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strategic decisions regarding when the current transit service should be upgraded, and when new infrastructure should be built to 
satisfy the travel needs of future transit riders. For instance, when demand is relatively low in a corridor, bus transit remains a 
cost-effective choice, while light rail, which can increase capacity and level of service, may be introduced when demand grows to a 
threshold at which it becomes more effective than bus transit. The transit mode evolution problem is concerned with the optimal 
selection of transit modes over time (Sun et al., 2017). The main motivation for this paper is the inadequate treatment of demand 
uncertainty in optimizing transit mode selection on the tactical level. 

A few researchers, e.g., Saphores and Boarnet (2006) and Li et al. (2015), have studied a closely related problem, namely the public 
transit investment problem, considering demand uncertainty. In those studies, demand uncertainty was modelled with a standard 
geometric Brownian motion (GBM) and a demand trigger was derived to model the replacement of bus transit by rail transit. Although 
a few key factors, such as the time-inconsistent preferences (Guo et al., 2018b) or the ambiguity attitudes (Gao and Driouchi, 2013) of 
the planning authority, have been investigated, previous studies (e.g., Gao and Driouchi (2013), Li et al. (2015), and Guo et al. 
(2018b)) did not fully characterize demand uncertainty with a continuous-time stochastic process, i.e., GBM. Not only does the future 
demand evolve continuously, but it also jumps sometimes. A case in point is the dramatic transit demand reduction observed in the 
early months of the COVID-19 pandemic. A survey conducted by Liu et al. (2020) indicated that on average the transit ridership 
dropped in the U.S. by an average of 80% in the span of a few weeks, due to various disease control measures, such as social distancing 
and working from home. Such sudden and rare changes can be modeled with a low-intensity Poisson process (Chen et al., 2019), which 
has been adopted in related areas, such as modeling spikes in electricity price (Seifert and Uhrig-Homburg, 2007; Benth et al., 2012). 
Nonetheless, the sudden demand changes, also called jumps, have not been considered in the public transit investment literature. 
Considering the catastrophic consequences of possible extreme events in the planning horizon of transit systems, the effect of those 
demand jumps arising from those sudden events on the long-term transit planning process must be incorporated. In addition, a major 
difference between the transit mode evolution problem (Sun et al., 2017) and the transit investment problem (Li et al., 2015) is that the 
latter problem is essentially a two-period problem, which means it seeks to find the threshold between bus-only and rail-only services. 
Conversely, the transit mode evolution problem explores the change of transit modes over multiple periods. The feeder-and-trunk 
service, which is a hybrid mode of bus and rail, is shown to be advantageous in the evolution process of transit modes by Sun 
et al. (2017) while it has not been considered in transit investment studies such as Guo et al. (2018b). Considering this hybrid mode is 
nontrivial because it implies another important decision, namely the length of rail line in various periods. Then, simultaneous opti
mization of the investment timing and rail length becomes a necessity. Considering the above identified research gaps, we seek to 
improve the transit mode evolution literature by making the following methodological contributions. This study is the first known one 
to model transit demand jumps due to sudden events with a jump-diffusion process and propose a stochastic model for the devel
opment of a rail transit line under such uncertainty. It also concurrently optimizes rail investment timing and sizing decisions, which 
are essentially inseparable considering the trade-off between rail capital investments and operational savings. 

To achieve the stated contributions, we first developed two analytical optimization models for bus-only and hybrid (feeder-and- 
trunk) services in a commuter corridor. As closed-form solutions could be found, the hourly system cost became a simple function of 
demand density only. Next, we formulated a dynamic optimization problem where the time for introducing rail transit and the rail 
length were both optimized, for a given demand growth curve. Then, demand evolution was governed by a jump-diffusion process over 
an infinite planning horizon, consisting of both gradual and sudden changes; a stochastic optimization model was thus formulated to 
minimize the expected aggregated cost over the infinite horizon. Leveraging the optimal stopping theory, we derived the optimal rail 
investment timing and presented a numerical solution of rail length. Through numerical studies, we arrived at a few important 
conclusions. For instance, it is not always optimal to start an infrastructure investment as soon as a cumulative cost saving is expected 
over the planning horizon. We also confirm the close interrelation between investment timing and sizing decisions, which cannot be 
separately analyzed or optimized, due to the complex tradeoff of capital costs and operational savings. In addition, when some pa
rameters (such as demand volatility) vary, the optimal demand threshold and rail length change in the same direction; those two 
decisions may change in different directions if some other parameters (such as jump intensity) vary. 

