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Abstract. Using the two-dimensional nonlinear Schrödinger equation (NLS)

as a model example, we present a general method for recovering the nonlinear-
ity of a nonlinear dispersive equation from its small-data scattering behavior.

We prove that under very mild assumptions on the nonlinearity, the wave op-
erator uniquely determines the nonlinearity, as does the scattering map. Eval-

uating the scattering map on well-chosen initial data, we reduce the problem

to an inverse convolution problem, which we solve by means of an application
of the Beurling–Lax Theorem.

1. Introduction

We consider two-dimensional nonlinear Schrödinger equations of the form

i∂tu+∆u = F (u), (t, x) ∈ R× R2, (1.1)

where we regard the nonlinearity F : C → C as an unknown parameter. We restrict
to a class of equations that admit a small-data scattering theory and demonstrate
that the scattering map uniquely determines the nonlinear term.

The precise assumptions we need for the nonlinearity are as follows:

Definition 1.1 (Admissible). We call F : C → C admissible if F (u) = h(|u|2)u for
some h : [0,∞) → C with

h(0) = 0 and |h′(λ)| ≲ 1 + λ
p
2−1

for some 2 ≤ p < ∞. We call p the growth parameter of F .

If F is admissible with growth parameter p, then

|F (z)| ≲ |z|3 + |z|p+1 and |Fz(z)|+ |Fz̄(z)| ≲ |z|2 + |z|p

uniformly for z ∈ C. Comparing with the standard power-type NLS, for which
F (u) = |u|pu, we see that the definition of admissible nonlinearities covers the
entire L2-critical and L2-supercritical range.

For admissible nonlinearities, we have a small-data scattering theory in H1:

Theorem 1.2 (Small data scattering). Let F : C → C be an admissible nonlinearity
with growth parameter p ≥ 2. Define sp = 1− 2

p and

Bη = {f ∈ H1 : ∥f∥Hsp < η}. (1.2)

There exists η > 0 sufficiently small so that any initial data u0 ∈ Bη leads to a
unique global solution u to (1.1) satisfying

∥u∥L3
tL

6
x(R×R2) ≲ ∥u0∥L2 and ∥u∥

L
3p/2
t L3p

x (R×R2)
≲ ∥u0∥Ḣsp . (1.3)
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This solution scatters in both time directions, that is, there exist (necessarily unique)
u± ∈ H1 so that

lim
t→±∞

∥u(t)− eit∆u±∥H1 = 0. (1.4)

Additionally, for any u− ∈ Bη there exists a unique global solution u to (1.1) and
a unique u+ ∈ H1 such that (1.4) holds.

The mapping u0 ↦→ u+ described in Theorem 1.2 is known as the (forward)
wave operator and will be denoted ΩF : B → H1. The mapping u− ↦→ u+ is
known as the scattering map, which we denote by SF : B → H1. If ΩF : B → H1

and ΩF̃ : B̃ :→ H1 are the wave operators corresponding to a pair of admissible

nonlinearities, then Theorem 1.2 guarantees that B ∩ B̃ ̸= ∅. This ensures that
there is a common domain on which we may compare the scattering behaviors.

Our main result asserts that knowledge of either the wave operator or the scat-
tering map uniquely determines the nonlinearity in (1.1).

Theorem 1.3 (Scattering determines the nonlinearity). Let F : C → C and F̃ :
C → C be admissible, with potentially distinct growth parameters. If ΩF = ΩF̃ or

SF = SF̃ on B ∩ B̃, then F = F̃ .

There is a large body of literature concerning the recovery of the nonlinearity
(as well as external potentials) from the scattering map in the setting of nonlinear
dispersive equations (see e.g. [1, 3, 11, 12, 14–17, 19–28]). In general, these works
either consider analytic nonlinearities or make other strong structural assumptions
on the nonlinearity. The work [3] provides an exhaustive treatment of the analytic
case; other representative examples include the recovery of the coupling constant
in a power-type nonlinearity [11], the recovery of a Hartree potential [16], or the
recovery of an inhomogeneous coefficient in a nonlinearity of the form q(x)|u|pu [22].
We were inspired to consider the problem discussed here by the recent work [1],
which established a result similar to Theorem 1.3 for nonlinear wave equations
in three space dimensions. In that paper the nonlinearity is assumed to be of
quintic-type. The authors of [1] employ techniques from microlocal analysis to
study the propagation of singularities arising from nonlinear interactions, which in
turn determine the higher order derivatives of the nonlinearity.

Compared to the previous literature, we work with very mild assumptions on
the nonlinearity and prove that the entire nonlinearity is determined by the small-
data scattering behavior. Our approach, which we describe below, is technically
much simpler than the analysis appearing in [1]. The simplicity of our arguments
promises broad applicability. To best present our method, we have chosen to focus
on the concrete two-dimensional NLS problem laid out above.

Let us now describe our strategy. Our first observation is that it suffices to know
the scattering behavior for a very narrow class of initial data, data for which the
wave operator may be conflated with its Born approximation

u0 ↦→ u0 −
∫ ∞

0

e−it∆F (eit∆u0) dt, (1.5)

and likewise for the scattering map.
Taking this Born approximation for granted, we see that knowledge of the wave

operator allows us to evaluate integrals of the form∫ ∞

0

⟨eit∆u0, F (eit∆u0)⟩ dt, (1.6)
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which may be interpreted as an inner product between the nonlinearity and the
distribution function of the free solution eit∆u0; see Lemma 4.2.

