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Abstract. We consider the derivative nonlinear Schrödinger equation in one

space dimension, posed both on the line and on the circle. This model is known
to be completely integrable and L2-critical with respect to scaling.

The first question we discuss is whether ensembles of orbits with L2-

equicontinuous initial data remain equicontinuous under evolution. We prove
that this is true under the restriction M(q) =

∫
|q|2 < 4π. We conjecture that

this restriction is unnecessary.

Further, we prove that the problem is globally well-posed for initial data in
H1/6 under the same restriction on M . Moreover, we show that this restriction

would be removed by a successful resolution of our equicontinuity conjecture.

1. Introduction

The derivative nonlinear Schrödinger equation

(DNLS) iqt + q′′ + i
(
|q|2q

)′
= 0

describes the evolution of a complex-valued field q defined either on the line R or
the circle T = R/Z. This equation was introduced as an effective model in magneto-
hydrodynamics; see [17, 33, 34]. It was soon shown to be completely integrable [23]
and has received enduring attention since that time.

As we shall document more fully below, well-posedness questions for (DNLS),
particularly global well-posedness, have been particularly stubborn. Local well-
posedness is already very challenging: the nonlinearity contains a full derivative,
like KdV or mKdV, while the linear part gives only Schrödinger-like smoothing.

The task of converting local into global well-posedness is typically a matter of
exploiting conservation laws. As a completely integrable system, (DNLS) has an
infinite family of conserved quantities. The first three are as follows:

M(q) =

∫
|q(x)|2 dx(1.1)

H(q) = − 1
2

∫
i(qq̄′ − q̄q′) + |q|4 dx(1.2)

H2(q) =

∫
|q′|2 + 3

4 i|q|
2(qq̄′ − q̄q′) + 1

2 |q|
6 dx.(1.3)

The striking fact about (DNLS) is that, with the exception of M(q), none of the
Hamiltonians in the hierarchy are coercive. Indeed, algebraic solitons have M = 4π
but all other Hamiltonians are identically zero. Applying the scaling symmetry

q(t, x) ↦→
√
λ q(λ2t, λx)(1.4)

1



2 ROWAN KILLIP, MARIA NTEKOUME, AND MONICA VIŞAN

to an algebraic soliton yields a one-parameter family of solutions with identical
values for all the conserved quantities. However, this family is unbounded in Hs

for every s > 0.
The quantity H(q) serves as the Hamiltonian for (DNLS) with respect to the

Poisson structure

{F,G} =

∫
δF
δq (

δG
δq̄ )

′ + δF
δq̄ (

δG
δq )

′ dx,(1.5)

while M(q) generates translations, albeit at speed 2. Although the momentum is
given by 1

2M(q), our definition of M leads to a more seamless connection to the
existing literature.

Given that M(q) is invariant under both (DNLS) and the scaling (1.4), it is
natural to ask whether or not (DNLS) is well-posed in L2. This is not known.
Indeed, the existing local well-posedness theory requires Hs initial data with s ≥ 1

2 .
(We will make some further progress on this question in this paper.) It is important
to recognize that because M(q) is scaling critical, the mere fact that it forms a
coercive conservation law would not suffice to render local well-posedness in L2

automatically global. One must fear the solution concentrates at one (or more)
points in space, a scenario known as type-II blowup. We do not believe this happens:

Conjecture 1.1. For any Q ⊆ S that is L2-bounded and equicontinuous, the to-
tality of states reached by (DNLS) orbits originating from Q, that is,

Q∗ = {etJ∇Hq : q ∈ Q and t ∈ R}(1.6)

is also L2-equicontinuous.

Here S denotes Schwartz class in the line case and C∞ on the torus. In the line
case, recent works (discussed below) guarantee that all such initial data lead to
global Schwartz solutions. The analogous claim is unknown on the torus, though
we believe it to be true. Nevertheless, one can still ask if equicontinuity holds for
as long as the orbits do exist. By the arguments presented in this paper, solutions
cannot break down without losing equicontinuity. Therefore, a positive resolution
of the conjecture for such partial solutions would already guarantee that they are
global and so settle the conjecture in its entirety; see Corollary 4.2.

We phrased the conjecture in terms of S initial data because it is a class that is
dense in all relevant spaces. It also serves to emphasize that the central question
to be addressed is not inherently tied to low regularity.

Equicontinuity in L2 is most easily understood via Fourier transformation: it
means that |q̂|2 forms a tight family of measures. Notice that, in view of the
uncertainty principle, concentration on the physical side must be accompanied by
a loss of tightness on the Fourier side.

In setting this conjecture, we have in mind four principal reasons: (1) It is
challenging, yet recent developments give us hope for a successful resolution. (2) It
encapsulates a single essential obstacle, namely, understanding conservation laws
for (DNLS). (3) A proof of this conjecture would have significant consequences for
the well-posedness problem. Indeed, such equicontinuity results form an essential
part of a recent program developed in [4, 14, 25] that has proved successful in
obtaining optimal well-posedness results for completely integrable PDE. (4) We are
able to verify that it is true in the regime M(q) < 4π; see Theorem 1.3 below.

Given the nature of completely integrable systems, it is natural to imagine that
an equicontinuity conjecture of the same form holds for all other PDE in the (DNLS)
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hierarchy. Indeed, we truly believe that this is so and will shortly formulate just
such a conjecture. However, the particular claim that we believe will be of greatest
use in understanding the hierarchy is best expressed through the perturbation de-
terminant. Let us turn our attention now to presenting this object, beginning with
the requisite background.

The Lax pair introduced by Kaup and Newell [23] for (DNLS) employs

LKN =

[
−iλ2 − ∂ λq

−λq̄ iλ2 − ∂

]
.

For what follows, it will be convenient to make some cosmetic changes to this choice.
Specifically, we set λ = eiπ/4

√
κ with κ ≥ 1 and replace eiπ/4q ↦→ q. This yields

L(κ) :=

[
1 0
0 −1

] [
κ− ∂

√
κq

i
√
κq̄ κ+ ∂

]
and, for q ≡ 0, L0(κ) :=

[
κ− ∂ 0
0 −(κ+ ∂)

]
.

These modifications maintain the crucial property that for smooth functions

q(t) solves (DNLS) ⇐⇒ d
dtL(t;κ) =

[
P (t;κ), L(t;κ)

]
,

where

P (κ) =

[
2iκ2 − κ|q|2 2iκ

3
2 q − κ

1
2 |q|2q + iκ

1
2 q′

2κ
3
2 q̄ + iκ

1
2 |q|2q̄ − κ

1
2 q̄′ −2iκ2 + κ|q|2

]
.

This guarantees that the Lax operators L at different times are conjugate, at least
formally. This in turn suggests that the perturbation determinant det[L−1

0 (κ)L(κ)]
should be well-defined and conserved by the flow.

To make this precise, it is convenient for us to mimic the analysis of the AKNS-
ZS system employed in [26]: Let us first define (κ± ∂)−

1
2 as the Fourier multipliers

(κ± iξ)−
1
2 , where the complex square root is determined by

√
κ > 0 and continuity.

We then define

Λ(q) := (κ− ∂)−
1
2 q(κ+ ∂)−

1
2 and Γ(q) := (κ+ ∂)−

1
2 q̄(κ− ∂)−

1
2 ,(1.7)

which are Hilbert-Schmidt operators for q ∈ L2; see Lemma 2.1. Thus

a(κ; q) = det
[
1− iκΛΓ

]
(1.8)

is well defined for q ∈ L2 (and extends holomorphically to all Reκ > 0); moreover,
for q ∈ S it agrees with the formal notion of the perturbation determinant.

While a(κ) does encode all the Hamiltonians of the (DNLS) hierarchy, this is
more easily seen through its logarithm,

α(κ; q) := − log[a(κ; q)] =
∑
ℓ≥1

1
ℓ tr

{
(iκΛΓ)

ℓ
}
,(1.9)

which serves as a generating function for these conservation laws. Due to the
possibility of a(κ) vanishing, α(κ) may not be defined for all κ ≥ 1. Nevertheless,
the series in (1.9) does converge for fixed q ∈ L2 and κ sufficiently large; see
Proposition 2.6.

We have not yet addressed the conservation of a(κ; q) under the (DNLS) flow. In
the line case, this could be effected by demonstrating that a(κ; q) coincides with the
reciprocal of the transmission coefficient and then appealing to the inverse scattering
theory. However, two direct proofs have appeared recently in the literature: Klaus
and Schippa [28] argued by differentiating the series (following a model introduced
in [26]), while Tang and Xu [45] developed a microscopic representation of this
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conservation law (in the style of [14]). While these papers impose a small M(q)
requirement, this is solely to guarantee the convergence of the series (1.9). This
issue is remedied by our Proposition 2.6.

