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Designing Hybrid Neural Network
Using Physical Neurons—A Case
Study of Drill Bit-Rock Interaction
Modeling
Neural networks have been widely applied in system dynamics modeling. One particular
type of networks, hybrid neural networks, combines a neural network model with a physical
model, which can increase rate of convergence in training. However, most existing hybrid
neural network methods require an explicit physical model constructed, which sometimes
might not be feasible in practice or could weaken the capability of capturing complex and
hidden physical phenomena. In this paper, we propose a novel approach to construct a
hybrid neural network. The new method incorporates the physical information to the
structure of network construction, but does not need an explicit physical model constructed.
The method is then applied to modeling of bit-rock interaction in the down-hole drilling
system as a case study, to demonstrate its effectiveness in modeling complex process and
efficiency of convergence in training. [DOI: 10.1115/1.4062631]
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1 Introduction

In recent years, neural network (NN) has increasingly been used
to model complicated physical system. Unlike the pure physics-
based models, NN is a data-based method where the intrinsic
physical characteristics within the data are learned by layers of
neurons and their connections. Its capability of modeling complex
systems and identifying their hidden dynamical features makes the
method widely applied in various fields such as agriculture, medical
science, engineering, and management [1].
The idea of combining the physics-based approach and the neural

networks approach together for modeling leads to an emerging
category of methods called hybrid neural networks (HNN). By
leveraging the known physics information, the training of neural
networks can be more efficient with faster convergence. There are
primarily two groups of hybrid neural networks. The first group [2,3]
directly adds a neural network model on top of a physical model,
where the neural network model is trained using the error between
the physical model and the data used for training. The second group
[4–10] is still primarily based on a physics model, where some
parameters which are hard to observe or compute are trained and
obtained using neural networks. However, most existing hybrid
networks methods require a physical model to be explicitly
constructed. This can cause two issues. First, in many cases, due
to the complex physical process behind, constructing an explicit
physical model may not be feasible, while only certain physical
characteristics can be extracted. Second, directly using a
physical model can make the hybrid model more dependent on the

physical model and induce bias towards the preconstructed physical
model. If the physical model is not accurately constructed, it can
negatively affect the capability of neural networks to capture the
actual physical process behind.
In this paper, we intend to explore a new direction of constructing

hybrid neural networks. Instead of requiring a physical model to be
available, we only assume some physical features of the system can
be reliably captured.We then interpret this physical information into
specific neurons and incorporate them in the overall neural network
structure. The new method can strengthen the traditional neural
networks with physical information but avoids explicit construction
of a physical model.
The new hybridmodelingmethodwill be explained in the context

of drill bit–rock interaction modeling as a case study. Down-hole
drilling is a critical technology that has been used not only in oil and
gas production but also in enhanced geothermal energy systems
(EGS) and specimen extraction in outer space exploration. To
analyze, optimize, and control the drilling process, it is important to
have an accurate and reliable drilling dynamics model [11]. One
particular part that is challenging tomodel is the interaction between
the drill bit and rock. There are some existing studies to model the
bit–rock interaction physically [12–17]. However, due to variations
in rock/earth property, complex down-hole conditions, it is hard to
ensure accurate and reliable modeling results in practical operating
conditions. Therefore, in this paper, we will model the bit–rock
interaction using a new hybrid neural network framework to
demonstrate its effectiveness.
The rest of the paper is organized as follows: First, the physical

process of the bit-rock interaction is explained in Sec. 2. Second,
Sec. 3 discusses themethod to build the HNN structure. Then, Sec. 4
explains how the training data are obtained using a laboratory scale
setup. Finally, the training results are presented in Sec. 5. Themodel
is compared with the traditional neural network and pure physical
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model on test data. It is concluded that the proposed method has
better performance in terms of convergence and accuracy. Section 6
concludes the paper.