Pursuing this line of reasoning, we will ultimately be able to reduce the question
of uniquely determining the nonlinearity to solving an inverse convolution problem.
Specifically, considering well-chosen Gaussian initial data, we will prove that if
ΩF = ΩF̃ , then∫

R
[G′(e−k)− G̃′(e−k)]e−kw(k + ℓ) dk = 0 for all ℓ ∈ R, (1.7)

where G(|u|2) := F (u)ū and w is a weight related to the distribution function for
the linear Schrödinger flow with Gaussian initial data. The problem then reduces
to showing that (1.7) implies that G′ ≡ G̃′. Under mild hypotheses on the non-
linearity, this can be derived from Wiener’s Tauberian Theorem. To address the
full range of admissible nonlinearities, however, we employ a theorem of Beurling
and Lax characterizing shift-invariant subspaces of the Hardy space. Here we take
advantage of the fact that in two space dimensions, we are able to carry out ex-
plicit computations for w. In particular, we prove that the Laplace transform of w
defines an outer function in the relevant half-plane. This problem is complicated
by the fact that G′ grows exponentially as k → −∞, while w grows exponentially
as k → +∞.

The rest of this paper is organized as follows: In Section 2 we introduce notation
and collect basic lemmas. In Section 3, we establish the small-data scattering
theory for (1.1) with admissible nonlinearities. In Section 4, we reduce the proof of
Theorem 1.3 to the inverse convolution problem described above, which we state as
Theorem 4.4. Section 5 is dedicated to the proof of Theorem 4.4. We first review
the Beurling–Lax Theorem and relate this general result to the specific inverse
convolution problem under consideration. We then demonstrate that the Laplace
transform of w is an outer function, which is precisely the input needed to apply the
Beurling–Lax Theorem. This part of the argument relies on an explicit computation
of the Laplace transform, which is given in terms of the Gamma function. With
these ingredients in place, we complete the proof of Theorem 4.4.

In Section 6, we show how additional restrictions on the nonlinearity greatly
reduce the burden of understanding w. Concretely, we show that one can recover
polynomial-type nonlinearities without difficulty.

Acknowledgements. R. K. was supported by NSF grants DMS-1856755 and
DMS-2154022. J. M. was supported by a Simons Collaboration Grant. M. V.
was supported by NSF grant DMS-2054194.

2. Preliminaries

We write A ≲ B to indicate that A ≤ CB for some C > 0. We indicate
dependence on parameters via subscripts, e.g. A ≲u B means that A ≤ CB for
some C = C(u). If A ≲ B ≲ A, we write A ≈ B.

We write ⟨·, ·⟩ to denote the L2 inner product. Given q ∈ [1,∞], we write q′ to
denote the Hölder dual of q, that is, the solution to 1

q + 1
q′ = 1.

We next record the standard Strichartz estimates for eit∆ in the two-dimensional
setting (see e.g. [6]). Recall that a pair (q, r) ∈ (2,∞]× [2,∞) is called Schrödinger
admissible in two space dimensions if 1

q + 1
r = 1

2 .
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Lemma 2.1 (Strichartz estimates). For any Schrödinger admissible pair (q, r) and
any φ ∈ L2,

∥eit∆φ∥Lq
tL

r
x(R×R2) ≲ ∥φ∥L2 .

Given an interval I ∋ 0, Schrödinger admissible pairs (q, r), (q̃, r̃), and F ∈ Lq̃′

t L
r̃′

x (I×
R2), ∫ t

0

ei(t−s)∆F (s) ds


Lq

tL
r
x(I×R2)

≲ ∥F∥
Lq̃′

t Lr̃′
x (I×R2)

.

We will also use the following fractional calculus estimate from [4].

Lemma 2.2 (Fractional chain rule). Let F : C → C satisfy

|F (u)− F (v)| ≤ [K(u) +K(v)]|u− v| for some K : C → [0,∞).

For any s ∈ (0, 1), r, r1 ∈ (1,∞), and r2 ∈ (1,∞] satisfying 1
r = 1

r1
+ 1

r2
, we have

∥|∇|sF (u)∥Lr ≲ ∥K(u)∥Lr2∥|∇|su∥Lr1 .

3. Small data scattering

This section is dedicated to the proof of Theorem 1.2. This will be achieved
via the standard contraction mapping argument using the Duhamel formulation of
(1.1), namely,

u(t) = eit∆u0 − i

∫ t

0

ei(t−s)∆F (u(s)) ds, (3.1)

where u0 = u|t=0.
For the construction of the scattering map, we use the analogous

u(t) = eit∆u− − i

∫ t

−∞
ei(t−s)∆F (u(s)) ds. (3.2)

Proof of Theorem 1.2. We begin with the construction of the solution. All space-
time norms will be taken over R× R2, unless indicated otherwise.

We will show that the map

u ↦→ Φ(u) := eit∆u0 − i

∫ t

0

ei(t−s)∆F (u(s)) ds

is a contraction on the complete metric space (Z, d), whenever u0 ∈ Bη for η
sufficiently small (cf. (1.2)). Here,

Z :=
{
u : R× R2 → C : ∥u∥X ≤ 4C∥u0∥Ḣsp , ∥u∥L∞

t L2
x∩L3

tL
6
x
≤ 4C∥u0∥L2 ,

∥∇u∥L∞
t L2

x∩L3
tL

6
x
≤ 4C∥∇u0∥L2

}
,

with

∥u∥X = ∥u∥
L

3p/2
t L3p

x
+ ∥|∇|spu∥L3

tL
6
x
,

and

d(u, v) := ∥u− v∥L3
tL

6
x
.

