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Abstract

Assembly activity recognition and prediction help to improve productivity, quality control, and safety measures in smart

factories. This study aims to sense, recognize, and predict a worker’s continuous fine-grained assembly activities in a manu-

facturing platform. We propose a two-stage network for workers’ fine-grained activity classification by leveraging scene-level

and temporal-level activity features. The first stage is a feature awareness block that extracts scene-level features from multi-

visual modalities, including red–green–blue (RGB) and hand skeleton frames. We use the transfer learning method in the

first stage and compare three different pre-trained feature extraction models. Then, we transmit the feature information from

the first stage to the second stage to learn the temporal-level features of activities. The second stage consists of the Recurrent

Neural Network (RNN) layers and a final classifier. We compare the performance of two different RNNs in the second stage,

including the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU). The partial video observation method

is used in the prediction of fine-grained activities. In the experiments using the trimmed activity videos, our model achieves an

accuracy of > 99% on our dataset and > 98% on the public dataset UCF 101, outperforming the state-of-the-art models. The

prediction model achieves an accuracy of > 97% in predicting activity labels using 50% of the onset activity video information.

In the experiments using an untrimmed video with continuous assembly activities, we combine our recognition and prediction

models and achieve an accuracy of > 91% in real time, surpassing the state-of-the-art models for the recognition of continuous

assembly activities.

Keywords Fine-grained activity · Activity classification · Assembly · Multi-visual modality

Introduction

Activity recognition on the industry floor automatically

detects and classifies different activities in manufacturing

environments. The goal of activity recognition is to under-

stand the nature of the work environment, which allows for

a better understanding of how people perform their jobs and

what they are operating at any given time (Ahn et al., 2023;

Chen et al., 2021; Rude et al., 2018; Xiao et al., 2022). Our

previous work analyzed the recognition of coarse-grained
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gestures (Chen et al. 2022, Chen et al. 2020a, Al-Amin et al.,

2021) and worker assembly operation steps (Tao et al., 2020).

While activity recognition is a current focus of research,

the industry’s challenging problem of fine-grained activ-

ity recognition is largely overlooked. In industry assembly,

fine-grained activity recognition needs to identify similar

activities with low inter-class variability and determine the

exact type of operations/activities that a worker is doing,

rather than recognize coarse activities or assembly steps with

high inter-class variability. For example, a coarse-grained

machine assembly activity in the industry is annotated as a

sequence of elementary sub-actions derived from five fine-

grained activity sets: “take the needed parts,” “take the needed

tools,” “put on the assembly platform,” “assemble parts,” and

“check the connection between parts/assembly orientation”.

The recognition of fine-grained activities in the industry can

be used to make more informed decisions about how best to

allocate resources, improve quality, and reduce costs. These
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allow companies to assign workers to specific tasks and

ensure they are working on the right things at the right time

(Sherafat et al., 2020; Zheng et al., 2021). To realize robust

and accurate recognition of fine-grained activity in assembly,

we propose a two-stage approach for workers’ fine-grained

activity recognition by leveraging feature information from

the scene-level and temporal-level. We then use the pro-

posed model to recognize and predict fine-grained activities

in assembly.

Related work

Traditional coarse-grained activities are concerned with

scene-level information, usually involving discrete activities

with highly distinct inter-class features. They do not include

detailed features on continuous activities in applications

(Hu et al., 2020). These highly distinct inter-class features

are presented in many popular benchmark activity datasets,

such as KTH (Schuldt et al., 2004), UT-interaction (Ryoo &

Aggarwal, 2009), and UTKinect-Action3D (Xia et al., 2012).

These datasets mainly contain simple daily activities, mostly

full-body, such as jogging and hand-waving. Though some

fine-grained activity datasets, such as UCF101 (Soomro et al.,

2012a), MPII Cooking (Rohrbach et al., 2012) and CAP

(Byrne et al., 2023), focus on fine-grained activities sharing

similar inter-class features, the public fine-grained activity

datasets comprising activities in manufacturing assembly are

missing. In this paper, we analyze the complex assembly

process of a carving machine and propose a dataset of 15

commonly existing fine-grained activities, which helps fill

the above knowledge gap of the fine-grained activity dataset

in assembly.

In recognition of fine-grained activities with similar fea-

tures, some research work has been done. Singh et al. (Singh

et al., 2016) presented a multi-stream bi-directional network

for fine-grained activity detection. The authors used a bound-

ing box around the subject to avoid most background noise

and achieved 80.31% accuracy on public dataset recogni-

tion. Pan et al. (Pan et al., 2020) proposed a heterogeneous

cyber-physical system using vibration and electrical sen-

sors to monitor fine-grained activities of daily living, which

achieved an average of 90% recognition accuracy. Further-

more, some research work has been devoted to fine-grained

activity recognition using contextual information between

humans and objects (Kapidis et al., 2019; Li et al., 2020;

Marszalek et al., 2009; Yao et al., 2011). An assembly fine-

grained activity recognizer should distinguish an individual

activity from others using the temporal-level features because

the background information is usually similar, and the tem-

poral features reflect the dynamic activity process. However,

most activity recognition models’ performances are often

dominated by spatial information, making it challenging to

obtain a decent model for fine-grained activity recognition.

To address the above issues, we propose a two-stage approach

to classify fine-grained activities by combining scene-level

and temporal-level features, and shifting the model’s atten-

tion to temporal features using Recurrent Neural Network

(RNN) methods.

Generally, a deep-learning-based recognition task needs

a large amount of data to train a deep-learning model, which

is time-consuming. For a small dataset, the transfer learn-

ing has been demonstrated to be an effective and efficient

approach to transfer learning abilities from pre-trained source

models to target models (Chan et al., 2023). Kumar et al.

(Kumar & Gupta, 2023) investigated the efficacy of transfer

learning approaches for predicting various eye diseases and

proposed multiple transfer learning models based on limited

image data of eye diseases for disease prediction. Fu et al.