To state the grand version of Conjecture 1.1, covering a wide range of commuting
flows, let us first introduce a replacement for the set Q∗ defined in (1.6). Given
q ∈ S, we first define

Cq = {q̃ ∈ S : a(κ; q̃) = a(κ; q) for all κ > 0}(1.10)

and write C0
q for the connected component (in the L2 topology) of Cq containing

q. Finally, given a set Q ⊆ S, we define

Q∗∗ =
⋃
q∈Q

C0
q .(1.11)

Conjecture 1.2. If Q ⊆ S is L2-bounded and equicontinuous, then so too is the
set Q∗∗ defined in (1.11).

We have several motivations in choosing connected components when defining
Q∗∗. This formulation of the conjecture retains a vestige of the behavior of orbits,
while emphasizing that this is a question about conservation laws and is ultimately
independent of the well-posedness of any flow. Note also that while the zero solution
and the family of algebraic solitons all share a(κ) ≡ 1, they are not in the same
connected component under the (DNLS) hierarchy.

Our most compelling evidence in favor of these two conjectures is that both hold
in the regime where M(q) < 4π:

Theorem 1.3. Let Q ⊆ S be an L2-equicontinuous set satisfying

sup
{
∥q∥2L2 : q ∈ Q

}
< 4π.(1.12)

Then the set Q∗∗ defined in (1.11) is L2-bounded and equicontinuous.

The significance of 4π is this: it is the value of M at which the polynomial
conservation laws lose their efficacy. It is also the value of M for the algebraic
soliton, which is maximal among all solitary wave solutions. Unlike mass-critical
NLS, (DNLS) admits solitons of arbitrarily small L2 norm and consequently, there
is no notion of a scattering threshold.

The proof of Theorem 1.3, which will be given in Section 3, is both short and
simple. Indeed, the hypothesis (1.12) even allows us to forgo the restriction to
connected components.

It has been observed before that tr(iκΛΓ) may be used to understand how the L2

norm of q is distributed across frequencies (cf. Lemma 2.2). The key observation
that allows us to reach all the way to 4π (as opposed to mere smallness cf. [28, 45])
is the manner in which we handle the remainder, specifically, the observation that
the remainder may be summed in κ for any q ∈ L2; see (3.8).

While the 4π restriction is crucial to our proof of Theorem 1.3, it does not play
any role in our subsequent analysis of the consequences of such equicontinuity. For
this reason, we introduce a general threshold M∗:

Definition 1.4. Let M∗ denote the maximal constant so that for any L2-equi-
continuous set Q ⊆ S satisfying

sup
{
∥q∥2L2 : q ∈ Q

}
< M∗,(1.13)

the set defined in (1.11) is L2-equicontinuous.
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Evidently, Theorem 1.3 shows that M∗ ≥ 4π and we conjecture that M∗ =
∞. Our primary contribution to the well-posedness problem is low-regularity well-
posedness below the M∗ threshold:

Theorem 1.5. Fix 1
6 ≤ s < 1

2 . The (DNLS) evolution is globally well-posed, both
on the line and on the circle, in the space

Bs
M∗

=
{
q ∈ Hs : ∥q∥2L2 < M∗

}
(1.14)

endowed with the Hs topology.

A natural prerequisite for proving this theorem is a priori Hs bounds. In Sec-
tion 4, we show how such bounds follow from L2-equicontinuity; see Theorem 4.3.

To prove Theorem 1.5 we employ the method of commuting flows introduced in
[25]. In that paper, the method was used to prove well-posedness of the Korteweg–
de Vries equation. It has also been adapted and extended to treat the well-posedness
problem for other completely integrable PDE [4, 14], to prove symplectic non-
squeezing [38], and to construct dynamics for KdV in thermal equilibrium [24].

In contrast to those papers, we do not employ a change of unknown; this simpli-
fies some of the analysis. On the other hand, new difficulties attend the construction
of regularized flows: Because they are rooted in α(κ; q), the regularized Hamiltoni-
ans Hκ(q) cannot be defined throughout B0

M∗
for any single value of κ. Instead, we

need to use an exhaustion by equicontinuous subsets. Ultimately, these problems
originate in the L2-criticality of the problem. Nevertheless, we will be able to prove
that the regularized flows admit a satisfactory notion of well-posedness all the way
down to L2! The s ≥ 1

6 restriction arises later when we show that the regularized
flows converge to the full (DNLS) evolution.

At this moment we do not know whether s = 1
6 is sharp in either geometry or

indeed, whether the threshold regularity will differ between the line and the circle.
Moreover, we do not know of any results (in either geometry) that would preclude
well-posedness all the way down to the scaling critical space L2. On the other
hand, the self-similar solutions constructed in [9] (see also [27]) show that smooth
solutions can break-down in a dramatic way if one permits mere weak-L2 decay at
spatial infinity.

The restriction s < 1
2 in Theorem 1.5 does not represent a meaningful break-

down of our methods. However, treating larger values would require additional ar-
guments. This seems unwarranted given that a great deal is already known about
Hs-solutions for s ≥ 1

2 , as we shall now discuss.

Local well-posedness in Hs for s > 3
2 was proved by Tsutsumi and Fukuda

[46, 47]. This was extended to s ≥ 1
2 by Takaoka [43] for (DNLS) posed on the

line and by Herr [16] for the periodic problem. The endpoint s = 1
2 is significant:

for lesser s, the data-to-solution map can no longer be uniformly continuous on
bounded sets; see [3, 43].

Global well-posedness in H1(R) for initial data satisfying M(q) < 2π was ob-
tained by Hayashi and Ozawa [15]. This result was extended first to s > 2

3 and then

to s > 1
2 by Colliander, Keel, Staffilani, Takaoka, and Tao [5, 6], under the same

L2 restriction. See [32] for a refinement of these arguments to handle the endpoint
case s = 1

2 , as well as [44] for earlier efforts in this direction.
Hayashi and Ozawa [15] also proved that solutions with initial data in S remain

in S for as long as they remain bounded in H1.
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In [50], Wu proved global well-posedness in H1(R) for initial data satisfying
M(q) < 4π; see also his earlier work [49] which first overcame the 2π barrier.
An alternate variational proof was given in [10], which also constructed global
solutions for highly modulated initial data of arbitrary L2 size. The result in [50]
was extended to the periodic setting in [36]. Finally, the argument in [6] was further
advanced in [13, 35] to treat the endpoint case s = 1

2 and M(q) < 4π; see also [48]
for earlier work in the periodic setting.

We note that the results of this paper provide an alternate proof of the main
results in [36, 50]; see Corollary 4.2. In particular, Proposition 4.1 shows that H1

bounds follow from Theorem 1.3.
The well-posedness of (DNLS) has also been investigated in Fourier-Lebesgue

spaces; [8, 11, 12]. This allowed the authors to obtain a uniformly continuous
data-to-solution map in spaces that are closer to the critical scaling; recall that
this property breaks down in Hs spaces when s < 1

2 . An almost sure global well-
posedness result for randomized initial data was proved in [37].

As a completely integrable PDE, (DNLS) is also amenable to inverse scattering
techniques. Building on the pioneering work of Liu [29], global well-posedness and
asymptotic analysis of soliton-free solutions in H2,2(R) = {f ∈ H2(R) : x2f ∈
L2(R)} were addressed in [30, 31].

Global well-posedness for all H2,2(R) initial data was proved by Jenkins, Liu,
Perry, and Sulem in [22]. This work builds on the authors’ prior successes in [19].
These authors also proved a soliton resolution result [20] for generic data inH2,2(R).
See also their excellent review article [21].

The inverse scattering approach was also applied by Pelinovsky and Shimabukuro
[40] to prove global well-posedness in H1,1(R)∩H2(R) for soliton-free solutions and
then in joint work with Saalmann [39] for data giving rise to finitely many solitons;
see also [41].

Recent months have witnessed a surge of activity on the well-posedness problem
for (DNLS). First among these is the paper [28], which showed a priori Hs bounds,
0 < s < 1

2 , for solutions with M(q) small. The smallness assumption allows them
to guarantee that the series (1.9) converges rapidly for κ large, and so the series be
conflated with its first term. The paper [45] presents a microscopic representation
of the conservation of α(κ; q). In [2], Bahouri and Perelman achieve the major
breakthrough of proving that for every initial datum in H1/2(R), the orbit remains
bounded in the same space (irrespective of the size of M(q)). For the periodic
(DNLS), the paper [18] shows that for s ≥ 1 and M(q) small, the Hs(T) norm of
solutions grows at most polynomially in time.

