢; = —q,,; and dy = d,,,; = 0. A time window [e;,/;] is
associated with node i € N, where ¢; and /; represent the earliest and latest time, respectively, at which service may begin at node
i. With each arc (i, j) € A, there is a routing cost ¢;; and a travel time #;;. Let f and a denote the fixed cost for using the DAR
vehicle and the variable cost of vehicle idling, respectively. We denote by ¢; the cost of outsourcing trip i to TNC. Let r; denote the
maximum ride time coefficient for trip i, such that r; - t; ,,; represents the maximum ride time for user i, which prevents excessive
ride time that could otherwise occur due to detours.

Variables. For each arc (i, j) € A, let xj‘j be a binary variable that equals 1 if the DAR vehicle k travels from node i to node j
directly and 0 otherwise. For each node i € N, let z*. and zX__be the time at which the vehicle k begins and ends service, and
T* is the routing duration for vehicle k. Let Qf.‘ be the load of the vehicle k after visiting node i. For each user i, let Lf.‘ be the ride
time of user i on the vehicle k. To enable outsourcing of trips, let y; be a binary variable equal to 1 if customer i is outsourced to
TNC and 0 otherwise. Note that if a rider is served by TNC, the maximum ride time will not be exceeded as TNC in this study offers
non-shared services. Furthermore, for trips that cannot be outsourced for any reason, we let the corresponding y; = 0.

Formulation. With the notation described above and also summarized in Table 2, we can state the multi-vehicle DARP with
outsourcing to TNC as an integer program:

min fz le(;,j+z z Zcinf‘/.+ Z(Tk—z Zlijx{'(j)a+ zgiyi @
kek

keK jeP keK ieN jeN iEN jeN i€P
——
fixed cost routing cost idle time cost outsourcing cost
s.t. szf?jzl—y,., Vie P 2

kekK jeN

Dok = Y xk, =0, VieP kekK (€))
JEN JEN

Yoxg, Sl Vkek 4
jen

Y k- Y xk=0, ViePuD, kek ©)
JEN JEN
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> xk <1 Vkek ©)
iEN
B> Bf +di(1-y)+1; - M;(1-x[,), VieEN, jeEN, keK @
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Table 2
Nomenclature.
Sets and indices
i Node/user index P Set of pick-up nodes
D Set of drop-off nodes N Set of nodes
A Set of arcs (i, j) K Set of DAR vehicles
Parameters
1 Travel time of arc (i, j) d Service duration at node i
e Earliest time of service at node i I; Latest time of service at node i
r; Maximum ride time coefficient q; Load at visiting node
Qmax Passenger capacity of DAR vehicle Tmax Maximum route duration
f Fixed cost of DAR vehicle cij Routing cost of arc (i, j)
a Variable cost of vehicle idling & Cost of outsourcing to TNC
M; Large integer w; Large integer
C Large integer n Number of passengers
Decision variables
xt; Routing status for arc (i, j) Vi Ridesourcing status
(ol Load after visiting node i L¥ Ride time for user i
zk Starting time of service for vehicle k zk Ending time of service for vehicle k
Tk Routing duration for vehicle k
k k k k
Th>zf, —2k, —C Y xt, Vkek 17)
ieP
k . k 17k 1k Jk k +. k + : :
xij,yl-e{O,l}, B, L;, T z,,..2,,, €R", O €27, VieN, jeEN, ke K. (18)

The objective function (1) minimizes fixed and variable vehicle routing and trip outsourcing costs. Constraints (2)—(3) ensure that
each request is served exactly once or is outsourced to a TNC. Constraints (4)—(6) guarantee that, unless all the trips are outsourced,
the route starts and ends at the depot. Constraints (7) are used to compute service times at each node. For those trips that are not
outsourced, constraints (8) ensure that the service begins within the designated time window. Eq. (9) ensure that if a pickup of a trip
is outsourced, then the drop-off of that trip is also outsourced. Consistency of the load variable is ensured by constraints (10), which
is bounded by constraints (11). Eq. (12) define the ride time of each user, which is bounded by constraints (13). Inequality (14)
bounds the duration of the route. Constraints (15)-(17) are used to ensure that routing duration is considered only when vehicles
are dispatched from the depot. Finally, (18) indicate which variables are binary, continuous, or integer. It is noteworthy to mention
that the values of M; and C are specified using M; = max{0,/;} and C = T, and W, is specified using W; = min{Q"**, 0"** + ¢;}
following Cordeau (2006).