(Fu et al., 2021) used transfer learning to recognize human

activity based on inertial measurement unit (IMU) sensors.

That study directly transferred unlabeled data to the model

based on the unsupervised method. Transfer learning is also

widely used in emotion recognition (Akhand et al., 2021),

speech recognition (Cho et al., 2018), medical skin lesion

detection (Khan et al., 2021), etc. However, most research

applied transfer learning by simply freezing layers before

the fully connected layer and adding a customized pooling

or fully connected layer. Such an operation may limit the per-

formance of the pre-trained model because transfer learning’s

performance may vary for different model architectures and

use cases. To find the optimal pre-trained model and pooling

method for fine-grained recognition in assembly, we com-

pare the performance of different pre-trained models in the

transfer learning and evaluate the effect of different pooling

methods on the fine-grained activity recognition.

The application and deployment of fine-grained activity

recognition necessitate the recognizer to detect the con-

tinuously changing activities and provide correct results

simultaneously. Mekruksavanich et al. (Mekruksavanich &

Jitpattanakul, 2022) introduces a new framework for recog-

nizing sport-related fine-grained activity using multimodal

wearable sensors in multiple body positions. The experi-

mental results showed that the proposed recognition model

achieved an accuracy of 99.62% on the UCI-DSADS dataset.

Zhang et al. shed light on fast action recognition by lift-

ing the reliance on the optical flow and achieved 97.2%

accuracy in the experiment on the UCF101 dataset (Zhang

et al., 2020a). Kobayashi et al. recognized assembly actions

by extracting hand features in two different ways, including

cutting out the hand image of a worker and applying an atten-

tion module, respectively. The dataset included 11 discrete

and low inter-class similarity assembly activities (Kobayashi

et al., 2019). Jones developed an assembly action recognition

framework with the notion of a kinematic state and defined

an action as a difference between two kinematic states to

recognize the assembly actions in the constructions of an
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Fig. 1 Problem statement of the

fine-grained activities

recognition

IKEA chair and toy blocks (Jones et al., 2021). However, in

recognition of continuously changing fine-grained activities

in an untrimmed video, the inter-class feature variations of

the activities are lower than the pre-trimmed video dataset,

such as HMDB51 and UCF101, increasing difficulties in the

recognition. Additionally, most existing models are not sensi-

tive enough to capture the random emergence of continuous

assembly activities of different duration time and unfixed

motion speeds. These issues limit the recognition perfor-

mance of continuously changing activities with an unknown

duration time in an untrimmed video. To improve the above

issues, we propose a fusion recognition-prediction model

based on partial video observation to provide high-accuracy

performance in continuous fine-grained activity recognition.

Contribution of this article

To sense and classify the worker’s continuous fine-grained

activities in manufacturing assembly, in this paper we analyze

the fine-grained activities in assembly and propose a network

combining the features of Red-Green-and-Blue (RGB) and

hand skeleton frames.

The main contributions of this work are as follows:

• A dataset consisting of 15 fine-grained activities in the

assembly has been created. This dataset fills in the gaps

of manufacturing activity data in existing datasets. This

dataset will be shared with the community via our GitHub

website.

• A two-stage architecture has been designed in the network

to recognize workers’ fine-grained activities by leveraging

scene-level features in the first stage and temporal-level

features in the second stage of the model. The effects of

different input lengths, pre-trained feature extractors, RNN

models, and fusion mechanisms on fine-grained activity

recognition are compared.

• A fine-grained prediction approach using partial video

observation to predict upcoming activities is proposed, and

a fusion recognition-prediction model is designed.

• Experiments have been conducted to evaluate our model

and demonstrate its effectiveness in recognizing and pre-

dicting continuous fine-grained assembly activities in real

time. Our model is compared with the state-of-the-art

models to demonstrate its superiority and generalization

capabilities.

The remainder of this paper is organized as follows.

Section Problem statement gives the problem statement of

this study. Section Dataset collection presents the dataset

collection and construction of the fine-grained activities in

assembly. Section Two-stage network architecture details our

proposed classification model architecture. The experimental

setups and results are described and illustrated in Sect. Exper-

iments and results. Finally, Sect. Conclusion presents the

conclusion.

Problem statement

As shown in Fig. 1, suppose the obtained fine-grained activity

video data is V[T −�, T ] = [VT −�, . . . , VT ] ∈ R
�∗D , where

V[T −�, T ] represents a video consisting of video frames

[VT −�, . . . , VT ] on different time steps T − �, . . . , T .

The symbol � represents the time interval which goes back

to a past time step from the current time step T , while the

symbol D is the feature dimension extracted from the cam-

era. Our study aims to classify the continuous fine-grained

assembly activities at each time step using the video data in

the time interval [T − �, . . . , T ].

Dataset collection

Fine-grained activities in assembly

In the design of a fine-grained activity video dataset of assem-

bly, we analyze the operations in the assembly of a desktop

carving machine and extracted 15 fine-grained activities,

which are: assemble parts (A1), background (A2), check

(A3), connect cables (A4), organize cables (A5), place a

tool/part (A6), push a button (A7), put a part on board (A8),

take parts/tools from the left (A9), take parts/tools from the

right (A10), tighten by hands (A11), untie cables (A12), use

a screwdriver (A13), use a small Allen key (A14), use a

big Allen key and a wrench (A15). These 15 operations are
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Fig. 2 Fine-grained activities in

the assembly of a carving

machine

Fig. 3 Quantities of the proposed fine-grained activity dataset in assem-

bly

shown in Fig. 2. Particularly, since the activities of taking dif-

ferent tools or parts have the same activity characteristics, we

grouped them into two categories based on the location of the

parts: take parts/tools from the left (A9) and take parts/tools

from the right (A10). The classes of the assemble parts (A1),

place a tool/part (A6), and put a part on board (A8) were

designed based on similar rules. One Logitech C920 camera

is used in data collection, with a frame resolution of 1920

× 1080 pixels and a frame rate of 30 fps. Three subjects are

involved in dataset construction. The dataset will be shared

with the community via our GitHub website. The quantity

of the video dataset is shown in Fig. 3. The total time and

average clip time of the video dataset are shown in Fig. 4.