While these exciting results appeared too recently to affect what we do in this
paper, their novelty and insightfulness give us every hope that the conjectures
presented herein may soon be resolved.

Acknowledgements. R. K. was supported by NSF grant DMS-1856755 and M. V.
by grant DMS-1763074.

2. Preliminaries

Our conventions for the Fourier transform are

f̂(ξ) = 1√
2π

∫
R
e−iξxf(x) dx so f(x) = 1√

2π

∫
R
eiξxf̂(ξ) dξ
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for functions on the line and

f̂(ξ) =

∫ 1

0

e−iξxf(x) dx so f(x) =
∑

ξ∈2πZ
f̂(ξ)eiξx

for functions on the torus T. These definitions of the Fourier transform are unitary
on L2 and yield the Plancherel identities

∥f∥L2(R) = ∥f̂∥L2(R) and ∥f∥L2(T) =
∑

ξ∈2πZ
|f̂(ξ)|2,

as well as the following convolution identity on R:

f̂g = 1√
2π

f̂ ∗ ĝ.

We use the standard Littlewood–Paley decomposition of a function,

q =
∑
N∈2N

qN ,

based on a smooth partition of unity on the Fourier side. Here q1 denotes the
projection onto frequencies |ξ| ≤ 1; for N ≥ 2, qN contains frequencies |ξ| ∼ N .

The fact that the operators Λ and Γ defined in (1.7) are Hilbert–Schmidt was
noticed already in [26, Lemma 4.1]:

Lemma 2.1. For q ∈ L2 and κ > 0 we have

∥Λ∥2I2(R) = ∥Γ∥2I2(R) ≈
∫
R
log(4 + ξ2

κ2 )
|q̂(ξ)|2√
4κ2 + ξ2

dξ ≲ κ−1∥q∥2L2 ,(2.1)

∥Λ∥2I2(T) = ∥Γ∥2I2(T) ≈
∑

ξ∈2πZ
log(4 + ξ2

κ2 )
|q̂(ξ)|2√
4κ2 + ξ2

≲ κ−1∥q∥2L2 .(2.2)

Proof. The estimate (2.1) follows from the computation

∥Λ∥2I2(R) =
1
2π

∫
R
|q̂(ξ)|2

∫
R

1√
κ2+η2

√
κ2+(η+ξ)2

dη dξ ≈
∫
R
log(4 + ξ2

κ2 )
|q̂(ξ)|2√
4κ2+ξ2

dξ.

To compute the above integral in η, one treats separately the regions |η| ≤ 2|ξ| and
|η| > 2|ξ|; the logarithm term arises only when considering the first region.

On the torus, similar arguments yield

∥Λ∥2I2(T) =
∑

ξ∈2πZ
|q̂(ξ)|2

∑
η∈2πZ

1√
κ2+η2

√
κ2+(η+ξ)2

≈
∑

ξ∈2πZ
log(4 + ξ2

κ2 )
|q̂(ξ)|2√
4κ2+ξ2

,

which settles (2.2). □

These Hilbert–Schmidt bounds ensure that iκΛΓ is trace class and thus that
the determinant in (1.8) is well defined. The trace of this operator will also be
important and is easily evaluated:

Lemma 2.2. Let q ∈ L2 and κ > 0. Then

tr(iκΛΓ) =

∫
iκ|q̂(ξ)|2
2κ−iξ dξ on R,(2.3)

tr(iκΛΓ) = 1+e−κ

1−e−κ

∑
ξ∈2πZ

iκ|q̂(ξ)|2
2κ−iξ on T.(2.4)
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Proof. To prove (2.3), we simply compute the trace on the Fourier side:

tr(iκΛΓ) = iκ
2π

∫∫
|q̂(ξ)|2

(η−iκ)(η+ξ+iκ) dη dξ =

∫
iκ|q̂(ξ)|2
2κ−iξ dξ.

In the circle setting, we use the partial fraction decomposition of the cotangent:∑
η∈2πZ

(
1

κ+iη + 1
κ−iη

)
= coth(κ2 ) =

1+e−κ

1−e−κ .(2.5)

In this way, we find

tr(iκΛΓ) = iκ
∑

ξ∈2πZ
|q̂(ξ)|2 1

ξ+2iκ

∑
η∈2πZ

(
1

η−iκ − 1
η+ξ+iκ

)
=

∑
ξ∈2πZ

iκ|q̂(ξ)|2
2κ−iξ

1+e−κ

1−e−κ .

Notice that the sum over η simplifies to (2.5) because ξ ∈ 2πZ. □

In Section 5, it will be convenient to express the next term in the series (1.9) as
a paraproduct. This is the role of the next lemma.

Lemma 2.3. Let q ∈ L2 and κ > 0. Then

tr
(
[ΛΓ]2

)
=

∫
R

(
1

2κ+∂ q̄
)2

(4κ− ∂)
(

1
2κ−∂ q

)2

dx on R,(2.6)

tr
(
[ΛΓ]2

)
= 1+e−κ

1−e−κ

∫
T

(
1

2κ+∂ q̄
)2

(4κ− ∂)
(

1
2κ−∂ q

)2

dx on T.(2.7)

Proof. The method is exactly that of the previous lemma, only the details change.
In the line case, we have a more complicated (but still elementary) contour integral.
In the circle case, one must verify that∑

ξ∈2πZ

1

(κ+ iξ)(κ− i[ξ + η1])(κ+ i[ξ + η1 + η2])(κ− i[ξ + η1 + η2 + η3])

=
1 + e−κ

1− e−κ
· 4κ− i(η1 + η3)

(2κ− iη1)(2κ+ iη2)(2κ− iη3)(2κ+ iη4)
.

This follows from (2.5) via a careful partial fraction decompostion. □

Our next lemma records operator estimates for frequency localized potentials.

Lemma 2.4 (Operator estimates). Fix q ∈ L2, N ∈ 2N, and κ ≥ 1, and denote
ΛN = Λ(qN ) and ΓN = Γ(qN ). Then

∥ΛN∥I2
= ∥ΓN∥I2

≈
√

1
κ+N log

(
4 + N2

κ2

)
∥qN∥L2 ,(2.8)

∥ΛN∥op = ∥ΓN∥op ≲ min

{
√
N
κ ,

√
1

κ+N log
(
4 + N2

κ2

)}
∥qN∥L2 ,(2.9) ∑

N≤N0

∥ΛN∥op ≲ κ−1 min
{√

N0,
√
κ
}
∥q∥L2 .(2.10)

Proof. The claim (2.8) follows immediately from Lemma 2.1.
Using the Bernstein inequality, we estimate

∥ΛN∥op ≤ ∥(κ− ∂)−
1
2 ∥op∥qN∥op∥(κ+ ∂)−

1
2 ∥op ≤ 1

κ∥qN∥L∞ ≲
√
N
κ ∥qN∥L2 .

Combining this with (2.8) yields (2.9).
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The case N0 ≤ κ of (2.10) is clear. If N0 > κ, an application of (2.9) yields∑
N≤N0

∥ΛN∥op ≲
∑
N≤κ

√
N
κ ∥q∥L2 +

∑
κ<N≤N0

√
1
N log

(
4 + N2

κ2

)
∥q∥L2 ≲

√
κ
κ ∥q∥L2 ,

as desired. □

Lemma 2.5. For all κ ≥ 1, we have

∥(κ+ ∂)−1f(κ− ∂)−1∥I2
≲ κ− 1

2 ∥f∥H−1 ,(2.11)

∥q(κ+ ∂)−
3
4 ∥I2

≲ κ− 1
4 ∥q∥L2 ,(2.12)

∥(κ− ∂)−
1
4 q(κ+ ∂)−

1
4 ∥op ≲ ∥q∥L2 .(2.13)

Proof. We first turn to (2.11). We will only consider here the line setting; in
the periodic case, one can apply a similar argument to the one in the proof of
Lemma 2.1. A straightforward computation yields

∥(κ+ ∂)−1f(κ− ∂)−1∥2I2
= 1

2π

∫∫
|f̂(ξ)|2

[κ2+(ξ+η)2](κ2+η2) dη dξ.

Considering separately the regions |η| ≤ 2|ξ| and |η| > 2|ξ| when integrating in η,
we find

∥(κ+ ∂)−1f(κ− ∂)−1∥2I2
≲

∫
|f̂(ξ)|2

κ(κ2+ξ2) dξ ≲ κ−1∥f∥2H−1 .