The constant C > 0 in the definition of Z is universal and encodes implicit constants
appearing in the Sobolev embedding and Strichartz inequalities below.
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Using Sobolev embedding, Strichartz estimates, Hölder’s inequality, the frac-
tional chain rule, and the properties of F , for u ∈ Z we estimate

∥Φ(u)∥X ≲ ∥u0∥Ḣsp + ∥|∇|spF (u)∥L1
tL

2
x

≲ ∥u0∥Ḣsp +
[
|u∥2L3

tL
6
x
+ ∥u∥p

L
3p/2
t L3p

x

]
∥|∇|spu∥L3

tL
6
x

≲ ∥u0∥Ḣsp +
[
∥u0∥2Hsp + ∥u0∥pHsp

]
∥u0∥Ḣsp .

In particular, for η sufficiently small we obtain

∥Φ(u)∥X ≤ 4C∥u0∥Ḣsp .

Similarly,

∥∇Φ(u)∥L∞
t L2

x∩L3
tL

6
x
≲ ∥∇u0∥L2 + ∥∇F (u)∥L1

tL
2
x

≲ ∥∇u0∥L2 +
[
∥u∥2L3

tL
6
x
+ ∥u∥p

L
3p/2
t L3p

x

]
∥∇u∥L3

tL
6
x

≲ ∥∇u0∥L2 +
[
∥u0∥2Hsp + ∥u0∥pHsp

]
∥∇u0∥L2 ,

so that

∥∇Φ(u)∥L∞
t L2

x∩L3
tL

6
x
≤ 4C∥∇u0∥L2 ,

provided η is chosen small enough. Parallel arguments show that

∥Φ(u)∥L∞
t L2

x∩L3
tL

6
x
≤ 4C∥u0∥L2 ,

and so we conclude that Φ : Z → Z.
Next, for u, v ∈ Z we may bound

∥Φ(u)− Φ(v)∥L3
tL

6
x

≲
[
∥u∥2L3

tL
6
x
+ ∥u∥p

L
3p/2
t L3p

x

+ ∥v∥2L3
tL

6
x
+ ∥v∥p

L
3p/2
t L3p

x

]
∥u− v∥L3

tL
6
x

≲
[
∥u0∥2Hsp + ∥u0∥pHsp

]
∥u− v∥L3

tL
6
x
,

which shows that Φ is a contraction if η is sufficiently small.
By the Banach fixed point theorem, we deduce that Φ has a unique fixed point

in Z, which yields the desired solution u to (1.1) satisfying the bounds (1.3).
We next construct the asymptotic states u±. By time reversal symmetry, it

suffices to establish scattering forward in time. To this end, we fix t > s > 0 and
estimate as above to obtain

∥e−it∆u(t)− e−is∆u(s)∥L∞
t H1

x

≲
[
∥u∥2L3

tL
6
x((s,t)×R2) + ∥u∥p

L
3p/2
t L3p

x ((s,t)×R2)

]
∥⟨∇⟩u∥L3

tL
6
x((s,t)×R2),

which converges to zero as s, t → ∞ by (1.3) and the monotone convergence theo-
rem. It follows that {e−it∆u(t)} is Cauchy in H1 as t → ∞ and so converges to a
unique limit u+ ∈ H1.

The construction of the full scattering map is completely analogous, using (3.2)
instead of (3.1) to construct the solution. □

Remark 3.1. The Duhamel formula (3.1) for u shows that the wave and scattering
operators satisfy

ΩF (u0) = u0 − i

∫ ∞

0

e−it∆F (u(t)) dt,

SF (u−) = u− − i

∫ ∞

−∞
e−it∆F (u(t)) dt.

(3.3)
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4. Reduction to an inverse convolution problem

Throughout this section, we use the notation

G(|u|2) := F (u)ū, (4.1)

where F is an admissible nonlinearity, and we consider Gaussian initial data of the
form

uσ
0 (x) = Ae−|x|2/4σ2

with A, σ > 0. (4.2)

The majority of this section is devoted to the proof of Proposition 4.3, which
reduces the proof of Theorem 1.3 to the consideration of an inverse convolution
problem. The resolution of this convolution problem is stated as Theorem 4.4 below.
Using Proposition 4.3 and Theorem 4.4, we complete the proof of Theorem 1.3 at
the end of this section. The proof of Theorem 4.4 will then be given in Section 5.

Lemma 4.1. Let F, F̃ be admissible and let ΩF , SF : B → H1 and ΩF̃ , SF̃ : B̃ →
H1 be the corresponding wave and scattering operators. Let uσ

0 be as in (4.2). Then

(i) uσ
0 ∈ B ∩ B̃ for sufficiently small σ.

(ii) If ΩF (u
σ
0 ) = ΩF̃ (u

σ
0 ), then⏐⏐⏐⏐∫ ∞

0

∫
R2

G(|eit∆uσ
0 |2)− G̃(|eit∆uσ

0 |2) dx dt
⏐⏐⏐⏐ ≲A σ6. (4.3)

(iii) If SF (u
σ
0 ) = SF̃ (u

σ
0 ), then (4.3) holds with the time integral taken over R.

