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Neural networks have been widely applied in system dynamics modeling. One particular
type of networks, hybrid neural networks, combines a neural network model with a physical
model, which can increase rate of convergence in training. However, most existing hybrid
neural network methods require an explicit physical model constructed, which sometimes
might not be feasible in practice or could weaken the capability of capturing complex and
hidden physical phenomena. In this paper, we propose a novel approach to construct a
hybrid neural network. The new method incorporates the physical information to the
structure of network construction, but does not need an explicit physical model constructed.
The method is then applied to modeling of bit-rock interaction in the down-hole drilling
system as a case study, to demonstrate its effectiveness in modeling complex process and
efficiency of convergence in training. [DOI: 10.1115/1.4062631]
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e-mail: songxy@tamu.edu

1 Introduction

In recent years, neural network (NN) has increasingly been used
to model complicated physical system. Unlike the pure physics-
based models, NN is a data-based method where the intrinsic
physical characteristics within the data are learned by layers of
neurons and their connections. Its capability of modeling complex
systems and identifying their hidden dynamical features makes the
method widely applied in various fields such as agriculture, medical
science, engineering, and management [1].

The idea of combining the physics-based approach and the neural
networks approach together for modeling leads to an emerging
category of methods called hybrid neural networks (HNN). By
leveraging the known physics information, the training of neural
networks can be more efficient with faster convergence. There are
primarily two groups of hybrid neural networks. The first group [2,3]
directly adds a neural network model on top of a physical model,
where the neural network model is trained using the error between
the physical model and the data used for training. The second group
[4-10] is still primarily based on a physics model, where some
parameters which are hard to observe or compute are trained and
obtained using neural networks. However, most existing hybrid
networks methods require a physical model to be explicitly
constructed. This can cause two issues. First, in many cases, due
to the complex physical process behind, constructing an explicit
physical model may not be feasible, while only certain physical
characteristics can be extracted. Second, directly using a
physical model can make the hybrid model more dependent on the
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physical model and induce bias towards the preconstructed physical
model. If the physical model is not accurately constructed, it can
negatively affect the capability of neural networks to capture the
actual physical process behind.

In this paper, we intend to explore a new direction of constructing
hybrid neural networks. Instead of requiring a physical model to be
available, we only assume some physical features of the system can
be reliably captured. We then interpret this physical information into
specific neurons and incorporate them in the overall neural network
structure. The new method can strengthen the traditional neural
networks with physical information but avoids explicit construction
of a physical model.

The new hybrid modeling method will be explained in the context
of drill bit-rock interaction modeling as a case study. Down-hole
drilling is a critical technology that has been used not only in oil and
gas production but also in enhanced geothermal energy systems
(EGS) and specimen extraction in outer space exploration. To
analyze, optimize, and control the drilling process, it is important to
have an accurate and reliable drilling dynamics model [11]. One
particular part that is challenging to model is the interaction between
the drill bit and rock. There are some existing studies to model the
bit-rock interaction physically [12—17]. However, due to variations
in rock/earth property, complex down-hole conditions, it is hard to
ensure accurate and reliable modeling results in practical operating
conditions. Therefore, in this paper, we will model the bit—rock
interaction using a new hybrid neural network framework to
demonstrate its effectiveness.

The rest of the paper is organized as follows: First, the physical
process of the bit-rock interaction is explained in Sec. 2. Second,
Sec. 3 discusses the method to build the HNN structure. Then, Sec. 4
explains how the training data are obtained using a laboratory scale
setup. Finally, the training results are presented in Sec. 5. The model
is compared with the traditional neural network and pure physical
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model on test data. It is concluded that the proposed method has
better performance in terms of convergence and accuracy. Section 6
concludes the paper.

