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system operations and negatively affect the transit riders. For example, the COVID-19 pandemic
caused an 80%-90% transit demand decline in March 2020 in the U.S. However, the existing
transit infrastructure planning studies have not modeled such sudden demand shocks. We thus
improve the modeling realism of uncertain transit demand by formulating demand evolution as a
jump-diffusion process, which is a combination of continuous-time Brownian motion and a
discrete counting process, namely Poisson process, and present analytical optimization models for
the development of a rail transit line under such uncertainty. We jointly optimize two related
decisions, namely the timing for introducing rail transit to a commuter corridor and length choice
for the rail line. We refute a misconception that investment in a project should always start
immediately if a positive cost saving over the planning horizon is expected. We also find that
investment timing and sizing decisions are closely related and behave quite differently for the
same change in some parameters, such as the infrastructure construction period. The developed
modeling and analysis framework should be transferable to other civil infrastructure development
and investment problems under uncertainty.

1. Introduction

The effectiveness of long-term plans for most transportation infrastructure projects (e.g., airport runways, railway terminals, and
highway networks) largely depends on how well future uncertainty is addressed in the planning process (De Neufville and Scholtes,
2011). For example, in an airport master plan, planners need to design and schedule airport development projects to ensure the airport
capacity can meet anticipated demand on both airside and landside facilities in the next few decades (Sun and Schonfeld, 2015). At the
same time, design flexibility should be built into a master plan to enhance an airport’s ability to adapt to unpredictable changes in
regulations, markets, and technologies (Sun and Schonfeld, 2017). Similarly, public transportation system planners must make
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strategic decisions regarding when the current transit service should be upgraded, and when new infrastructure should be built to
satisfy the travel needs of future transit riders. For instance, when demand is relatively low in a corridor, bus transit remains a
cost-effective choice, while light rail, which can increase capacity and level of service, may be introduced when demand grows to a
threshold at which it becomes more effective than bus transit. The transit mode evolution problem is concerned with the optimal
selection of transit modes over time (Sun et al., 2017). The main motivation for this paper is the inadequate treatment of demand
uncertainty in optimizing transit mode selection on the tactical level.

A few researchers, e.g., Saphores and Boarnet (2006) and Li et al. (2015), have studied a closely related problem, namely the public
transit investment problem, considering demand uncertainty. In those studies, demand uncertainty was modelled with a standard
geometric Brownian motion (GBM) and a demand trigger was derived to model the replacement of bus transit by rail transit. Although
a few key factors, such as the time-inconsistent preferences (Guo et al., 2018b) or the ambiguity attitudes (Gao and Driouchi, 2013) of
the planning authority, have been investigated, previous studies (e.g., Gao and Driouchi (2013), Li et al. (2015), and Guo et al.
(2018b)) did not fully characterize demand uncertainty with a continuous-time stochastic process, i.e., GBM. Not only does the future
demand evolve continuously, but it also jumps sometimes. A case in point is the dramatic transit demand reduction observed in the
early months of the COVID-19 pandemic. A survey conducted by Liu et al. (2020) indicated that on average the transit ridership
dropped in the U.S. by an average of 80% in the span of a few weeks, due to various disease control measures, such as social distancing
and working from home. Such sudden and rare changes can be modeled with a low-intensity Poisson process (Chen et al., 2019), which
has been adopted in related areas, such as modeling spikes in electricity price (Seifert and Uhrig-Homburg, 2007; Benth et al., 2012).
Nonetheless, the sudden demand changes, also called jumps, have not been considered in the public transit investment literature.
Considering the catastrophic consequences of possible extreme events in the planning horizon of transit systems, the effect of those
demand jumps arising from those sudden events on the long-term transit planning process must be incorporated. In addition, a major
difference between the transit mode evolution problem (Sun et al., 2017) and the transit investment problem (Li et al., 2015) is that the
latter problem is essentially a two-period problem, which means it seeks to find the threshold between bus-only and rail-only services.
Conversely, the transit mode evolution problem explores the change of transit modes over multiple periods. The feeder-and-trunk
service, which is a hybrid mode of bus and rail, is shown to be advantageous in the evolution process of transit modes by Sun
et al. (2017) while it has not been considered in transit investment studies such as Guo et al. (2018b). Considering this hybrid mode is
nontrivial because it implies another important decision, namely the length of rail line in various periods. Then, simultaneous opti-
mization of the investment timing and rail length becomes a necessity. Considering the above identified research gaps, we seek to
improve the transit mode evolution literature by making the following methodological contributions. This study is the first known one
to model transit demand jumps due to sudden events with a jump-diffusion process and propose a stochastic model for the devel-
opment of a rail transit line under such uncertainty. It also concurrently optimizes rail investment timing and sizing decisions, which
are essentially inseparable considering the trade-off between rail capital investments and operational savings.

To achieve the stated contributions, we first developed two analytical optimization models for bus-only and hybrid (feeder-and-
trunk) services in a commuter corridor. As closed-form solutions could be found, the hourly system cost became a simple function of
demand density only. Next, we formulated a dynamic optimization problem where the time for introducing rail transit and the rail
length were both optimized, for a given demand growth curve. Then, demand evolution was governed by a jump-diffusion process over
an infinite planning horizon, consisting of both gradual and sudden changes; a stochastic optimization model was thus formulated to
minimize the expected aggregated cost over the infinite horizon. Leveraging the optimal stopping theory, we derived the optimal rail
investment timing and presented a numerical solution of rail length. Through numerical studies, we arrived at a few important
conclusions. For instance, it is not always optimal to start an infrastructure investment as soon as a cumulative cost saving is expected
over the planning horizon. We also confirm the close interrelation between investment timing and sizing decisions, which cannot be
separately analyzed or optimized, due to the complex tradeoff of capital costs and operational savings. In addition, when some pa-
rameters (such as demand volatility) vary, the optimal demand threshold and rail length change in the same direction; those two
decisions may change in different directions if some other parameters (such as jump intensity) vary.

The rest of this paper is organized as follows. Section 2 identifies the main research gaps in the transit mode evolution as well as
transit investment studies. Section 3 defines static optimization models for two types of transit services, which are solved analytically,
and further introduces a deterministic dynamic model. After introducing a new stochastic process for modeling demand uncertainty,
we propose a stochastic dynamic optimization model and present analytical solutions in Section 4. In Section 5, we analyze results from
deterministic and stochastic analyses, as well as the sensitivity of results to some key parameters. Finally, we draw conclusions and
suggest future research directions in Section 6.

2. Literature review

As we seek to optimize the development of a rail transit line over time considering uncertain demand shocks, we organize relevant
studies into different groups, depending on whether temporal variations are considered and whether demand uncertainty is incor-
porated. We begin with a review in Section 2.1 of those studies in which demand is static and deterministic; we next review studies on
the dynamic selection of transit modes over time without any demand uncertainty in Section 2.2; in Section 2.3, a number of studies
which consider demand uncertainty over a planning horizon are reviewed, although they simplify the evolution of a rail transit line
and do not yet incorporate the effect of transit demand shocks. In Section 2.4, we expand the scope of our review to cover trans-
portation problems outside public transit. An additional major research gap is identified, namely very few real-option studies have
jointly considered timing and sizing decisions, which are both essential in the rail transit line development.
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2.1. Static models for public transit mode comparison and selection

In practice, there is a wide spectrum of public transit services ranging from demand-responsive and flexible bus to light and heavy
rail transit, each of which is designed to effectively accommodate some distinct demand characteristics. Transportation researchers
have presented many comparisons of various types of public transit modes. Note that in some studies (Parajuli and Wirasinghe, 2001;
Sivakumaran et al., 2014), transit modes are also referred to as transit technologies, such as bus transit vs rail transit.