Proof. Item (i) follows from the fact that for any s ≥ 0,

∥uσ
0∥Ḣs(R2) ≲s Aσ1−s, (4.4)

along with the fact that B, B̃ are of the form (1.2).

We turn to (ii). Writing u, ũ for the solutions to (1.1) with nonlinearities F, F̃
and initial data uσ

0 , we use (3.3) to write

⟨ΩF (u
σ
0 )− ΩF̃ (u

σ
0 ), u

σ
0 ⟩ = −i

∫ ∞

0

⟨e−it∆[F (u(t))− F̃ (ũ(t))], uσ
0 ⟩ dt

= −i

∫ ∞

0

∫
R2

[
G(|eit∆uσ

0 |2)− G̃(|eit∆uσ
0 |2)

]
dx dt

− i

∫ ∞

0

⟨F (u(t))− F (eit∆uσ
0 ), e

it∆uσ
0 ⟩ dt

+ i

∫ ∞

0

⟨F̃ (ũ(t))− F̃ (eit∆uσ
0 ), e

it∆uσ
0 ⟩ dt.

By assumption, ΩF (u
σ
0 ) = ΩF̃ (u

σ
0 ), so item (ii) will follow once we prove that⏐⏐⏐⏐∫ ∞

0

⟨F (u(t))− F (eit∆uσ
0 ), e

it∆uσ
0 ⟩ dt

⏐⏐⏐⏐ ≲A σ6 (4.5)

for any admissible F (including F̃ ).
To establish (4.5), we let

N(t) := u(t)− eit∆uσ
0 = −i

∫ ∞

0

ei(t−s)∆F (u(s)) ds
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and let p denote the growth parameter of F . Using Strichartz, Sobolev embedding,
and (1.3), we may bound⏐⏐⏐⏐∫ ∞

0

⟨F (u(t))− F (eit∆uσ
0 ), e

it∆uσ
0 ⟩ dt

⏐⏐⏐⏐
≲ ∥eit∆uσ

0∥L3
tL

6
x
∥F (u(t))− F (eit∆uσ

0 )∥L3/2
t L

6/5
x

≲ ∥uσ
0∥L2∥N(t)∥L∞

t L2
x

×
[
∥u2∥

L
3/2
t L3

x
+ ∥[eit∆uσ

0 ]
2∥

L
3/2
t L3

x
+ ∥up∥

L
3/2
t L3

x
+ ∥[eit∆uσ

0 ]
p∥

L
3/2
t L3

x

]
≲ ∥uσ

0∥L2

[
∥u3∥L1

tL
2
x
+ ∥up+1∥L1

tL
2
x

]
×
[
∥u∥2L3

tL
6
x
+ ∥eit∆uσ

0∥2L3
tL

6
x
+ ∥u∥p

L
3p/2
t L3p

x

+ ∥eit∆uσ
0∥

p

L
3p/2
t L3p

x

]
≲ ∥uσ

0∥L2∥u∥L3
tL

6
x

[
∥u∥2L3

tL
6
x
+ ∥u∥p

L
3p/2
t L3p

x

][
∥uσ

0∥2L2 + ∥uσ
0∥

p

Ḣ1−2/p

]
≲ ∥uσ

0∥2L2

[
∥uσ

0∥2L2 + ∥uσ
0∥

p

Ḣ1−2/p

]2
,

where we used (1.3) in the last two steps. The estimate (4.5) now follows from
(4.4).

Part (iii) follows from a direct recapitulation of the proof of (ii), using the second
formula in (3.3). □

Lemma 4.2. Let F be an admissible nonlinearity and let uσ
0 be as in (4.2). Define

G as in (4.1) and let

H(k) := G′(e−k)e−k. (4.6)

Then ∫ ∞

0

∫
R2

G(|eit∆uσ
0 |2) dx dt = 4π

9 σ4

∫
R
H(k)w(k + 2 logA) dk, (4.7)

where

w(k) :=
[
(ek − 1)

3
2 + 6(ek − 1)

1
2 − 6 arctan

(
(ek − 1)

1
2

)]
χ(0,∞)(k). (4.8)

If the time integral in (4.7) is extended to all of R, the right-hand side doubles.

Proof. We first consider σ = 1; for notational simplicity we write u0 for u1
0. Using

the layer cake decomposition, we may write∫ ∞

0

∫
R2

G(|eit∆u0|2) dx dt =
∫ ∞

0

G′(λ)
⏐⏐{(t, x) ∈ (0,∞)× R2 : |eit∆u0|2 > λ}

⏐⏐ dλ.
By direct computation (see e.g. [18, Equation (2.4)]), we have

eit∆u0(x) =
A

1+it exp
{
− |x|2

4(1+it)

}
.

In order that |eit∆u0(x)|2 > λ it is necessary that λ < A2, in which case the
inequality holds at space-time points where

λ(1 + t2) < A2 and |x| <
[
2(1 + t2) log

(
A2

λ(1+t2)

)] 1
2 .
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Thus, integrating by parts, we find that∫ ∞

0

∫
R2

G(|eit∆u0|2) dx dt = π

∫ A2

0

G′(λ)

∫ [A2λ−1−1]
1
2

0

2(1 + t2) log
(

A2

λ(1+t2)

)
dt dλ

= π

∫ A2

0

G′(λ)

∫ [A2λ−1−1]
1
2

0

(t+ 1
3 t

3) 4t
1+t2 dt dλ

= 4π
9

∫ A2

0

G′(λ)w0(
λ
A2 ) dλ,

where

w0(λ) := (λ−1 − 1)
3
2 + 6(λ−1 − 1)

1
2 − 6 arctan

(
(λ−1 − 1)

1
2

)
.