Hand skeleton frame extraction

We obtain the RGB frames from the video dataset and then

extract the hand skeleton frames from the RGB frames using

the MediaPipe approach (Zhang et al., 2020b). The process is

shown in Fig. 5, in which the approach checks each frame and

detects if hands exist. The landmark model determines the

precise location of the 21 hand-knuckle coordinates inside

the detected hand regions and draws the hand skeletons. In

our work, we draw the hand skeletons on a black background

of the same size as the input frame to shift the model’s atten-

tion to hand movement features. The MediaPipe approach

achieves an average accuracy of ≈ 96% in palm detection.

In cases the hand skeletons are not correctly detected in an

activity, as shown in Fig. 6, our model in Sect. Two-stage

network architecture can use the temporal-level features of

the continuous frames to eliminate the effect of the hand

skeletons missing in a single frame.

Fig. 4 Duration time of the

proposed fine-grained activity

dataset in assembly
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Fig. 5 Hand skeleton frame

extraction

Fig. 6 Samples of hand skeleton

frame extraction

Two-stage network architecture

Data normalization

Different activities usually have different lengths in a video

dataset. The video sequences are normalized into the same

length T . Samples longer than the length T are all evenly

truncated, and samples shorter than the length T are padded

with the missing frames. The padded frames are marked as

false in the feature extraction and training since they are used

to meet the length requirements (https://www.tensorflow.org/

guide/keras/understanding_masking_and_padding). To ana-

lyze the impact of different input sequence lengths on

fine-grained activity recognition and prediction, we process

the activity video data into five fixed input lengths, includ-

ing 10, 20, 40, 60, and 80 frames. The experimental results

are shown in Sect. Evaluation of different pre-trained models

and RNNs.

Network architecture

Our two-stage network is shown in Fig. 7. There are five

components, including the input video, multi-visual frames,

first stage, second stage, and output of the classification.

Input video: The frame rate of the input video is 30 fps.

Multi-Visual frames: The RGB and skeleton frames are

first extracted and normalized into the same dimension,

including the dimension of the individual frame and the

length of the frame sequence.

First stage: We use transfer learning to extract the scene-

level features of the normalized RGB and skeleton frames.

The source dataset of the pre-trained models contains many

annotated data, with which a deep learning model is trained.

After that, a portion of the pre-trained model and the trained

weights are frozen and transferred to our target domain, i.e.,

the fine-grained activities. A new classifier is designed to

adapt the source model to the target domain. To create an end-

to-end neural network, we removed the last fully connected

layer of the pre-trained model in the first stage and directly

connected the output to the second stage.

Second stage: After the scene-level feature extraction, the

obtained features are input to an RNN layer, which extracts

the temporal-level features of the input sequence and com-

bines them with the scene-level features of the RGB and

skeleton frames. We propose two fusion strategies to fuse the

two feature modalities before (Fig. 7a) and after (Fig. 7b) the

RNN layer. The model fused before the RNN layer concate-

nates the unimodal features in the two branches in Fig. 7a into

a single representation, and an upcoming individual RNN

layer merges the temporal-level features of the RGB and

skeleton frame sequences. The model fused after the RNNs

in Fig. 7b learns the RGB and skeleton frame sequence’s

temporal-level features separately and then concatenates the

two unimodal branches of the two RNN layers in Fig. 7b.

Output: The classification of the fine-grained activities

follows the first and second stages. After a Softmax layer,

the activity label is output. The Softmax layer is shown in

Eq. (1):

P(xi ) =
exi

∑15
k=1 exk

for i = 1, . . . , C (1)

where C represents the number of the classes, and C = 15

in the assembly fine-grained activity recognition. The above

Softmax layer limits the output value to the interval [0, 1] and

makes the sum of components to be 1 so that the output of the

Softmax layer can be interpreted as recognition probabilities

(Chen et al., 2020b).

Regarding the length of the input video, we analyze the

impact of different input lengths on fine-grained activity

recognition. We process the activity video data into five fixed

input lengths, including 10, 20, 40, 60, and 80 frames. The

experimental results of the five input lengths are given in

Sect. Evaluation of different pre-trained models and RNNs.

In the first stage, we freeze the layers of the pre-trained model

before the fully connected layers at the decision level and
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Fig. 7 The architecture of the

proposed models

Fig. 8 Samples of maximum

pooling and average pooling

transfer the source domain to the target domain, i.e., the fine-

grained activities. A pooling layer is added after the frozen

layers to reduce the size of feature maps by summarizing the

presence of features in each patch of the feature map. There

are two popular pooling methods, i.e., maximum pooling

and average pooling, as shown in Fig. 8b and c. The maxi-

mum pooling method calculates the maximum value in each

frame feature map patch and replaces each element in the

patch with the maximum value. The average pooling method

calculates the average value for each frame feature map patch

and replaces each element in the patch with the average value.

We compare the performance of the two pooling methods in

Fig. 8 using 10% of the dataset with the three pre-trained

models ResNet50 (He et al., 2016), VGG-16 (Simonyan &

Zisserman, 2014a), and InceptionV3 (Szegedy et al., 2016).

The experimental results will be presented in Sect. Evaluation

of different pre-trained models and RNNs. We conducted an

additional experiment in Sect. Evaluation of different pre–

trained models and RNNs 1 to evaluate the performance of

using different pre-trained models as feature extractors on

RGB and skeleton frame sequences separately.

