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Abstract— Neural networks have been widely applied in
system dynamics modeling. One particular type of net-
works, hybrid neural networks, combine a neural network
model with a physical model which can increase rate of
convergence in training. However, most existing hybrid
neural network methods require an explicit physical model
constructed, which sometimes might not be feasible in
practice or could weaken the capability of capturing com-
plex and hidden physical phenomena. In this paper, we
propose a novel approach to construct a hybrid neural net-
work. The new method incorporates the physical informa-
tion to the structure of network construction, but does not
need an explicit physical model constructed. The method
is then applied to modeling of bit-rock interaction in the
down-hole drilling system as a case study, to demonstrate
its effectiveness in modeling complex process and effi-
ciency of convergence in training.

Index Terms— Neural Network; Bit-Rock Interaction

I. INTRODUCTION

In recent years, neural network (NN) has increasingly
been used to model complicated physical system. Unlike
the pure physics-based models, NN is a data-based method
where the intrinsic physical characteristics within the data
are learned by layers of neurons and their connections.
Its capability of modeling complex systems and identifying
their hidden dynamical features makes the method widely
applied in various fields such as agriculture, medical science,
engineering and management [1].

The idea of combining the physics-based approach and the
neural networks approach together for modeling leads to an
emerging category of methods called hybrid neural networks
(HNN). By leveraging the known physics information, the
training of neural networks can be more efficient with faster
convergence. There are primarily two groups of hybrid neural
networks. The first group [2], [3] directly adds a neural
network model on top of a physical model, where the neural
network model is trained using the error between the physical
model and the data used for training. The second group
[4]–[10] is still primarily based on a physics model, where

some parameters which are hard to observe or compute
are trained and obtained using neural networks. However,
most existing hybrid networks methods require a physical
model to be explicitly constructed. This can cause two issues.
First, in many cases, due to the complex physical process
behind, constructing an explicit physical model may not be
feasible, while only certain physical characteristics can be
extracted. Second, directly using a physical model can make
the hybrid model more dependent on the physical model and
induce bias towards the pre-constructed physical model. If the
physical model is not accurately constructed, it can negatively
affect the capability of neural networks to capture the actual
physical process behind.

In this paper, we intend to explore a new direction of
constructing hybrid neural networks. Instead of requiring a
physical model to be available, we only assume some phys-
ical feature of the system can be reliably captured. We then
interpret this physical information into specific neurons and
incorporate them in the overall neural network structure. The
new method can strengthen the traditional neural networks
with physical information, but avoids explicit construction
of a physical model.

The new hybrid modeling method will be explained in the
context of drill bit-rock interaction modeling as a case study.
Down-hole drilling is a critical technology which has been
used not only in oil and gas production, but also in enhanced
geothermal energy systems (EGS) and specimen extraction
in outer space exploration. To analyze, optimize and control
the drilling process, it is important to have an accurate and
reliable drilling dynamics model. One particular part that is
challenging to model is interaction between the drill bit and
rock. There are some existing studies to model the bit-rock
interaction physically [11]–[16]. However, due to variations
in rock/earth property, complex down-hole conditions, it is
hard to ensure an accurate and reliable modeling results in
practical operating conditions. Therefore, in this paper, we
will model the bit-rock interaction using a new hybrid neural
network framework to demonstrate its effectiveness.
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The rest of the paper is organized as the following. Firstly,
the physical process of the bit-rock interaction is explained
in section II. Secondly, section III discusses the method
to build the HNN structure. Then section IV explains how
the training data is obtained using a laboratory scale setup.
Finally, the training results are presented in section V. The
model is compared with the traditional neural network and
pure physical model on test data. It is concluded the proposed
method has better performance in terms of convergence and
accuracy.

II. PHYSICS OF BIT-ROCK INTERACTION

According to [15], the drilling dynamics can be essentially
described by a low dimension model. Based on the modeling
method described in [17], the drilling system is simulated
as a low-dimensional lumped-parameter model. As shown in
Figure 1, the drilling system is divided into two portions with
top drive and drill string as the top portion and the bottom
hole assembly (BHA) with the drill bit as the bottom portion.