Applying the change of variables λ = e−k, we obtain∫ ∞

0

∫
R2

G(|eit∆u0|2) dx dt = 4π
9

∫ ∞

−2 logA

G′(e−k)e−kw0(e
−k−2 logA) dk

= 4π
9

∫
R
H(k)w(k + 2 logA) dk,

where H(·) and w(·) are as in (4.6) and (4.8). This yields (4.7) with σ = 1.
To treat the case of general σ > 0, we note that uσ

0 (x) = u1
0(σ

−1x), which implies

eit∆uσ
0 (x) = [eiσ

−2t∆u1
0](σ

−1x).

Thus, by a change of variables,∫ ∞

0

∫
R2

G(|eit∆uσ
0 |2) dx dt = σ4

∫ ∞

0

∫
R2

G(|eit∆u1
0|2) dx dt,

which yields (4.7).
The final claim of the lemma follows by repeating the previous argument or,

more simply, by exploiting time-reversal symmetry. □

With Lemmas 4.1 and 4.2 in place, we are now in a position to reduce the proof
of Theorem 1.3 to the consideration of an inverse convolution problem.

Proposition 4.3. Let F, F̃ be admissible and let ΩF , SF : B → H1 and ΩF̃ , SF̃ :

B̃ → H1 be the corresponding wave and scattering operators. Define H, H̃ as in
(4.6) and w as in (4.8). If ΩF = ΩF̃ or SF = SF̃ on B ∩ B̃, then∫

R
[H(k)− H̃(k)]w(k + ℓ) dk = 0 for all ℓ ∈ R.

Proof. It suffices to consider the case ΩF = ΩF̃ . The case SF = SF̃ follows in an
identical fashion.

Fix A > 0 and define uσ
0 as in (4.2). Combining Lemmas 4.1 and 4.2, we find

that for all sufficiently small σ we have⏐⏐⏐⏐ 4π9 ∫
R
[H(k)− H̃(k)]w(k + 2 logA) dk

⏐⏐⏐⏐
= σ−4

⏐⏐⏐⏐∫ ∞

0

∫
R2

G(|eit∆uσ
0 |2)− G̃(|eit∆uσ

0 |2) dx dt
⏐⏐⏐⏐ ≲A σ2.

As the left-hand side is independent of σ, the result follows by sending σ → 0. □
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The last ingredient in the proof of Theorem 1.3 is the solution of this inverse
convolution problem.

Theorem 4.4. Let F, F̃ be admissible. Define H, H̃ as in (4.6) and w as in (4.8).
Given ℓ0 ∈ R, if ∫

R
[H(k)− H̃(k)]w(k + ℓ) dk = 0 for all ℓ ≤ ℓ0, (4.9)

then F (u) = F̃ (u) for all |u| ≤ e
1
2 ℓ0 .

We will prove Theorem 4.4 in the next section. For now, let us see it implies
Theorem 1.3.

Proof of Theorem 1.3. If F, F̃ are admissible and the scattering data agree on B∩B̃,
then Proposition 4.3 and Theorem 4.4 imply F (u) = F̃ (u) for all u ∈ C. □

5. Proof of Theorem 4.4

Our proof of Theorem 4.4 relies on the Beurling–Lax Theorem, which tells us
when the span of the (right) translates of a function in L2([0,∞)) are dense in
this space. After discussing this theorem, we demonstrate that the necessary (and
sufficient) condition is satisfied for the specific weight

w(k) :=
[
(ek − 1)

3
2 + 6(ek − 1)

1
2 − 6 arctan

(
(ek − 1)

1
2

)]
χ(0,∞)(k) (5.1)

appearing in Theorem 4.4; this allows us to complete the proof of Theorem 4.4.
The following theorem, due to Lax [10], characterizes shift-invariant subspaces

of the Hardy space H2({Re z > 0}). Here shift-invariance of a closed subspace
M refers to the fact that e−azF (z) ∈ M whenever F ∈ M and a > 0. The result
relies on the inner/outer factorization on Hardy spaces; for a textbook presentation,
see [7, Chapter 5].

Theorem 5.1 (Lax). If M is a closed, shift-invariant subspace of H2, then there
exists an inner function θ such that M = θH2.

The analogous result for H2(D) was established by Beurling [2]; in fact, the half-
plane case can be deduced from the disk case via conformal mapping, as demon-
strated in [7].

We will use Theorem 5.1 to prove the following corollary.

Corollary 5.2. Fix v ∈ L2(R) with supp(v) ⊆ [0,∞). Suppose the Laplace trans-
form

V (z) = Lv(z) :=
∫ ∞

0

e−kzv(k) dk (5.2)

defines an outer function on the half-plane {Re z > 0}. If f ∈ L2([0,∞)) satisfies∫ ∞

0

v(k − a)f(k) dk = 0 for all a ≥ 0, (5.3)

then f ≡ 0.

Proof. We first show that M = span{e−azV (z) : a ≥ 0} is all of H2. The proof of
this fact is the same as that of [5, Corollary II.7.3], which treated the case of the
disk.
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We first note that M is a closed, shift-invariant subspace, and hence by Theo-
rem 5.1 we know that M = θH2 for some inner function θ. As V ∈ M, we deduce
that

V = θU for some U ∈ H2.