In transfer learning, we addressed the "dated weight"

problem caused by Batch Normalization (BN) layers in

pre-trained models, which are trained on the ImageNet

dataset with significantly higher inter-class variation than

our dataset, resulting in degraded performance. To address
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Fig. 9 Fine-grained activity

prediction using partial video

observation

this issue, we applied the Batch Renormalization technique

(Tian et al., 2020) in the first stage of our model, which mod-

ifies the scaling and shifting parameters of the BN layers to

adapt to changes in the input data distribution, making it less

dependent on the mini-batch size and better suited for our

fine-grained activity dataset.

The RNN is used to process and recognize sequential

activity data. It builds deep neural networks with recurrent

architectures and effectively solves recognition problems

involving sequential data. The input data is first transformed

into machine-readable vectors. Then the RNN processes the

vector sequence one by one. While processing, it saves a pre-

vious input as a hidden state, passes it to the next sequence

step, and merges the current and previous inputs into a new

hidden state. The hidden state acts as the memory of the neu-

ral network. It holds information on previous data seen by the

network. Two popular RNN models are used in our task; they

are the Long Short-Term Memory (LSTM) (Yu et al., 2019)

and the Gated Recurrent Unit (GRU) (Cho et al., 2014).

Prediction of fine-grained activities using partial
video observation

We design action prediction as shown in Fig. 9, in which

the activity frames are partially observed and used to train

a prediction model. The prediction model shares the same

architecture as the model in Sect. Network architecture, but

uses only the beginning frames to partially learn the activ-

ity features, i.e., using the activity frames in the time interval

[T −�, Tp] to identify the activity in the time interval [T −�,

T ], where Tp < T . Different partial ratios are tested, includ-

ing 50%, 25%, and 12.5% of temporal information for given

activity video samples. The experimental results of the three

cases mentioned above are presented in Sect. Evaluation of

the prediction using trimmed videos.

Experiments and results

The experimental platform is a workstation with an Ubuntu

16.04 system equipped with 64343 M RAM and an NVIDIA

GeForce RTX 3090 graphics card. The dataset records ten

complete assembly processes of three human subjects, and

there are more than 5000 activity samples. We randomly

Table 1 Training parameters used in the proposed model

Learning Rate Decay Batch Size Epoch

1e-5 1e-6 32 200

divided the dataset into training, validation, and testing sets

using a 6:2:2 split, where 60% of the data was used for train-

ing, 20% for validation, and 20% for testing. Table 1 presents

the training parameters used in this study, including the learn-

ing rate, decay for the update of the learning rate in each

iteration, batch size, and the number of epochs.

Two types of videos are used in the experiments: trimmed

and untrimmed. Each video contains only one fine-grained

activity in the trimmed videos, while the untrimmed video

records a completed assembly process, including hundreds

of continuous fine-grained activities. The following exper-

iments are carried out: (i) evaluation of the recognition

performance under three pre-trained models (ResNet50,

VGG-16, and InceptionV3) and two RNN models (the LSTM

and GRU), (ii) evaluation of the recognition performance of

the proposed model using the trimmed activity videos, (iii)

evaluation of the prediction performance of the proposed

model using the trimmed activity videos, (iv) evaluation of

the recognition performance of the proposed model using

the untrimmed activity videos, and, (v) comparison with the

recognition results using state-of-the-art models from the

literature. Several widely used metrics are used to assess clas-

sification performance:

Accuracy =
T P + T N

T P + F N + F P + T N
(2)

Precision =
T P

T P + F P
(3)

Recall =
T P

T P + F N
(4)

F1Score = 2 ·
Precision · Recall

Precision + Recall
(5)

where the True Positive (TP) refers to a sample x belonging

to a class C that is correctly classified as C. True Negative

(TN) indicates that a sample x from a ‘not C’ class is correctly

classified as a member of the ‘not C’ class. The False Positive
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(FP) is when a sample x from a ‘not C’ class is incorrectly

classified as class C. The False Negative (FN) describes a

situation, in which a sample x from class C is misclassified

as belonging to ‘not C’ classes. The F1Score is the harmonic

mean of the Precision and Recall, which ranges in the interval

[0, 1].

Specifically, we used a learning rate of 1e-5 and a decay

of 1e-6 for the update of the learning rate in each iteration.

Additionally, we set the batch size to 32 and trained the model

for a total of 200 epochs.

Evaluation of different pre-trainedmodels and RNNs

We compare the performance of the maximum and average

pooling methods in Fig. 8 using 10% of our dataset with the

different pre-trained models ResNet50, VGG-16, and Incep-

tionV3. The experimental results are given in Table 2, where

the average accuracy values of LSTM and GRU are given

in different cases. We find that the maximum pooling out-

performs the average pooling by 2.92% higher in accuracy.

Thus, the maximum pooling is used in our transfer learning

process.

We conducted experiments to evaluate the impact of using

different feature extractors on RGB and skeleton frame

sequences. Specifically, we compared the performance of

three different feature extractors (VGG16, ResNet50, and

InceptionV3) for RGB frames and skeleton frames using

10% of our dataset. The results, presented in Fig. 10 where

the rows and columns represented the feature extractors of

RGB and skeleton frames, respectively, indicate that using

the same feature extractor for both RGB and skeleton frames

resulted in a 3.67% improvement in accuracy compared to

using different feature extractors. The VGG-16 pre-trained

model yields better results than ResNet50 and InceptionV3.

Therefore, we have selected the VGG-16 as the feature

extractor of our model.

Tables 3 and 4 show the recognition accuracy of the three

pre-trained models, i.e., ResNet50, VGG-16, and Incep-

tionV3, in four cases, i.e., fusion before and after LSTM, and

fusion before and after GRU. The input lengths Δ include

10, 20, 40, 60, and 80 frames, as discussed in Sect. Data

normalization. We find that: (i) The recognition accuracy

is > 91% in all cases. In the case of the 20-frame input

length, VGG-16 pre-trained model, and late-fusion LSTM

mechanism, the highest accuracy of 99.63% is achieved. (ii)

Compared with the ResNet50 and InceptionV3, the VGG-16

gives a more desirable performance with a recognition accu-

racy of > 98% in all cases, on average 4% and 3% higher than

the results of the ResNet50 and InceptionV3, respectively.