Even though comparisons of public transit modes were conducted many decades ago, such as in Vuchic (1976), a few representative
studies published more recently are reviewed here. Tirachini et al. (2010) developed analytical models for the comparison of a few
public transit modes, namely bus, bus rapid transit, light rail, and heavy rail, under different optimization objectives. Moccia and
Laporte (2016) extended Tirachini et al. (2010) by considering additional operational parameters, such as optimal stop spacing. Kim
and Schonfeld (2013) developed bus operational models for different service types (flexible vs fixed) and fleets (uniform or mixed
vehicle sizes). They also compared those service alternatives under different demand scenarios. Zhang et al. (2018) compared park &
ride with on-demand bus considering a transportation corridor. They concluded that park & ride should serve low-demand areas while
the latter can cover high-demand areas.

In addition to the analytical models reviewed above, some researchers also conducted empirical analyses of different public transit
modes. For instance, Casello et al. (2014) compared economic costs and emissions for bus rapid transit and light rail with a case study
of Waterloo, Ontario in Canada. Puchalsky (2005) also compared those two modes from an environmental perspective only (i.e.,
emissions).

The above review suggests that many studies have been devoted to the comparison of different public transit modes when demand
is given and static.

2.2. Public transit mode selection over time

With models reviewed in Section 2.1, we can select an optimal transit mode for given demand inputs at any given time. However,
studying the selection of optimal transit modes over time, also called the evolution of transit modes, is not a straightforward extension
of a static mode comparison or selection model, primarily because of the transition from one mode to another is not “frictionless.” In
other words, major infrastructure upgrades and thus substantial capital investments are needed, which complicates the evolution of
transit modes over time.

Sun et al. (2017) considered a commuter corridor and investigated when rail transit should be introduced to partially replace bus
transit and how the rail length should be optimized over time. As an extension of Cheng and Schonfeld (2015), where demand was
assumed to be invariant with fare or service quality, Sun et al. (2018) focused on the development of a single rail transit line or the
optimal extension of a rail line, with a full consideration of demand elasticity. Further, Wu and Schonfeld (2022) considered
bi-directional extensions of a rail line in multiple stages. While maximizing net present value over a long analysis period, Wu and
Schonfeld (2022) assumed that the rail line extensions determined through a genetic algorithm should be implemented as soon as
sufficient construction funds became available for the next stage. This assumption implied that, in the absence of a budget limit, a rail
line should be immediately extended if a positive net present value is expected. While this assumption can greatly simplify the rail
extension scheduling decisions, it may not always hold, as shown later in Section 5.2 of this paper. The extension timing indeed
depends on the tradeoff between infrastructure capital investment and operational savings when infrastructure becomes in place.

Chang and Schonfeld (1991) derived a demand density threshold at which two optimized service types (conventional bus and
subscription bus) had the same average cost per user trip. When the demand density was below the critical value or threshold, sub-
scription bus was preferred. However, this does not imply that whenever the demand exceeds the threshold, conventional bus should
replace subscription bus, when a transition or switching cost is considered. In a similar setting, Kim and Schonfeld (2013) derived
thresholds during daily demand cycles at which large buses and small buses would lead to the same cost. When demand exceeded the
thresholds in various service regions, larger buses were used; otherwise, smaller ones were used. Similarly, this assumption will no
longer hold when there is a positive transition cost. For instance, Guo et al. (2018a) studied the optimal switching between fixed-route
transit and flexible-route transit. Because service switching is not costless, Guo et al. (2018a) showed that it was suboptimal to
immediately switch to another service type when a demand threshold was reached.

Therefore, the literature on the evolution of public transit modes is underdeveloped and a few key issues (such as how to determine
a trigger demand for introducing a new transit service or mode) should be fully examined and addressed. Another major research gap is
that the effect of uncertainty on rail transit investment has not been fully examined, to be elaborated below.

2.3. Rail transit investment under uncertainty

When the future demand growth is known with certainty over a planning period, the right timing for introducing a new mode (such
as rail transit) is when a critical demand threshold is reached. For example, Chen et al. (2015) derived a critical population density of
two transit modes by setting their corresponding benefits to be equal. As a deterministic demand growth function was given in Chen
et al. (2015), finding the right investment timing was simply determining when the demand reached the threshold. When population
growth was uncertain, Li et al. (2015) employed real options to determine the population trigger. Gao and Driouchi (2013) also studied
the rail transit investment problem while considering population uncertainty and the ambiguity attitudes (e.g., pessimism) of the
planning authority. Guo et al. (2018b) enhanced those two studies by considering the time-inconsistent preferences of the planning
authority with a quasi-hyperbolic discount function.
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A distinction of the above studies from Sun et al. (2017) is that they addressed the effect of demand uncertainty on a long-term
planning problem. However, the common shortcoming in those studies is that they oversimplified the evolution process of transit
modes. They essentially considered only two options or choices, such as bus-only at present and rail-only at a future time. Nonetheless,
as pointed out by Sun et al. (2017) and Sun et al. (2018), rail transit may expand gradually over time and may not extend to the city
boundary when the distribution of demand over space is not uniform. Specifically, the feeder-and-trunk service (rail combined with
bus) is advantageous over the rail-only service even in the long-term. Clearly, the existing studies on rail transit investment under
uncertainty should be improved by considering this important layout. In this case, an important decision on the rail line length in
various periods emerges. Additionally, uncertainty of demand in the rail transit investment literature is modelled with a GBM, which
cannot capture demand jumps or shocks caused by sudden events.

Although demand jumps have not been modeled in the rail transit investment literature, they have been considered in a few other
related infrastructure investment problems, to be reviewed next.

2.4. Applications of real option analysis to transportation project investments

Real options approaches have been widely used to study the investment in irreversible infrastructure projects, since the pioneering
work on investment under uncertainty by Dixit et al. (1994). Martins et al. (2015) provided a comprehensive survey of real options
studies in various infrastructure systems, such as power plants, hospitals, water supply systems and transportation infrastructures. We
will next review some representative real options analyses in non-rail transit investments.

Couto et al. (2015) considered a High-Speed Rail (HSR) project and derived the demand threshold for implementing the HSR
project. They did not consider any sizing decisions, such as how long the HSR line should be. Balliauw and Onghena (2020) optimized
the capacity investment decision of a private airport under demand uncertainty. They modeled the aircraft movements with a GBM and
selected profit maximization as the optimization objective, given the private nature of the considered airport. Table 1 presents a
comparison of some representative studies. We find that most existing studies considered the timing decision only, i.e., deciding when
a project should be implemented, while neglecting the sizing decision, e.g., optimizing the magnitude of an increment. In most cases, a
GBM was used to model demand or traffic uncertainty, which cannot incorporate the dramatic change caused by sudden events. In
addition, the major infrastructure improvements in practice may take years to complete, while the investment project was typically
assumed to be implemented instantly in the literature.

While other infrastructure investment studies are helpful, especially because they have offered useful insights into how realistic
demand uncertainty should be modelled, the transit mode evolution problem is distinct, as reviewed in Section 2.3. Instead of only two
scenarios, bus-only vs rail-only, there exists a hybrid of two options, namely the feeder-and-trunk service, which may dominate rail-
only services in the long run. The sizing decision is thus an indispensable part of the mode evolution optimization and becomes
inseparable from the investment timing decision. In addition, many existing studies modeled a rail line or highway segment as a single
point without considering the spatial distribution of demand and the impact on transportation facility operations. For instance, Couto
et al. (2015) studied the annual line-level demand for a high-speed rail without modeling any demand patterns at the station level. In
other words, the spatial structure of a rail line is reduced to a single node or atom. Conversely, it is essential to model a reasonably
realistic setting of transit demand distribution and service layout in the transit mode evolution problem.