By direct computation (cf. [42, Theorem 4.1]), we have

∥q(κ+ ∂)−
3
4 ∥I2 ≲ ∥q∥L2∥(κ+ iξ)−

3
4 ∥L2

ξ
≲ κ− 1

4 ∥q∥L2 ,

which settles (2.12).
Similarly, by Cwikel’s theorem (see [7] or [42, Theorem 4.2]), we find that

∥(κ− ∂)−
1
4 q(κ+ ∂)−

1
4 ∥op ≤

(κ− ∂)−
1
4

√
|q|


op

 q√
|q|
(κ+ ∂)−

1
4


op

≲
(κ± iξ)−

1
4

2
L4

weak

√|q|
2
L4 ≲ ∥q∥L2 . □

Proposition 2.6. Let Q be a bounded and equicontinuous subset of L2. Then

lim
κ→∞

sup
q∈Q

√
κ∥Λ(q)∥op = 0.(2.14)

Moreover, there exists κ0 ≥ 1 so that the series (1.9) converges uniformly for κ ≥ κ0

and q ∈ Q.

Proof. Fix ε > 0 and let η > 0 be a small parameter to be chosen later. Using
(2.10) and Lemma 2.1, we get
√
κ
Λ(q)

op
≲

√
κ
Λ(q>ηκ)


op

+
√
κ

∑
N≤ηκ

∥ΛN (q)∥op ≲ ∥q>ηκ∥L2 +
√
η ∥q∥L2 .

Choosing η small enough depending on the L2 bound of Q, and then κ sufficiently
large depending on η and the equicontinuity property of Q, we may ensure that

√
κ ∥Λ(q)∥op < ε for all q ∈ Q,

which yields (2.14).
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To continue, we choose κ0 sufficiently large so that for any κ ≥ κ0 we have√
κ ∥Λ(q)∥op ≤ 1

2 uniformly for q ∈ Q. Lemma 2.1 then yields(iκΛΓ)ℓ+1

I1

≤ κℓ+1∥Λ∥2I2
∥Λ∥2ℓop ≲ 2−ℓ∥q∥2L2 ,(2.15)

uniformly for κ ≥ κ0 and q ∈ Q, which ensures convergence of the series (1.9). □

As discussed in the introduction, this convergence result allows the arguments of
[28, 45] to be extended beyond the regime of small L2 norm and so show that α(κ; q)
is conserved under the (DNLS) flow, for κ sufficiently large. This conservation is
inherited by a(κ; q) for all Reκ > 0 because this is a holomorphic function in this
region.

3. Equicontinuity in L2

The goal of this section is to prove Theorem 1.3. We begin with a convenient
notion of the momentum at high frequencies in each geometry:

β
[2]
R (κ; q) :=

∫
R

ξ2|q̂(ξ)|2

4κ2 + ξ2
dξ and β

[2]
T (κ; q) :=

∑
ξ∈2πZ

ξ2|q̂(ξ)|2

4κ2 + ξ2
.(3.1)

The curious notation is explained by the fact that these expressions coincide with
the quadratic (in q) parts of the quantities in (4.3). For our immediate purposes,
however, the following relation with the formulas of Lemma 2.2 is more important:

(3.2)
Im tr(iκΛΓ) = 1

2

[
M(q)− β

[2]
R (κ; q)

]
on R,

Im tr(iκΛΓ) = 1
2

1+e−κ

1−e−κ

[
M(q)− β

[2]
T (κ; q)

]
on T.

Given an infinite subset K ⊆ 2N, we then define a norm via

∥q∥2K := ∥q∥2L2 +
∑
κ∈K

β[2](κ; q).(3.3)

This in turn leads to a very convenient formulation of equicontinuity:

Lemma 3.1. A set Q ⊆ L2 is bounded and equicontinuous if and only if there
exists an infinite set K ⊆ 2N so that supq∈Q ∥q∥K < ∞.

Proof. This is immediately evident from the observation that

∥q∥2K ≈ ∥q∥2L2 +
∑
κ∈K

∥q>κ∥2L2 ≈ ∥q∥2L2 +
∑
N∈2N

#{κ ∈ K : κ < N} ∥qN∥2L2 . □

Before beginning the proof of Theorem 1.3, we need two further preliminaries.
The first will allow us to pass from the determinant to the exponentiated trace,
and the second to take logarithms.

Lemma 3.2. Let A ∈ I1. Then⏐⏐det(1 +A)− exp{tr(A)}
⏐⏐ ≤ 1

2∥A∥2I2
exp

{
∥A∥I1

}
.(3.4)

Proof. Let λi enumerate the non-zero eigenvalues of A repeated according to alge-
braic multiplicity. By relating eigenvalues and singular values, Weyl proved that∑

|λi| ≤ ∥A∥I1 and
∑

|λi|2 ≤ ∥A∥2I2
.
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Now let us compare

det(1 +A) = 1 +

∞∑
n=1

1

n!

∑
i1,...,in
distinct

λi1λi2 · · ·λin ,

exp{tr(A)} = 1 +

∞∑
n=1

1

n!

∑
i1,...,in

λi1λi2 · · ·λin .

Evidently, the difference contains only sums over n-tuples (i1, . . . , in) that contain
at least one pair of identical indices. Thus,

LHS(3.4) ≤
∞∑

n=2

1

n!

(
n

2

)[∑
j

|λj |2
][∑

i

|λi|
]n−2

≤ 1
2∥A∥2I2

∞∑
n=2

1

(n− 2)!
∥A∥n−2

I1

and so (3.4) follows. □

Lemma 3.3. Given C > 0 and 0 < ε < π, let

R = {z : |Re z| ≤ C and 0 < Im z < 2π − ε}.(3.5)

Then ⏐⏐Im(z − w)
⏐⏐ ≤ πeC

sin(ε/2)

⏐⏐ew − ez
⏐⏐ uniformly for z, w ∈ R.(3.6)

Proof. This reduces to elementary trigonometry once one realizes that the worst-
case scenario is Re z = Rew = −C. □

We are now ready for the climax of the section:

Proof of Theorem 1.3. Let us begin right away with the key computation. Given
any q ∈ L2, we may apply (2.8), (2.10), and (in the final step) Cauchy–Schwarz to
deduce that∑

κ∈2N

∥iκΛ(q)Γ(q)∥2I2
(3.7)

≲
∑
κ∈2N

κ2
∑

N1∼N2≥N3,N4

∥ΛN1(q)∥I2∥ΛN2(q)∥I2∥ΛN3(q)∥op∥ΛN4(q)∥op

≲ M(q)
∑
κ∈2N

∑
N1∼N2

1
N2+κ log

(
4 +

N2
2

κ2

)
∥qN1

∥L2∥qN2
∥L2 min{N2, κ}

≲ M(q)
∑

N1∼N2

∥qN1∥L2∥qN2∥L2

( ∑
κ≤N2

κ
N2

log
(
4 +

N2
2

κ2

)
+

∑
κ>N2

N2

κ

)
≲ M(q)2.

Combining this with Lemmas 2.1 and 3.2, we find∑
κ∈2N

⏐⏐a(κ; q)− exp
{
− tr

[
iκΛ(q)Γ(q)

]}⏐⏐ ≤ CM(q)2eCM(q)(3.8)

for some absolute C.
As we did not explicitly require that M(q̃) = M(q) for q̃ ∈ C0

q , let us pause to
see that this follows from the equality a(κ; q̃) ≡ a(κ; q). From (3.4) and Lemma 2.2
we see that for κ → ∞,

0 =
⏐⏐a(κ; q̃)− a(κ; q)

⏐⏐ = ⏐⏐exp{− tr
[
iκΛ

(
q̃
)
Γ
(
q̃
)]

− exp
{
− tr

[
iκΛ

(
q
)
Γ
(
q
)]}⏐⏐+ o(1)
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=
⏐⏐exp{− i

2M
(
q̃
)}

− exp
{
− i

2M
(
q
)}⏐⏐+ o(1).

Thus M(q̃) is preserved modulo 4πZ. As q̃ belongs to the same connected compo-
nent as q, we must have that M(q̃) = M(q). For later use, we note the consequence

sup
q∈Q∗∗

M(q) = sup
q∈Q

M(q).(3.9)

While this argument did not require the hypothesis (1.12), we will need it to
unwrap this phase ambiguity when we address equicontinuity. This is our next
topic.

Given an equicontinuous set Q satisfying (1.12), let us choose ε > 0 and an
infinite subset K ⊆ 2N so that

sup
q∈Q,κ∈K

1+e−κ

1−e−κM(q) ≤ 4π − 2ε and sup
q∈Q

∥q∥K < ∞.

Proceeding very much as we did above, we see that∑
κ∈K

⏐⏐exp{− tr
[
iκΛ

(
q̃
)
Γ
(
q̃
)]

− exp
{
− tr

[
iκΛ

(
q
)
Γ
(
q
)]}⏐⏐ ≤ 2CM(q)2eCM(q)

for any q̃ ∈ C0
q . Combining this with (3.2) and Lemma 3.3, we deduce that∑

κ∈K

⏐⏐⏐β[2]
(
κ; q̃

)
− β[2]

(
κ; q

)⏐⏐⏐ ≲ε 1.