Next, we explain how the proposed model differs from the classical DARP. As stated earlier, the integer program (1)-(18) builds
upon the DARP formulation from Ropke et al. (2007). Specifically, we introduce the trip outsourcing variable y;, and ensure with
(2)-(3) that the DAR vehicle does not visit the pickup and drop-off locations of outsourced trips. By using ‘<’ instead of ‘=" in (4)
and (6), we allow the DAR vehicle not to be dispatched if all the trips are outsourced. Also, modifications to (8) ensure the removal
of time window constraints for the outsourced trips, as they will not be visited by the DAR vehicle. Eq. (9) ensure equal treatment
of pickups and drop-offs with respect to lifting the time windows. Modifications in Egs. (7) and (12) ensure that service duration
for a trip is considered only when the trip is not outsourced. Lastly, we introduce three new terms in the objective function (1),
where the first two enable comprehensive computation of DAR costs and balance them with the TNC outsourcing cost modeled in
the last term. It is worth noting that the first term is commonly considered in studies related to fleet sizing (Golden et al., 1984).
The third term represents the cost of idle time, which is the time a DAR vehicle spends waiting for the passenger at a scheduled
stop. Neglecting this cost can result in inefficient routes with significant idle time (Xiang et al., 2006). To accurately calculate the
routing duration for idle time cost, constraints (15)—(17) are used to ensure that routing duration is considered only when vehicles
are dispatched from the depot. The inclusion of idle time cost is the primary differentiating factor of our model from the one recently
proposed by Schenekemberg et al. (2022). Therefore, we will evaluate the importance of idle time in the case study.

Since the integer program presented above cannot be solved optimally for real-world instances, we propose a two-stage solution
approach to handle larger problem sizes. The proposed framework is initialized based on the classical DARP solution without
outsourcing, which can be generated using any DARP heuristic. In our study, we have utilized MRMS to generate the initial routes
from the trip requests. In the first stage of our framework, we propose a single-route DAR problem with trip outsourcing to TNC
to re-optimize each route from MRMS individually. Next, we use a multi-vehicle heuristic that considers the reinsertion into the
DAR fleet of trips previously designated for outsourcing, as well as reinsertion and exchange of the remaining DAR trips among the
routes. The proposed framework’s workflow is shown in Fig. 2.

3.2. First stage: Single-route DARP with TNC

In the first stage of our approach, we re-optimize each route generated by software systems like MRMS, Trapeze, or other DAR
scheduling software suites while considering the option to outsource trips to TNC. To accomplish this, we simplify the multi-vehicle



M.H. Rahman et al.

Transportation Research Part E 175 (2023) 103140

MRMS Bt
Routes
Stage-1
Integer Individual
Program
All Improve.
Routes Heuristic

Fig. 2.

Analyze Postprocess @

Stop

Savings &
Visualize

Proposed two-stage framework.

DARP with TNC model (1)-(18) by dropping the index k, and solve the resulting single-vehicle DARP with TNC model (19)—(36)

optimally using an integer programming solver.
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(a) Example DAR route and schedule (b) Outsourcing all trips to TNC
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(c) Identifying maximum idle time in DAR schedule (d) Trips after idle time outsourced to TNC
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(e) Outsourcing spatio-temporal outliers to TNC (f) Swapping stops after finalizing outsourcing decisions
Fig. 3. Illustration of steps in the custom heuristic.
T > Zmax ~ Zmin ~ C z X0,i (35)
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3.2.1. Custom heuristic

A typical DAR route includes about 10-20 trips, which translates to 20-40 pickups and deliveries. For such problem instances,
the single-route DARP with TNC can be optimally solved within a few minutes using commercial integer programming solvers
such as CPLEX and Gurobi. However, not all DAR operators, whether public or private, have access to commercial solvers as they
require licenses. Thus, practical solutions are necessary that can be used with existing scheduling software suites such as Trapeze.
To facilitate the implementation of the proposed framework and enable quick exploration of potential savings, we have developed
a custom heuristic based on the optimal solutions to (19)—(36) obtained by an integer programming solver. These solutions have
revealed the following insights:

1. When a route includes “significant” idle time, the optimal solution to (19)-(36) often outsources all the trips to be served
either before or after the idle time. This strategy avoids vehicle idling and the associated driver cost.

2. When the DAR vehicle is underused outside of peak periods, the optimal solution is often to outsource all the trips and
dissolve the route altogether. This approach reduces costs by avoiding the fixed cost of a route.
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3. If the origin or destination of a trip is distant from the depot or other demand points, the optimal solution is often to outsource
that distant trip. This approach reduces costs by minimizing deadheading and the associated cost.

4. After outsourcing trips, some routes can be further improved by only altering the sequence of stops. This adjustment can
result in additional savings.

Based on these insights, we propose a heuristic (Algorithm 1) to find a feasible solution to (19)-(36). To illustrate the heuristic
steps, we prepare a hypothetical route (Fig. 3(a)). The steps of the heuristic are as follows:

First, it checks whether outsourcing all the trips and dissolving the route would be more economical than serving it with DAR
(Fig. 3(b)). Let u/(G(N , A)) represent the cost of DAR trips in a route without allowing any outsourcing, i.e., the sum of fixed
cost, routing cost, and idle time cost. If the cost of outsourcing a trip is &;, the cost of outsourcing all the trips in the route is
Y.cp & Therefore, based on condition Y, & < w(G(N, A)), we can decide whether to outsource every trip i in the route.