We write the inner/outer factorization of U as U = ϑO. Using the fact that V is
outer, while θ and ϑ (and hence θϑ) are inner, we can use the uniqueness of the
inner/outer factorization deduce that θϑ ≡ 1. This in turn guarantees that θ and
ϑ are constant. In particular, θH2 = H2, yielding M = H2.

To complete the proof, we observe that (5.3) and Plancherel imply that Lf ∈
M⊥ = {0}, which in turn guarantees f ≡ 0. □

Evidently, it is convenient to have a simple test to see if V is outer. The following
suffices for our purposes:

Lemma 5.3. Suppose V ∈ H2 extends continuously from {Re z > 0} to z ∈ iR\{0}
and that there exists ε > 0 and β ≥ 1 such that

ε|z + 1|−β ≤ |V (z)| ≤ ε−1|z|−1 for all Re z > 0. (5.4)

Then V is an outer function.

Proof. We conformally transport the problem to the disk D via the Möbius trans-
formation M(z) := 1−z

1+z , which maps D to {Re z > 0} and respects the classes

of inner and outer functions. By [5, Corollary II.4.7], V is an outer function if
V ◦ M, 1/(V ◦ M) belong to the Hardy space Hq(D) for some q ∈ (0,∞]. Using
(5.4), we see that

sup
r∈[0,1)

∫ π

−π

⏐⏐⏐V (
1−reiθ

1+reiθ

)⏐⏐⏐q + ⏐⏐⏐V (
1−reiθ

1+reiθ

)⏐⏐⏐−q

dθ < ∞

for any 0 < q < 1
β . □

Proposition 5.4. Let w be as in (5.1). The function

W (z) :=

∫ ∞

0

e−kzw(k) dk, (5.5)

initially defined for Re z > 3
2 , admits a meromorphic extension to C given by

W (z) = 9
√
π

Γ(z + 1
2 )

Γ(z + 1)

z − 1

z(2z − 1)(2z − 3)
.

In particular, W is outer in {Re z > 7
4}, where it satisfies the bounds

|W (z)| ≈ |z|− 5
2 . (5.6)

Proof. We begin with a special case of Euler’s Beta integral. Given −1 < α < Re z,
the change of variables u = e−k yields∫ ∞

0

e−kz(ek − 1)α dk =

∫ 1

0

uz−α−1(1− u)α du =
Γ(z − α)Γ(1 + α)

Γ(z + 1)
.

Thus, using the identity

e−kz = − 1
z

d
dke

−kz
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to integrate by parts in the arctan term, along with the identities Γ( 12 ) =
√
π and

Γ(z + 1) = zΓ(z), we obtain

W (z) =

∫ ∞

0

e−kz
[
(ek − 1)

3
2 + 6(ek − 1)

1
2 − 6 arctan

(
(ek − 1)

1
2

)]
dk

=

∫ ∞

0

e−kz
[
(ek − 1)

3
2 + 6(ek − 1)

1
2 − 3

z (e
k − 1)−

1
2

]
dk

=
1

Γ(z + 1)

[
Γ(z − 3

2 )Γ(
5
2 ) + 6Γ(z − 1

2 )Γ(
3
2 )−

3
zΓ(z +

1
2 )Γ(

1
2 )

]
=

√
π Γ(z + 1

2 )

Γ(z + 1)

[ 3
2 · 1

2

(z − 3
2 )(z −

1
2 )

+
3

z − 1
2

− 3

z

]
= 9

√
π

Γ(z + 1
2 )

Γ(z + 1)

z − 1

z(2z − 1)(2z − 3)

for all z ∈ C with Re z > 3
2 . The extension to C now follows from analytic contin-

uation.
Regarding (5.6), we first recall [13, Theorem A, p. 68], which says that⏐⏐⏐⏐Γ(s+ c)

Γ(s)

⏐⏐⏐⏐ ≤ |s|c for c ∈ [0, 1] and Re s ≥ 1
2 (1− c).

In particular,

|z + 1
2 |

− 1
2 ≤

⏐⏐⏐⏐Γ(z + 1
2 )

Γ(z + 1)

⏐⏐⏐⏐ ≤ |z + 1| 12
|z + 1

2 |
provided Re z > − 1

4 ,

which leads to (5.6). By Lemma 5.3, this guarantees that W is outer. □

We are now ready to complete the proof of Theorem 4.4.

Proof of Theorem 4.4. Fix ℓ0 ∈ R. Using (4.9) and a change of variables, we may
derive that∫ ∞

0

e
7
4k[H(k − ℓ0)− H̃(k − ℓ0)]e

− 7
4 (k−a)w(k − a) dk = 0 for all a ≥ 0.

By the assumptions on F, F̃ and the definition of H, H̃ (cf. (4.6)), we have

|e 7
4k[H(k − ℓ0)− H̃(k − ℓ0)]| ≲ e2ℓ0e−

1
4k + e

p+2
2 ℓ0e−[ p2−

3
4 ]k + e

p̃+2
2 ℓ0e−[ p̃2−

3
4 ]k

≲ℓ0 e−
1
4k + e−[ p2−

3
4 ]k + e−[ p̃2−

3
4 ]k.