This in turn guarantees that

sup
{
∥q̃∥2K : q̃ ∈ Q∗∗

}
≤ sup

{
∥q∥2K : q ∈ Q

}
+Oε(1) < ∞,

from which equicontinity follows via Lemma 3.1. □

4. Conservation laws and Equicontinuity

The primary goal of this section is to prove Hs bounds for (DNLS) solutions,
for 0 < s < 1

2 , as a prerequisite for proving Theorem 1.5. We will also prove
equicontinuity in these spaces, which is also needed to prove that theorem.

Before turning to that subject, we pause to show how L2-equicontinuity can be
used to restore coercivity to the traditional polynomial conservation laws. As a
representative example, we show how H2(q) can be used to control the H1-norm:

Proposition 4.1. Let Q ⊆ H1 be L2-bounded and equicontinuous. Then

∥q∥2H1 ≲ H2(q) +M(q)3,(4.1)

uniformly for all q ∈ Q.

Proof. Splitting into low and high frequency parts and estimating using the Bern-
stein and Gagliardo–Nirenberg inequalities, respectively, we obtain

∥q∥6L6 ≲ ∥q≤N∥6L6 + ∥q>N∥6L6 ≲ N2∥q∥6L2 + ∥q>N∥4L2∥q′∥2L2 .

This allows us to control the quartic term in H2, and hence the H1-norm, as follows:

∥q′∥2L2 ≤ H2(q) +
3
2

∫
|q(x)|3|q′(x)| dx

≤ H2(q) + ε∥q′∥2L2 + 9
16ε∥q∥

6
L6

≤ H2(q) +
(
ε+ C 9

16ε∥q>N∥4L2

)
∥q′∥2L2 + C 9

16εN
2M(q)3,
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for any ε > 0. The claim (4.1) now follows by choosing ε small and then N large,
exploiting the equicontinuity of Q. □

Proposition 4.1 allows us to extend local H1 solutions globally in time, provided
we remain below the M∗ bound introduced in Definition 1.4.

Corollary 4.2. The (DNLS) evolution is globally well-posed, both on the line and
on the circle, in the space

B1
M∗

=
{
q ∈ H1 : ∥q∥2L2 < M∗

}
(4.2)

endowed with the H1 topology. Moreover, initial data in S leads to solutions that
belong to S at all times.

Proof. In the line case, this result can be deduced from [2]; indeed, the restriction
M(q) < M∗ is not needed in this case. Below we give an alternate argument that
works also in the periodic setting.

As discussed in the introduction, local well-posedness in H1 was proved already
in [43, 16]. Thus, given initial data q(0) ∈ B1

M∗
∩ S, there is a corresponding

maximal lifespan solution q ∈ Ct([0, T );H
1) to (DNLS). Moreover, [15] shows that

q(t) ∈ S for all t ∈ [0, T ). Combining [28, 45] with Proposition 2.6 yields that
a(κ; q(t)) = a(κ, q(0)) for all t ∈ [0, T ) and κ > 0. By the definition of M∗ and
Proposition 4.1, the solution q satisfies a priori H1 bounds on [0, T ), which in turn
guarantees that T = ∞.

Finally, global well-posedness in B1
M∗

follows from local well-posedness and the

density of S in H1. □

Let us now turn to low-regularity questions. Bounded sets in Hs, s > 0, are
automatically bounded and equicontinuous in L2. As we shall work only below
the M∗ threshold in this section, such L2-equicontinuity is retained globally in
time. Our goal is to propagate Hs bounds. The key to doing this is a certain
renormalization of α(κ; q) that we introduce now:

(4.3)
βR(κ; q) := ∥q∥2L2 − 2 Imα(κ; q) on R,

βT(κ; q) := ∥q∥2L2 − 1−e−κ

1+e−κ 2 Imα(κ; q) on T.

Proposition 2.6 guarantees that these quantities are well defined for κ sufficiently
large across our whole family of orbits.

The quadratic (in q) parts of these expressions were presented already in (3.1).
As we saw there, these provide a sense of the L2-norm of the high-frequency part
of q. To address higher regularity, for 0 < s < 1

2 we consider the quantity

βs(κ; q) :=

∫ ∞

κ

β(κ; q)κ2s dκ
κ .

The quadratic term in this expression is given by

β[2]
s (κ; q) =

∫ ∞

κ

β[2](κ; q)κ2s dκ
κ =

∫ ∞

κ

⟨ −∂2

4κ2−∂2 q, q
⟩
κ2s dκ

κ ≈s

⟨ −∂2

(κ2−∂2)1−s q, q
⟩
.

From this we see that for any 0 < η < 1,

∥q>κ∥2Hs ≲ β[2]
s (κ; q) ≲ η2(1−s)∥q∥2Hs + ∥q>ηκ∥2Hs ,(4.4)
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and so β
[2]
s (κ; q) captures the Hs-norm of the high-frequency part of q. Indeed, a

bounded set Q ⊆ Hs is equicontinuous in Hs if and only if β
[2]
s (κ; q) → 0 uniformly

on Q as κ → ∞.

Theorem 4.3. Fix 0 < s < 1
2 and let Q ⊆ S be Hs-bounded and satisfy (1.13).

Then, recalling the notation Q∗∗ from (1.11), we have

sup
q∈Q∗∗

∥q∥Hs ≲ C
(
sup
q∈Q

∥q∥2L2 , sup
q∈Q

∥q∥2Hs

)
.(4.5)

Moreover, if Q is Hs-equicontinuous, then so is Q∗∗.

Proof. As Q is Hs-bounded, it is automatically L2-bounded and equicontinuous.
By (3.9), Q∗∗ inherits L2-boundedness from Q. As Q satisfies (1.13), we deduce
that Q∗∗ is also L2-equicontinuous. By Proposition 2.6, we may choose κ0 ≥ 1 so
that

√
κ
Λ(q)

op
≤ 1

2 uniformly for q ∈ Q∗∗ and κ ≥ κ0.(4.6)

As shown there, this ensures that α(κ; q) and so also β(κ; q) are well defined for all
q ∈ Q∗∗ and κ ≥ κ0.

Arguing as in (2.15), we also see that (4.6) implies

|βs(κ; q)− β[2]
s (κ; q)| ≲

∫ ∞

κ

κ2s+2∥Λ(q)Γ(q)∥2I2

dκ
κ

≲
∫ ∞

κ

κ2s+2
∑

N1∼N2≥N3≥N4

∥ΛN1
∥I2

∥ΛN2
∥I2

∥ΛN3
∥op∥ΛN4

∥op dκ
κ(4.7)

uniformly for q ∈ Q∗∗ and κ ≥ κ0. To continue from here, we decompose the full
sum into the subregions Sj defined by

S1 = {N2 ≤ κ},
S2 = {κ < N2 ≤ κ and N3 ≤ ηκ},
S3 = {κ < N2 ≤ κ and N3 > ηκ},
S4 = {N2 > κ and N3 ≤ ηκ},
S5 = {N2 > κ and N3 > ηκ},

where η ∈ (0, 1) is a small parameter to be chosen later. We will estimate separately
each of the contributions

Ij(κ; q) :=

∫ ∞

κ

κ2s+2
∑
Sj

∥ΛN1
∥I2

∥ΛN2
∥I2

∥ΛN3
∥op∥ΛN4

∥op dκ
κ .

Applying (2.8) and (2.10) from Lemma 2.4, we have

I1 ≲
∫ ∞

κ

κ2s+2
∑

N1∼N2≤κ

N2

κ3 ∥qN1∥L2∥qN2∥L2∥q∥2L2
dκ
κ

≲ κ2s−1∥q∥2L2

∑
N1∼N2≤κ

N2∥qN1∥L2∥qN2∥L2

≲ κ2s∥q∥4L2 .