Since the drill string dynamics is known and well-
established, this research will focus on modeling the bit-
rock interaction, including weight and torque on bit denoted
as Wb and Tb, which are typically hard to model due to
the complex downhole condition and rock cutting process.
The method in [14] [17] is chosen as the baseline physical
bit-rock interaction model. Note that, the baseline physical
model referred here is only used for benchmark purpose in
the result analysis and is not required in the construction
of the hybrid neural network model. The description of the
physical model below also explains some well known physics
of the bit-rock interaction that will be incorporated into the
hybrid model construction in the next section. Nevertheless,
only part of the physics, rather than the full physical model,
will be used in the hybrid model. The magnitudes of the
force and torque components are determined by a physical
variable called depth-of-cut. Depth-of-cut is defined as the
total contact depth of the drill bit with the rock-cutting
surface, which is governed by

d(t) = n(x1(t)− x1(t− τ(t))) (1)

where n is the number of the blades, x1 is the axial
displacement of the drill bit, and τ(t) represents the delay
for the blade to rotate the angle difference between two
successive blades, described as

2π

n
= θ1(t)− θ1(t− τ(t)) (2)

where θ1 is the angular displacement of the drill bit.
When d < 0, the drill bit is not in contact with the rock

thus the reaction force and torque are both zero. Consider d ≥
0, the contact force and torque are separated into frictional
and cutting components, denoted as

Wb(t) = W f
b (t) +W c

b (t) (3)

Tb(t) = T fb (t) + T cb (t) (4)

Fig. 1 Drill string schematic

The cutting component is contributed by the removal of
the rock in the cutting process, which is expressed as

W c
b (t) = aζεd(t) (5)

T cb (t) =
1

2
a2εd(t) (6)

where a denotes the radius of the drill bit, ζ is a charac-
teristic coefficient of the cutting surface orientation, ε is the
intrinsic specific energy to destroy a unit volume of rock.

The frictional component will first increase as the depth-
of-cut increases, and become saturated when the depth-of-cut
reaches a threshold value. Let d∗ be the threshold value, then
the frictional component is given as

W f
b (t) =

{
W f
b1(t) = aσκd(t) 1+sign(ẋ1)

2 d < d∗

W f
b2(t) = aσκd∗ d ≥ d∗

(7)

T fb (t) =
1

2
aµγW f

b (t) (8)

where σ denotes the maximum normal stress, κ represents
the rate of variance of the contact length, µ is the coefficient
of friction, γ is a characteristic parameter representing the
orientation and distribution of the contact forces.

In order to have a smooth derivative, a smooth transition
is used between the two phases at d∗, the frictional force
components is rewritten as

W f
b (t) =W f

b1(t)
1− tanhλ(d(t)− d∗ + δ)

2

+W f
b2(t)

1 + tanhλ(d(t)− d∗ − δ)
2

(9)

where λ and δ are smoothing factors.

III. NEURAL NETWORK STRUCTURE

The limitation of the physical model above is that it can
only be used to describe the process in an ideal condition.
However, there can be other physical processes such as
the flush of drilling fluid and possible accumulation of
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Fig. 2 Interpreting Physics to network structure

Fig. 3 Layers of the proposed hybrid neural network

drilling rocks close to the bit that can impact the bit rock
interaction but are hard to be explicitly modeled. To address
this limitation, we propose to use a hybrid neural network
model (HNN) to model the bit-rock interaction process. The
HNN does not need to rely on the physical model explained
in Section II, but only incorporates some well-known physics
in bit-rock interaction such as the depth of cut.

A. Incorporating Physics to Network Layers

As implied in Figure 2, the physical process of bit-rock
interaction is firstly decomposed to several processes, each
of the process is defined as a layer of the network and outputs
some physical parameters or states. If a process involves
memories of states, it is interpreted as a recurrent layer.
Otherwise a general fully connected layer is applied.

Based on this method, the network structure to model the
bit-rock interaction is shown in Figure 3: It has two layers,
the first layer is the recurrent layer which takes drill bit states
as inputs and outputs a cut profile which is the height of
the rock relative to the drill bit, at sampled angles between
two successive blades. The second layer outputs the reaction
force and torque based on depth-of-cut information from the
first layer output. Denote the inputs of the layers as y1, y2

and the outputs of the layers as z1, z2. The input to the
network y1 consists of the axial displacement and velocity,
torsional displacement and velocity. The details of each layer
are shown below.

1) Cut Profile Layer: This layer is a recurrent layer since
the cut profile, which is the trajectory of the blade in 2π

n rad
range, is a dynamic memory required to derive the next cut
profile. The forward method of this layer at time t is written

as

zt+1
1 = F1(yt1, z

t
1) (10)

In the following section the function F1 is derived based
on the interpolation formula.