In summary, the transit mode evolution literature should be advanced by systematically evaluating the impact of future uncer-
tainty, especially regarding rare but dramatic changes. We thus develop analytical optimization models extending Sun et al. (2017) by
modeling realistic demand uncertainty with a jump-diffusion process and jointly determining investment timing and sizing decisions.

3. Deterministic model
3.1. Model setup

Throughout this paper, we analyze a commuter corridor that stretches from the central business district (CBD) to the city boundary,

Table 1
Real options analyses for other transportation infrastructure investments.
Study Project type Objective function Source of Sizing Jumps/ Construction
uncertainty decision shocks time
Saphores and Boarnet A highway corridor Max. expected utilities of Urban population No No Yes
(2006) residents
Friesz et al. (2008) Transportation Max. expected net trip Trip cost No No No
network value
Galera and Solino (2010) A highway corridor Max. expected cash Traffic volume No No No
flows
Chow and Regan (2011a, Highway network Max. option value Travel demand No No No
2011b)
Couto et al. (2015) High-speed rail Max. expected project value  Annual demand No Yes No
transport
Balliauw and Onghena An airport roadway Max. profit Demand Yes No No
(2020)
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shown in Fig. 1. As assumed in other public transit studies (Li et al., 2015; Sun et al., 2017; Guo et al., 2018b), residents living in this
corridor travel to a common destination, i.e., CBD, for employment. The travel demand density g(x) at location x € (0, A] is given by a
linear function:

q(x) = Hfzxa @

where 0 represents the demand density at the CBD, and A is the distance between the CBD and city boundary, i.e., the corridor length.
As X determines how quickly the demand density at location x drops as x increases, the demand density diminishes to zero when x = A,

i.e., at the end of the corridor.

Fig. 1 shows the co-existence of two transit modes, namely rail and bus transit, each of which covers a portion of the corridor.
Specifically, the interval [0, L] is covered by rail and the remaining of the corridor [L, A] is served by bus transit. Residents located in
the bus service area first take bus and then transfer to rail through the transfer point located at L. Prior to the co-existence of rail and
bus, namely the feeder-and-trunk service (called interchangeably in this paper the “hybrid” service), the entirety of the commuter
corridor is covered by bus.

3.2. Cost functions

We start by defining the generalized travel cost function W(x) for a resident at x as follows:

Ot Shy fe, 0<x <L,
W oL Ly i Lex<A (
@ A A ) R ) B TJB> X = A.

If a resident lives between the CBD and transfer point, the generalized travel cost of commuting by rail consists of in-vehicle travel
cost ‘/’VLR’ waiting cost %y, and a fixed cost fg, which includes fare and access cost. ¢ is the value of in-vehicle time, e, is the value of
waiting time, Vg is the average travel speed of rail, and hg is headway of rail services. The subscript “R” represents rail. Residents
beyond the transfer point face additional waiting time. Similarly, Vp is the average travel speed of bus, hg is bus headway, and f is the
fixed cost for transferring passengers, which includes access and transfer costs. The subscript “B” represents bus.

The total user cost can be aggregated as follows:

C, = /W(x)q(x)dx. 3)

The operating cost is the hourly cost per vehicle (bus or train) multiplied by fleet size. The fleet size for each mode can be computed
as round-trip time divided by headway. The total operating cost is thus:

é A
. E
20
2R Demand Density
O C
o2 q(x)
(2]
@©
o
City
Boundary
CBD Transfer Point
? A
L ‘ A-L
0 Rail transit Bus transit Miles

Fig. 1. Illustration of the demand density function.
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_ 2, 2

C, =
P Vihg +V3h3

(A - L)> (4)

where b and bp are the hourly costs per train and per bus, respectively. by is a linear function of vehicle capacity (i.e., numbers of seats)
for rail:

br = ag + Prkg. 5)

Similarly, bp is written as follows:
bp = ag + Pgkg. 6)

In Egs. (5) and (6), «a is the fixed hourly cost, f is the marginal cost, and k is the vehicle capacity. The subscript indicates the mode
(“bus” B or “rail” R).

3.3. Static model for a single mode

Before rail is introduced and becomes operational, the corridor is served by bus transit entirely. A static model for optimizing bus
operations assuming time-invariant demand is presented as follows:

A

. X e, (ag + Pyks)A
Cp = —+—h dx +2——"——,

i, Co / (‘”VB+ > B+f3>ff<X> AT

0

7

s.t.

A
hg / (9 —gx) dx < kgép. 8)

0

where 8p is the allowable load factor for bus.

We seek to minimize the objective function Eq. (7), which is the sum of user cost and operating cost, also called the system cost in
this paper, because both users and the supplier (or operator) are considered. There are two decision variables, namely bus headway hp
and bus capacity kg, both of which should be positive. The bus capacity constraint Eq. (8) is binding at optimality, because any
additional bus capacity beyond what is sufficient to cover the travel demand accumulated during one headway would unnecessarily
worsen the objective function and thus should be avoided in the first place.

After solving the static problem Egs. (7) and (8) analytically in Appendix A, we write the bus system cost Cg as a simple function of 6
of the following form:

CB :€10+€20%, (9)
where e; = (& + 5:—{’,}9) A? +%“A, and ey = %L:WA. Note that both e; and e, depend on known parameters, e.g., bus travel speed and

operating costs, rather than demand density 6.
3.4. Static model for hybrid modes (feeder-and-trunk)

When a rail transit line partially covers the corridor, residents beyond the transfer point make multimodal transit trips. We thus
formulate another static optimization model when rail and bus jointly serve the residents. The optimization objective Eq. (10) now
includes the total user cost for non-transferring riders (rail only) and transferring riders (bus + rail, or hybrid), as well as the total cost
of operating trains and buses. Decision variables include train and bus headways (hgr and hg) as well as capacities (kg and kg). As in the
static problem for a single mode, there are vehicle capacity constraints Eqgs. (11) and (12), for rail and bus, respectively. The complete
formulation is presented as follows:

L A
. x e : x—L LY e, e, X 2(ag + frkr)
- X oy, d Y ) o S dx + D\ORTPRRR)
{hR.hﬂE}po} Cpir /((/J VR+ 2 R+fR>Q(x) XJF/((/’( Vi +VR> + 2 R+ > B+.f8>q(x) x + Vel
0 L

2(ap + Pgks)

AL (10)

s.t.

A
0
hR/<€—Xx>dx < kgog, an
0
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A
hg/(67§x>dx§k353. 12)
L

In Eq. (11), 8g is the maximum load factor for rail. Note that in this setting, rail and bus operations are independent and unco-
ordinated, i.e., they can have different headways (Sun et al., 2017).
We analytically solve the static problem Egs. (10)-(12) in Appendix B and re-write the objective Eq. (10) as:

min Cypip = e3 0+ es0?, (13)

{A>L>0}

1\(2 1 @l (ALY | frAL | fp(A-L) /zw 2ewas(A-L)°
whereeg_q)L(BVR)(SAz( )>+6VB+fR<L>+f + ¥t €$BVBA,ande4 eaR a‘B/BA

In Appendix C, we further derive the second-order derivatives and prove the convexity of Eq. (10) in hg and hg.
The objective function Eq. (10) has been simplified as a simple function of 6, namely Eq. (13), which consists of a linear term e3f and
a square root term e4\/d. The largest exponent in Eq. (13) is only 1, which is expected. This is because the generalized travel cost

function W(x) is a quadratic function of /4, and the demand density function q(x) is linear in 6. The aggregated user cost only has a

linear term and a square root term. Similarly, the supply cost has only linear and square root terms.