2 Drill String Dynamics and Physics of Bit—-Rock
Interaction

According to Ref. [16], the drilling dynamics can be essentially
described by alow dimension model. Based on the modeling method
described in Ref. [18], the drilling system is simulated as a low-
dimensional lumped-parameter model. As shown in Fig. 1, the
drilling system is divided into two portions with top drive and drill
string as the top portion and the bottom hole assembly (BHA) with
the drill bit as the bottom portion. The axial and torsional
displacement of the top and bottom portion are denoted as x; and
0; , respectively, and the equation of motion is expressed as

My (1) = Cu(da — %1) + Ky — x1) + Mg — W) (1)

Maiis(t) = —Ca(a — %1) — Ka(xa — x1) + Mag — W(t)
10,(t) = Ci(0, — 0,) + K, (02 — 0,) — Ty (1) W
L0y(1) = —=Cy(0 — 0,) — K,(0, — 0,) +T(1)

where M; and /; are masses and inertias of the two portions,
respectively. The connection of the two portions are modeled by
spring and damping coefficients, where the axial and torsional
coefficients are denoted as K,,, C, and K, C,, respectively. W and T
are force and torque generated by the top drive (the control inputs),
W, and T, are weight and torque on bit from the bit—rock interaction.

Since the drill string dynamics is known and well-established, this
research will focus on modeling the bit—rock interaction W, and T,
which are typically hard to model due to the complex downhole
condition and rock cutting process. The method in Refs. [15] and
[18] is chosen as the baseline physical bit-rock interaction model.
Note that, the baseline physical model referred here is only used for
benchmark purpose in the result analysis and is not required in the
construction of the hybrid neural network model. The description of
the physical model below also explains some well-known physics of
the bit-rock interaction that will be incorporated into the hybrid
model construction in Sec. 3. Nevertheless, only part of the physics,
rather than the full physical model, will be used in the hybrid model.
The magnitudes of the force and torque components are determined
by a physical variable called depth-of-cut (DOC). Depth-of-cut is

Top Drive

BHA
Drill Bit

N

Fig. 1 Drill string schematic
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defined as the total contact depth of the drill bit with the rock-cutting
surface, which is governed by

d(r) = n(x (1) = xa(r = (1)) @)

where 7 is the number of the blades and 7(¢) represents the delay for
the blade to rotate the angle difference between two successive
blades, described as

000~ 01~ <(0) @

When d < 0, the drill bit is not in contact with the rock thus the
reaction force and torque are both zero. Consider d > 0, the contact
force and torque are separated into frictional and cutting
components, denoted as

Wiy (1) = Wi (1) + Wi (1) )

Ty(r) = Tj(1) + T5(1) ®)

The cutting component is contributed by the removal of the rock
in the cutting process, which is expressed as

W, (1) = aled(r) (6)

ﬁ@=%fmw @

where a denotes the radius of the drill bit, { is a characteristic
coefficient of the cutting surface orientation, and e is the intrinsic
specific energy to destroy a unit volume of rock.

The frictional component will first increase as the depth-of-cut
increases, and become saturated when the depth-of-cut reaches a
threshold value. Let d* be the threshold value, then the frictional
component is given as

1 + sign(t)
i _ *
Wﬁ(z) _ Wh‘1 (t) = aokd(t) —————= d <d ®)
W{Q(t) = aokd* d>d
() = LW
T, (1) = 5 auyWy, (1) )

2

where ¢ denotes the maximum normal stress, x represents the rate of
variance of the contact length, u is the coefficient of friction, and ¢
is a characteristic parameter representing the orientation and
distribution of the contact forces.

In order to have a smooth derivative, a smooth transition is used
between the two phases at d*, the frictional force components is
rewritten as

W{)(l‘) _ W{)l ([) 1 — tanh /l(dQ(’f) —d* + 5)
1 + tanh A(d(r) — d* — 9) 1o
+Why(1) >

where 4 and ¢ are smoothing factors.

3 Neural Network Structure

The limitation of the physical model above is that it can only be
used to describe the process in an ideal condition. However, there
can be other physical processes such as the flush of drilling fluid and
possible accumulation of drilling rocks close to the bit that can
impact the bit rock interaction but are hard to be explicitly modeled.
To address this limitation, we propose to use a HNN model to model
the bit-rock interaction process. The HNN does not need to rely on
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the physical model explained in Sec. 2 but only incorporates some
well-known physics in bit-rock interaction such as the depth of cut.

3.1 Incorporating Physics to Network Layers. As implied in
Fig. 2, the physical process of bit-rock interaction is first
decomposed to several processes, each of the process is defined as
a layer of the network and outputs some physical parameters or
states. If a process involves memories of states, it is interpreted as a
recurrent layer. Otherwise a general fully connected layer is applied.