As p, p̃ ∈ [2,∞), we have

e
7
4k[H(k − ℓ0)− H̃(k − ℓ0)] ∈ L2([0,∞)).

Similarly, by the definition of w (cf. (5.1)),

|e− 7
4kw(k)| ≲ e−

1
4k ∈ L2([0,∞)).

Thus we may apply Corollary 5.2 to deduce that

H(k − ℓ0) = H̃(k − ℓ0) for all k ≥ 0, (5.7)

provided we can verify that

V (z) =

∫ ∞

0

e−zke−
7
4kw(k) dk = W (z + 7

4 )
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is an outer function on {Re z > 0}, where W is as in (5.5). This follows from
Proposition 5.4.

Now observe that (5.7) implies that G(λ) = G̃(λ) for all λ ≤ eℓ0 and so F (u) =

F̃ (u) for all |u| ≤ e
1
2 ℓ0 . □

6. Some special cases

In this section, we discuss a few special cases inspired by previous works. These
require considerably less detailed information about the weight w, and consequently
can be more easily adapted to other models.

We first consider the case when F and F̃ are of ‘generalized polynomial’ type.
In particular, our first result is an extension of the results appearing in works such
as [3,11,12], in which it is shown that in the case F (u) = λ|u|2ku (with k a positive
integer), the scattering map uniquely determines k and λ. As our argument will
only make use of the positivity of the weight w, it extends readily to all dimensions.

Theorem 6.1 (Generalized polynomial case). Suppose

F (u) =
∑
p∈D

ap|u|pu and F̃ (u) =
∑
q∈D̃

ãq|u|qu

where D, D̃ are finite subsets of [2,∞) and ap, ãq ∈ C. Let ΩF , SF : B → H1 and

ΩF̃ , SF̃ : B̃ → H1 be the associated wave and scattering operators. If ΩF = ΩF̃ or

SF = SF̃ on B ∩ B̃, then F = F̃ .

Proof. We first note that F, F̃ are admissible in the sense of Definition 1.1, so that
Theorem 1.2 applies and yields the existence of the wave and scattering operators.
The growth parameters of F, F̃ correspond to the largest elements of D, D̃.

From the explicit form of F and F̃ and the definition of H, H̃ (see (4.6)), we find

H(k)− H̃(k) =
∑
r∈E

bre
− r+2

2 k

for E = D ∪ D̃ and coefficients br ∈ C. To show that F = F̃ , we will show that
br = 0 for each r ∈ E.

In view of Proposition 4.3, if ΩF = ΩF̃ or SF = SF̃ on B ∩ B̃,∑
r∈E

br

[∫ ∞

0

e−
r+2
2 kw(k) dk

]
e

r+2
2 ℓ = 0 for all ℓ ∈ R, (6.1)

with w as in (4.8). As w is defined as the measure of superlevel sets, it is a
nonnegative function. This can also be verified directly from the explicit formula
(4.8). As w is not identically zero, it follows that the coefficients in square brackets
in (6.1) are always positive. Thus, by the linear independence of the functions
ℓ ↦→ eℓ(r+2)/2, we see that br ≡ 0. □

We next consider the case when F and F̃ have the same size as a common
single-power nonlinearity.

Definition 6.2 (p-admissible). Let 2 ≤ p < ∞. We call F : C → C p-admissible if
F (u) = h(|u|2)u for some h : [0,∞) → C with

h(0) = 0 and |h′(λ)| ≈ λ
p
2−1.
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In particular, if F is p-admissible then it is admissible in the sense of Defini-
tion 1.1 and we have

|F (u)| ≈ |u|p+1.

Our consideration of this case is inspired by [1], which treated the nonlinear wave
equation in three dimensions with quintic-type nonlinearities.

Theorem 6.3 (Single-power case). Suppose F and F̃ are p-admissible with p ≥ 2

and let ΩF , SF : B → H1 and ΩF̃ , SF̃ : B̃ → H1 be the associated wave and

scattering operators. If ΩF = ΩF̃ or SF = SF̃ on B ∩ B̃, then F = F̃ .

Proof. By Proposition 4.3, we have∫
R
[H(k)− H̃(k)]w(k + ℓ) dk = 0 for all ℓ ∈ R,

with H, H̃ as in (4.6) and w as in (4.8). We rewrite this as∫
R

ek
p+2
2 [H(k)− H̃(k)] · e−(k+ℓ) p+2

2 w(k + ℓ) dk = 0 for all ℓ ∈ R

and note that as F and F̃ are both p-admissible with p > 1,

ek
p+2
2 [H(k)− H̃(k)] ∈ L∞ and e−k p+2

2 w(k) ∈ L1.

In particular, using Wiener’s Tauberian Theorem [29], we may deduce that H = H̃

(and hence F = F̃ ), provided

W (p+2
2 + iξ) :=

∫ ∞

0

e−k[ p+2
2 +iξ]w(k) dk ̸= 0 for all ξ ∈ R. (6.2)

By Proposition 5.4, W (z) ̸= 0 whenever Re z > 3
2 , which includes (6.2) as a special

case. □

It is truly necessary to verify (6.2) for all values of ξ ∈ R, for otherwise H − H̃
could be a sinusoid of the corresponding frequency.
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[1] A. Sá Barreto, G. Uhlmann, and Y. Wang, Inverse Scattering for Critical Semilinear Wave

Equations. Preprint arXiv:2003.03822.
[2] A. Beurling, On two problems concerning linear transformations in Hilbert space. Acta