Proceeding analogously and using (4.4), we find

I2 ≲
∑

N1∼N2>κ

∫ ∞

N2

ηκκ2s−1N−2s
2 ∥qN1

∥Hs∥qN2
∥Hs∥q∥2L2

dκ
κ
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≲
∑

N1∼N2>κ

ηκN−1
2 ∥qN1∥Hs∥qN2∥Hs∥q∥2L2

≲ η∥q∥2L2β[2]
s (κ; q),

I3 ≲
∑

N1∼N2>κ

∫ ∞

N2

κ2s−1N1−2s
2 ∥qN1

∥Hs∥qN2
∥Hs∥q∥L2∥q>ηκ∥L2

dκ
κ

≲
∑

N1∼N2>κ

∥qN1
∥Hs∥qN2

∥Hs∥q∥L2∥q>ηκ∥L2

≲ ∥q∥L2∥q>ηκ∥L2β[2]
s (κ; q),

I4 ≲
∑

N1∼N2>κ

∫ N2

κ

ηκκ2s log
(
4 +

N2
2

κ2

)
N−1−2s

2 ∥qN1∥Hs∥qN2∥Hs∥q∥2L2
dκ
κ

≲
∑

N1∼N2>κ

ηκN−1
2 ∥qN1∥Hs∥qN2∥Hs∥q∥2L2

≲ η∥q∥2L2β[2]
s (κ; q),

and finally,

I5 ≲
∑

N1∼N2>κ

∫ N2

κ

κ2s log
(
4 +

N2
2

κ2

)
N−2s

2 ∥qN1
∥Hs∥qN2

∥Hs∥q∥L2∥q>ηκ∥L2
dκ
κ

≲
∑

N1∼N2>κ

∥qN1
∥Hs∥qN2

∥Hs∥q∥L2∥q>ηκ∥L2

≲ ∥q∥L2∥q>ηκ∥L2β[2]
s (κ; q).

Collecting all our estimates, we conclude that⏐⏐⏐βs(κ; q)− β[2]
s (κ; q)

⏐⏐⏐ ≲ κ2s∥q∥4L2 +
(
η∥q∥2L2 + ∥q∥L2∥q>ηκ∥L2

)
β[2]
s (κ; q)

uniformly on Q∗∗. As Q∗∗ is L2-bounded and equicontinuous, we may choose η
small and then κ1 ≥ κ0 large to deduce that

sup
q∈Q∗∗

β[2]
s (κ; q) ≲ sup

q∈Q
β[2]
s (κ; q) + κ2s sup

q∈Q
∥q∥4L2 for all κ ≥ κ1.(4.8)

The claim (4.5) now follows from (4.4) by choosing κ = κ1.
It remains to prove that Hs-equicontinuity for Q is inherited by Q∗∗. This

requires a different estimate for I1. Using (2.8) and (2.9), we obtain

I1 ≲
∑

N4≤···≤N1≤κ

√
N3N4 ∥qN1

∥L2∥qN2
∥L2∥qN3

∥L2∥qN4
∥L2

∫ ∞

κ

κ2s−1 dκ
κ

≲ κ2s−4σ∥q∥4Hs ,

where σ = min{s, 1
4}. Now that we know (4.5), we may employ it here to deduce

the following analogue of (4.8):

sup
q∈Q∗∗

β[2]
s (κ; q) ≲ sup

q∈Q
β[2]
s (κ; q) + κ2s−4σC

(
sup
q∈Q

∥q∥2L2 , sup
q∈Q

∥q∥2Hs

)4

(4.9)

uniformly for κ ≥ κ1. As 4σ > 2s, equicontinuity follows by sending κ → ∞. □
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5. Global well-posedness in Hs for s ≥ 1
6

In order to treat the line and circle simultaneously, it is convenient to introduce

A(κ; q) = α(κ; q) on R and A(κ; q) = 1−e−κ

1+e−κα(κ; q) on T.(5.1)

This leads to parallel leading asymptotic expansions:

A(κ; q) = i
2M(q) + 1

4κH(q) +O
(

1
κ2

)
,

as follows from Lemmas 2.2 and 2.3. This expansion is important; it guides our
choice of regularized Hamiltonian flows. We choose

Hκ(q) := 4κReA(κ; q),

since, formally at least, H(q) = Hκ(q) + O(κ−1), which suggests that the flow
generated by Hκ(q) approximates the (DNLS) flow as the parameter κ diverges to
infinity.

The flow generated by Hκ(q) with respect to the Poisson structure (1.5) is

d
dtq =

(
δHκ

δq̄

)′
= 2κ

(
δA(κ;q)

δq̄ + δA(κ;q)
δq

)′
, since δĀ

δq̄ = δA
δq .(Hκ)

Our first task in this section is to prove that the Hκ flow is well-posed on L2-
equicontinuous sets of Schwartz initial data satisfying (1.13), provided κ is cho-
sen sufficiently large depending on the equicontinuous family; see Proposition 5.3.
Moreover, we will show that the corresponding solutions belong to S for all times.

In Lemma 5.2, the Hκ flow will be shown to conserve M(q) and α(κ; q); thus, it
satisfies both theHs-bounds and theHs-equicontinuity guaranteed by Theorem 4.3.
Together with Proposition 5.3, this immediately yields well-posedness of theHκ flow
on Hs for all 0 ≤ s < 1

2 under the restriction (1.13); see Corollary 5.4.

To prove that the (DNLS) flow is well-posed in Hs for 1
6 ≤ s < 1

2 , it then suffices
to prove that this is well approximated by (Hκ) flows as κ → ∞. An important
ingredient in our argument is the commutativity of the Hκ and (DNLS) flows, at
least on S. This follows from Lemma 5.2 and the well-posedness of these flows on
S by mimicking the arguments in [1, §39]. In view of this commutativity, proving
convergence of the (Hκ) flows to the (DNLS) flow amounts to showing that the
flow generated by the difference of the Hamiltonians H(q)−Hκ(q) converges to the
identity as κ → ∞. This final stage of the proof will be carried out in Theorem 5.5.

In order to make sense of (Hκ), we must prove that α(κ; q) is in fact differentiable.
To solve (Hκ) locally in time, we further need to show that this functional derivative
is itself a Lipschitz function of q. These goals require us to define α(κ; q) on open
sets in L2, rather than merely equicontinuous sets. The next result addresses these
issues.

Here and below we write Qε to denote the ε neighborhood of Q in the L2-metric.

Lemma 5.1. Let Q be a bounded and equicontinuous subset of L2. Then there
exist ε > 0 and κ0 ≥ 1 so that for all κ ≥ κ0, α(κ; q) is a real-analytic function of
q ∈ Qε. Moreover, we have the following bounds δα(κ;q)

δq


H1 +

 δα(κ;q)
δq̄


H1 ≲ κ∥q∥L2(5.2)  δα(κ;q)

δq − δα(κ;q̃)
δq


H1 +

 δα(κ;q)
δq̄ − δα(κ;q̃)

δq̄


H1 ≲ κ∥q − q̃∥L2(5.3)
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where the implicit constants depend only on Q. Additionally, for every κ ≥ κ0 and
q ∈ Qε, there exists γ(κ; q) ∈ H1 so that( δα(κ;q)

δq̄

)′
= 2κ δα(κ;q)

δq̄ − iκq[γ(κ; q) + 1],(5.4) ( δα(κ;q)
δq

)′
= −2κ δα(κ;q)

δq + iκq̄[γ(κ; q) + 1],(5.5)

γ(κ; q)′ = 2q̄ δα(κ;q)
δq̄ − 2q δα(κ;q)

δq .(5.6)

Lastly, for each integer m ≥ 0 we have( δα(κ;q)
δq̄

)′
Hm ≲m κ∥q∥Hm ,(5.7) ⟨x⟩2m( δα(κ;q)

δq̄

)′
L2 ≲m κ∥⟨x⟩2mq∥L2 ,(5.8)

uniformly for q ∈ Qε and κ ≥ κ0.

Proof. Proposition 2.6 shows that given δ ∈ (0, 1], there exists κ0 ≥ 1 so that

sup
q∈Q

√
κ ∥Λ(q)∥op ≤ δ

4 uniformly for κ ≥ κ0.

As Λ(q) is linear in q, Lemma 2.1 allows us to deduce

sup
q∈Qε

√
κ ∥Λ(q)∥op ≤ δ

2 uniformly for κ ≥ κ0,(5.9)

provided ε is chosen sufficiently small (depending on δ).
Now we must explain how to choose δ. In view of (2.15), δ ≤ 1 guarantees that

the series (1.9) converges on Qε. We place an additional requirement to aid in the
proofs of (5.2) and (5.3). From Lemma 2.5 we find that

∥(κ+ ∂)−
1
4 q(κ− ∂)−

1
4 ∥op · ∥(κ− ∂)−

3
4 q(κ+ ∂)−

3
4 ∥op ≲ ∥q∥L2 · κ− 1

2 ∥Λ(q)∥op.
Thus, we may choose δ even smaller if necessary to ensure also that

κ
(κ+ ∂)−

1
4 q(κ− ∂)−

1
4


op

·
(κ− ∂)−

3
4 q(κ+ ∂)−

3
4


op

≤ 1
2(5.10)

uniformly for q ∈ Qε and κ ≥ κ0.
Turning now to (5.2), we argue by duality. For f ∈ H−1, we have⟨
f, δα(κ;q)

δq̄

⟩
=

∑
ℓ≥0

(iκ)ℓ+1 tr
{[

(κ− ∂)−1q(κ+ ∂)−1q̄
]ℓ
(κ− ∂)−1q(κ+ ∂)−1f̄

}
.