2 Drill String Dynamics and Physics of Bit–Rock

Interaction

According to Ref. [16], the drilling dynamics can be essentially
described by a lowdimensionmodel. Based on themodelingmethod
described in Ref. [18], the drilling system is simulated as a low-
dimensional lumped-parameter model. As shown in Fig. 1, the
drilling system is divided into two portions with top drive and drill
string as the top portion and the bottom hole assembly (BHA) with
the drill bit as the bottom portion. The axial and torsional
displacement of the top and bottom portion are denoted as xi and
hi , respectively, and the equation of motion is expressed as

M1€x1ðtÞ ¼ Cað _x2 � _x1Þ þ Kaðx2 � x1Þ þM1g�WbðtÞ
M2€x2ðtÞ ¼ �Cað _x2 � _x1Þ � Kaðx2 � x1Þ þM2g�WðtÞ
I1€h1ðtÞ ¼ Ctð _h2 � _h1Þ þ Ktðh2 � h1Þ � TbðtÞ
I2€h2ðtÞ ¼ �Ctð _h2 � _h1Þ � Ktðh2 � h1Þ þ TðtÞ

(1)

where Mi and Ii are masses and inertias of the two portions,
respectively. The connection of the two portions are modeled by
spring and damping coefficients, where the axial and torsional
coefficients are denoted as Ka, Ca and Kt, Ct, respectively.W and T
are force and torque generated by the top drive (the control inputs),
Wb and Tb areweight and torque on bit from the bit–rock interaction.
Since the drill string dynamics is known andwell-established, this

research will focus on modeling the bit–rock interactionWb and Tb,
which are typically hard to model due to the complex downhole
condition and rock cutting process. The method in Refs. [15] and
[18] is chosen as the baseline physical bit–rock interaction model.
Note that, the baseline physical model referred here is only used for
benchmark purpose in the result analysis and is not required in the
construction of the hybrid neural network model. The description of
the physical model below also explains somewell-known physics of
the bit–rock interaction that will be incorporated into the hybrid
model construction in Sec. 3. Nevertheless, only part of the physics,
rather than the full physical model, will be used in the hybrid model.
The magnitudes of the force and torque components are determined
by a physical variable called depth-of-cut (DOC). Depth-of-cut is

defined as the total contact depth of the drill bit with the rock-cutting
surface, which is governed by

dðtÞ ¼ nðx1ðtÞ � x1ðt� sðtÞÞÞ (2)

where n is the number of the blades and sðtÞ represents the delay for
the blade to rotate the angle difference between two successive
blades, described as

2p
n

¼ h1 tð Þ � h1 t� s tð Þð Þ (3)

When d< 0, the drill bit is not in contact with the rock thus the
reaction force and torque are both zero. Consider d � 0, the contact
force and torque are separated into frictional and cutting
components, denoted as

WbðtÞ ¼ Wf
bðtÞ þWc

bðtÞ (4)

TbðtÞ ¼ Tf
bðtÞ þ Tc

bðtÞ (5)

The cutting component is contributed by the removal of the rock
in the cutting process, which is expressed as

Wc
bðtÞ ¼ af�dðtÞ (6)

Tc
b tð Þ ¼ 1

2
a2�d tð Þ (7)

where a denotes the radius of the drill bit, f is a characteristic
coefficient of the cutting surface orientation, and � is the intrinsic
specific energy to destroy a unit volume of rock.
The frictional component will first increase as the depth-of-cut

increases, and become saturated when the depth-of-cut reaches a
threshold value. Let d� be the threshold value, then the frictional
component is given as

Wf
b tð Þ ¼ Wf

b1 tð Þ ¼ arjd tð Þ 1þ sign _x1ð Þ
2

d < d�

Wf
b2 tð Þ ¼ arjd� d � d�

8><
>: (8)

Tf
b tð Þ ¼ 1

2
alcWf

b tð Þ (9)

where r denotes themaximumnormal stress, j represents the rate of
variance of the contact length, l is the coefficient of friction, and c
is a characteristic parameter representing the orientation and
distribution of the contact forces.
In order to have a smooth derivative, a smooth transition is used

between the two phases at d�, the frictional force components is
rewritten as

Wf
b tð Þ ¼ Wf

b1 tð Þ 1� tanh k d tð Þ � d� þ dð Þ
2

þWf
b2 tð Þ 1þ tanh k d tð Þ � d� � dð Þ

2

(10)

where k and d are smoothing factors.

3 Neural Network Structure

The limitation of the physical model above is that it can only be
used to describe the process in an ideal condition. However, there
can be other physical processes such as the flush of drilling fluid and
possible accumulation of drilling rocks close to the bit that can
impact the bit rock interaction but are hard to be explicitly modeled.
To address this limitation, we propose to use a HNNmodel to model
the bit-rock interaction process. The HNN does not need to rely onFig. 1 Drill string schematic
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the physical model explained in Sec. 2 but only incorporates some
well-known physics in bit–rock interaction such as the depth of cut.