(iii) The fusion-after-RNN mechanism performs better than

the fusion-before-RNN mechanism, with an average of 2%

higher accuracy. (iv) The LSTM performs better than the

GRU with 2% higher accuracy. Based on the above results,

our optimal model for recognizing fine-grained activities uses

the fusion-after-LSTM mechanism shown in Fig. 7b.

The input length � in the time interval [T − �, T ], in

Sect. Problem statement is determined using a five-fold val-

idation experiment. The training data set is divided into five

folds. Each fold is treated as a pseudo-test set in turn, and the

other four folds are pseudo-train sets. We calculate the aver-

age recognition accuracy of fifteen fine-grained activities for

each input length � with the VGG-16 feature extractor and

Fig. 10 Performance of different

feature extractors on RGB and

skeleton frames

Table 2 Performance (%) of the

two pooling methods using 10%

of the dataset

Pooling Type Fusion Before RNN Layer Fusion After RNN Layer

VGG-16 ResNet50 InceptionV3 VGG-16 ResNet50 InceptionV3

Maximum 88.06 88.54 89.43 91.26 88.93 90.93

Average 87.61 86.51 87.31 88.64 85.41 87.15
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Table 3 Accuracy (%) of

different pre-trained models

under different input lengths

using LSTM

Input Length

(frame)

Fusion-before-LSTM Fusion-after-LSTM

VGG-16 ResNet50 InceptionV3 VGG-16 ResNet50 InceptionV3

10 97.34 95.54 93.89 97.79 94.24 95.01

20 98.43 95.74 93.89 99.63 95.24 95.41

40 98.68 92.87 92.70 99.26 96.06 97.08

60 98.53 94.04 96.01 99.26 96.87 97.48

80 98.52 93.04 94.94 98.98 95.05 97.40

Table 4 Accuracy (%) of

different pre-trained models

under different input lengths

using GRU

Input Length

(frame)

Fusion-before-GRU Fusion-after-GRU

VGG-16 ResNet50 InceptionV3 VGG-16 ResNet50 InceptionV3

10 98.45 91.00 91.03 98.11 93.85 92.85

20 98.52 92.30 92.86 98.79 93.85 94.86

40 98.89 91.08 93.04 98.53 94.31 94.86

60 98.15 91.88 94.97 98.43 95.02 96.55

80 98.52 92.98 94.98 98.72 95.17 93.45

Fig. 11 Performance of different

input lengths (�) in the five-fold

validation experiments using the

VGG-16 feature extractor and

fusion-after-LSTM mechanism

fusion-after-LSTM mechanism. The results are summarized

in Fig. 11, which indicates that the 20-frame input length

yields better results than other input frame lengths. There-

fore, we have selected the 20-frame as � in Fig. 1, i.e., the

input length of our model.

To demonstrate the effect of different input lengths on the

training process, we plot curves of validation accuracy and

loss during the fusion-after-LSTM training process in Fig. 12,

in which the horizontal coordinate indicates the number of

iterations in the training process and the vertical coordinates

represents the accuracy or loss values. We find that: (i) As

the number of iterations increases, the accuracy values grad-

ually increase, and the slope gradually decreases for all input

length cases in Fig. 12a. The final accuracy values stabilize at

around 99% for all input length cases. (ii) As the number of

iterations increases, the loss values gradually decrease, and

the slope decreases for all input length cases in Fig. 12b. The

final loss values for all input length cases stabilize at around

0. (iii) For cases with shorter input lengths, the accuracy and

loss converge relatively slowly, e.g., the accuracy and loss

of the 10-frame case eventually converge in about 60 itera-

tions. The accuracy and loss convergences are faster for the

cases with larger input lengths, e.g., the case with an 80-

frame input length converges after about 40 iterations. (iv)

The accuracy and loss curves are smooth with no dramatic

fluctuations. The accuracy and loss converge to around 99%

and 0, respectively, which indicates that we have trained a

well-fit model on fine-grained activity recognition.

Evaluation of the recognition using trimmed videos

In the trimmed video dataset (Sect. Dataset collection), each

video clip includes one activity. The confusion matrix of

our optimal model (20-frame input length, VGG-16 pre-

trained model, fusion-after-LSTM mechanism) for recog-

nition experiments using the trimmed videos is shown in

Fig. 13, where the rows represent the activity ground truth,

and the columns represent the predicted labels. In Fig. 13,
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Fig. 12 Accuracy and loss curves under different input lengths and the fusion-after-LSTM mechanism

Fig. 13 Confusion matrix under

the 20-frame input length

most classification results are concentrated along the diago-

nal with the accuracy of 100%, showing the high performance

of our model, except that 10% of the activity A3 (check) is

recognized as activity A4 (connect cables). The Accuracy,

Precision, Recall, and F1Score of the model for the 15 activ-

ities in Table 5 show the same results, in which all accuracy

values are > 99%.

We analyze the failure cases and find that i) more than

95% of misclassified activities A3 are temporally connected

to A4 in the original assembly data. These connected actions

are trimmed into two categories of video samples with dif-

ferent labels, i.e., A3 and A4. As shown in Fig. 14 A3

(check) and A4 (connect cables) are two consecutive activ-

ities, and the worker naturally checks (A3) the alignment

of the cable connections when connecting cables (A4). ii)
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Table 5 Performance (%) of the

fine-grained activity recognition

using trimmed videos (20-frame

input length, fusion-after-LSTM

mechanism, and VGG-16

pre-trained model)