Firstly, a general interpolation formula is defined as fol-
lows: Write a = [a1, a2, . . . , ai], b = [b1, b2, . . . , bi], assume
a1 < a2 < a3 < · · · < ai, define the interpolated trajectory
of points (a1, b1), (a2, b2), . . ., (ai, bi) as

I(x;a,b) : [a1, ai]→ R (11)

For simplicity, we use linear interpolation in this case
study, which is

I(x; a,b) = bj +
(x–aj)(bj+1–bj)

aj+1–aj
, aj ≤ x < aj+1 (12)

Secondly, the sampled points are computed. Assume
there are p hidden layers (p outputs) in this layer, then
at time t, they are written as zt1 = [zt1, z

t
2, . . . , z

t
p]
T ,

and each hidden state represents the heights of rock rel-
ative to the drill bit at sampled angles, i.e. φ1 = 2π

n
1
p ,

φ2 = 2π
n

2
p , . . ., φp−1 = 2π

n
p−1
p , φp = 2π

n in rad. Let
φ = [φ1, φ2, . . . , φp]

T , the sampled points are denoted as
(0, 0), (φ1, z1t), (φ2, z

t
2), . . . , (φp, z

t
p). The sampled points

coordinates are denoted as φ̃ = [0, φ1, φ2, . . . , φp] and z̃ =
[0, zt1, z

t
2, . . . , z

t
p].

Thirdly, the new sample points are computed when the
layer receives a new input. The inputs can be decomposed
to the axial and the torsional displacements of the drill bit,
denoted as δxt1, δθt1, by which the sampling points are shifted.
The new sampling points coordinates after the displacement
are derived as

φ̂ = [0, δθt1, φ1 + δθt1, φ2 + δθt1, . . . , φp + δθt1] (13)
ẑ = [0, δxt1, z

t
1 + δxt1, z

t
2 + δxt1, . . . , z

t
p + δxt1] (14)

Finally, the outputs are derived based on the interpolated
trajectory of the new points, which is I(θ; φ̂, ẑ), thus the
forward method can be derived as

zt+1
1 = F1(yt1, z

t
1) = I(φ; φ̂, ẑ) (15)

which is to apply the interpolation at sampled angles φ to
the sampling points (φ̂i, ẑi).

2) Reaction Layer: This layer outputs the weight-on-bit
and torque on bit based on the cut profile from the last layer.
According to the definitions, depth-of-cut is equal to the axial
displacement of drill bit within 2π

n torsional displacement,
that is d = y2,p, where y2,i denotes the ith element of y2.
Based on the equations 3 to 9, when drill bit velocities are
positive, the reaction force and torque can be denoted as a
function of depth-of-cut Wb(d; Θ), Tb(d; Θ) where Θ is the
set of physical parameters in bit-rock interaction, the forward
method is written as

z2 =

[
Wb(y2,p; Θ)
Tb(y2,p; Θ)

]
+WRy + bR (16)

where WR and b are weights and bias respectively.
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Fig. 4 Ways to add structures to increase network complexity. Top:
additional neurons; Bottom: additional layers

In this layer, Θ, WR and b are the learnable parameters.
Based on the physics of bit-rock interaction described in Sec-
tion II, Θ can be described by four independent parameters
which are

[
aζε 1

2a
2ε aσκ 1

2a
2µγσκ

]
. WR and b are

both initialized as zeros to keep the physical information.
Note that the equations 3 to 9 provide an initial guess

of the structure and parameters but the network does not
rely on that. The physical parameters are assumed to be
inaccurate and are learned during training. Even without a
physical model, this layer can be replaced with a general
function approximator. Nevertheless, the embedded known
information will help improve the convergence and accuracy.

Finally a RELU activation function is added to this layer
since the negative depth-of-cut implements no contact be-
tween the bit and the rock and zero reaction force or torque.

B. Increasing the Network Complexity
The neural network with only physical information in-

corporated is not sufficient to address any hidden dynamics
or uncertainties within the physical process. Therefore, it is
necessary to increase the network complexity to improve
its capability of modeling complex process. This can be
achieved by adding additional neurons and connections as
well as additional layers.

1) Additional Neurons and Connections: As depicted at the
top figure of 4, additional neurons and connections can be
added to an existing layer. The weights of the additional con-
nections to the former layer are initialized to zeros, making
the initial values of the new neurons be zero, and the weights
to the next layer are randomly initialized. This maintains the
original physical properties of the neuron network and at the
same time add network complexity to address uncertainties.

In the proposed network new connections are added in cut-
profile layer, which originally is a recurrent layer without
learnable parameters. The neurons are now connected the
same way as Gated Recurrent Unit (GRU), with TANH
activation function. GRU connections include an update and
a reset gate [18], which are used to process the memory of
the layer.