The rest of this paper is organized as follows. Section 2 identifies the main research gaps in the transit mode evolution as well as 
transit investment studies. Section 3 defines static optimization models for two types of transit services, which are solved analytically, 
and further introduces a deterministic dynamic model. After introducing a new stochastic process for modeling demand uncertainty, 
we propose a stochastic dynamic optimization model and present analytical solutions in Section 4. In Section 5, we analyze results from 
deterministic and stochastic analyses, as well as the sensitivity of results to some key parameters. Finally, we draw conclusions and 
suggest future research directions in Section 6. 

2. Literature review 

As we seek to optimize the development of a rail transit line over time considering uncertain demand shocks, we organize relevant 
studies into different groups, depending on whether temporal variations are considered and whether demand uncertainty is incor
porated. We begin with a review in Section 2.1 of those studies in which demand is static and deterministic; we next review studies on 
the dynamic selection of transit modes over time without any demand uncertainty in Section 2.2; in Section 2.3, a number of studies 
which consider demand uncertainty over a planning horizon are reviewed, although they simplify the evolution of a rail transit line 
and do not yet incorporate the effect of transit demand shocks. In Section 2.4, we expand the scope of our review to cover trans
portation problems outside public transit. An additional major research gap is identified, namely very few real-option studies have 
jointly considered timing and sizing decisions, which are both essential in the rail transit line development. 
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2.1. Static models for public transit mode comparison and selection 

In practice, there is a wide spectrum of public transit services ranging from demand-responsive and flexible bus to light and heavy 
rail transit, each of which is designed to effectively accommodate some distinct demand characteristics. Transportation researchers 
have presented many comparisons of various types of public transit modes. Note that in some studies (Parajuli and Wirasinghe, 2001; 
Sivakumaran et al., 2014), transit modes are also referred to as transit technologies, such as bus transit vs rail transit. 

Even though comparisons of public transit modes were conducted many decades ago, such as in Vuchic (1976), a few representative 
studies published more recently are reviewed here. Tirachini et al. (2010) developed analytical models for the comparison of a few 
public transit modes, namely bus, bus rapid transit, light rail, and heavy rail, under different optimization objectives. Moccia and 
Laporte (2016) extended Tirachini et al. (2010) by considering additional operational parameters, such as optimal stop spacing. Kim 
and Schonfeld (2013) developed bus operational models for different service types (flexible vs fixed) and fleets (uniform or mixed 
vehicle sizes). They also compared those service alternatives under different demand scenarios. Zhang et al. (2018) compared park & 
ride with on-demand bus considering a transportation corridor. They concluded that park & ride should serve low-demand areas while 
the latter can cover high-demand areas. 

In addition to the analytical models reviewed above, some researchers also conducted empirical analyses of different public transit 
modes. For instance, Casello et al. (2014) compared economic costs and emissions for bus rapid transit and light rail with a case study 
of Waterloo, Ontario in Canada. Puchalsky (2005) also compared those two modes from an environmental perspective only (i.e., 
emissions). 

The above review suggests that many studies have been devoted to the comparison of different public transit modes when demand 
is given and static. 

2.2. Public transit mode selection over time 

With models reviewed in Section 2.1, we can select an optimal transit mode for given demand inputs at any given time. However, 
studying the selection of optimal transit modes over time, also called the evolution of transit modes, is not a straightforward extension 
of a static mode comparison or selection model, primarily because of the transition from one mode to another is not “frictionless.” In 
other words, major infrastructure upgrades and thus substantial capital investments are needed, which complicates the evolution of 
transit modes over time. 