As in other microeconomic models for public transit operations, some simplifications are made in this paper mainly to preserve
analytical tractability. For instance, a few notable differences between rail and bus transit, such as service reliability (van Oort, 2014;
van Oort, 2016), in-vehicle crowding, and level of comfort, should be considered in determining an appropriate transit mode, but these
are not yet incorporated in the current static models, because otherwise the resulting models become analytically intractable. If
analytical tractability is no longer pursued, additional operational details and complex network structures can be considered, which
will yield numerical relations between the total system cost and transit demand.

3.5. Deterministic dynamic model

In a dynamic setting, the demand density at the CBD at time ¢ is given by:

0, = 909'”- a4

where 6y is the demand density when ¢t = 0 and n is the demand growth rate.
If only bus transit is available over the whole planning horizon [0, +o0], the cumulative system cost is computed as the integral of
the discounted system cost over time, as follows:

Ty = / N,Cy(0,)e Mdt. (15)

Here N, is the number of equivalent operating hours per year. k is the discount factor in exponential discounting, which is a very
commonly used discount function in decision-making over continuous time. Although an infinite planning horizon [0, +co] is assumed,
by varying the discount factor k, the infinite horizon technically reduces to a finite one, as e is virtually zero when t is sufficiently
large.

Next, we analyze the scenario where rail transit is introduced at time T and becomes operational after a known construction period
A. Before T + A, there is bus service only; after T + A, rail and bus transit jointly serve the corridor. The cumulative system cost is
expressed as follows:

T+A +o00
Tyir(z, L) = / N,Cy(0,)e ™M dr + / N,Cyz(0,)e ™ dt + (Ko + KiL)e ™. (16)
0 T+A

Cp + r(0)) is the total system cost for the hybrid operations after rail transit becomes operational, namely after t + A. Ky + KjL is the
capital cost of rail transit, which depends on rail length L. K is the fixed capital cost of rail, and K; is the marginal capital cost per mile.
When demand grows in a deterministic manner, a deterministic dynamic problem is thus described as follows. We need to decide
whether to introduce rail transit to the commuter corridor. If so, when should the rail line be constructed and how long should it be?
This is the so-called investment timing and length choice problem. The optimization objective is to minimize the minimum of T and
Tg . r(t, L). Tg does not depend on any decision variables, while T , r(t, L) depends on the investment timing t and rail length L.

Formally, this optimization problem is written as follows:
min _min {Tg, Tg (7, L)}. 17)

{z, L>0}

For any given demand growth over the planning horizon, T can be computed easily because it is a constant. Considering this, we can
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first minimize Tp . r(t, L) by optimizing two decision variables t and L, which can be done numerically. Once the optimal value of Tp
r(T, L) is obtained, it can be compared with the constant T to find the optimal planning decision regarding rail investments.

The essence of the investment timing and length choice problem lies in the tradeoff between the capital investment for constructing
arail line and the system cost savings (operating and user cost savings) brought by hybrid operations compared to bus operations only.
The rail capital cost, and hence the system cost savings, depend on the investment timing as well as the rail length.

4. Stochastic model
4.1. Demand uncertainty modeling

Conventionally, a continuous-time random process, such as geometric Brownian motion (GBM), is employed to model uncertain
demand variations due to evolving macroeconomic factors or automobile ownership, among other possible factors. Unfortunately,
such a process is unable to incorporate sudden and extreme changes in demand, also known as jumps, such as a drastic change caused
by a terrorist attack, global financial crisis, or public health crisis. For example, Fig. 2 shows how the bus and subway ridership
plummeted as the COVID-19 pandemic hit New York City (NYC), according to the New York’s Open Data Portal (NY Open Data, 2022).
Such rare events causing sudden disruptions to demand should by no means be neglected and unfortunately, cannot be modeled with
GBM. Instead, they can be modeled with a discrete counting process, namely Poisson process. In an extended planning horizon, such as
30 or 50 years, the number of jumps follows a Poisson process. The magnitude of a jump, upward or downward, can be a constant or
follow a different distribution. Therefore, in this paper, we use a diffusion-jump process, which is a combination of GBM and Poisson
process to realistically model demand evolution.

The jump-diffusion process under consideration is given by the following stochastic differential equation:

do, N
5 = Ndt + odw(?) +d» U (18)
) :

i=1

Here, 1 is the demand growth rate as defined in Section 3.5 (also called drift rate), dt is an infinitesimal time increment, and o is the
volatility rate. The drift rate n captures the expected demand change while the volatility rate models the extent to which demand
randomly changes. dw(t) is an increment of a standard Wiener process (diffusion, which is also called Brownian motion). By definition,
dw(t) = e/t, where ¢, is a random variable that follows the standard normal distribution with a mean of 0 and a standard deviation of
1. In the jump component d Zfﬁ 1 Ui, Nt follows a Poisson process with intensity A, which should be relatively small. U; is the jump size
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Fig. 2. Public transit demand during the COVID-19 pandemic in New York City.
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(percentage change, e.g., a 10% decrease) for the ith jump, i=1, 2, ---, N, which is independent of GBM. U; can be a constant or random
variable, which will be discussed further in Section 4.5. Thus, the jump component in Eq. (18), i.e., dZ?gl U;, becomes U; if a jump
occurs, with probability Adt; dEfil U; is 0, otherwise, with probability (1 — Adt).

Eq. (18) indicates that over a small interval dt, if a jump does not occur, the jump-diffusion process reduces to GBM; otherwise, one
or a few jumps occur.

As shown in Appendix D, the jump-diffusion differential equation, namely Eq. (18), has an analytical solution, as follows:

<r/—%> t+ow(t) Ni
0, = Oye [Ta+w. (19)

i=1

09 is the demand density at the CBD when time is 0; N; represents the total number of jumps occurred until time t.
Given Eq. (19), the expectation of ¢/ for any given value of t, where y is a positive real number, can be derived as Eq. (20) as shown
in Appendix E.

[yw%m—1>+A<E{<1+u>*]—1)] ‘
. (20)

E[0/] = e
U is a random variable that has the same distribution as Ui = 1, 2, ---. It is clear that all parameters n, 6, and A in Eq. (18) affect the
expectation of 6. Eq. (20) will be used later in Section 4.3.

4.2. Parameter estimation for a stochastic process

It is worth noting that researchers have developed various methods for estimating the parameters for the stochastic process
considered in this paper. For instance, Croghan et al. (2017) estimated the drift and volatility rate for a GBM using historical oil price
data and assessed how well the oil price fit the GBM. Ramezani and Zeng (2007) employed maximum likelihood estimation to estimate
a jump-diffusion model and compared its fitness with other stochastic processes, such as GBM, with daily data on stock returns. Yu
(2007) also presented closed-form likelihood approximations for a jump-diffusion process. Therefore, similar approaches can be
employed to derive key parameters from empirical transit demand data, which is beyond the scope of this paper.