The ℓ = 0 term is readily computed exactly via Lemma 2.2. For example,

iκ tr
{
(κ− ∂)−1q(κ+ ∂)−1f̄

}
= iκ

⟨
1

2κ+∂ f, q
⟩

in the line case.

In either geometry, this is easily seen to satisfy the desired bound.
For ℓ ≥ 1, we employ (5.10) and Lemma 2.5 to estimate⏐⏐⏐(iκ)ℓ+1 tr

{[
(κ− ∂)−1q(κ+ ∂)−1q̄

]ℓ
(κ− ∂)−1q(κ+ ∂)−1f̄

}⏐⏐⏐
≲ κℓ+1∥(κ+ ∂)−1f̄(κ− ∂)−1∥I2

∥q(κ+ ∂)−
3
4 ∥2I2

∥(κ+ ∂)−
1
4 q(κ− ∂)−

1
4 ∥ℓop

× ∥(κ− ∂)−
3
4 q(κ+ ∂)−

3
4 ∥ℓ−1

op

≲ 2−ℓκ∥f∥H−1∥q∥3L2 ,

with an implicit constant independent of ℓ. This proves that the estimate (5.2) holds
for the q̄ derivative; the bound on the q derivative follows in a parallel fashion.

The proof of (5.3) proceeds analogously, noting that one can always exhibit the
difference q − q̃ in place of a q.
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We define γ(κ; q) via the associated linear functional,

⟨f, γ(κ; q)⟩ =
∑
ℓ≥1

(iκ)ℓ tr
{[

(κ− ∂)−1q(κ+ ∂)−1q̄
]ℓ
(κ− ∂)−1f̄

}
(5.11)

+
∑
ℓ≥1

(iκ)ℓ tr
{[

(κ+ ∂)−1q̄(κ− ∂)−1q
]ℓ
(κ+ ∂)−1f̄

}
,

and will prove γ ∈ H1 by showing that this functional is bounded for f ∈ H−1.
Regarding the ℓ = 1 terms, Lemma 2.5 and direct computation show that⏐⏐⏐κ tr{(κ∓ ∂)−1q(κ± ∂)−1q̄(κ∓ ∂)−1f̄

}⏐⏐⏐ ≲ √
κ ∥q(κ± ∂)−1q̄∥I2∥f∥H−1

≲
√
κ ∥q∥2L2∥f∥H−1 .

For ℓ ≥ 2, we employ Lemma 2.5 and (5.10) as follows:⏐⏐⏐κℓ tr
{[

(κ∓ ∂)−1q(κ± ∂)−1q̄
]ℓ
(κ∓ ∂)−1f

}⏐⏐⏐
≲ κℓ− 1

2 ∥f∥H−1∥q(κ+ ∂)−
3
4 ∥2I2

∥(κ− ∂)−
1
2 ∥op∥(κ+ ∂)−

1
4 q(κ− ∂)−

1
4 ∥ℓop

× ∥(κ− ∂)−
3
4 q(κ+ ∂)−

3
4 ∥ℓ−2

op

≲ 2−ℓ
√
κ ∥q∥4L2∥f∥H−1 ,

where the implicit constant is independent of ℓ. Thus γ ∈ H1 and

∥γ(κ; q)∥H1 ≲
√
κ∥q∥2L2 .

The proofs of (5.4) and (5.5) follow parallel arguments. In the former case, we

pair δα(κ;q)
δq̄ with f ′, which we then rewrite as a trace. The result then follows by

noting the operator identity f ′ = −(κ− ∂)f − f(κ+ ∂) + 2κf and simplifying.
The proof of (5.6) follows the same style: one pairs γ(κ; q) with f ′ and employs

the operator identity f ′ = [κ+ ∂, f ] = −[κ− ∂, f ].
The proof of (5.7) mimics closely that of (5.2), once one understands how to move

the derivatives from the test function f to copies of q. Introducing the notation
fh(x) = f(x− h), we observe that by the translation invariance of the trace,⟨
f (m),

( δα(κ;q)
δq̄

)′⟩
= − ∂m

∂hm

⏐⏐⏐
h=0

⟨
f ′
h,

δα(κ;q)
δq̄

⟩
= − ∂m

∂hm

⏐⏐⏐
h=0

⟨
f ′, δ

δq̄α(κ; q−h)
⟩

= − ∂m

∂hm

⏐⏐⏐
h=0

∑
ℓ≥0

(iκ)ℓ+1 tr
{[
(κ− ∂)−1q−h(κ+ ∂)−1q̄−h

]ℓ
(κ− ∂)−1q−h(κ+ ∂)−1f̄ ′

}
.

Next, we apply the estimates used to prove (5.2) together with the elementary
inequality q(n)

L2 ≲ ∥q∥1−
n
m

L2 ∥q∥
n
m

Hm for all 0 < n ≤ m.

This yields the estimate (5.7). Note that summability in ℓ is guaranteed by (5.10),
just as before.

Lastly, we turn to (5.8). The argument is very similar; the key ingredient is to
move the polynomial weight ⟨x⟩2m from the test function f to a copy of q. This is
achieved via the identity

q(κ+ ∂)−1P f̄ =
∑
n≥0

(−1)n[P (n)q](κ+ ∂)−n−1f̄

valid for any polynomial P (x), which follows easily by induction using

[(κ+ ∂)−1, P (x)] = −(κ+ ∂)−1P ′(x)(κ+ ∂)−1. □
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Lemma 5.2. Let Q ⊆ S be L2-bounded and equicontinuous, and let ε and κ0 be as
in Lemma 5.1. Then for all κ,κ ≥ κ0,

{H,α(κ)} = 0, {M,α(κ)} = 0, and {α(κ), α(κ)} = 0

on Qε. Consequently, A(κ), A(κ), M , H, and Hκ all Poisson commute on Qε.

Proof. As discussed in the introduction, the commutativity of α(κ) with the Hamil-
tonian H was proved in [28, 45] whenever the series defining α(κ) can be guaranteed
to converge. Such convergence is guaranteed by Lemma 5.1.

Recalling (1.5) and employing (5.4), (5.5), and (5.6), we find

{M,α(κ)} = −2κ

∫
γ′ dx = 0.

Notice that (5.6) guarantees γ′ ∈ L1.
If κ = κ the third equality is clear. When κ ̸= κ, we may proceed to compute

the Poisson bracket by applying (5.4) and (5.5) directly to the derivatives of α(κ)
or by employing integration by parts and then the corresponding formulae for the
partial derivatives of α(κ). Comparing the two approaches yields

κ{α(κ), α(κ)} = κ{α(κ), α(κ)} and so {α(κ), α(κ)} = 0. □

Proposition 5.3. For each L2-equicontinuous set Q ⊆ S satisfying (1.13), there
exists κ0 ≥ 1 sufficiently large such that for all κ ≥ κ0, the (Hκ) flow is globally
well-posed for initial data in Q. Moreover, the solutions remain in S for all time.
Lastly, the set

Q∗ := {etJ∇Hκq : q ∈ Q, t ∈ R, and κ ≥ κ0}
is bounded and equicontinuous in L2.

Proof. Recall the set Q∗∗ introduced in (1.11). By (3.9), the hypothesis (1.13), and
the definition of M∗, this set is bounded and equicontinuous in L2. We fix ε > 0
and κ0 ≥ 1 as the values obtained by applying Lemma 5.1 to the set Q∗∗.

Next we construct a local solution for initial data q(0) ∈ Q∗∗. For κ ≥ κ0,
Lemma 5.1 ensures that one can run the usual contraction mapping argument for
the integral equation

q(t) = q(0) +

∫ t

0

2κ
(

δA(κ;q(s))
δq̄ + δA(κ;q(s))

δq

)′
ds

to find a unique solution q ∈ C([0, T ];L2), provided T is chosen sufficiently small.
In fact, T is chosen so small that q(t) and indeed all Picard iterates remain in the
ε-neighborhood of Q∗∗.

Combining the estimates (5.7) and (5.8) with the Gronwall inequality shows that
q(t) ∈ S for all t ∈ [0, T ]. This in turn allows us to apply Lemma 5.2 to conclude that
α(κ; q(t)) and hence a(κ; q(t)) are conserved. Taken together, these observations
guarantee that q([0, T ]) ⊆ Q∗∗ and so the local solutions may be concatenated to
yield a global solution lying wholly within Q∗∗. Finally, as Q∗ is a subset of Q∗∗,
it is L2-bounded and equicontinuous. □

Combining Proposition 5.3 with Theorem 4.3 immediately yields well-posedness
of the (Hκ) flow in the following sense:
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Corollary 5.4. Fix 0 < s < 1
2 and let Q ⊆ S be Hs-bounded and satisfy (1.13).