Afterward, it identifies the maximum idle time (Fig. 3(c)) in the schedule and checks whether outsourcing all trips before
or after the maximum idle time of a route can provide a more economical route by removing the large idle time from the
schedule (Fig. 3(d)). Let j* = argmax ; B; — B;_, represents the node after the maximum idle time in the schedule, where idle
time between two consecutive nodes j — 1 and j in a route is B; — B;_;. By comparing the cost of outsourcing all trips before
and after j* against the cost of DAR routes without outsourcing, it can be decided whether to outsource all trips before or
after j*.

Next, it checks whether a route contains spatio-temporal outliers by removing each trip at a time and evaluating the before-after
route cost (Fig. 3(e)). Let the updated graph after outsourcing trip i is G(N’, A’). If the cost of the route after outsourcing the
removed trip is less than the cost of the route without removing the trip, i.e., C(G(N', A")) < w(G(N, A)), the removed trip is
identified as a spatio-temporal outlier.

After deciding on the cheapest outsourcing strategy (e.g., taking route in Fig. 3(e) as the cheapest option after outsourcing),
it checks whether the routes can be further improved by swapping stops (Fig. 3(f)) using Algorithm 2. The algorithm removes
each trip pick-up i and drop-off i + » and tries to find the minimum cost indices r; and r}, for reinsertion.

If none of the aforementioned steps reduce the cost of a route, then the route is kept intact (Fig. 3(a)). It is noteworthy to
mention that the route schedule is updated and the feasibility of the resulting route is checked after each of the outsourcing
steps, which helps to minimize the routing duration. Readers can refer to Luo and Schonfeld (2007) for detailed procedures
on updating route schedules and feasibility checks.

3.3. Second stage: Multi-vehicle improvement heuristic

In the second stage, we consider the multi-vehicle extension of the approach outlined in Section 3.2 by using additional
improvement procedures using Algorithm 3, which are conducted in two steps as described below:

« First, we consider the reinsertion into existing routes of the trips that the single-route model previously designated for
outsourcing. A trip designated for outsourcing is only reinserted if the cost of the trip after reinsertion is lower than the
outsourcing cost. The algorithm removes each outsourced trip pick-up i and drop-off i + n and tries to find the minimum cost
indices k; and k;,, for reinsertion. If the cost after the minimum cost reinsertion is w(G(N'UN & YN, A)), by comparing
the reinsertion cost y (G(N'U N, K YN, A)) -y (G(N, A)) with the outsourcing cost of the trip &y,, the algorithm determines
whether to reinsert the trip or outsource it permanently.

Once outsourcing decisions are finalized, we conduct further improvement procedure by considering reinsertion and exchange
of remaining DAR trips among the routes. For exchange of the DAR trips, each possible pair of trips {i,i + n} and {j,j + n} to
be exchanged are checked to ensure that there are no service time conflicts, i.e., ¢; < /; Ae; < [;, and trips to be exchanged
are not same, i.e., {i,i +n} # {j,j + n}. Afterwards, the algorithm looks for minimum cost indices (+},r} ) and (r;?', r;.‘ ) for
exchange. For reinsertion, the algorithm removes each DAR trip i,i +n and tries to find the minimum cost indices k; and &}, ,
for reinsertion after ensuring that the reinsertion indices are not depots (k; # 0 A k;,, # 0) and pickup index is before drop-off
index (k; < k;,,).

i

4. Data

This section provides a description of our dataset. We sourced the data from Challenger Transportation,®> a DAR company that is
one of the five subcontractors of the Washington Metropolitan Area Transit Authority (WMATA). The company has been providing
door-to-door paratransit services in Maryland since 2000.
4.1. Trip data

The demand dataset comprises 1,057 trips on a typical day, selected by Challenger Transportation. Fig. 4(a) presents the spatio-
temporal distribution of demand, which shows that most trips occur away from the depot, between 9 am and 5 pm. The temporal

3 http://www.challengertrans.com/
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Algorithm 1. A custom heuristic to find a feasible solution to (1)-(18)
Input: y(G(N,A))=f Y Xop+ % X ¢yXy+ Bouyr — By = Xien Zjen 1jXi))%
JEP iEN jeEN
C(GIN,A) =f X xoj+ % X ¢jXij + By — By — Tien YientixiDa+ X & ;s
jeP iEN jeN ieP
Sets, indices, and parameters from Table 2.
Output: A feasible solution to (1)—(18).
1: procedure Outsourcing DAR trips
2 for any route do
> Check if outsourcing all the trips would be cheaper than providing the DAR service

3: if ¥,cp& <w(G(N,A)) then

4: for i€ P do

5: yie 1

6: end for

7: for (i, j) € A do

8: x;; < 0;

9: end for
10: end if

> Find the longest idle time and try outsourcing all the trips before or after

11: Jj* < argmax; B; — B;_j;
12: if Yicpicjr & < Liepsj & <w(G(N, A)) then
13: forie N :0<i<j*do
14: yi < 15
15: Xiiq1 < 0;
16: end for
17: end if
18: Check feasibility and update schedule;