Activity Class Accuracy Precision Recall F1Score

A1 100.00 100.00 100.00 100.00

A2 100.00 100.00 100.00 100.00

A3 99.33 100.00 90.00 94.74

A4 99.33 90.91 100.00 95.24

A5 100.00 100.00 100.00 100.00

A6 100.00 100.00 100.00 100.00

A7 100.00 100.00 100.00 100.00

A8 100.00 100.00 100.00 100.00

A9 100.00 100.00 100.00 100.00

A10 100.00 100.00 100.00 100.00

A11 100.00 100.00 100.00 100.00

A12 100.00 100.00 100.00 100.00

A13 100.00 100.00 100.00 100.00

A14 100.00 100.00 100.00 100.00

A15 100.00 100.00 100.00 100.00

Fig. 14 Highly discriminative and ambiguous activity frames

The fact that activities A3 and A4 share the same opera-

tional elements (cables) and hand activity (holding cables)

introduces ambiguous frames, which can be defined as both

the end of the activity A3 (check) and the beginning of

the activity A4 (connect cables). Over 80% of failure cases

of A3 (check) do not have ambiguous frames because the

corresponding ambiguous frames are trimmed into the sub-

sequent A4 (connect cables), which indicates that most of

the correctly recognized activity A3 samples have ambigu-

ous frames. To improve the recognition of activities A3 and

A4, we reallocate all the ambiguous activity frames between

these two activities to activity A3 (check) and increase the

recognition Precision, Recall, and F1Score values of activi-

ties A3 and A4 to > 98%.

Evaluation of the prediction using trimmed videos

The performance of the activity prediction using the partial

video observation method is shown in Table 6, in which T

represents the activity length after video data normalization.

We find that: (i) The average accuracy for the cases of 20–80

frame input lengths is 81.96%, 90.48%, and 96.95% when the

observation ratio is 12.5%, 25%, and 50%, respectively. The

accuracy for the cases with input lengths of 20 and 60 frames

Table 6 Accuracy (%) of the prediction using trimmed videos

Input Length (frame) Video Observation Ratios

12.50% T 25.00% T 50.00% T

10 67.97 79.90 84.81

20 82.98 90.90 97.82

40 78.52 90.14 96.74

60 83.87 88.97 97.82

80 82.45 91.90 95.24

is higher than in the other cases at a 50% observation ratio,

with the same accuracy of 97.82%, indicating similar pre-

diction performance. (ii) The average recognition accuracy

for the cases of 10-frame input length is lower than the cases

of other input lengths for different local video observation

ratios. It indicates that the input length of 10 frames cannot

obtain sufficient activity information. The performance in

Table 6 shows that the prediction model using partial video

observation is sensitive and robust in predicting fine-grained

activity labels.
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Fig. 15 Continuous fine-grained activity recognition and prediction

using an untrimmed video

Evaluation of the recognition and prediction using
untrimmed videos

In recognition of continuous fine-grained activities in an

untrimmed video, a sliding window with the � time length

slides between continuous activities. The untrimmed input

video consists of 20,640 frames (≈ 11 min) and more than

120 continuous activities in Sect. Fine-grained activities in

assembly. We compare three cases shown in Fig. 15: (i) Only

using the recognition model with the input frames within

the time interval [T − �, T ] in the sliding window to con-

tinuously recognize the activity at the current time T . (ii)

Only using the 50%T prediction model with the input frames

within the time interval [T −50%�, T ] in the sliding window

to identify the activity at the current time T . (iii) A model

that fuses both the recognition and 50%T prediction mod-

els, which combines the recognition result using the activity

frames within the time interval [T − �, T ] and the predic-

tion result using the activity frames within the time interval

[T −50%�, T ] in the sliding window to identify the activity

at the current time T . The fusion model outputs the result

with higher confidence as the final recognition result.

To analyze the impact of different recognition frequen-

cies on the continuous recognition of activities with different

lengths and speeds, we compare the performance of differ-

ent recognition frequencies F = 1, 3, 6, 10, and 30 Hz at a

fixed frame rate, i.e., 30 fps. When using a higher recogni-

tion frequency, most activity frames are shared in adjacent

recognitions, e.g., a recognition frequency F = 30 Hz with a

60-frame input length indicates the recognition is conducted

30 times in 1 s to recognize activities in the past 60 frames,

which means that every two adjacent recognition operations

share 59 frames. When using a lower recognition frequency,

more past frames are discarded in each new recognition, e.g.,

a recognition frequency F = 1 Hz with a 60-frame input

length indicates that only one recognition is performed in 1 s

and that only 30 frames are shared between every two adja-

cent recognitions. An optimal recognition frequency with the

corresponding input length balances the contribution of past

and new input frames to the recognition performance, allow-

ing the model to be more sensitive and robust in recognizing

continuous fine-grained activities in real time.

The experimental results of continuous fine-grained activ-

ity in an untrimmed video with five input lengths (10, 20, 40,

60, and 80 frames) at five different recognition frequencies

(1, 3, 6, 10, and 30 Hz) are given in Table 7, in which Ad and

Aa represent the highly discriminative activity frames and

ambiguous activity frames, as discussed in Sect. Evaluation

of the recognition using trimmed videos. We find that: (i) the

cases of 20-frame input length have higher accuracy than the

other cases. The highest accuracy results are found for the

case of 20-frame input length and 6 Hz recognition frequency,

which are 94.35% and 83.85% for the highly discriminative

activity frames Ad, and ambiguous activity framesAa, respec-

tively. This result is consistent with the recognition results

using the trimmed videos in Sect. Evaluation of the recog-

nition using trimmed videos, i.e., the case of 20-frame input

length achieves the highest recognition accuracy. (ii) The

fusion model combining the recognition model and the 50%T

prediction model provides better performance than either the

recognition model or the 50%T prediction model. The com-

bination of the recognition and prediction model contributes

to improving recognition accuracy, which improved the clas-

sification of the Ad and Aa by 12.55% and 11.34% on average,

respectively. (iii) Based on the values of the Ad and Aa in the

untrimmed assembly video, i.e., 71.20% and 28.80%, we cal-

culate the average accuracy as 94.35% ∗ 71.20% + 83.85% ∗
28.80% = 91.33%, which indicates that our model performs

well in recognition of continuous fine-grained activities in

the untrimmed video. iv) Our model conducts a fine-grained

activity recognition (with 20-frame input length and 6 Hz)

in ~ 0.03 s (using the camera input at 30 fps, or 0.03 s per

frame), thus the recognition is performed in real time.