Fig. 5 Final structure of the proposed hybrid neural network

2) Additional Layers: The bottom figure in Figure 4 shows
another way to improve complexity which is to add additional
fully connected layer (Layer 3) between existing layers
(Layers 1 and 2) in series. The initial weights and bias of the
new layer are designed to maintain the physical information
in the original network, so that the outputs of Layer 1 in the
original network (Figure 4) are also included in the outputs of
the new layer added. This helps keep the physical information
transmitted between Layer 1 and Layer 2 in the original
network, and at the same time any unmodeled process or
dynamics between Layers 1 and 2 can be captured by the
new layer (Layer 3 in Figure 4).

Specifically, in our proposed network, a new layer with
50 neurons is added between the cut-profile layer and the
reaction layer, shown in Figure 5. It has two learnable
parameters: weights W ∈ R50×50 and bias B ∈ R50×1.

To maintain the physical information transferred from the
cut profile layer to the reaction layer, the first rows of W and
B are initialized as W1 =

[
0 0 0 . . . 0 1

]
, B1 = 0.

Other rows of W and B are randomly initialized.
The final network structure for bit-rock interaction model

is shown in Figure 5. It consists of 3 layers: the recurrent
cut-profile layer has 50 hidden units/outputs. The depth-of-
cut layer is a fully connected layer with 50 outputs. The
reaction layer outputs axial and torsional control inputs.

IV. TRAINING AND TESTING DATA

Typically, it is hard to access field testing data for down-
hole drilling system, and real-time force/torque data close to
the drill bit is even more rare. Therefore, a lab scale down-
hole drilling rig was built in the lab and testing data was
obtained to validate the proposed model.

Given the limited load that can be exerted on the lab scale
system, the final data used is a combination of data from a
physical model and data collected from experiment. The data
collected from the physical model is used to as a baseline,
and the data from experiment is to replicate uncertainty such
as the effect of accumulation of rocks, etc. The dimension of
the data is 4 × 10000, with sampling frequency of 200Hz,
and time ranging from 0 to 50 seconds. The first 10 seconds
are used for training while the next 40 seconds are used for
testing. The data for training is shown in Figure 6.
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Fig. 6 Data used for training, from top to bottom: force, torque,
axial velocity, torsional velocity

TABLE I Parameters of drilling model

M1 44187 kg I1 1685 kgm2

M2 29028 kg I2 1187 kgm2

Ca 34400 Ns/m Ct 49.5 Nms/rad
Ka 353000 N/m Kt 495 Nm/ra
ε 77e6 Pa γµ 0.7
ζ 0.64 n 5
κ 5 σ 6.2572e7 Pa
a 0.15 m d∗ 1.8721e-4 m
λ 5e4 δ 6e-07

TABLE II RMSE of different methods on testing data

Method Reaction Force Reaction Torque
Hybrid Network 1007.4 75.8

Traditional Network 3401.7 355.5
Physical Model 2736.5 452.4

V. RESULTS

The hybrid neural network, as explained in section III, is
trained on the data obtained in section IV. In comparison, the
same data is used to train a traditional neural network. This
network has 4 layers: the first layer is a recurrent GRU layer
with 50 neurons and TANH activation function, followed by
2 fully connected layers each with 50 neurons and RELU
activation function, and a fully connected layer with 2 outputs
at last. In addition, the initial conditions of the hybrid network
are shifted by random constants. The physical parameters
used of the drilling system is shown in table I. The learning
rates of both networks are set to 0.005.

A. Training

The training progress is shown in Figure 7 and the results
are shown in Figures 8 and 9. According to Figure 7, the loss
of the traditional network decreases but the rate of change
gets smaller after 5 episodes, and the loss remains almost

Fig. 7 Training progress of different Neural Networks

Fig. 8 Training results of Hybrid Neural Network

Fig. 9 Training results of traditional Neural Network

the same after 70 episodes, implying the convergence of the
neural network. The final loss is around 0.16.

For the hybrid neural network, it has higher initial loss than
the traditional network. The loss increases at first but quickly
drops as the training processes. It converges to around 0.15
and does not change too much after 40 episodes. This implies
the hybrid network has a much faster convergence rate.

B. Testing

Both models are applied to testing data for validation, and
the results are shown in Figures 10 and 11. It is observed
that the hybrid network model has smaller magnitude error,
implementing that the hybrid network is more suitable to
predict data in the long-term future.