19: if Y (GIN, A)) > Xicp.icjr & > Liep:is & then
20: forie N: j*<i<2n+1do
21: yi< 1
22: X1 < 0
23: end for
24: end if
25: Check feasibility and update schedule;

>
If outsourcing a trip reduces the cost, proceed with its removal

26: forie P do
27: N’ < N\{i,i +n}
28: if C(GIN',A")) <y (G(N, A)) then
29: yi< 15
30: X 41 < 05
3L end if
32: end for
33: Select min. cost route and check rearrangement of stops using Algorithm 2;

34: end for
35: end procedure

distribution of trips exhibits a common bi-modal pattern, with peaks at around 9 am and 2 pm. Silver Spring is the biggest generator
and attractor of trips, followed by Hyattsville and Rockville, as shown in Fig. 4(b). The summary statistics and distribution of trip
duration and distance are displayed in Figs. 4(c) and 4(d), respectively. The boxplot and histogram of trip duration and distance
indicate that the trips are relatively short, with a median direct-ride time of 12 minutes and a distance of 8 miles.

4.2. Baseline routes

The 1,057 DAR trips were assigned to 75 routes using MRMS, a software suite for managing DAR services from trip request
management to dispatch and operations. Currently, over a dozen DAR operators across the U.S. use this software suite. At the core
of the system is an algorithm for efficient routing and scheduling of vehicles, subject to various operational and level-of-service
constraints. This algorithm was developed using insertion and improvement heuristics Luo and Schonfeld, 2007; Markovic et al.,
2015; Vallée et al., 2020. Algorithm 4 outlines the routing procedure implemented in MRMS, and the schedules of the routes
produced by MRMS are displayed in Fig. 5.

11
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Algorithm 2. Outline of the stop swapping procedure

Input:
w(GIN,A) =f X xoj+ X X ¢jXij +(Bayps — By — Lien Yien liiXi)e
jEP ieN jeN
Sets and parameters from Table 2;
Output: Improved G(N, A) after rearrangement of stops.
1: procedure Rearranging stops in a route
2 for {i,i+n} € N do
> Find best sequence of stops
3: N’ < N\{i,i+n};

4: for r; in indices do
5 for r,,, in indices do
> Ensure indices are not depots and pick-up index is before drop-off index
6: ifr, #0Ar, #0Ar; <r,, then
7: N < i
8: N, <it+n
o: (ry,rt,,) < argming, w(G(N'U N, U N,i+n,A));
10: N<—N’UN:;UN::+”;
11: Check feasibility and update schedule;
12: end if
13: end for
14: end for
15: end for
16: end procedure
Table 3
Parameter values for DAR.
Parameter Value Parameter Value
Capacity of DAR vehicle (Q™*) 7 passengers Maximum route duration (7™2*) 660 min
Maximum ride time co-efficient (r;) 2 Service duration at stop (d;) 3 min
Fixed Cost of DAR vehicle (f) $15/route Idle time cost (a) $0.4/min

4.3. Parameter values and unit costs

The capacity of a DAR vehicle is assumed to be Q™# = 7 passengers. The maximum route duration is 7™®* = 660 min, and the
maximum ride time coefficient is ; = 2. The service duration at each stop is set to d; = 3 min. The estimated fixed cost of DAR
operation is f = $15 per route, which includes vehicle preparation and cleaning costs. The company’s variable cost is composed of
a unit distance cost of $1.3/veh-mi and a unit time cost of $0.3/veh-min, resulting in a combined cost of $0.8/veh-min, assuming
an average speed of 25 miles per hour. The routing cost is computed as ¢;; = 0.8 - #;;. The company incurs a variable cost of a =
$0.4/veh-min when the vehicle remains idle during the service time.

In contrast, the unit cost of outsourcing to TNC is based on the breakdown of Uber unit cost.* This cost includes a unit distance
cost of $2.8/veh-mi and a unit time cost of $0.35/veh-min, which can be combined as a unit cost of $1.55/veh-min, assuming an
average speed of 25 mi/h. Additionally, there is a fixed cost of $10.55, which comprises the base fare and booking fee. The TNC
costs are computed as & = 10.55 + 1.55 - t;;,,, where t,,,, is the travel time for trip i. The parameter values and unit costs are
summarized in Table 3.

5. Results

The numerical results are presented as follows. In Sections 5.1-5.4, we compare the costs of MRMS routes with and without
TNC integration. We present the results for individually re-optimized MRMS routes with TNC integration obtained by solving (19)-
(36) both optimally and with the custom heuristic (Algorithm 1). In Section 5.5, we present the results from the multi-vehicle
improvement procedure (Algorithm 3), which is applied to the routes resulting from the single-route optimization approach. In
Section 5.6, we evaluate the performance of the proposed two-stage framework on small-scale instances that can be solved optimally
using mathematical programming methods. Finally, we conduct a sensitivity analysis of the overall approach in Section 5.7.