Sun et al. (2017) considered a commuter corridor and investigated when rail transit should be introduced to partially replace bus 
transit and how the rail length should be optimized over time. As an extension of Cheng and Schonfeld (2015), where demand was 
assumed to be invariant with fare or service quality, Sun et al. (2018) focused on the development of a single rail transit line or the 
optimal extension of a rail line, with a full consideration of demand elasticity. Further, Wu and Schonfeld (2022) considered 
bi-directional extensions of a rail line in multiple stages. While maximizing net present value over a long analysis period, Wu and 
Schonfeld (2022) assumed that the rail line extensions determined through a genetic algorithm should be implemented as soon as 
sufficient construction funds became available for the next stage. This assumption implied that, in the absence of a budget limit, a rail 
line should be immediately extended if a positive net present value is expected. While this assumption can greatly simplify the rail 
extension scheduling decisions, it may not always hold, as shown later in Section 5.2 of this paper. The extension timing indeed 
depends on the tradeoff between infrastructure capital investment and operational savings when infrastructure becomes in place. 

Chang and Schonfeld (1991) derived a demand density threshold at which two optimized service types (conventional bus and 
subscription bus) had the same average cost per user trip. When the demand density was below the critical value or threshold, sub
scription bus was preferred. However, this does not imply that whenever the demand exceeds the threshold, conventional bus should 
replace subscription bus, when a transition or switching cost is considered. In a similar setting, Kim and Schonfeld (2013) derived 
thresholds during daily demand cycles at which large buses and small buses would lead to the same cost. When demand exceeded the 
thresholds in various service regions, larger buses were used; otherwise, smaller ones were used. Similarly, this assumption will no 
longer hold when there is a positive transition cost. For instance, Guo et al. (2018a) studied the optimal switching between fixed-route 
transit and flexible-route transit. Because service switching is not costless, Guo et al. (2018a) showed that it was suboptimal to 
immediately switch to another service type when a demand threshold was reached. 

Therefore, the literature on the evolution of public transit modes is underdeveloped and a few key issues (such as how to determine 
a trigger demand for introducing a new transit service or mode) should be fully examined and addressed. Another major research gap is 
that the effect of uncertainty on rail transit investment has not been fully examined, to be elaborated below. 

2.3. Rail transit investment under uncertainty 

When the future demand growth is known with certainty over a planning period, the right timing for introducing a new mode (such 
as rail transit) is when a critical demand threshold is reached. For example, Chen et al. (2015) derived a critical population density of 
two transit modes by setting their corresponding benefits to be equal. As a deterministic demand growth function was given in Chen 
et al. (2015), finding the right investment timing was simply determining when the demand reached the threshold. When population 
growth was uncertain, Li et al. (2015) employed real options to determine the population trigger. Gao and Driouchi (2013) also studied 
the rail transit investment problem while considering population uncertainty and the ambiguity attitudes (e.g., pessimism) of the 
planning authority. Guo et al. (2018b) enhanced those two studies by considering the time-inconsistent preferences of the planning 
authority with a quasi-hyperbolic discount function. 
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A distinction of the above studies from Sun et al. (2017) is that they addressed the effect of demand uncertainty on a long-term 
planning problem. However, the common shortcoming in those studies is that they oversimplified the evolution process of transit 
modes. They essentially considered only two options or choices, such as bus-only at present and rail-only at a future time. Nonetheless, 
as pointed out by Sun et al. (2017) and Sun et al. (2018), rail transit may expand gradually over time and may not extend to the city 
boundary when the distribution of demand over space is not uniform. Specifically, the feeder-and-trunk service (rail combined with 
bus) is advantageous over the rail-only service even in the long-term. Clearly, the existing studies on rail transit investment under 
uncertainty should be improved by considering this important layout. In this case, an important decision on the rail line length in 
various periods emerges. Additionally, uncertainty of demand in the rail transit investment literature is modelled with a GBM, which 
cannot capture demand jumps or shocks caused by sudden events. 

Although demand jumps have not been modeled in the rail transit investment literature, they have been considered in a few other 
related infrastructure investment problems, to be reviewed next. 