Based on this method, the network structure to model the bit-rock
interaction is shown in Fig. 3(a): It has two layers, and the first layer
is the recurrent layer that takes drill bit states as inputs and outputs a
cut profile, which is the height of the rock relative to the drill bit, at
sampled angles between two successive blades. The second layer
outputs the reaction force and torque based on depth-of-cut
information from the first layer output. Denote the inputs of the
layers as y,, y,, and the outputs of the layers as z, z;. The input to
the network y, consists of the axial displacement and velocity,
torsional displacement, and velocity. The details of each layer are
shown below.

3.1.1 Cut Profile Layer. This layer is a recurrent layer since the
cut profile, which is the trajectory of the blade in % rad range, is a
dynamic memory required to derive the next cut profile. The forward
method of this layer at time ¢ is written as

Hl = Fi(y),2)) (11)

Below, the function F| is derived based on the interpolation
formula.

First, a general interpolation formula is defined as follows: Write
a=la,a,...,a;|,b=[b1,ba,....b;], assume a; <a,<az;<---<daj,
define the mterpolated trajectory of points (ay, by), (a2, b>), ...,
(a;, b)) as

I(x;a,b) : [a1,a] — R (12)

For simplicity, we use linear interpolation in this case study,
which is

— aj)(bjs1 — b))

X
I(x;a,b) :bj-i-( if g <x<aj (13)

ajr1 — 4;

Second, the sampled points are computed. Assume there are p
hidden layers (p outputs) in this layer, then at time ¢, they are written

aszi = [2},2, ..., 2} ]”, and each hidden state represents the heights

P
of rock relative to the drill bit at sampled angles, i.e., ¢; == p ¢2 =

By =ZEL ¢, =2 inrad. Let ¢=[d), ¢, D]
sampled points are denoted as (0,0), (¢y,z1’ ),(qﬁz,z’z),...,(d)l,,z;,).

The sampled points coordinates are denoted as ¢ = [0, ¢, ¢, ..., é,)
and z=0,2},25, .. .,z;,].

Memory

Physi i Proc1 —»> Proc 3 \
ysica
Process NI R Proc 4

Proc 2

ally

Recurrent
Layer1 —>
Neural il Layer3 ™\
Network m e il
Layer 2

Fig. 2 Interpreting physics to network structure
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Fig. 3 Layers of the proposed hybrid neural network:
(a) overview of layers and (b) details of connections

Third, the new sample points are computed when the layer
receives a new input. The inputs can be decomposed to the axial and
the torsional displacements of the drill bit, denoted as dx}, 56, by
which the sampling points are shifted. The new sampling points
coordinates after the displacement are derived as

(};:[0,50’1,¢1+50’,¢2+69’,...,¢p+50’1] (14)

i:[0,5)('1,2’1+5x’1,z’2+5x[1,...,2;+5x’1] (15)

Finally, the outputs are derived based on the interpolated
trajectory of the new points, which is /(0; ¢, z), thus the forward
method can be derived as

= Fi(y}.2)) = 1(¢; . 2) (16)

which is to apply the interpolation at sampled angles ¢ to the
sampling points (¢;, Z;).

The backpropagation of the layer, which is similar to that of a
recurrent layer, can be derived by chain rule

oL oL oz
oy oz o)

oL 07} +2 oz +1
n+2 n+1 n
Oz ot Oy

oA

where L is the loss of the network.

3.1.2  Reaction Layer. This layer outputs the weight-on-bit and
torque on bit based on the cut profile from the last layer. According
to the definitions, DOC is equal to the axial displacement of drill bit
within 2" torsional displacement, thatis d =y, , where y, ; denotes
the ith element of y,. Based on the Eqgs. (4)- (10) when drill bit
velocities are positive, the reaction force and torque can be denoted
as a function of depth-of-cut Wy (d; ®), Tj(d; ®) where © is the set
of physical parameters in bit—rock interaction and the forward
method is written as
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+ Wry + br (18)

7 — Wh(Yz,p§®)
2 Th(Yz,p§®)

where Wy and b are weights and bias, respectively.
In this layer, ®, Wx and b are the learnable parameters. Based on
the physics of bit-rock interaction described in Sec. 2, ® can be

described by four independent parameters |a(e %aze aci

1
Eazwax]. Wx and b are both initialized as zeros to keep the

physical information.