4 http://taxis-fare.com/uber-fare-finder.php
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Algorithm 3. Outline of the improvement procedure

Input:

‘I’(G(N’A)) =f _ZP Xo,; + > X ¢ijXij + By — By — Yien ZjeN tij
je

ieEN jeN
Sets and parameters from Table 2;
Output: Improved G(N, A) after exchange and reinsertion.
1: procedure Reinsertion and exchange of trips among routes
2 for {i,i+n} € N do
> Check reinsertion of outsourced trips

3: if y, =1 then
4: Conduct steps 24-28;
5: if w(GIN'UN;, UN, ,A) —w(G(N, A) < &y, then
6: N«—N’uN*uN* 5
7: Check fea51b111ty and update schedule;
8: end if
9: end if
10: for {j,j+n} € Ado
> Check trips to be exchanged are not outsourced
11: if x; 14, # 1V x4, # 1 then
12: continue;
13: end if
> Exchange trip indices r provided no service time conflicts between trips
14: if {i,i+n}#{j,j+n}Ae; <Il;Ae; <I; then
15: N’ « N\{i,i+n,j,j+n};
16: N,.N, < j.i
17: N,’MN "<—j+n,i+n;
18: 5, ry,,) < argming, w(G(N'UN, UN, A));
19: (ry.r},,) < argming, )u/(G(N’UN UNJM,A));
20: N«—N’UN*UN* uN"uN I
21: Check fea51b1hty and update schedule,
22: end if
23: end for
> Find best reinsertion for a trip
24: N’ « N\{i,i+n};
> Ensure new indices k are not depots and pick-up is before drop-off
25: if kK, #0 Ak, # 0Ak; < k;,, then
26: Ny, < i
27: Ny, <i+n
28: k3, k;,,) < argming ;. w(G(N'UN, UN, ,A));
29: N<—N’UN*UN I
30: Check fea51b111ty and update schedule;
3L: end if

32: end for
33: end procedure

x;j)a;

Algorithm 4. Outline of the route generation procedure implemented in MRMS

Initialize: Sort requests according to desired pick-up time and introduce the first vehicle.

Step 1: Consider the next unassigned request.

Step 2: For each introduced vehicle: Generate all feasible insertions of the request into the schedule and compute the change

in the objective function.

Step 3: If there exists a feasible insertion of the request, then the insertion with the minimum increase in the objective function
is selected and the request is inserted while updating the schedule. If a feasible insertion does not exist, a new vehicle is

introduced and the request is assigned to it.
Step 4: If there are unassigned requests, then go to step 1.

13
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Fig. 4. Spatio-temporal distribution of demand and trip statistics.

5.1. Route-by-route optimization: High-level summary

The re-optimization of the MRMS routes is performed by solving (19)-(36) using GAMS (General Algebraic Modeling System)
with CPLEX as the integer programming solver. Each route is analyzed individually to identify and designate the outlier trips for

14
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legend, the reader is referred to the web version of this article.)
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Fig. 6. Route cost distribution.

Table 4

Types of trip outsourcing with savings.
Type Routes Savings
Partial outsourcing 20 (27%) $556 (43%)
Full outsourcing 8 (11%) $599 (46%)
No outsourcing 47 (62%) $135 (11%)
Total 75 $1,290

Table 5
Summary of routes before and after outsourcing.
Trips Routes Fixed cost ($) Veh-min Veh-miles idle time Deadheading
DAR TNC DAR TNC DAR TNC (min) (miles)
Before 1,057 75 1,125 - 22,231 - 8,550 - 13,433 3,406
After 976 67 1,005 855 19,562 912 7,524 391 10,175 2,770
Change 8% 11% 11% 12% 12% 24% 19%
Net $120 —$855 $801 —-$319 $1,335 —-$1,095 $1,303

outsourcing, in order to minimize the total route cost. On average, the optimization for each route takes approximately 1.6 minutes
using an Intel Core i3-7020U processor (2.30 GHz) and 8 GB RAM.

The comparison between the routes without TNC integration and the re-optimized routes with TNC integration is presented in
Table 5, and can be summarized as follows:

+ Although the outsourcing cost accounts for 10% of the total cost ($2,269), outsourcing trips leads to a 15% reduction in
operating costs ($3,559), resulting in a net savings of 5% ($1,290) (as shown in Table 4). Approximately 28% of the routes
saw improvements through either partial or full outsourcing, which contributed to 89% of the total savings. It is noteworthy
that the 11% savings from the routes without outsourcing were achieved through changes in the route sequence, such as
swapping trips in routes that were initially suboptimal.

The distribution of costs for the routes without TNC integration and the re-optimized routes with TNC integration are presented
in Fig. 6. The average cost for MRMS routes is estimated as $324, while the average cost for re-optimized routes is found to be
$307. Statistical tests conducted to determine the difference in means and medians revealed that the costs of the re-optimized
routes with TNC integration are significantly lower (p < 0.01) than those of MRMS routes.