4.3. Optimization objective formulation

Depending on whether rail transit is introduced at a future time, we consider two scenarios: not built (Scenario 0) and built
(Scenario 1). For any given demand 6, the cost difference between Scenario 0 and Scenario 1, is simply the difference between Cp(6,)
and Cg , r(6,), both of which depend on 6;. As 6, is stochastic, we seek to maximize the expectation of the cumulative cost difference over
the planning horizon, namely to maximize E[T5(0;) — T ; r(6;)] or minimize E[Tp | r(6,)], because E[Tg(0,)] is a constant. Although
there are two decision variables, we next focus on how to optimize the investment timing 7, while keeping the rail length choice L fixed
at L.

Noting the definitions of Tz and T ; g in Eqgs. (15) and (16), respectively, we write the expected cumulative cost difference F(z,L)
as:

+00 T+A +o0
F(r,L) =E / N,Cp(0,)e ™ dt — (Ko + K L)e ™ — / N, Cp(0,)e ™ dt — / N,Cp.r(0)e ™ dt |, 1)
0 0 T+A
By further noting Egs. (9) and (13), we rewrite Eq. (21) as:
[ 4o
1
F(r,L) =E / <a,9? +a20,> eMar| — (Ky+KLe™, (22)

Lz+A

wherea; = Nj(ez — e4), anday = Ny(e1 — e3). e1 to e4 have been specified in Section 3.
It is quite clear that F(z,L) is the expected value of the cumulative system cost savings minus rail capital cost.
By noting that the rail capital cost is a one-time investment, to transform the cumulative cost difference F(z,L) into an integral, we
re-write the one-time cost as an integral:
+00
(Ko + K L)e ™2 — (Ky 4 K, L)e* / —de ™, (23)

T+A

Then, after defining op = — (Ko + KlL)ke_kA, Eq. (22) isrearranged as an integration of a discounted cost function from t + A to the end
of the planning horizon:
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+oo
F(r,L) =E [ / ( @+, 6 +a201> ek’dt:| . 24

T+A

The lower limit of the integral in Eq. (24) can be changed to 7, i.e., the investment timing, by defining another the variable of inte-
gration s = t — A. Finally, Eq. (24) is written as:

+o00
F(T7 Z) =E |: / < [e0) +a19§+A +a293+A)€k(S+A)dS:| (25)

4.4. Demand threshold and optimal timing

For the given optimization objective function Eq. (25), we seek to find a demand threshold at a time (called optimal investment
timing) that maximizes F(z,L), for any fixed rail length L. Formally, we let 0* be the optimal trigger value at which rail construction
starts. The optimal investment timing is thus T = min{t: 6; > 6*}. In other words, we launch the rail construction project when demand
density reaches 0* for the first time. The optimization objective Eq. (25) becomes:

+o0
1
F(H*) = / E()« |:(I4) + (l|9§+A + (lzgﬁ,A eik(SJrA)dS (26)
0

in which the conditional expectation E, (-] indicates that 0y = 0*. According to Eq. (20), by letting y = j/2, 6p = 6* in Eq. (20), we
obtain:

E, [ ZA} =g, @7)

where coefficient w; = 5n+§%(§ - 1) +A(E{(1 + U)Z} - 1), j=1,2

Thus, Eq. (26) can be further rewritten as:

+00
F(0") = / [ala*%e(ml—k)(.ﬁrA) T eIt +a0e”‘("”>]ds. (28)
0

We simplify Eq. (28) as:

F(07) = Iy + 1,6 + 1o, (29)

5 (w5-k)a . . . . . . . . . .
after defining [y = %e 2 and [, = %, j = 1,2.Let V(0) denote the option function of investing in rail transit. Following the classic
7

theory of optimal stopping (Chow et al., 1971), we let {6 > 0: V(0) = F(6)} be the set where it is optimal to invest in rail transit, also
called stopping region; let {6 > 0: V(6) > F(0)} be the set where it is not optimal to invest, also called continuation region.
Then, before investment, the Bellman equation (Dixit et al., 1994) is given by:

kV(6(t))dt = E,[dV(0(1))], (30)
which suggests that the total return of an investment kV(6(t))dt equals the expected rate of capital appreciation (an increase in the
project value) over a small interval dt.

Applying Ito’s lemma, V satisfies the following ordinary differential equation:

1 y ,

50292V (0) +novV(0) +AE[V((1+U)0)—V(6)] —kV(0) =0. 31)
Noting that Eq. (31) is a Cauchy-Euler equation, we know that the solution of Eq. (31) is as follows:

V(9) = a(0)", (32)
where a; and b; are positive constants to be determined. Constant b; satisfies the non-linear equation: ¢(b;) = 0, where

plbr) =30 (b~ 1)+ b+ E[(1+ 0)"] — (1+K). (33)

Note that ¢(1) =1 + AE[U] — k and blim @(b1) = 0. If
100

10
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n+AE[U] <k, (34)

then there exists by > 1 such that ¢(b;) = 0.
Constant a; is determined by using the boundary conditions, namely the value-matching and smooth-pasting conditions:

V(0") = F(6"), (35)

V(6) = F (). (36)

The value-matching condition Eq. (35) states when the demand trigger 0% is reached, the value of the investment opportunity V(6*)
is the same as the net present value of the project F(6*). The smooth-pasting condition Eq. (36) ensures the option function V( - ) is
maximized.

Then, the following conditions are satisfied:

@0 =1y +1, 0% + Lo, (37)

by -1

1
ab0” " =13 0+, (38)

By comparing Egs. (37) and (38), we can obtain the analytical solution of the optimal demand density threshold from the following
equation:

a = (Z(, 1, 0% +129*)9**b‘ (39)

Finally, the optimal demand density at CBD at time tis:

B(1 = 260) + /(1 (261 — 1)* — 16lababy (b1 — 1)

0% =
4l (b, — 1)

. (40)

For each fixed rail length L, we can follow the above procedure to find the analytical solution of the trigger value 8*. We can then
conduct a numerical search on a given interval for L to find the optimal rail length, because finding an analytical solution of L is
challenging given the complexity of Eq. (25).

4.5. Alternative demand jump processes

In Section 4.1, we stated the jump magnitude (percentage change) U as either a constant or a random variable; in Section 4.4, we
did not further specify its type of distribution, because the demand trigger can be derived similarly. Next, we analyze the results under

Table 3
Values of some parameters under different jump processes.
Scenario (a): No jumps L 1 o2
(—;7 - k) A
. aje 2 8
(%)
2 8
I, b = azel—ka
2 = k —n
by

%azbl(bl SV 4gpi—k—0

Scenario (b): Constant jumps L 1 2 1
n—-—+A(1+U)2-1)-k)A
ale(z” 8" (1+v2-1) )

L .
k- (%n7§+4((1+w571)>

12 aze('HZU*kJA
2T k—(+aU)
by %n’zbl(bl S Db+ 14U — (k) =0
Scenario (c¢): Stochastic jumps L 1 o2 h E[U] E[U]2 E[U]3 SE[U]" 7E[U° A
wel2! T E (T’ 8§ 16 128 ' 256 7)
1
L=
1 o E[U] E[U? EU? sEU* 7EUP
k= (5'7_§+’1(T_ 8 "716 128 256 ))
1y apelHHEU-k)A
> T k—(n+E[0))
b 1 E[UT? E[U?
! Eazbl(b1 — 1)+ by +/1(1 + biE[U] + BT 1(by — 1) + %bl(bl —1)(by —2) + ) —(A+k =0

11



Q. Guo et al. Transportation Research Part B 175 (2023) 102800

each of three scenarios for U.