3.1 Incorporating Physics to Network Layers. As implied in
Fig. 2, the physical process of bit-rock interaction is first
decomposed to several processes, each of the process is defined as
a layer of the network and outputs some physical parameters or
states. If a process involves memories of states, it is interpreted as a
recurrent layer. Otherwise a general fully connected layer is applied.
Based on this method, the network structure to model the bit-rock

interaction is shown in Fig. 3(a): It has two layers, and the first layer
is the recurrent layer that takes drill bit states as inputs and outputs a
cut profile, which is the height of the rock relative to the drill bit, at
sampled angles between two successive blades. The second layer
outputs the reaction force and torque based on depth-of-cut
information from the first layer output. Denote the inputs of the
layers as y1, y2, and the outputs of the layers as z1, z2. The input to
the network y1 consists of the axial displacement and velocity,
torsional displacement, and velocity. The details of each layer are
shown below.

3.1.1 Cut Profile Layer. This layer is a recurrent layer since the
cut profile, which is the trajectory of the blade in 2p

n rad range, is a
dynamicmemory required to derive the next cut profile. The forward
method of this layer at time t is written as

ztþ1
1 ¼ F1ðyt1, zt1Þ (11)

Below, the function F1 is derived based on the interpolation
formula.
First, a general interpolation formula is defined as follows: Write

a¼ ½a1,a2,…,ai�, b¼ ½b1,b2,…,bi�, assume a1<a2<a3< ���<ai,
define the interpolated trajectory of points (a1, b1), (a2, b2), …,
(ai, bi) as

Iðx; a, bÞ : ½a1, ai� ! R (12)

For simplicity, we use linear interpolation in this case study,
which is

I x; a, bð Þ ¼ bj þ
x� ajð Þ bjþ1 � bjð Þ

ajþ1 � aj
if aj � x < ajþ1 (13)

Second, the sampled points are computed. Assume there are p
hidden layers (p outputs) in this layer, then at time t, they are written

as zt1 ¼ ½zt1, zt2,…, ztp�T , and each hidden state represents the heights
of rock relative to the drill bit at sampled angles, i.e., /1¼ 2p

n
1
p ,/2¼

2p
n
2
p ,…,/p�1¼ 2p

n
p�1
p ,/p¼ 2p

n in rad. Let /¼½/1,/2,…, /p�T , the
sampled points are denoted as ð0,0Þ, ð/1,z1

tÞ,ð/2,z
t
2Þ,…,ð/p,z

t
pÞ.

The sampled points coordinates are denoted as ~/¼½0,/1,/2,…,/p�
and ~z¼½0,zt1,zt2,…,ztp�.

Third, the new sample points are computed when the layer
receives a new input. The inputs can be decomposed to the axial and
the torsional displacements of the drill bit, denoted as dxt1, dh

t
1, by

which the sampling points are shifted. The new sampling points
coordinates after the displacement are derived as

/̂ ¼ ½0, dht1,/1 þ dht1,/2 þ dht1,…,/p þ dht1� (14)

ẑ ¼ ½0, dxt1, zt1 þ dxt1, z
t
2 þ dxt1,…, ztp þ dxt1� (15)

Finally, the outputs are derived based on the interpolated
trajectory of the new points, which is Iðh; /̂, ẑÞ, thus the forward
method can be derived as

ztþ1
1 ¼ F1ðyt1, zt1Þ ¼ Ið/; /̂, ẑÞ (16)

which is to apply the interpolation at sampled angles / to the
sampling points ð/̂i, ẑiÞ.

The backpropagation of the layer, which is similar to that of a
recurrent layer, can be derived by chain rule

@L

@yn1
¼ @L

@znþ1
1

@znþ1
1

@yn1
þ @L

@znþ2
1

@znþ2
1

@znþ1
1

@znþ1
1

@yn1
þ � � � (17)

where L is the loss of the network.

3.1.2 Reaction Layer. This layer outputs the weight-on-bit and
torque on bit based on the cut profile from the last layer. According
to the definitions, DOC is equal to the axial displacement of drill bit
within 2p

n torsional displacement, that is d ¼ y2,p where y2,i denotes
the ith element of y2. Based on the Eqs. (4)–(10), when drill bit
velocities are positive, the reaction force and torque can be denoted
as a function of depth-of-cutWbðd;HÞ, Tbðd;HÞ whereH is the set
of physical parameters in bit–rock interaction and the forward
method is written asFig. 2 Interpreting physics to network structure