The origins and destinations of the outsourced trips, as shown in Fig. 7(a) (left), appear to be uniformly distributed across
the service area. While outsourced trips are on average 4%-5% longer than trips served by DAR (Fig. 7(b)), statistical tests
indicate no significant difference in means and medians (p > 0.05). Around 80% of the outsourced trips occurred during peak
hours (Fig. 7(a) (right)), enabling cost-effective removal of eight routes (routes 1, 8, 10, 18, 38, 44, 64, and 75 in Fig. 5) that
were underused in off-peak periods. However, a few underused routes (routes 17, 20, 33, 34) were not removed due to their
lower DAR cost compared to the outsourcing cost for the trips.

A significant proportion of the observed cost savings can be attributed to a 12% reduction in vehicular minutes and miles,
as indicated by Table 5. Notably, since only 8% of the trips were outsourced, the greater reduction in vehicular minutes and
miles suggests that only “difficult” trips (i.e., spatio-temporal outliers) were outsourced. Another significant contributor to the
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observed savings was a 24% reduction in vehicle idle time, which amounted to $1303 (as shown in Table 5). This will be
further explained through the analysis of individual routes.

5.2. Route-by-route optimization: Detailed analysis

To provide additional insights into the results, we have included visualizations of several MRMS routes without TNC integration
and re-optimized routes with TNC integration in Figs. 8-13, which display the schedule and load distribution of the dispatched
vehicle. It is clear from the figures that the re-optimized routes have been simplified by outsourcing the outlier trips. The visual
comparison indicates that the savings were achieved in the following ways:

+ In the case of routes with “significant” idle times, the trips before or after the idle time were all outsourced, effectively avoiding
the idle times and the corresponding driver cost. This strategy is illustrated in examples of these routes in Figs. 8-9.

» Some of the routes contained pickup or drop-off far away from the depot or other demand locations. Outsourcing those trips
significantly reduced both driving time and idle time. Examples of such routes are shown in Figs. 10-11.

» Some routes were improved using a combination of strategies. For example, consider the two routes in Figs. 12-13, where
outsourcing occurred both in the beginning and end, thereby squeezing the overall route duration in addition to idle time. In
Fig. 13, outsourcing allowed for greater loads in addition to avoiding idle time.

+ Some of the suboptimal MRMS routes were improved without outsourcing by only altering the sequence of stops. This resulted
in shorter route duration, as evident from Figs. 14-15.
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Table 6

Runtime comparison between custom heuristic and GAMS.
Type Runtime Mean Runtime Std.
Exact solution 96.3 s 1282 s
Custom heuristic 29.1s 51.3 s

Table 7
Types of trip outsourcing with savings.
Outsourcing type Routes Savings
Before/after idle time 2 (3%) $144 (13%)
Spatio-temporal outliers 7 (9%) $364 (32%)
Route eliminated 6 (8%) $339 (30%)
No outsourcing 60 (80%) $275 (25%)
Total 75 $1,122

Additional examples of the savings mechanisms discussed above are provided in Appendix B, where route-level analyses for other
routes are presented.

5.3. Route-by-route optimization: Effect of idle time

Previous research on DAR has often overlooked the impact of idle time, which is a significant issue when integrating TNC with
DAR. To emphasize its importance, we re-optimized the routes by excluding the idle time cost from the objective function. While this
should result in fewer outsourced trips since it makes DAR more cost-efficient than it actually is, it is crucial to evaluate decisions
based on the comprehensive objective function. Our results show that not accounting for idle time reduces the number of outsourced
trips and leads to a 48% loss in savings, as demonstrated in Fig. 16. This highlights the need to consider idle time when optimizing
DAR routes with TNC integration.

5.4. Route-by-route optimization: Performance of the custom heuristic

The proposed heuristic was implemented in MATLAB and applied to the MRMS routes, with an average computation time of
approximately 30 seconds per route using an Intel Core i5-10210U processor (2.11 GHz) and 16 GB RAM. Table 6 compares the
runtime of the custom heuristic and the integer program, demonstrating that the heuristic is three times faster than the exact solution
approach. This computational advantage would only increase with larger instances.

The breakdown and summary of the savings achieved using the proposed heuristic are presented in Table 7 and Fig. 17. The
application of the proposed heuristic results in savings of $1,122, which corresponds to a roughly 4.6% reduction in operational
cost. This indicates that the heuristic is able to recover about 87% of the savings achieved with the integer programming approach.
While there is a compromise in savings, it is noteworthy that the heuristic is much easier to implement in DAR operations as it does
not require mathematical programming. Additionally, the computation time for the heuristic is significantly faster than the exact
solution approach, as shown in Table 6, making it a practical option for large-scale instances.