2.4. Applications of real option analysis to transportation project investments 

Real options approaches have been widely used to study the investment in irreversible infrastructure projects, since the pioneering 
work on investment under uncertainty by Dixit et al. (1994). Martins et al. (2015) provided a comprehensive survey of real options 
studies in various infrastructure systems, such as power plants, hospitals, water supply systems and transportation infrastructures. We 
will next review some representative real options analyses in non-rail transit investments. 

Couto et al. (2015) considered a High-Speed Rail (HSR) project and derived the demand threshold for implementing the HSR 
project. They did not consider any sizing decisions, such as how long the HSR line should be. Balliauw and Onghena (2020) optimized 
the capacity investment decision of a private airport under demand uncertainty. They modeled the aircraft movements with a GBM and 
selected profit maximization as the optimization objective, given the private nature of the considered airport. Table 1 presents a 
comparison of some representative studies. We find that most existing studies considered the timing decision only, i.e., deciding when 
a project should be implemented, while neglecting the sizing decision, e.g., optimizing the magnitude of an increment. In most cases, a 
GBM was used to model demand or traffic uncertainty, which cannot incorporate the dramatic change caused by sudden events. In 
addition, the major infrastructure improvements in practice may take years to complete, while the investment project was typically 
assumed to be implemented instantly in the literature. 

While other infrastructure investment studies are helpful, especially because they have offered useful insights into how realistic 
demand uncertainty should be modelled, the transit mode evolution problem is distinct, as reviewed in Section 2.3. Instead of only two 
scenarios, bus-only vs rail-only, there exists a hybrid of two options, namely the feeder-and-trunk service, which may dominate rail- 
only services in the long run. The sizing decision is thus an indispensable part of the mode evolution optimization and becomes 
inseparable from the investment timing decision. In addition, many existing studies modeled a rail line or highway segment as a single 
point without considering the spatial distribution of demand and the impact on transportation facility operations. For instance, Couto 
et al. (2015) studied the annual line-level demand for a high-speed rail without modeling any demand patterns at the station level. In 
other words, the spatial structure of a rail line is reduced to a single node or atom. Conversely, it is essential to model a reasonably 
realistic setting of transit demand distribution and service layout in the transit mode evolution problem. 

In summary, the transit mode evolution literature should be advanced by systematically evaluating the impact of future uncer
tainty, especially regarding rare but dramatic changes. We thus develop analytical optimization models extending Sun et al. (2017) by 
modeling realistic demand uncertainty with a jump-diffusion process and jointly determining investment timing and sizing decisions. 

3. Deterministic model 

3.1. Model setup 

Throughout this paper, we analyze a commuter corridor that stretches from the central business district (CBD) to the city boundary, 

Table 1 
Real options analyses for other transportation infrastructure investments.  

Study Project type Objective function Source of 
uncertainty 

Sizing 
decision 

Jumps/ 
shocks 

Construction 
time 

Saphores and Boarnet 
(2006) 

A highway corridor Max. expected utilities of 
residents 

Urban population No No Yes 

Friesz et al. (2008) Transportation 
network 

Max. expected net trip 
value 

Trip cost No No No 

Galera and Soliño (2010) A highway corridor Max. expected cash 
flows 

Traffic volume No No No 

Chow and Regan (2011a, 
2011b) 

Highway network Max. option value  Travel demand No No No 

Couto et al. (2015) High-speed rail 
transport 

Max. expected project value Annual demand No Yes No 

Balliauw and Onghena 
(2020) 

An airport roadway Max. profit Demand Yes No No  
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first minimize TB + R(τ, L) by optimizing two decision variables τ and L, which can be done numerically. Once the optimal value of TB +

R(τ, L) is obtained, it can be compared with the constant TB to find the optimal planning decision regarding rail investments. 
The essence of the investment timing and length choice problem lies in the tradeoff between the capital investment for constructing 

a rail line and the system cost savings (operating and user cost savings) brought by hybrid operations compared to bus operations only. 
The rail capital cost, and hence the system cost savings, depend on the investment timing as well as the rail length. 