Fig. 3 Layers of the proposed hybrid neural network:
(a) overview of layers and (b) details of connections
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z2 ¼
Wbðy2,p;HÞ
Tbðy2,p;HÞ

" #
þWRyþ bR (18)

where WR and b are weights and bias, respectively.
In this layer,H,WR and b are the learnable parameters. Based on

the physics of bit–rock interaction described in Sec. 2, H can be

described by four independent parameters
�
af�

1

2
a2� arj

1

2
a2lcrj

�
. WR and b are both initialized as zeros to keep the

physical information.
Note that Eqs. (4)–(10) provide an initial guess of the structure

and parameters but the network does not rely on that. The physical
parameters are assumed to be inaccurate and are learned during
training. Even without a physical model, this layer can be replaced
with a general function approximator. Nevertheless, the embedded
known information will help improve the convergence and
accuracy.
Finally a RELU activation function is added to this layer since if

the depth-of-cut is negative, the drill bit does not contact the rock and
there is no reaction force or torque.
After building the layers, normalization of data should be

processed to stabilize training progress and improve convergence
rate. In addition to normalization of the input data, the hidden layer
also needs to be normalized since they are generated based on
physical information and inappropriate scales will cause vanishing
derivatives at the hidden layer. This is achieved by scaling the
weights and bias of each layer.

3.2 Increasing the Network Complexity. The neural network
with only physical information incorporatedmay not be sufficient to
address any hidden dynamics or uncertainties within the physical
process. Therefore, it is necessary to increase the network
complexity to improve its capability of modeling complex process.
This can be achieved by adding additional neurons and connections
as well as additional layers.

3.2.1 Additional Neurons and Connections. As depicted at the
top of Fig. 4, additional neurons and connections can be added to an
existing layer. The weights of the additional connections to the
former layer are initialized to zeros, making the initial values of the
new neurons be zero, and the weights to the next layer are randomly
initialized. This maintains the original physical properties of the
neuron network and at the same time add network complexity to
address uncertainties.
In the proposed network, new connections are added in cut-profile

layer, which originally is a recurrent layer without learnable
parameters. The neurons are now connected the same way as gated

recurrent unit (GRU), with TANH activation function. GRU
connections include an update and a reset gate [19] as shown in
Fig. 5, which is used to process the memory of the layer. Its forward
method is governed by

zt ¼ rzðWzxt þ Rzht�1 þ bzÞ
rt ¼ rrðWrxt þ Rrht�1 þ brÞ
ĥt ¼ rhðWhxt þ Rhðrt � ht�1Þ þ bhÞ
ht ¼ ð1� ztÞ � ht�1 þ zt � ĥt

(19)

where zt is the update gate, rt is the reset gate, ĥt is the candidate
hidden state, and ht is the hidden state and output. r’s represent
activation functions, W’s and R’s are weights of input states and
hidden states, respectively, b’s are biases.
Note that GRU is chosen because of its simplicity and capability

of avoiding vanishing and exploding gradient problem in recurrent
neural network. The long short-term memory (LSTM) is another
alternative if the computational power is sufficient [20].

3.2.2 Additional Layers. The bottom figure in Fig. 4 shows
another way to add complexity which is to add additional fully
connected layer (Layer 3) between existing layers (Layers 1 and 2)
in series. The initial weights and bias of the new layer are designed to
maintain the physical information in the original network, so that the
outputs of Layer 1 in the original network (Fig. 4) are also included
in the outputs of the new layer added. This helps keep the physical
information transmitted between Layer 1 and Layer 2 in the original
network, and at the same time, any unmodeled process or dynamics
between Layers 1 and 2 can be captured by the new layer (Layer 3 in
Fig. 4).

Specifically, in our proposed network, a new layer with 50
neurons is added between the cut-profile layer and the reaction layer,
shown in Fig. 6. The forward method is written as

Fig. 4 Ways to add structures to increase network complexity.
Top: additional neurons and bottom: additional layers.

Fig. 5 Structure of gated recurrent unit

Fig. 6 Final structure of the proposed hybrid neural network
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z0 ¼ Wy0 þ B (20)

where z0 ¼ y2 is the output, and y
0 ¼ z1 is the input,W 2 R50	50 and

B 2 R50	1 are weights and bias, respectively.
To maintain the physical information transferred from the cut

profile layer to the reaction layer, the first rows of W and B are
initialized as

W1 ¼ ½ 0 0 0 … 0 1 �
B1 ¼ 0

(21)

which transfers the original physical information in the last neuron
of the cut-profile layer to the first neuron of the additional layer.
Other rows ofW and B are randomly initialized.
This will also change connections bonded to the reaction layer.