5.5. Multi-vehicle improvement procedure

The savings achieved by applying the multi-vehicle improvement procedure are reported in Table 8. By reinserting into DAR
vehicles the trips that were initially designated for outsourcing, the number of outsourced trips reduces, leading to a significant
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Table 8

Additional savings from improvement procedure.
Improvement type Exact solution routes Custom heuristic routes
Reinsertion of outsourced trips $367 (21%) $128 (9%)
Exchange and reinsertion of DAR trips $100 (6%) $162 (11%)
Total increase in savings $467 (27%) $290 (21%)

increase in savings, as shown in Fig. 18. The reduction in operational cost from the integer program and heuristic increased from
5.3% to 7.2% and from 4.6% to 5.8%, respectively. To ensure the consistency of the estimated savings, we applied the proposed
algorithmic framework to another day of the company’s operations, and the results are summarized in Appendix C

5.6. Performance evaluation of the proposed two-stage framework

To evaluate the quality of solutions proposed by the two-stage framework, we prepared 10 small-scale instances with 6-15
requests and solved (1)-(18) in GAMS. Eight of these instances can be solved optimally within 2 hours. The mean gap between the
optimal solution and our solution from the proposed two-stage framework is 3.9%. The results are summarized in Table 9.

5.7. Sensitivity analysis for the overall framework

In the previous analysis, we used unit costs for TNC that apply to the general public. While these unit costs represent a reasonable
baseline, they may be relatively high compared to what a DAR company or a transit agency could potentially negotiate with Uber
and other TNCs. Clearly, lowering the unit costs of TNCs would result in additional savings for the DAR operator. To quantify
these additional savings, we re-did the previous analysis based on discounted TNC costs, which include 10%-70% discounts on
the original costs considered in this study. The results are presented in Fig. 19, which shows intuitive trends. Specifically, it is
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Table 9
Comparison between multi-vehicle DARP with TNC and proposed two-stage framework.
Instance # |P| K| Runtime (s) Multi-veh. cost ($) Two-stage cost ($) Gap (%)
1 6 2 2.6 141.1 143.5 1.7
2 7 2 29 199.4 199.9 0.2
3 8 2 6.2 216.5 225.9 4.4
4 9 2 22.6 255.1 267.4 4.8
5 10 3 8.0 280.1 289.3 3.3
6 11 3 47.8 306.2 326.1 6.5
7 12 3 837.2 290.1 310.7 7.1
8 13 3 1,742.6 377.9 390.3 3.3
9 14 3 7,200.0 unsolvable 414.3 -
10 15 3 7,200.0 unsolvable 416.6 -
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Fig. 19. Sensitivity analysis exploring the impact of TNC unit costs.

evident that relative savings increase as the TNC unit cost decreases. At the same time, fewer trips are being served by DAR as the
TNC service becomes more affordable. It is noteworthy to mention that a 30% discount is likely the closest to the cost of the most
affordable taxi service in the Maryland area, which would result in 13% savings.

Sensitivity analysis was also conducted on the proposed heuristic (Algorithm 1). By applying the heuristic to the Challenger
routes for varying TNC discounts, a recovery of 75%-80% of the savings achieved by the integer program was observed.

It is important to note that the authors did not have access to detailed information about the trip requests, such as whether a
wheelchair was required. Therefore, it was assumed that any rider could potentially be served by TNCs, but if a wheelchair was
requested, the rider would have to be served by a DAR vehicle or an accessible TNC vehicle. This would result in a slight drop in
the expected percentage savings, as approximately 10%-15% of customers would normally request a wheelchair in the study area
considered. However, eligible seniors and other customers could still be served by TNCs.

Moreover, TNCs sometimes apply surge pricing to tackle higher demand or a lack of available vehicles. Since the authors did not
have access to surge pricing information for TNC trips, it was assumed that TNCs operate in an equilibrium condition. As a result,
the savings for the DAR company may be lower than the estimated percentage savings if surge pricing is considered. However, a
DAR company outsourcing hundreds of trips per day to TNCs can negotiate a favorable surcharge policy to retain the savings.

6. Conclusions

This paper has presented a two-stage framework for identifying and outsourcing outlier trips in DAR operations to TNCs with
the goal of reducing overall service delivery costs. We applied the proposed framework to a dataset obtained from a mid-size
paratransit company in Maryland and demonstrated that significant cost reductions of 7%-13% could be achieved, depending on
the negotiated TNC cost. These savings were primarily attributed to the reduction in vehicle miles and idle time. Our route level
analysis also revealed the underlying mechanisms of outsourcing trips from DAR routes, and we proposed a practical heuristic that
can be easily implemented by other DAR companies.
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The findings of this study suggest several potential avenues for future research. Analyzing data over several weeks may reveal
additional demand trends that could lead to even higher savings by permanently removing underutilized vehicles. Additionally,
investigating how savings change with trip density by applying our models to datasets from various regions across the country
could provide valuable insights. Finally, exploring the development of machine learning algorithms that can identify spatio-temporal
outlier trips without the need to resolve the DARP is an area that warrants further exploration.
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Appendix A. Effect of idle time on vehicle routing

We consider an illustrative DARP instance consisting of only two rider requests, numbered 1 and 2. Rider 1’s pickup location is
1+ and the drop-off location is 1—. Similarly, the pickup location of rider 2 is 2+, and the drop-off location of rider 2 is 2—. The
trip distance between the pickup and drop-off locations is L for both riders. The distance between 1— and 2+ is S. Rider 1 must be
dropped off at location 1— by time T; and rider 2 must be picked up at location 2+ by time T;. It is also known that 7| < T,. For
simplification, vehicle depot 0, 1+, and 2— are at the same location, which means the distance between each pair of those nodes is
negligible. Due to the triangular rule, we know .S < 2L.
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Fig. B.21. Outsourcing removes trips before severe vehicle idling and generates $47 saving for route 22.