Then there exists κ0 ≥ 1 so that for all κ ≥ κ0 the (Hκ) flow is globally well-posed
for initial data in Q. Moreover,

Q∗ := {etJ∇Hκq : q ∈ Q, t ∈ R, and κ ≥ κ0} ⊆ S is Hs-bounded.

If Q is Hs-equicontinuous, then so is Q∗.

In order to complete the proof of Theorem 1.5, we must prove that Hs-Cauchy
sequences of initial data qn(0) ∈ S satisfying (1.13) lead to Cauchy sequences of
solutions to (DNLS). As mentioned above, this will be effected by showing that
the flow

d
dtq =

[
iq′ − |q|2q − 2κ

(
δA(κ;q)

δq̄ + δA(κ;q)
δq

)]′
,(Hdiff

κ )

generated by H(q) −Hκ(q), converges to the identity as κ → ∞. Due to commu-
tativity of the flows, S-valued solutions to (Hdiff

κ ) can be built via

etJ∇Hdiff
κ q = etJ∇He−tJ∇Hκq

using Corollaries 4.2 and 5.4. In view of Lemma 5.2, these solutions conserve M
and α(κ).

The proof of our final theorem makes a fitting end for this paper by highlighting
the power of equicontinuity. It is also here that we will finally see the origin of the
restriction s ≥ 1

6 . It is needed to make sense of the nonlinearity in (Hdiff
κ ) pointwise

in time.

Theorem 5.5. Fix 1
6 ≤ s < 1

2 and T > 0. Given a sequence qn(0) ∈ S of initial
data that converges in Hs and satisfies (1.13), let qn(t) denote the corresponding
solutions to (DNLS). Then qn(t) converges in Hs, uniformly for |t| ≤ T .

Proof. By hypothesis, the set Q = {qn(0) : n ∈ N} is bounded and equicontinuous
in the Hs-metric. Let κ0 ≥ 1 be as given by Corollary 5.4. Then for κ ≥ κ0, the
(Hκ) flow is well-posed for initial data in Q and the set

Q∗ := {etJ∇Hκqn(0) : n ∈ N, t ∈ R, and κ ≥ κ0} ⊆ S

is bounded and equicontinuous in Hs.
The commutativity of the (Hκ) and the (DNLS) flows allows us to rewrite our

sequence of solutions as

qn(t) = etJ∇Hdiff
κ etJ∇Hκqn(0).

Moreover, by Theorem 4.3, the set

{etJ∇Hdiff
κ q : q ∈ Q∗, t ∈ R, and κ ≥ κ0} ⊆ Q∗∗

is bounded and equicontinuous in Hs.
We will show that qn(t) forms a Cauchy sequence in Hs, uniformly for |t| ≤ T .

By the definition of Q∗, we estimate

sup
|t|≤T

∥qn(t)− qm(t)∥Hs ≤2 sup
q∈Q∗

sup
|t|≤T

∥etJ∇Hdiff
κ q − q∥Hs

+ sup
|t|≤T

∥etJ∇Hκqn(0)− etJ∇Hκqm(0)∥Hs
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for all κ ≥ κ0. For any such fixed κ, the well-posedness of the Hκ flow ensures that
the last term of the right-hand side converges to 0 as n,m → ∞. Thus, it suffices
to prove that the difference flow converges to the identity uniformly on Q∗:

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

∥etJ∇Hdiff
κ q − q∥Hs = 0.

In fact, as Q∗∗ is Hs-equicontinuous, it suffices to show that

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

∥etJ∇Hdiff
κ q − q∥H−4 = 0.(5.12)

By the fundamental theorem of calculus and (Hdiff
κ ), proving (5.12) reduces to

showing that

lim
κ→∞

sup
q∈Q∗∗

∥F∥H−3 = 0 where F := iq′ − |q|2q − 2κ
(

δA(κ;q)
δq̄ + δA(κ;q)

δq

)
.(5.13)

A straightforward computation shows that F [1], the term in F that is linear in q,

is given by −i ∂3

4κ2−∂2 q. This clearly converges to zero in H−3 as κ → ∞, uniformly

on Q∗∗, or indeed, on any L2-bounded set.
We turn now to the contribution of F [3], the term in F that is cubic in q.

Employing Lemma 2.3, we find the cubic terms(
δA(κ;q)

δq̄

)[3]

= − κ2

2κ−∂

{(
1

2κ+∂ q̄
)
(4κ− ∂)

(
1

2κ−∂ q
)2

}
= − 2κ2

2κ−∂

{
q
(

1
2κ−∂ q

)(
1

2κ+∂ q̄
)}

,(
δA(κ;q)

δq

)[3]

= − κ2

2κ+∂

{(
1

2κ−∂ q̄
)
(4κ+ ∂)

(
1

2κ+∂ q
)2

}
= − 2κ2

2κ+∂

{
q
(

1
2κ+∂ q

)(
1

2κ−∂ q̄
)}

.

This allows us to compute the full cubic term as follows:

F [3] = 2κ2 ∂
2κ−∂

[
q
(

1
2κ−∂ q

)(
1

2κ+∂ q̄
)]

− 2κ2 ∂
2κ+∂

[
q
(

1
2κ+∂ q

)(
1

2κ−∂ q̄
)]

+ 2κ2q
(

1
2κ−∂ q

)(
1

2κ+∂ q̄
)
+ 2κ2q

(
1

2κ+∂ q
)(

1
2κ−∂ q̄

)
− q2q̄

= 2∂
2κ−∂

[
q
(

κ
2κ−∂ q

)(
κ

2κ+∂ q̄
)]

− 2∂
2κ+∂

[
q
(

κ
2κ+∂ q

)(
κ

2κ−∂ q̄
)]

+ q2
(

∂2

4κ2−∂2 q̄
)

+ qq̄
(

∂2

4κ2−∂2 q
)
− 1

2q
(

∂
2κ−∂ q

)(
∂

2κ+∂ q̄
)
− 1

2q
(

∂
2κ+∂ q

)(
∂

2κ−∂ q̄
)
.

To estimate its contribution, we pair with f ∈ H3 and apply Hölder’s inequality.
Boundedness is easily deduced from

∥f∥L∞ + κ
 ∂
2κ±∂ f


L∞ ≲ ∥f∥H3 ,(5.14)

∥q∥L3 +
 ∂
2κ±∂ q


L3 +

 ∂2

4κ2−∂2 q

L3 ≲ ∥q∥Hs .(5.15)

Evidently (5.15) requires s ≥ 1
6 . The gain of a power of κ in (5.14) guarantees that

the contribution of the first two terms in F [3] decays to zero as κ → ∞. For the
remaining terms, we use Hs-equicontinuity to obtain decay: as s ≥ 1

6 , we have that

lim
κ→∞

sup
q∈Q∗∗

 ∂
2κ±∂ q


L3 ≲ lim

κ→∞
sup

q∈Q∗∗

 ∂
2κ±∂ q


Hs = 0.
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Finally, we turn our attention to the remaining terms (quintic and higher) in the
series expansion of F . By Lemma 2.1, (1.9), and the embedding H3 ↪→ L∞,⏐⏐⏐⏐∫ fF [≥5] dx

⏐⏐⏐⏐ ≲ ∑
ℓ≥2

κℓ+2∥Λ(q)∥2I2
∥Λ(q)∥2ℓ−1

op ∥Λ(f)∥op

≲ ∥q∥2L2∥f∥H3

∑
ℓ≥2

κℓ∥Λ(q)∥2ℓ−1
op .

The convergence we require does not follow from Proposition 2.6; we would lose by
a factor of

√
κ. However arguing in the same fashion, we find

∥Λ(q)∥op ≲ ∥Λ(q≤ηκ)∥op + ∥Λ(q>ηκ)∥op ≲ κ−1∥q≤ηκ∥L∞ + κ− 1
2 ∥q>ηκ∥L2

≲ κ− 1
2−s

(
η

1
2−s∥q∥Hs + η−s∥q>ηκ∥Hs

)
,

for any η > 0. When s > 1
6 , we may simply take η = 1 to deduce that

lim
κ→∞

sup
q∈Q∗∗

F [5]

H−3 = 0.

For the endpoint case s = 1
6 , this follows from the Hs-equicontinuity of Q∗∗ by

choosing η small and then κ large. This completes the proof of the theorem. □
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