In addition, the modeling result is also compared to using a
pure physical model described in Section II. It can be shown

2905

Authorized licensed use limited to: Texas A M University. Downloaded on August 30,2023 at 17:17:48 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10 Test results of traditional Neural Network

Fig. 11 Test results of Hybrid Neural Network

Fig. 12 Simulation results of physical model

in Figure 12 that the accuracy of the proposed approach is
also higher than that using physical model only.

A summary of root mean squared error (RMSE) is shown
in Table II to quantify the performance of different methods.

VI. CONCLUSION

A new method is presented to build a hybrid network by in-
terpreting the physical information into specific neurons and
incorporating them in the overall neural network structure.
The new hybrid method does not require a physical model
to be explicitly available. We then use modeling of bit-rock
interaction in the down-hole drilling process as a case study.
The training results, as compared with the results from a
traditional neural network and a benchmark physical model,

show that the hybrid network is more effective in terms of
convergence rate and modeling accuracy.

REFERENCES

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mo-
hamed, and H. Arshad, “State-of-the-art in artificial neural network
applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018.

[2] H. E. Garcia and R. B. Vilim, “Combining physical modeling, neural
processing, and likelihood testing for online process monitoring,” in
SMC’98 Conference Proceedings. 1998 IEEE International Conference
on Systems, Man, and Cybernetics (Cat. No. 98CH36218), vol. 1.
IEEE, 1998, pp. 806–810.

[3] U. Forssell and P. Lindskog, “Combining semi-physical and neural
network modeling: An example ofits usefulness,” IFAC Proceedings
Volumes, vol. 30, no. 11, pp. 767–770, 1997.

[4] E. Piron, E. Latrille, and F. Rene, “Application of artificial neural net-
works for crossflow microfiltration modelling:“black-box” and semi-
physical approaches,” Computers & chemical engineering, vol. 21,
no. 9, pp. 1021–1030, 1997.

[5] H. Qi, X.-G. Zhou, L.-H. Liu, and W.-K. Yuan, “A hybrid neural
network-first principles model for fixed-bed reactor,” Chemical En-
gineering Science, vol. 54, no. 13-14, pp. 2521–2526, 1999.

[6] S. Wang, F. Wang, V. K. Devabhaktuni, and Q.-J. Zhang, “A hybrid
neural and circuit-based model structure for microwave modeling,” in
1999 29th European Microwave Conference, vol. 1. IEEE, 1999, pp.
174–177.

[7] A. Dolara, F. Grimaccia, S. Leva, M. Mussetta, and E. Ogliari, “A
physical hybrid artificial neural network for short term forecasting of
pv plant power output,” Energies, vol. 8, no. 2, pp. 1138–1153, 2015.

[8] M. Cao, K. Wang, Y. Fujii, and W. Tobler, “A hybrid neural network
approach for the development of friction component dynamic model,”
J. Dyn. Sys., Meas., Control, vol. 126, no. 1, pp. 144–153, 2004.

[9] J. Roubos, P. Krabben, M. Setnes, R. Babuska, J. Heijnen, and
H. Verbruggen, “Hybrid model development for fed-batch biopro-
cesses; combining physical equations with the metabolic network and
black-box kinetics,” in 6th Workshop on fuzzy systems, September.
Citeseer, 1999, pp. 8–9.

[10] P. Olausson, D. Ha¨ ggsta hl, J. Arriagada, E. Dahlquist, and M. Assadi,
“Hybrid model of an evaporative gas turbine power plant utilizing
physical models and artificial neural networks,” in Turbo Expo: Power
for Land, Sea, and Air, vol. 36843, 2003, pp. 299–306.

[11] A. Balanov, N. Janson, P. V. McClintock, R. Tucker, and C. Wang,
“Bifurcation analysis of a neutral delay differential equation modelling
the torsional motion of a driven drill-string,” Chaos, Solitons &
Fractals, vol. 15, no. 2, pp. 381–394, 2003.

[12] Y. Khulief, F. Al-Sulaiman, and S. Bashmal, “Vibration analysis of
drillstrings with self-excited stick–slip oscillations,” Journal of Sound
and Vibration, vol. 299, no. 3, pp. 540–558, 2007.

[13] T. Richard, C. Germay, and E. Detournay, “A simplified model to
explore the root cause of stick–slip vibrations in drilling systems with
drag bits,” Journal of sound and vibration, vol. 305, no. 3, pp. 432–
456, 2007.

[14] B. Besselink, T. Vromen, N. Kremers, and N. Van De Wouw, “Analysis
and control of stick-slip oscillations in drilling systems,” IEEE trans-
actions on control systems technology, vol. 24, no. 5, pp. 1582–1593,
2015.
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