4. Stochastic model 

4.1. Demand uncertainty modeling 

Conventionally, a continuous-time random process, such as geometric Brownian motion (GBM), is employed to model uncertain 
demand variations due to evolving macroeconomic factors or automobile ownership, among other possible factors. Unfortunately, 
such a process is unable to incorporate sudden and extreme changes in demand, also known as jumps, such as a drastic change caused 
by a terrorist attack, global financial crisis, or public health crisis. For example, Fig. 2 shows how the bus and subway ridership 
plummeted as the COVID-19 pandemic hit New York City (NYC), according to the New York’s Open Data Portal (NY Open Data, 2022). 
Such rare events causing sudden disruptions to demand should by no means be neglected and unfortunately, cannot be modeled with 
GBM. Instead, they can be modeled with a discrete counting process, namely Poisson process. In an extended planning horizon, such as 
30 or 50 years, the number of jumps follows a Poisson process. The magnitude of a jump, upward or downward, can be a constant or 
follow a different distribution. Therefore, in this paper, we use a diffusion-jump process, which is a combination of GBM and Poisson 
process to realistically model demand evolution. 

The jump-diffusion process under consideration is given by the following stochastic differential equation: 

dθt

θt
= ηdt + σdw(t) + d

∑Nt

i=1
Ui. (18)  

Here, η is the demand growth rate as defined in Section 3.5 (also called drift rate), dt is an infinitesimal time increment, and σ is the 
volatility rate. The drift rate η captures the expected demand change while the volatility rate models the extent to which demand 
randomly changes. dw(t) is an increment of a standard Wiener process (diffusion, which is also called Brownian motion). By definition, 
dw(t) = εt

̅̅
t

√
, where εt is a random variable that follows the standard normal distribution with a mean of 0 and a standard deviation of 

1. In the jump component d
∑Nt

i=1Ui, Nt follows a Poisson process with intensity λ, which should be relatively small. Ui is the jump size 

Fig. 2. Public transit demand during the COVID-19 pandemic in New York City.  
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similar trade-off analysis should be made. The above analyses thus indicate that the rail transit investment timing and length choice 
problem is nontrivial even when demand uncertainty is not considered. 

We next explore the impact of the rail capital cost parameters on various cumulative costs, namely TB, TR, and TB + R(τ, L), where TR 
represents the cumulative cost if rail transit covers the entire corridor throughout the planning horizon. Clearly, regardless of the fixed 

Fig. 4. Hourly system cost breakdown when rail length (i.e., 35 miles) is sufficient.  

Fig. 5. Hourly system cost breakdown when rail length (i.e., 2 miles) is insufficient.  
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capital cost parameter K0, having rail serve the entire corridor from time 0 is not a good decision, because its cumulative cost TR is the 
highest, as shown in Fig. 9. TR grows at the same rate as K0 as expected, because all the capital cost is assumed to occur at time 0. The 
hourly or annualized system cost of rail-only operations does not rely on K0. TB does not vary with K0, because bus-only operations do 
not involve any rail investment. We can observe from Fig. 9 that as K0 increases, the gap between TB + R(τ, L) and TB approaches zero, 
after which TB + R(τ, L) exceeds TB, which means when the fixed capital cost of rail becomes overly large, the hybrid service will not be 
introduced. Similarly, Fig. 10 shows that as the variable capital cost of rail K1 increases from 2 to 12 million while keeping K0 at 10 

Fig. 6. Cumulative cost of hybrid operations as a function of investment timing and sizing.  

Fig. 7. Various costs over time when optimal timing and length choice are selected.  
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million, the advantage of hybrid over bus-only gradually diminishes. 
In the above analyses, the baseline value of in-vehicle travel time φ is fixed at $10 per hour. We now consider a time-varying φt =

φeηt , where η is the growth rate for the value of time. Fig. 11 shows how the optimal investment timing and rail length vary with the 
growth rate. Specifically, as η increases, the rail line should be introduced earlier, and it should be longer. 

Fig. 8. Relation between cumulative cost savings and investment timing.  

Fig. 9. Comparisons of cumulative costs under various fixed capital cost parameter values.  
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5.3. Stochastic analyses 

We next consider uncertain future demand with a volatility rate σ = 0.1. The second jump process, namely Scenario (b) defined in 
Section 4.4, is considered, with a constant magnitude for each downward jump, i.e., Ui = 10%, i = 1, …, Nt. The intensity of the 
underlying Poisson process is λ = 0.1. The values of all other parameters are the same as those in Section 5.2. For instance, at time 0, the 
demand density is fixed at θ0 = 15 pax/hr./mi. 