Note that a jump may occur in either direction, namely upward (positive U) or downward (negative U). In Scenario (a), we set U =
0, meaning no jumps are considered. Scenario (a) can also be achieved by setting the intensity of the Poisson process to be zero, namely
A= 0. In Scenario (b), the magnitude of each jump is the same constant, such as a 10% drop. In Scenario (c), the magnitude of the jump
U follows an exponential distribution, whose probability density function is as follows:

ge ¥ x>0,

flxig) = { 0r 0. 1)

where g is the rate parameter for the exponential distribution with 1/g denoting the expected magnitude of each jump. For example,
when g = 10, the expected value of U is 10%.

Eq. (40) applies in each scenario, while determinations of parameters [, Iy, and b; differ across different scenarios. Specifically,
Table 3 shows the values of [, I, and by under each scenario.

5. Model applications
5.1. Numerical inputs

We next conduct extensive numerical studies to demonstrate the usefulness of the analytical methods and highlight some important
insights into rail transit investment timing and sizing decisions. Unless stated explicitly otherwise, the input parameters and baseline
values in Table 2 are adopted largely from Sun et al. (2017) and Guo et al. (2018b). Other values of some key parameters are used in
sensitivity analyses in Section 5.4.

5.2. Deterministic analyses

We evaluate the operating advantage of the hybrid service over bus only. It is understandable that as demand density increases, the
hybrid service become advantageous as evidenced by a lower system cost per hour; however, this relative advantage depends on the
configuration of the hybrid service, specifically the length of the rail line. We first consider an efficient hybrid configuration in which
the rail length is 35 miles. As shown in Fig. 3, when demand density is relatively low, e.g., 0 is slightly below 10 pax/hr./mi., bus-only
has a smaller hourly system cost; when 6 > 10 pax/hr./mi. for example, the hourly system cost of the hybrid service is lower than that
of bus-only, namely Cp ; p < Cp when L = 35 mi. This finding does not hold when the rail length is quite limited, such as L = 2 mi.,
regardless of demand density 6. In other words, when L = 2 mi., the hybrid service is always inferior to bus only.

Fig. 4 further shows the system cost breakdown for bus-only and hybrid services. Clearly, bus-only is less advantageous mainly
because its operating cost increases more quickly as demand density increases, even though the user cost is higher under hybrid than
under bus-only operations. In this case, the configuration of the hybrid service is said to be “efficient” in the sense that it can dominate
bus-only operations. Fig. 5 shows that when rail length is limited, the configuration becomes “inefficient”, because the operating cost
under hybrid operations is on par with that of bus-only while its users’ cost is higher. Under hybrid services, residents living beyond the
transfer point must change from bus to rail; the additional waiting for trains at the transfer point explains why the users’ cost is higher
than in bus-only operations where no transfers are needed. It should also be noted that rail and bus have quite different operating cost

Table 2
Baseline values.
Notation Definitions Baseline values Unit
A Corridor length 50 mi.
@ Value of in-vehicle travel time 10 $/hr.
e Value of waiting time 40 $/hr.
6o CBD demand density at time 0 15 pax/hr./mi.
Vr Rail average travel speed 40 mph
Vg Bus average travel speed 30 mph
R Rail fixed hourly cost 1000 $/hr.
ap Bus fixed hourly cost 120 $/hr.
Br Rail variable hourly cost 3.0 $/hr./seat
Bs Bus variable hourly cost 6.0 $/hr./seat
Sr Rail maximum load factor 1.2 -
Sp Bus maximum load factor 1.1 -
fr Fixed user cost — Rail riders 1.0 $
fs Fixed user cost — Bus riders 1.0 $
N, Operation hours per year 3600 -
Ko Fixed capital cost of rail 100 Million $
Ki Marginal capital cost of rail 1.0 Million $/mi.
k Annual discount rate 0.05 -
n Annual demand growth rate 0.01 -
A Number of years of construction 5.0 yrs.

12
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parameters, such as fixed and variable operating costs, which also contribute to the cost difference between bus-only and hybrid
services.

We next show the optimal solutions to the deterministic dynamic problem defined in Section 3.5. The initial demand density at the
CBD 6, demand growth rate n, as well as other parameters are specified in Table 2. Fig. 6 shows how the cumulative cost of the hybrid
service Tp ; g(t, L) varies with the investment timing t and rail length L. The optimal solutions, namely t* = 18 and L* = 27, are also
highlighted in Fig. 7. It is worth noting that the cumulative cost of the hybrid operations, i.e., optimization objective, is relatively flat
around the optimum, especially along the axis for investment timing. This implies that although an optimum investment timing exists,
the objective is not very sensitive to an investment timing change as long as the deviation from the optimum timing is not substantial.

Fig. 7 shows the annualized system cost for each investment scenario (no built: bus only throughout the planning horizon, and built:
rail introduced in Year 18), along with the one-time rail investment cost when rail construction starts. All costs shown in Fig. 7 are not
yet discounted. Before Year 23 when rail becomes operational, the annualized system cost N,Cp is the same for both scenarios; after
Year 23 (i.e., 18+-5), the operating advantage of the hybrid service becomes evident, as N,Cp 1 r < NpCp. If we kept the optimal L* but
change the optimal timing to 0, we would have observed a different system cost curve for the hybrid service from time 0 to Year 23, as
represented by a dashed curve labeled “Hybrid - annualized system (virtual).” Clearly, even at the beginning of the planning horizon,
namely at time 0, operating hybrid services saves money, namely N,Cp , r < N,Cp. However, the rail construction does not start until
Year 18. This is because of the important trade-off between the operating savings due to the introduction of rail and the one-time
capital cost of rail construction, to be elaborated next.

Fig. 8 plots the cumulative cost saving T — T + r(7, L) at each possible investment timing. Clearly, if the rail investment occurs at
time 0 and the rail length is optimizable, a positive cost saving is observed immediately, namely Tg > Tp ; gr(t, L). However, Tg — Tp
r(t, L) reaches the maximum much later, at t* = 18. This occurs because when the decrease in the rail capital cost accounting for future
cost discounting exceeds the decrease in the cumulative system cost saving, investment should be postponed. When the rail investment
is delayed on purpose, Tg — Tp  r(t, L) can become negative, which means investing in rail is no longer worthwhile. This occurs
because although the rail capital cost is discounted more heavily, the opportunity to take advantage of the operating savings due to the
introduction of rail also dramatically diminishes. In this case, introducing rail cannot yield a net cost saving. In other words, a rail line
can no longer be justified.

Those above results are important because they directly refute the misconception that rail should be introduced immediately after
hybrid services become more operationally advantageous to bus only (namely Cp . g < Cp) or the net cumulative cost saving becomes
positive (namely Tp  gr(7, L) < Tp). Note that in a related study Chen et al. (2015), it was assumed that as long as positive cost savings
are expected, a new transit mode should be introduced. This limited assumption neglected the possibility that postponing a project may
possibly yield more savings or a higher NPV. To summarize, investing when a project generates a positive cash flow or results in an
overall cost saving over the planning horizon is not necessarily optimal.

Therefore, the trade-off between system cost savings and rail investment must be fully examined when the investment timing
decision is made. As rail length affects the rail capital cost and largely determines the operational advantage of hybrid services, a
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Fig. 3. Hourly system cost comparisons.
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similar trade-off analysis should be made. The above analyses thus indicate that the rail transit investment timing and length choice
problem is nontrivial even when demand uncertainty is not considered.