We examine Solution 1, whose routing sequence is 0 - 1+ — 1— — 2+ — 2— — 0. The routing distance is 2L + .S and the idle
time is 7, — T} — S where V is the average vehicle travel speed. Solution 2 consists of two separate routing sequences, namely
0— 1+ - 1- —» 0 and 0 - 2+ — 2— — 0. The total routing distance is 2L + S and the idle time is 0.

Clearly, if we minimize the routing distance only, Solution 1 dominates Solution 2, because S < 2L. In this case, the resulting
idle time if Solution 1 is adopted can be arbitrarily large. This supports the claim that if we minimize routing distance only, the idle
time can be excessive. If idle time is part of the optimization objective, it is possible to find a threshold for S that one is indifferent

between two solutions. In other words, 2L+ S)+b(T, - T, — %) = 4L, where b is a positive coefficient translating time cost (hours) to

mileage cost (miles). The threshold is given by »* = 2L_—SS When the cost of idle time exceeds b*, Solution 2 dominates Solution

1 (see Fig. A.20). ey
Appendix B. Route-level analysis
B.1. Outsourcing of trips before severe vehicle idling
See Figs. B.21 and B.22.
B.2. Outsourcing of trips after idle time in schedule
See Figs. B.23 and B.24.
B.3. Outsourcing of spatio-temporal outliers
See Figs. B.25 and B.26.
B.4. Outsourcing of spatio-temporal outliers before/after idle time
See Figs. B.27 and B.28.
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Fig. B.23. Outsourcing removes trips after idling and generates $10 saving for route 45.
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Fig. B.26. Outsourcing removes trips far from depot and generates $24 savings for route 48.
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Fig. B.27. Outsourcing avoids zig-zagging and generates $17 saving for route 56.
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Fig. B.28. Outsourcing avoids zig-zagging and generates $9 savings for route 35.

Table C.10
Comparison of results between the two day of operations.

Dataset Trips Outsourced Stage-1 Stage-2 Total % Savings

Solution method 1: Exact Solution and Improvement

Day 1 1,057 63 (5.96%) $1,290 $467 $1,757 7.24%

Day 2 897 58 (6.47%) $1,168 $368 $1,536 7.19%
Solution method 2: Custom Heuristic and Improvement

Day 1 1,057 35 (3.31%) $1,122 $290 $1,412 5.81%

Day 2 897 28 (3.12%) $946 $213 $1,159 5.43%

B.5. Changes in trip sequence without outsourcing
See Figs. B.29 and B.30.
Appendix C. Another day of operations

To ensure the consistency of model performance, our proposed two-stage approach is tested on another day of operation (day 2).
In order to ensure that the data for day 2 are significantly different than the data for day 1, a paired 7-test is conducted between the
origin—destination demand of the cities for the two days, aggregated on 2,809 OD pairs containing pick-up and drop-off locations.
The results show a significant difference (p < 0.05) in the origin—destination demand for the two days, implying that the spatial
distribution of demand varied significantly.

The results based on the two-stage framework for the two days are summarized in Table C.10. Although the absolute savings of
day 2 are smaller than those of day 1 due to fewer trips served, the percentage of outsourced trips and relative savings are consistent.
The distribution and characteristics of DAR and TNC trips after the optimization of routes are presented in Fig. C.31.

30



M.H. Rahman et al. Transportation Research Part E 175 (2023) 103140

“\[Total: 165 mi, Deadheading: 49 mi, DAR trips: 22, TNC trips: 0] 1 | Driving: 565 min, Idling: 83 min |

Passengers
N
N

X"' ishington

Adingtets 0640 0820 1000 1140 1320  15:00
| R e
(a) Original route and load (b) Original schedule and load
“\[Total: 159 mi, deadheading: 50 mi, DAR trips: 22, TNC trips: 0| , pepot | Driving: 548 min, Idling: 76 min |
e """“\ m  Outsourced - 44
/
. Load 0 k|

Load 1 34
Load 2

Load 3

i
i
¥
{
i
i /1
[
Passengers

Chevy Chase pey
et T L
> <
Wi, IS
—
>>W.~.m.. b
rhing

Adlingten

Kettoring 06:40 08:20 10:00 11:40 13:20 15:00
Time

(c) Route and load after outsourcing (d) Schedule and load after outsourcing

Fig. B.29. Changes in trip sequence reduces driving time and generates $16 savings for route 2.
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Fig. B.30. Changes in trip sequence reduces total routing time and generates $14 savings for route 19.
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Fig. C.31. Distribution of DAR and TNC trips on day 2.
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