Math. 81 (1948), 239–255.
[3] R. Carles and I. Gallagher, Analyticity of the scattering operator for semilinear dispersive

equations. Comm. Math. Phys. 286 (2009), no. 3, 1181–1209.
[4] M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized

Korteveg-de Vries equation. J. Funct. Anal. 100 (1991), no. 1, 87–109.
[5] J. B. Garnett, Bounded analytic functions. Graduate Texts in Mathematics, 236. Springer,

New York, 2007.
[6] J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive

evolution equations. Comm. Math. Phys. 144 (1992), 163–188.
[7] K. Hoffman, Banach spaces of analytic functions. Reprint of the 1962 original. Dover Pub-

lications, Inc., New York, 1988. viii+216 pp. ISBN: 0-486-65785-X
[8] Y. Kurylev, M. Lassas, L. Oksanen, and G. Uhlmann, Inverse problem for Einstein-scalar

field equations. To appear in Duke Mathematical Journal. Preprint arXiv:1406.4776.
[9] Y. Kurylev, M. Lassas, and G. Uhlmann, Inverse problems for non-linear equations on

Lorentzian manifolds, Invent. Math. 212 (2018), no. 3, 781–857.
[10] P. D. Lax, Translation invariant spaces. Acta Math. 101 (1959), 163–178.
[11] C. S. Morawetz and W. A. Strauss, On a nonlinear scattering operator. Comm. Pure Appl.

Math. 26 (1973), 47–54.



14 R. KILLIP, J. MURPHY, AND M. VISAN

[12] B. Pausader and W. A. Strauss, Analyticity of the nonlinear scattering operator. Discrete

Contin. Dyn. Syst. 25 (2009), no. 2, 617–626.

[13] H. Rademacher, Topics in Analytic Number Theory. Edited by E. Grosswald, J. Lehner and
M. Newman. Die Grundlehren der mathematischen Wissenschaften, Band 169. Springer-

Verlag, New York-Heidelberg, 1973. ix+320 pp.

[14] H. Sasaki, The inverse scattering problem for Schrödinger and Klein-Gordon equations with
a nonlocal nonlinearity, Nonlinear Analysis, Theory, Methods & Applications 66 (2007),

1770–1781.

[15] H. Sasaki, Inverse scattering for the nonlinear Schrödinger equation with the Yukawa po-
tential. Comm. Partial Differential Equations 33 (2008), no. 7-9, 1175–1197.

[16] H. Sasaki, Inverse scattering problems for the Hartree equation whose interaction potential

decays rapidly. J. Differential Equations 252 (2012), no. 2, 2004–2023.
[17] H. Sasaki and M. Watanabe, Uniqueness on identification of cubic convolution nonlinearity.

J. Math. Anal. Appl. 309 (2005), no. 1, 294–306.
[18] M. Visan, Dispersive Equations, in “Dispersive Equations and Nonlinear Waves, Oberwol-

fach Seminars” 45, Birkhauser/Springer Basel AG, Basel, 2014.

[19] M. Watanabe, Inverse scattering for the nonlinear Schrödinger equation with cubic convo-
lution nonlinearity. Tokyo J. Math. 24 (2001), 59–67.

[20] M. Watanabe, Uniqueness in the inverse scattering problem for Hartree type equation. Proc.

Japan Acad. Ser. A Math. Sci. 77 (2001), no. 9, 143–146.
[21] M. Watanabe, Reconstruction of the Hartree-type nonlinearity. Inverse Problems 18 (2002),

no. 6, 1477–1481.

[22] M. Watanabe, Time-dependent method for non-linear Schrödinger equations in inverse scat-
tering problems. J. Math. Anal. Appl. 459 (2018), no. 2, 932–944.

[23] R. Weder, Inverse scattering for the nonlinear Schrödinger equation. Comm. Partial Differ-

ential Equations 22 (1997), no. 11-12, 2089–2103.
[24] R. Weder, Inverse scattering on the line for the nonlinear Klein-Gordon equation with a

potential. J. Math. Anal. Appl. 252 (2000), no. 1, 102–123.

[25] R. Weder, Lp-Lp′ estimates for the Schr pdinger equation on the line and inverse scattering

for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170 (2000), no. 1,
37–68.

[26] R. Weder, Inverse scattering for the nonlinear Schrödinger equation. II. Reconstruction of

the potential and the nonlinearity in the multidimensional case. Proc. Amer. Math. Soc.
129 (2001), no. 12, 3637–3645.

[27] R. Weder, Inverse scattering for the non-linear Schrödinger equation: reconstruction of the

potential and the non-linearity. Math. Methods Appl. Sci. 24 (2001), no. 4, 245–254.
[28] R. Weder, Multidimensional inverse scattering for the nonlinear Klein-Gordon equation

with a potential. J. Differential Equations 184 (2002), no. 1, 62–77.

[29] N. Wiener, Tauberian Theorems. Ann. Math. 33 (1932), 1–100.

Department of Mathematics, UCLA
Email address: killip@math.ucla.edu

Department of Mathematics & Statistics, Missouri S&T
Email address: jason.murphy@mst.edu

Department of Mathematics, UCLA
Email address: visan@math.ucla.edu


	1. Introduction
	Acknowledgements

	2. Preliminaries
	3. Small data scattering
	4. Reduction to an inverse convolution problem
	5. Proof of Theorem 4.4
	6. Some special cases
	References