According to the original connections explained in Sec. 3.1.2, the
reaction layer will extract the original physical information from the
input out of the first neuron of the additional layer. y2,p in Eq. (18)
will be changed to y2,1 assuming y still represents the input to this
layer.
The final network structure for bit–rock interaction model is

shown in Fig. 6. It consists of three layers: the recurrent cut-profile
layer has 50 hidden units/outputs and a total of 3	 50	 4þ 3	
50	 50þ 3	 50 ¼ 8250 learnable parameters, including the
learnable parameters in GRU structure. The depth-of-cut layer is a
fully connected layer with 50 outputs and totally 50	 50þ 50 ¼
2550 learnable parameters. The reaction layer outputs axial and
torsional control inputs and has 4þ 50	 2 ¼ 104 learnable
parameters.

4 Training and Testing Data

Typically, it is hard to access field testing data for down-hole
drilling system, and real-time force/torque data close to the drill bit
are evenmore rare. Therefore, a lab scale down-hole drilling rig was
built in our lab, and testing data were obtained to validate the
proposed model.
Figure 7 shows the lab-scale drilling system. The driving torque is

supplied on the top of the rig and transmitted to the drill bit at the

bottom through drilling pipeswith universal joints to allow direction
change. Rubber is used to connect upper and lower drilling pipes to
simulate the lowered effective stiffness for a large-scale drill pipe
(the longer the drill pipe, the lower the effectiveness stiffness is).
Load is placed on top of the rig and presses the drill pipe to simulate
the load added on drill bit to push it to drill forward.Multiple sensors
are installed close to the drill bit, including encoders to measure the
bit rotational speed, load sensor to measure weight on bit, torque
sensor to measure torque on bit. An accelerometer and a gyro are
also available to measure axial and lateral velocities.
Due to the vibrating environment in drilling, the data collected

from accelerometer and gyro cannot be directly used due to heavy
high frequency noise. A Kalman filter is applied to estimate the
displacement and velocity of drill bit from the accelerometer and
gyroreadings [21].
First consider the axial direction, two measurements are obtained

which are the velocity of the top drive vt and the acceleration of the
drill bit ab. Consider the states as Xa ¼ ½ xb vb ab �T including
the axial displacement, velocity, and acceleration of the drill bit, the
transition function can be derived as

xb nþ 1ð Þ ¼ xb nð Þ þ vb nð Þdtþ 1

2
ab nð Þdt2

vb nþ 1ð Þ ¼ vb nð Þ þ ab nð Þdt
ab nþ 1ð Þ ¼ N0

(22)

where N0 is a Gaussian noise. The transition function can be written
into matrix form

Xa nþ 1ð Þ ¼ AaXa nð Þ þ Na nð Þ

Aa ¼
1 dt

1

2
dt2

0 1 dt

0 0 0

2
66664

3
77775, Na nð Þ ¼

0

0

N0

2
6664

3
7775 
 0,Qað Þ

(23)

Fig. 7 Drilling experiment setup
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The measurement model can be expressed as

ZaðnÞ ¼ CaXaðnÞ þ VaðnÞ

Ca ¼
0 1 0

0 0 1

" #
, VaðnÞ ¼

Nv

Na

" #

 ð0,RaÞ

(24)

whereNv is the noise of the velocity relative to the top drive andNa is
the noise from the accelerometer measurement.
Then, the data can be processed by the Kalman filter method.

Assume the mean and covariance of states are l andR, respectively,
the mean and covariance of the prediction from the transition model
are

~lðnÞ ¼ AalðnÞ (25)

~RðnÞ ¼ AaRðnÞAT
a þ Qa (26)

Kalman gain is defined as

KðnÞ ¼ ~RðnÞCT
a ðCa

~RðnÞCT
a þ RaÞ�1

(27)

The mean and covariance of filtered states are derived as

lðnþ 1Þ ¼ ~lðnÞ þ KðnÞðZaðnÞ � Ca~lðnÞÞ (28)

Rðnþ 1Þ ¼ ~RðnÞ � KðnÞCa
~RðnÞ (29)

The same method can be applied to the torsional direction, but the
difference is that the gyro measures the velocity rather than
acceleration. Consider the state Xt ¼ ½ hb xb ab �T including
torsional displacement, velocity, and acceleration, the transition
model is governed by