Following the approach presented in Section 4.4 and fixing the rail length at L = 20, we can analytically derive the optimal demand 
density threshold from the value-matching and smooth-pasting conditions Eqs. (35) and (36), as shown in Fig. 12. As defined in 
Section 4.4, when demand density is below the demand density threshold, i.e., in the continuation region, the best strategy is to defer 
the investment. Otherwise, investment should be implemented when demand density reaches the stopping region. As a comparison, we 
reduce the magnitude of a jump to zero, namely Ui = 0, which means no demand jumps are considered. Consequentially, the derived 
demand density threshold decreases from 21.1 pax/hr./mi. to 18.5 pax/hr./mi., representing a premature investment timing if 
downward demand jumps are neglected. 

We next show in Fig. 13 how the expectation of the cumulative cost difference, defined in Eq. (25), can be maximized by varying the 
rail length. As we can find the optimal demand density threshold and the resulting optimization objective for each given rail length, we 
can numerically find the optimal rail length (i.e., 27 mi.) that maximizes the expected cumulative cost difference, and the corre
sponding optimal demand density threshold (i.e., 20.3 pax/hr./mi.). Fig. 14 shows how the optimal demand density threshold θ* 
depends on the rail length L. Their interrelations can be described as follows: (1) when the rail length is insufficient (e.g., less than 2 
mi.), θ* is very large, implying a delayed investment timing, due to the inefficient hybrid service layout; (2) when the rail length is 
excessive (close to the corridor length, e.g., 48 mi.), θ* is also considerably large, because a substantial rail investment cost should be 
justified only by sufficiently high demand density; (3) when the rail configuration is efficient, determined by an appropriate rail length, 
θ* is relatively small, meaning that such an efficient hybrid service layout should be introduced relatively early. 

5.4. Sensitivity analyses 

We next conduct sensitivity analyses of a few key parameters while keeping the same type of demand jump process as in Section 
5.3, namely constant jumps. Fig. 14 shows that as volatility rate σ increases, both the optimal demand density threshold θ* and rail 
length L* increase. The policy implication is that increasing demand uncertainty favors a later investment timing and a larger in
vestment size. However, when the volatility rate is fixed, we find that downward demand jumps have different impacts on those 
decisions. Specifically, Fig. 14 shows that downward jumps lead to an increased demand threshold but a decreased rail length in 
comparison with no jumps (dashed lines in Fig. 14). 

Fig. 15 shows that as the demand growth rate η grows, the demand threshold decreases while the rail length increases. The different 
impacts of downward demand jumps on the two decisions are observed again. Without jumps, the demand threshold is lower while the 
rail line is longer. 

Fig. 16 shows the effects of construction period Δ and annual discount rate k on the two decision variables. For a given construction 
period, as the discount rate increases, the demand threshold increases. For a fixed discount rate, as the construction duration increases, 
the demand threshold decreases. Unlike the investment timing, the investment size (rail length) is not very sensitive to the construction 
period. As the construction period varies from 3 to 7, the variation in the optimal rail length stays within 0.3 miles, which is very 
limited. The optimal rail length is indeed sensitive to the annual discount rate. 

It is interesting to observe in Fig. 17 that as the jump magnitude, the demand threshold monotonically increases, while the rail 
length first decreases and then increases. 

5.5. Effect of the jump process 

We finally consider the last jump process, namely Scenario (c) where the magnitude of a jump follows an exponential distribution. 
We set the rate parameter for the exponential distribution to be 10, which implies the expected jump magnitude U is 0.1. Fig. 18 shows 
how the optimal demand threshold and rail length vary with the intensity of the underlying Poisson process. As the intensity λ grows, 
the optimal demand threshold increases while the optimal rail length decreases. Compared with constant jumps, the demand density 
threshold is higher, and the rail length is also higher under exponential jumps. 