Evaluation of different locations of the input time
interval [T − 1, T ] in continuous activities

As discussed for Fig. 4 in Sect. Fine-grained activities in

assembly, the lengths of all activity samples are longer than

20 frames, which indicates that the input frame sequence in

the input time interval [T − �, T ] covers at most two con-

tinuous activities if we choose 20-frame input length based

on the results in the last section. To evaluate the differences

among the three cases in Table 7 i.e., only recognition, only

50%T prediction, and recognition + 50%T prediction, five

cases are considered in the continuous fine-grained activity

recognition using an untrimmed video, as shown in Fig. 16.

The sliding window containing input frame sequence in the

time interval [T −�, T ] slides from the activity a to activity

b, where the activities a and b represent random adjacent

activities. More than 100 experiments are conducted for

each case in Fig. 16, and the inputs are video samples with

two random adjacent activities. The experimental results are

given in Table 8. We find that: (i) Fusing the recognition

model and the 50%T prediction model provides better per-

formance than using each individual model and achieves an

accuracy of > 97% for all cases, which is consistent with
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Table 7 Performance (%) of continuous fine-grained activity recognition using an untrimmed video

Input Length (frame) Recognition Frequency Only Recognition Only 50%T Prediction Recognition + 50%T

Prediction

Ad Aa Ad Aa Ad Aa

10 1 45.27 23.54 19.85 13.52 46.28 24.57

3 59.37 35.35 25.54 13.17 64.94 32.48

6 71.41 41.59 25.81 15.57 75.57 52.85

10 78.42 40.38 28.21 15.74 82.57 41.58

30 71.94 35.55 35.12 14.15 76.84 36.85

20 1 65.94 32.59 34.21 24.73 77.71 41.53

3 77.85 58.95 61.11 38.77 82.16 69.50

6 91.43 75.51 81.21 40.57 94.35 83.85

10 89.44 71.99 74.32 40.38 93.58 78.58

30 88.94 68.59 72.21 35.57 92.57 76.05

40 1 65.14 37.59 54.12 32.80 67.77 45.51

3 79.07 58.26 67.27 52.71 84.89 61.84

6 87.93 78.52 87.95 74.11 92.16 81.83

10 87.11 71.68 83.53 65.52 89.57 80.20

30 88.24 61.05 85.36 51.40 89.93 63.72

60 1 68.67 36.52 52.82 31.58 79.31 43.57

3 79.60 49.82 64.04 38.90 83.72 51.91

6 89.61 58.49 77.96 38.19 92.65 59.84

10 87.21 49.78 74.65 39.49 89.49 54.85

30 87.23 36.67 73.96 33.21 89.57 46.81

80 1 68.93 38.10 66.42 33.67 68.58 39.61

3 78.94 35.59 70.76 38.17 83.58 39.31

6 84.84 43.39 80.67 36.25 92.23 45.60

10 79.87 41.02 80.34 36.46 91.17 43.23

30 77.11 36.94 78.42 35.40 85.34 41.58

the results in Table 7. (ii) In the cases 1 and 5, the slid-

ing window covers one activity, and the experimental results

are > 99% for the fusion model, which is similar as using

trimmed videos and the results are consistent with the results

using the trimmed videos in Sect. Evaluation of the recogni-

tion using trimmed videos and Evaluation of the prediction

using trimmed videos. (iii) In the cases 2–4 where the slid-

ing window covers two activities, the 50%T prediction model

provides higher accuracy because the activity frames in the

time interval [T − 50%�, T ] shift the focus of the model to

the new emerging activity near the time T . As discussed in

Sects. Prediction of fine-grained activities using partial video

observation and Evaluation of the prediction using trimmed

videos, the 50%T prediction model is sensitive to the starting

frames of activities and can correctly predict activities with

an accuracy of 97.82%. Overall, the recognition model con-

siders the entire activity in the recognition, which achieves

accurate results in single activity recognition, and the 50%T

prediction model considers the 50% beginning activity in the

prediction, which maintain the robustness in dealing with

the transition between adjacent activities. The fusion model

combines the benefits of the recognition model and the 50%T

prediction model and provides the accurate and robust results

in the continuous fine-grained activity recognition using an

untrimmed video.

To validate the effectiveness of the proposed model, we

designed four groups of comparative experiments. We tested

the model with different configurations for continuous fine-

grained activity recognition using a recognition frequency of

6 Hz, and the experimental results are shown in Table 9. We

found that: (i) Group 1, which uses only scene-level features,

achieves an accuracy of 58.38%, and Group 2, which com-

bines temporal features with scene-level features, obtains an

accuracy of 80.54%. This indicates that the temporal features

significantly contribute to the classification of fine-grained

activities. (ii) Compared to Group 2, the model of Group 3
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Fig. 16 Five cases in continuous

fine-grained activity recognition

using an untrimmed video

Table 8 Accuracy (%) of five

cases of the sliding window in

the time interval [T − �, T ]
Five Cases in

Fig. 16

Recognition

Only Recognition (%) Only 50%T Prediction (%) Recognition + 50%T

Prediction (%)

Case 1 99.05 93.14 99.05

Case 2 88.11 97.65 98.13

Case 3 93.14 98.03 98.06

Case 4 95.15 97.06 99.03

Case 5 99.03 94.12 99.04

Table 9 Results of ablation experiments (
√

means that the strategy is applied, and the × means that the strategy is not applied)

Group Scene-level

Features

Temporal-level

Features

Skeleton

Frames

Same Feature Extractors

for RGB and Skeleton

Frames

50%T Prediction Accuracy

(%)

1
√

× × × × 58.38

2
√ √

× × × 80.54

3
√ √ √

× × 83.29

4
√ √ √ √

× 86.84

5
√ √ √ √ √

91.33

with the addition of skeleton frames obtains an accuracy of

83.29%, which is 2.75% more accurate than that in Group 2.