Note that Egs. (4)—(10) provide an initial guess of the structure
and parameters but the network does not rely on that. The physical
parameters are assumed to be inaccurate and are learned during
training. Even without a physical model, this layer can be replaced
with a general function approximator. Nevertheless, the embedded
known information will help improve the convergence and
accuracy.

Finally a RELU activation function is added to this layer since if
the depth-of-cutis negative, the drill bit does not contact the rock and
there is no reaction force or torque.

After building the layers, normalization of data should be
processed to stabilize training progress and improve convergence
rate. In addition to normalization of the input data, the hidden layer
also needs to be normalized since they are generated based on
physical information and inappropriate scales will cause vanishing
derivatives at the hidden layer. This is achieved by scaling the
weights and bias of each layer.

3.2 Increasing the Network Complexity. The neural network
with only physical information incorporated may not be sufficient to
address any hidden dynamics or uncertainties within the physical
process. Therefore, it is necessary to increase the network
complexity to improve its capability of modeling complex process.
This can be achieved by adding additional neurons and connections
as well as additional layers.

3.2.1 Additional Neurons and Connections. As depicted at the
top of Fig. 4, additional neurons and connections can be added to an
existing layer. The weights of the additional connections to the
former layer are initialized to zeros, making the initial values of the
new neurons be zero, and the weights to the next layer are randomly
initialized. This maintains the original physical properties of the
neuron network and at the same time add network complexity to
address uncertainties.

In the proposed network, new connections are added in cut-profile
layer, which originally is a recurrent layer without learnable
parameters. The neurons are now connected the same way as gated

Layer 1

Inputs

RA

Inputs Layer 1 Layer 3

R oK o o

=> O Original connections and neurons
=> O Added connections and neurons

R

Fig. 4 Ways to add structures to increase network complexity.
Top: additional neurons and bottom: additional layers.
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® s

Fig.5 Structure of gated recurrent unit

recurrent unit (GRU), with TANH activation function. GRU
connections include an update and a reset gate [19] as shown in
Fig. 5, which is used to process the memory of the layer. Its forward
method is governed by

zy = 0 (W.x, + R.hy—y + b2)

ry = U,-(W,JC, + Rrhtfl + bl)

he = 3 (Wix, + Ry(r; @ hy_1) + by)

hi=(1=2)0 h1+20h

19)

where z, is the update gate, r, is the reset gate, hy is the candidate
hidden state, and 4, is the hidden state and output. ¢’s represent
activation functions, W’s and R’s are weights of input states and
hidden states, respectively, b’s are biases.

Note that GRU is chosen because of its simplicity and capability
of avoiding vanishing and exploding gradient problem in recurrent
neural network. The long short-term memory (LSTM) is another
alternative if the computational power is sufficient [20].

3.2.2 Additional Layers. The bottom figure in Fig. 4 shows
another way to add complexity which is to add additional fully
connected layer (Layer 3) between existing layers (Layers 1 and 2)
in series. The initial weights and bias of the new layer are designed to
maintain the physical information in the original network, so that the
outputs of Layer 1 in the original network (Fig. 4) are also included
in the outputs of the new layer added. This helps keep the physical
information transmitted between Layer 1 and Layer 2 in the original
network, and at the same time, any unmodeled process or dynamics
between Layers 1 and 2 can be captured by the new layer (Layer 3 in
Fig. 4).

Specifically, in our proposed network, a new layer with 50
neurons is added between the cut-profile layer and the reaction layer,
shown in Fig. 6. The forward method is written as

Additional

Layer
Reaction

Cut-profile Layer
Layer

~0=

—

—> (Q Original connections and neurons

Outputs

50 Neurons

2 Neurons

—> O Added connections and neurons

Fig. 6 Final structure of the proposed hybrid neural network
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7 =Wy +B (20)

wherez’ =y, isthe output,andy’ = z, is the input, W € R°>**" and
B e R are weights and bias, respectively.

To maintain the physical information transferred from the cut
profile layer to the reaction layer, the first rows of W and B are
initialized as

W, =[0 00 .. 0 1]

B —0 (21)
which transfers the original physical information in the last neuron
of the cut-profile layer to the first neuron of the additional layer.
Other rows of W and B are randomly initialized.