6. Conclusions 

Analytical models are presented for simultaneously determining when a rail transit line should be constructed and how long it 
should be, with a realistic formulation for long-term demand evolutions, namely a jump-diffusion process consisting of a standard 
geometric Brownian motion and a jump component driven by a Poisson process. We seek to maximize the expected cumulative cost 
difference between operating buses throughout and introducing rail services at a certain future time in a commuter corridor. Analytical 
solutions for the investment timing under uncertainty have been derived under various scenarios for the jump process. 

When demand uncertainty is neglected, we refute a major misconception. Contrary to the common wisdom in the transit infra
structure planning literature (Chen et al., 2015), we find that even when demand is assumed to be deterministic it is not necessarily 
optimal to implement an investment project immediately when a positive cash flow occurs or a cumulative cost saving over the entire 
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planning horizon is expected. Note that in a deterministic study, Chen et al. (2015) concluded that as long as a certain demand 
threshold is reached leading to an indifference between two transit modes, the new transit mode should be implemented, which is 
suboptimal. Li et al. (2015) also described a cost benefit analysis based on the net present value. It was stated that a new transit mode 
should be introduced if and only if the net improvement in the project value (measured by social welfare) becomes positive, which is 
also suboptimal even under the deterministic setting. 

Several other important findings are derived through extensive numerical studies considering demand uncertainty, as follows: 

Fig. 10. Comparisons of cumulative costs under various variable capital cost parameter values.  

Fig. 11. Effect of time-varying value of time on planning decisions.  
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(1) Under demand uncertainty, two decisions (investment timing and sizing) are interrelated due to the complex tradeoff of capital 
investments and operational savings: depending on the range, as the rail length grows, the optimal demand threshold may 
increase or decrease.  

(2) While the demand threshold clearly varies with values of important parameters, such as construction period and discount rate, 
the optimal rail length can be relatively insensitive to similar changes, such as the infrastructure construction time.  

(3) Both the demand threshold and rail length increase as the demand volatility increases. 

Fig. 12. Deriving demand density threshold under uncertainty for a fixed rail length.  

Fig. 13. Concurrent optimization of rail length and demand threshold under uncertainty.  
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(4) As the value of time grows in the future, the optimum rail length should be longer, and the investment timing should be earlier. 
(5) When downward demand jumps are considered, a larger demand threshold for investment is derived, implying a delayed in

vestment timing. In contrast, the optimal rail length decreases rather than increases. 

In this study, we focus on the mobility benefits brought by rail transit, such as increased travel speed, while neglecting other 
benefits of investments in rail transit. For instance, Litman (2007) indicated that good rail transit projects can stimulate compact urban 
development, reduce car-dependency, and promote environmental sustainability. Further including such benefits may favor earlier 
rail investments. In addition, we focus on the development of a single line, while a transit line may be connected to other lines. In such a 
case, the length of a line may depend on the structure and scale of the rest of the network. A much more complex method would then be 
needed. 

Although some new insights and important findings are achieved with the proposed analytical models, we can strengthen the 
current methods and enhance the relevant analyses as follows: 

Fig. 14. Effect of volatility rate on optimal demand density threshold and rail length.  

Fig. 15. Effect of demand growth rate on optimal demand density threshold and rail length.  
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i Only a single source of uncertainty, namely demand density, is considered in the current analysis. Additional sources of uncer
tainty, such as uncertain capital cost parameters, uncertain construction periods, budgets and riders’ value of time, should be 
considered.  

ii As the public transit planning authority is implicitly assumed to be risk-neutral, in a future study a mean-variance formulation (Sun 
and Schonfeld, 2016) can be developed incorporating certain risk metrics. 

CRediT authorship contribution statement 

Qianwen Guo: Conceptualization, Methodology, Investigation, Visualization. Shumin Chen: Methodology, Formal analysis, 
Validation. Yanshuo Sun: Conceptualization, Validation, Writing – original draft, Writing – review & editing. Paul Schonfeld: 
Writing – review & editing, Supervision. 

Fig. 16. Sensitivity analyses of construction period and annual discount rate.  

Fig. 17. Effect of jump magnitude on optimal demand density threshold and rail length.  
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