Xt nþ 1ð Þ ¼ AtXt nð Þ þ Nt nð Þ

At ¼
1 dt

1

2
dt2

0 1 dt

0 0 0

2
6664

3
7775, Nt nð Þ ¼

0

0

N1

2
664

3
775 
 0,Qtð Þ

(30)

The measurement model is

ZtðnÞ ¼ CtXtðnÞ þ VtðnÞ

Ct ¼
0 1 0

0 1 0

" #
, VtðnÞ ¼

Nx1

Nx2

" #

 ð0,RtÞ

(31)

Then, the states can be estimated using Kalman filter in a similar
fashion as the axial direction.
Given the limited load that can be exerted on the lab scale system,

the final data used are a combination of data from a physical model
and data collected from experiment. The data collected from the
physical model are used to ensure the data is in the right scale, and
the data from experiment is to replicate uncertainty such as the effect
of accumulation of rocks, etc. The dimension of the data is
4	 10000, with sampling frequency of 200Hz, and total time
ranging from 0 to 50 s. The first 10 s are used for training while the
next 40 s are used for testing. The data for training is shown in Fig. 8.

5 Results

The hybrid neural network, as explained in Sec. 3, is trained on the
data obtained in Sec. 4. In comparison, the samedata is used to train a
traditional neural network. This network has four layers: the first
layer is a recurrent GRU layerwith 50 neurons and TANHactivation
function, followed by two fully connected layers each with 50
neurons and RELU activation function, and a fully connected layer
with two outputs at last. In addition, the initial conditions of the
hybrid network are shifted by random constants. The physical
parameters used of the drilling system are shown in Table 1. The
learning rates of both networks are set to 0.005. The training results
are shown below.

5.1 Training Results. The training progress is shown in Fig. 9
and the results are shown in Figs. 10 and 11. According to Fig. 9, the

Fig. 8 Data used for training, from top to bottom: force, torque,
axial velocity, and torsional velocity

Table 1 Parameters of the drilling model

M1 44,187 kg I1 1685 kgm2

M2 29,028 kg I2 1187 kgm2

Ca 34,400 Ns/m Ct 49.5 Nms/rad
Ka 353,000 N/m Kt 495 Nm/ra
� 77	 106 Pa cl 0.7
f 0.64 n 5
j 5 r 6.2572	 107 Pa
a 0.15m D� 1.8721	 10�4 m
k 5	 4 d 6	 10�7

Fig. 9 Training progress of different neural networks

091001-6 / Vol. 145, SEPTEMBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/145/9/091001/7022222/ds_145_09_091001.pdf by Texas A & M

 U
niversity user on 30 August 2023



loss of the traditional network drops during the training but the rate
of change gets smaller after five episodes, and the loss remains
almost the same after 70 episodes, implying the convergence of the
neural network. The final loss is around 0.16.
For the hybrid neural network, it has higher initial loss than the

traditional network. The loss increases at first but quickly drops as
the episode number increases. It converges to around 0.15 and does
not change too much after 40 episodes. This implies a much faster
convergence rate and a smaller training loss when using the hybrid
network, even with a worse initial condition.

5.2 TestingResults. Bothmodels are applied to testing data for
validation, and the results from 30 to 40 s are shown in Figs. 12 and
13. It can be observed that the hybrid network model can achieve
much better results than the traditional network.
In addition, the modeling result is also compared to using a pure

physicalmodel described in Sec. 2. It can be shown in Fig. 14 that the

Fig. 10 Training results of hybrid neural network

Fig. 11 Training results of traditional neural network

Fig. 12 Test results of hybrid neural network

Fig. 13 Test results of traditional neural network

Fig. 14 Simulation results of physical model

Table 2 RMSE of different methods on testing data

Method Reaction force (N) Reaction torque (Nm)

Hybrid network 1007.4 75.8
Traditional network 3401.7 355.5
Physical model 2736.5 452.4
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accuracy of the proposed approach is also higher than that using
physical model only.
A summary of the root-mean-squared error (RMSE) is shown in

Table 2 to quantify the performance of different methods.

6 Conclusion

A new method is presented to build a hybrid network by
interpreting the physical information into specific neurons and
incorporating them in the overall neural network structure. The new
hybrid method does not require a physical model to be explicitly
available.We then usemodeling of bit–rock interaction in the down-
hole drilling process as a case study. The training results, as
compared with the results from a traditional neural network and a
benchmark physical model, show that the hybrid network is more
effective in terms of convergence rate and modeling accuracy.
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