We next explore the impact of the rail capital cost parameters on various cumulative costs, namely Tg, Tk, and Tj ; r(t, L), where Ty
represents the cumulative cost if rail transit covers the entire corridor throughout the planning horizon. Clearly, regardless of the fixed

14



Q. Guo et al.

Transportation Research Part B 175 (2023) 102800

40

35

Rail length (miles)

-
]

-
o

0 1 1
5 10 15 20 25 30 35 40 45
Investment timing (years)

Fig. 6. Cumulative cost of hybrid operations as a function of investment timing and sizing.

7
x10
131
Bus only - annualized system
Hybrid - annualized system (actual)
12 . . .
----- Hybrid - annualized system (virtual)
—A—— Rail capital cost (one-time)
(B o R B Construction starts

Construction ends

Costs ($/year)

0 20 40 60 80 100
Time (years)
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capital cost parameter K, having rail serve the entire corridor from time 0 is not a good decision, because its cumulative cost T is the
highest, as shown in Fig. 9. T grows at the same rate as Ko as expected, because all the capital cost is assumed to occur at time 0. The
hourly or annualized system cost of rail-only operations does not rely on K. T does not vary with Ky, because bus-only operations do
not involve any rail investment. We can observe from Fig. 9 that as Ky increases, the gap between Tp ; r(t, L) and Tp approaches zero,
after which Tg  r(t, L) exceeds T, which means when the fixed capital cost of rail becomes overly large, the hybrid service will not be
introduced. Similarly, Fig. 10 shows that as the variable capital cost of rail K; increases from 2 to 12 million while keeping K at 10
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million, the advantage of hybrid over bus-only gradually diminishes.

In the above analyses, the baseline value of in-vehicle travel time ¢ is fixed at $10 per hour. We now consider a time-varying ¢, =
@e't, where 7 is the growth rate for the value of time. Fig. 11 shows how the optimal investment timing and rail length vary with the
growth rate. Specifically, as 7 increases, the rail line should be introduced earlier, and it should be longer.
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5.3. Stochastic analyses

We next consider uncertain future demand with a volatility rate ¢ = 0.1. The second jump process, namely Scenario (b) defined in
Section 4.4, is considered, with a constant magnitude for each downward jump, i.e., U; = 10%, i = 1, ..., N;. The intensity of the
underlying Poisson process is A = 0.1. The values of all other parameters are the same as those in Section 5.2. For instance, at time 0, the
demand density is fixed at 6o = 15 pax/hr./mi.

Following the approach presented in Section 4.4 and fixing the rail length at L = 20, we can analytically derive the optimal demand
density threshold from the value-matching and smooth-pasting conditions Egs. (35) and (36), as shown in Fig. 12. As defined in
Section 4.4, when demand density is below the demand density threshold, i.e., in the continuation region, the best strategy is to defer
the investment. Otherwise, investment should be implemented when demand density reaches the stopping region. As a comparison, we
reduce the magnitude of a jump to zero, namely U; = 0, which means no demand jumps are considered. Consequentially, the derived
demand density threshold decreases from 21.1 pax/hr./mi. to 18.5 pax/hr./mi., representing a premature investment timing if
downward demand jumps are neglected.

We next show in Fig. 13 how the expectation of the cumulative cost difference, defined in Eq. (25), can be maximized by varying the
rail length. As we can find the optimal demand density threshold and the resulting optimization objective for each given rail length, we
can numerically find the optimal rail length (i.e., 27 mi.) that maximizes the expected cumulative cost difference, and the corre-
sponding optimal demand density threshold (i.e., 20.3 pax/hr./mi.). Fig. 14 shows how the optimal demand density threshold 0*
depends on the rail length L. Their interrelations can be described as follows: (1) when the rail length is insufficient (e.g., less than 2
mi.), 6% is very large, implying a delayed investment timing, due to the inefficient hybrid service layout; (2) when the rail length is
excessive (close to the corridor length, e.g., 48 mi.), 6% is also considerably large, because a substantial rail investment cost should be
justified only by sufficiently high demand density; (3) when the rail configuration is efficient, determined by an appropriate rail length,
0* is relatively small, meaning that such an efficient hybrid service layout should be introduced relatively early.

5.4. Sensitivity analyses

We next conduct sensitivity analyses of a few key parameters while keeping the same type of demand jump process as in Section
5.3, namely constant jumps. Fig. 14 shows that as volatility rate ¢ increases, both the optimal demand density threshold 6* and rail
length L* increase. The policy implication is that increasing demand uncertainty favors a later investment timing and a larger in-
vestment size. However, when the volatility rate is fixed, we find that downward demand jumps have different impacts on those
decisions. Specifically, Fig. 14 shows that downward jumps lead to an increased demand threshold but a decreased rail length in
comparison with no jumps (dashed lines in Fig. 14).

Fig. 15 shows that as the demand growth rate ) grows, the demand threshold decreases while the rail length increases. The different
impacts of downward demand jumps on the two decisions are observed again. Without jumps, the demand threshold is lower while the
rail line is longer.

Fig. 16 shows the effects of construction period A and annual discount rate k on the two decision variables. For a given construction
period, as the discount rate increases, the demand threshold increases. For a fixed discount rate, as the construction duration increases,
the demand threshold decreases. Unlike the investment timing, the investment size (rail length) is not very sensitive to the construction
period. As the construction period varies from 3 to 7, the variation in the optimal rail length stays within 0.3 miles, which is very
limited. The optimal rail length is indeed sensitive to the annual discount rate.

It is interesting to observe in Fig. 17 that as the jump magnitude, the demand threshold monotonically increases, while the rail
length first decreases and then increases.

5.5. Effect of the jump process

We finally consider the last jump process, namely Scenario (c) where the magnitude of a jump follows an exponential distribution.
We set the rate parameter for the exponential distribution to be 10, which implies the expected jump magnitude Uis 0.1. Fig. 18 shows
how the optimal demand threshold and rail length vary with the intensity of the underlying Poisson process. As the intensity A grows,
the optimal demand threshold increases while the optimal rail length decreases. Compared with constant jumps, the demand density
threshold is higher, and the rail length is also higher under exponential jumps.

6. Conclusions

Analytical models are presented for simultaneously determining when a rail transit line should be constructed and how long it
should be, with a realistic formulation for long-term demand evolutions, namely a jump-diffusion process consisting of a standard
geometric Brownian motion and a jump component driven by a Poisson process. We seek to maximize the expected cumulative cost
difference between operating buses throughout and introducing rail services at a certain future time in a commuter corridor. Analytical
solutions for the investment timing under uncertainty have been derived under various scenarios for the jump process.

When demand uncertainty is neglected, we refute a major misconception. Contrary to the common wisdom in the transit infra-
structure planning literature (Chen et al., 2015), we find that even when demand is assumed to be deterministic it is not necessarily
optimal to implement an investment project immediately when a positive cash flow occurs or a cumulative cost saving over the entire
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Fig. 11. Effect of time-varying value of time on planning decisions.

planning horizon is expected. Note that in a deterministic study, Chen et al. (2015) concluded that as long as a certain demand
threshold is reached leading to an indifference between two transit modes, the new transit mode should be implemented, which is
suboptimal. Li et al. (2015) also described a cost benefit analysis based on the net present value. It was stated that a new transit mode
should be introduced if and only if the net improvement in the project value (measured by social welfare) becomes positive, which is
also suboptimal even under the deterministic setting.

Several other important findings are derived through extensive numerical studies considering demand uncertainty, as follows:
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(1) Under demand uncertainty, two decisions (investment timing and sizing) are interrelated due to the complex tradeoff of capital
investments and operational savings: depending on the range, as the rail length grows, the optimal demand threshold may
increase or decrease.