This will also change connections bonded to the reaction layer.
According to the original connections explained in Sec. 3.1.2, the
reaction layer will extract the original physical information from the
input out of the first neuron of the additional layer. y> , in Eq. (18)
will be changed to y,; assuming y still represents the input to this
layer.

The final network structure for bit-rock interaction model is
shown in Fig. 6. It consists of three layers: the recurrent cut-profile
layer has 50 hidden units/outputs and a total of 3 x 50 x 4 + 3 x
50 x 50 43 x 50 = 8250 learnable parameters, including the
learnable parameters in GRU structure. The depth-of-cut layer is a
fully connected layer with 50 outputs and totally 50 x 50 + 50 =
2550 learnable parameters. The reaction layer outputs axial and
torsional control inputs and has 4 4 50 x 2 = 104 learnable
parameters.

4 Training and Testing Data

Typically, it is hard to access field testing data for down-hole
drilling system, and real-time force/torque data close to the drill bit
are even more rare. Therefore, a lab scale down-hole drilling rig was
built in our lab, and testing data were obtained to validate the
proposed model.

Figure 7 shows the lab-scale drilling system. The driving torque is
supplied on the top of the rig and transmitted to the drill bit at the

CAD Design

Drill-Rig
Frame

Drilling Line

Servo Motor
(Rotate)

Flexible
Drill-String

Servo Motor
(Hoist)

Well-bore
Constraints

PDC Bit

Sand Box

Mechanical Assembly

bottom through drilling pipes with universal joints to allow direction
change. Rubber is used to connect upper and lower drilling pipes to
simulate the lowered effective stiffness for a large-scale drill pipe
(the longer the drill pipe, the lower the effectiveness stiffness is).
Load is placed on top of the rig and presses the drill pipe to simulate
the load added on drill bit to push it to drill forward. Multiple sensors
are installed close to the drill bit, including encoders to measure the
bit rotational speed, load sensor to measure weight on bit, torque
sensor to measure torque on bit. An accelerometer and a gyro are
also available to measure axial and lateral velocities.

Due to the vibrating environment in drilling, the data collected
from accelerometer and gyro cannot be directly used due to heavy
high frequency noise. A Kalman filter is applied to estimate the
displacement and velocity of drill bit from the accelerometer and
gyroreadings [21].

First consider the axial direction, two measurements are obtained
which are the velocity of the top drive v, and the acceleration of the
drill bit a,. Consider the states as X, =[x, v @ ]T including
the axial displacement, velocity, and acceleration of the drill bit, the
transition function can be derived as

xp(n+ 1) = xp(n) + vp(n)or + %ah(n)étz

vp(n+ 1) = vp(n) + ap(n)ot 22)

ap(n+1) =Ny

where N, is a Gaussian noise. The transition function can be written
into matrix form

Xa(”"' 1) :Aaxa(n) +Na(n)

oo sor 0
Ac=1lo 1 o | Nalm)=1]0|~(0.00)
00 0 No
(23)
Bottom-Hole-Assembly
Accelerometer

and Gyro

Load Cell

Encoder

Torque

Sensor

NI CompactRIO

Fig. 7 Drilling experiment setup
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The measurement model can be expressed as

Z,(n) = C;X4(n) + Vy(n)
010
0 0 1

(24)

v

Nq

a . Valn) = ~ (0,R,)

where N, is the noise of the velocity relative to the top drive and N, is
the noise from the accelerometer measurement.

Then, the data can be processed by the Kalman filter method.
Assume the mean and covariance of states are  and X, respectively,
the mean and covariance of the prediction from the transition model
are

fi(n) = Aqu(n) (25)
2(n) = AZ(n)Al + 0, (26)
Kalman gain is defined as
K(n) = Z(n)CH(C,E(n)C! +R,) ™! @7
The mean and covariance of filtered states are derived as
u(n+1) = i(n) + K(n)(Zs(n) — Caft(n)) (28)
X(n+1) =Z(n) — K(n)C,Z(n) (29)

The same method can be applied to the torsional direction, but the
difference is that the gyro measures the velocity rather than

. . T . .
acceleration. Consider the state X, = [0, ®, o] including
torsional displacement, velocity, and acceleration, the transition
model is governed by

X:(n+1) = AX,(n) + Ni(n)

1
1 o E5t2 0
A= 0 1 T E Nt(n): 0 N(O,Qr)
00 0 N
(30)
2'5><104
= 2
15
: | . | |
0 2 4 6 8 10
2 1000 1
S
5 . ; | |
0 2 4 6 8 10
%10
il
5 g
i |
0 2 4 6 8 10
> 10f
~
s
S sp
S
5 | | | |
0 2 4 6 8 10
Time (s)

Fig. 8 Data used for training, from top to bottom: force, torque,
axial velocity, and torsional velocity
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The measurement model is

Z,(n) = CX,(n) + V,(n)
01 0
01 0

N, wl
N w2

€2V

C = , Viln) = ~ (0,R;)

Then, the states can be estimated using Kalman filter in a similar
fashion as the axial direction.

Given the limited load that can be exerted on the lab scale system,
the final data used are a combination of data from a physical model
and data collected from experiment. The data collected from the
physical model are used to ensure the data is in the right scale, and
the data from experiment is to replicate uncertainty such as the effect
of accumulation of rocks, etc. The dimension of the data is
4 % 10000, with sampling frequency of 200 Hz, and total time
ranging from O to 50s. The first 10s are used for training while the
next 40 s are used for testing. The data for training is shown in Fig. 8.

5 Results

The hybrid neural network, as explained in Sec. 3, is trained on the
data obtained in Sec. 4. In comparison, the same data is used to train a
traditional neural network. This network has four layers: the first
layer is arecurrent GRU layer with 50 neurons and TANH activation
function, followed by two fully connected layers each with 50
neurons and RELU activation function, and a fully connected layer
with two outputs at last. In addition, the initial conditions of the
hybrid network are shifted by random constants. The physical
parameters used of the drilling system are shown in Table 1. The
learning rates of both networks are set to 0.005. The training results
are shown below.

5.1 Training Results. The training progress is shown in Fig. 9
and the results are shown in Figs. 10 and 11. According to Fig. 9, the

Table 1 Parameters of the drilling model

M, 44,187kg I 1685 kgm?
M, 29,028 kg I, 1187 kg m?
C, 34,400 Ns/m C, 49.5 Nms/rad
K, 353,000 N/m K, 495 Nm/ra
€ 77 x 10° Pa Y 0.7
¢ 0.64 n 5
K 5 1 6.2572 % 10" Pa
a 0.15m D* 1.8721 x 10 *m
) 5x4 5 6x 1077
25 ; :
—— Hybrid Network
Traditional Network

n

n

o

|

0 20 40 60 80 100
Episode

Fig. 9 Training progress of different neural networks
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—~  x10* loss of the traditional network drops during the training but the rate
£25 ‘ ' ‘ of change gets smaller after five episodes, and the loss remains
3] ( almost the same after 70 episodes, implying the convergence of the
S 2 | neural network. The final loss is around 0.16.
pu For the hybrid neural network, it has higher initial loss than the
215 Train Dam 1] traditional network. The loss increases at first but quickly drops as
S Predict Data the episode number increases. It converges to around 0.15 and does
& 1k - : ; . > not change too much after 40 episodes. This implies a much faster
0 2 4 6 8 10 convergence rate and a smaller training loss when using the hybrid
’E\ network, even with a worse initial condition.
<
) 2000 5.2 Testing Results. Both models are applied to testing data for
g 1500 validation, and the results from 30 to 40 s are shown in Figs. 12 and
1000 13. It can be observed that the hybrid network model can achieve
S . much better results than the traditional network.
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Fig. 12 Test results of hybrid neural network
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accuracy of the proposed approach is also higher than that using
physical model only.

A summary of the root-mean-squared error (RMSE) is shown in
Table 2 to quantify the performance of different methods.

6 Conclusion

A new method is presented to build a hybrid network by
interpreting the physical information into specific neurons and
incorporating them in the overall neural network structure. The new
hybrid method does not require a physical model to be explicitly
available. We then use modeling of bit—rock interaction in the down-
hole drilling process as a case study. The training results, as
compared with the results from a traditional neural network and a
benchmark physical model, show that the hybrid network is more
effective in terms of convergence rate and modeling accuracy.
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