(2) While the demand threshold clearly varies with values of important parameters, such as construction period and discount rate,
the optimal rail length can be relatively insensitive to similar changes, such as the infrastructure construction time.

(3) Both the demand threshold and rail length increase as the demand volatility increases.
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(4) As the value of time grows in the future, the optimum rail length should be longer, and the investment timing should be earlier.
(5) When downward demand jumps are considered, a larger demand threshold for investment is derived, implying a delayed in-

vestment timing. In contrast, the optimal rail length decreases rather than increases.

In this study, we focus on the mobility benefits brought by rail transit, such as increased travel speed, while neglecting other
benefits of investments in rail transit. For instance, Litman (2007) indicated that good rail transit projects can stimulate compact urban
development, reduce car-dependency, and promote environmental sustainability. Further including such benefits may favor earlier
rail investments. In addition, we focus on the development of a single line, while a transit line may be connected to other lines. In such a
case, the length of a line may depend on the structure and scale of the rest of the network. A much more complex method would then be

needed.

Although some new insights and important findings are achieved with the proposed analytical models, we can strengthen the
current methods and enhance the relevant analyses as follows:
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i Only a single source of uncertainty, namely demand density, is considered in the current analysis. Additional sources of uncer-
tainty, such as uncertain capital cost parameters, uncertain construction periods, budgets and riders’ value of time, should be

considered.

ii Asthe public transit planning authority is implicitly assumed to be risk-neutral, in a future study a mean-variance formulation (Sun
and Schonfeld, 2016) can be developed incorporating certain risk metrics.
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Appendix A. Analytical Solution of Static Problem Egs. (7) and (8)

The optimal headway hj; can be found by setting the first-order partial derivative of Cg with respect to headway hgto be zero, which
is:

26{3
= 21 / . Al
g Ve, 0 (AD)

Because of the binding vehicle capacity constraint Eq. (8), the optimal vehicle capacity k; can be found:

1 [2az0A?
k= — . A2
B 5 \/VBT (A2)

Substituting the optimal headway h;, and vehicle capacity k;, into the optimization function Eq. (7) yields:

2ap0A2
A 2ap s +ﬁ3$ Viey
n C X +ewz vgenoJrf 0 0 de+ (A3)
min = —_—t ——x |dx .
{hg, kg>0} b ¢ Vi 2 8 A Vi 2ap

0 Vpew 6

Eq. (A3) can be rearranged as Eq. (9).
Appendix B. Analytical Solution of Static Problem Egs. (10)-(12)

To find the optimal headways, we set the first-order partial derivatives of the objective Eq. (10) with respect to hg and hp to be zero,
as follows:
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L A
0Cp.p ey 0 e, 0 2Lag
Wii/ Hfgx dx+?/ Hfgx dX7VRh%e707 (B1)
0 L
ac e 2A-1L)
B+R _ €w — L)ap
== 0—— - =0. B2
ohy 2 /( Ax>dx Vil 0 (B2)
L

(B3)

(A= L)ag

_— (B4)
VgeweeA - L+ ng)

hy =2

After substituting Eqgs. (B3) and B4) into the vehicle capacity constraints Eqs. (11) and ((12), we obtain the optimal vehicle ca-
pacities for bus and train as follows:

1 2LaRc9A
kp=—14/ B5
R 5R VRen ( )

, | —L)age(%A—LJr%)
k= .
B o Vge,,

(B6)

Since the closed-form solutions for headways and vehicle capacities are available, they can be inserted into the objective Eq. (10),
which becomes a function of rail length L and demand density 0, expressed as follows:

L A
. X 2e,Lag x—L L ZenLaR ey(A— L),
Corr = d = \/ )d
(A1) PR /("’ Ve T\ Veoa +fk>q(x) x+/ "’( Vs +VR) TV Ve \/ "o g
0 L

_ 14 _ L2
OAe, Loy , proAL (L \/g e, (A —Lyay , 28,0(A — L) (ZA L+ 2A> -
2Vi Vibr 2 Vi 63Va ’

V2A

The seemingly complex objective Eq. (B7) can be simplified as Eq. (13).

Appendix C. Convexity proof

Here we prove the Hessian matrix of Eq. (10) is positive definite, which further means Eq. (10) is convex in hg and hg. Any local
minimum of Eq. (10) is guaranteed to be a global minimum.

Given the first-order derivatives in Egs. (B1) and (B2), we derive the second-order partial derivatives of Cg , g with respect to hg and
hg as follows:

02 CE+R o 4LaR

- 1
I Ve €D
O Cpir _ 0 (C2)
Ohgohy
PCpir _ 0 (€3
Ohyohy
0°Crix  4(A—L)ag ()

oy Vgh

The Hessian matrix is then written as follows:

23



Q. Guo et al. Transportation Research Part B 175 (2023) 102800

4(A - Lyay

2%

A2Cpg(hg, hg) = Vil (C5)
B+R\I'R,"B) — 4LaR .

Vih3

Its determinant is always positive, as hg > 0, hg > 0, and A > L.

16(A — L)Latge,

AT > 0. (ce6)

Note that in the feeder-and-trunk service, rail cannot cover the entirety of the corridor, namely L is strictly less than A. Otherwise, it is
the rail-only service, which should be separately analyzed.
Therefore, the Hessian matrix has been proved to be positive definite.

Appendix D. Analytical Solution of Stochastic Demand Density
According to Oksendal and Sulem (2005), Eq. (18) can be rewritten as the following Levy process:

do,
7’ = ndt + odw(t) + UdN(1). (D1)

t

In Eq. (D1), U has the same distribution as U;. UdN(t) denotes a possible jump at time t. In other words, UdN(t) = deﬁl Ui.
By Ito’s formula (Oksendal and Sulem, 2005), we obtain:

1

dlng, — % i+ ()] — 5
t

0*6*0%dt + [In(0, + 0,U) — In(6,))dN(z). (D2)
Eq. (D2) can be further rearranged as:

dIng, = (r] - %02>dl + odw(t) +1In(1+ U)dN(z). (D3)

Therefore, we can obtain:
1
Inf, = 16, + (n - 5&) t+ ow(t) + In(1 4+ U)N(¢). (D4)

The dynamic demand density 6, is thus given by the following equation:

(V/—%ﬁ) t+o‘w(t)+ln(l+l/)N(~’]
0, = 906 . (DS)

Eq. (D5) can be further rearranged as Eq. (19).
Appendix E. Expectation of Stochastic Demand Density

Let J(u) denote the cumulative probability distribution function of U (or Uj). Eq. (19) can be further derived as follows according to
Ito’s lemma (Oksendal and Sulem, 2005).

! w
do’ = y0'"'0,(ndt + odw(1)) + Ey(y —1)0"%6*0%dt + / [0, + u0,)" — 0] 2dJ (u)dt + [(0, + UG,)" — 6/]dN(1)

0

oo

- / [0, + u0,) — 0] AdJ (u)dt, . (E1)

0

where the fourth and the fifth terms of Eq. (E1) are martingales with zero mean. Thus, taking expectation of both sides of the Eq. (E1)
leads to:

aE(0)) = E(0

~—

yr]—i—%y(;/ —1)o* + /[(1 +u)’ — 1]1d](u)j| dt (E2)

Eq. (E2) can be further rearranged as:

dE(6]) = E(0]) |y +%y(y — 1o +AE((1 + U) — l)dt} . (E3)
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Thus, E(6]) can be determined by solving Eq. (E3) with initial value 6}:

S 1)+ AEQ+UY 1) | ¢

E(0)) = 0 . (E4)
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