This indicates that the strategy incorporating skeleton frames

in addition to RGB frames helps the model recognize fine-

grained activities. (iii) Compared to Group 3, the model of

Group 4 adds the strategy of using the same feature extractor

for RGB and skeleton frames. The accuracy of Group 4 is

improved by 3.55% over Group 3. This suggests that using

the same feature extractor ensures that the extracted features

are consistent across the two visual modalities (RGB and

skeleton frames). (iv) Compared with Group 4, the model of

Group 5 adds the strategy of using 50%T prediction, and the

accuracy increases by 4.49% compared to Group 4. This indi-

cates that the 50%T prediction model takes into account the

50% beginning activity in the continuous fine-grained activ-

ity classification, which increases the accuracy of handling

transitions between adjacent activities. Overall, compared to

Group 1 ~ Group 4, Group 5 (the proposed model) obtains a

higher accuracy of 91.33%, which is a significant improve-

ment over the other models.

The sample in Fig. 17 shows the ground truth and recog-

nition results of continuous fine-grained activities with an

input length of 20 frames and a recognition frequency of

6 Hz. The camera frame rate is 30 fps. The recognition starts

from the 20th action frame. We use different colored bars

to indicate the different activity labels of different frames.

We find that: (i) Our model correctly recognizes more than

95% of the activities and detects activities that change con-

tinuously in a short period, e.g., between around the 1100th

and 1500th frames. The only incorrect recognition occurs

around the 1700th frame when A10 is recognized as A1, but

our model quickly finds the correct label and corrects itself

within 10 frames, i.e., < 0.33 s. (ii) Although there is a small

delay in identifying ambiguous action frames between two
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Fig. 17 Ground truth and recognition results of continuous assembly activities

Fig. 18 Samples of continuous fine-grained activity recognition

adjacent activities, e.g., around the 1400th frame time, no

actual action in the ground truth is missing in the continuous

recognition results. (iii) Our model can sensitively perceive

the upcoming activity changes with a time lag of about 5

frames, i.e., < 0.16 s. This temporal delay occurs mainly in

identifying ambiguous action frames between two adjacent

activities, e.g., at the 500th frame time and 1050th frame time.

(iv) Our model has an accurate prediction capability, e.g., at

about 600th and 730th frame time, our model correctly pre-

dicts the upcoming activities about 10 frames ahead.

Some samples of continuous fine-grained activity recog-

nition are shown in Fig. 18. We output the frame time and

activity recognition results in the upper left corner of the

frames. The worker in Fig. 18a is standing in front of the work

platform and preparing to take a part from the right platform.

Our model can accurately predict that the worker is about

to perform the activity A10, i.e., take parts/tools from right,

before the worker fully extends his hand to reach a part on

the right platform. In Fig. 18b, the worker randomly checks

(A3) the mounting orientation and angle of the parts during

the assembly (A1). Although the two activities A1 (assemble

parts) and A3 (check) are very similar and the duration of the

check (A3) activity is very short, our model accurately and

timely detects the activity A3 (check) within 4 frames, i.e.,

< 0.13 s. The above results demonstrate our model’s robust-

ness, sensitivity, and accuracy. A video of the demonstration

is available. (link: https://youtu.be/-clVPg2jHdc).

Comparison with the state-of-the-art methods

To validate the generalization ability of our model, we apply

our model to a commonly used public dataset, UCF101

(Soomro et al., 2012b), which is an activity recognition

dataset of real action videos collected from YouTube, with

13,320 videos from 101 activity categories. The UCF101

gives the largest diversity in activities and large variations in

camera motion, object appearance, object scale, viewpoint,

cluttered background, etc. The performance comparison of

several state-of-the-art models using RGB frames and pre-

trained on the ImageNet dataset with our model on the

UCF101 dataset are presented in Table 10. Our model

achieves the highest recognition accuracy compared with

several other methods in the literature.

We compare our recognition model with the state-of-the-

art models on the recognition of continuous fine-grained

activities (containing ambiguous activity frames). The com-

parisons are given in Table 11, in which we applied the

models in Lea et al. (2017), Simonyan and Zisserman (2014b)

and Ma et al. (2021) to our dataset. The results in Table 11

show that our model has the highest accuracy of 91.33%,

which is 6.83%, 4.13%, and 3.21% higher than the results

obtained using the models in Lea et al. (2017), Simonyan and

Zisserman (2014b) and Ma et al. (2021), respectively. These
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Table 10 Accuracy (%)

comparison of our model with

existing models on the UCF101

public dataset

Method Accuracy Precision Recall F1 Score

(Zhu et al., 2020) 96.90 94.99 82.67 88.40

(Huang & Bors, 2022) 97.60 96.48 87.26 91.64

(Crasto et al., 2019) 97.80 96.02 85.90 90.68

(Stroud et al., 2020) 97.90 96.11 86.08 90.82

(Carreira & Zisserman, 2017) 98.00 96.08 85.92 90.72

(Qiu et al., 2019) 98.20 97.23 89.77 93.35

Our model 98.48 97.68 91.23 94.34

Table 11 Performance (%)

comparison of our model with

existing models on assembly

recognition

Method Accuracy Precision Recall F1 Score

(Lea et al., 2017) 84.50 79.21 48.79 60.39

(Simonyan & Zisserman, 2014b) 87.20 83.17 55.26 66.40

(Ma et al., 2021) 88.12 84.54 57.71 68.60

Our model 91.33 85.71 59.98 70.57

comparison results show that our model achieves the high-

est recognition accuracy of continuous fine-grained assembly

activities compared with the other methods in the literature.

We used the t-SNE (t-Distributed Stochastic Neighbor

Embedding) method (Ullah et al., 2022) to visually compare

the performance of our model with that in Lea et al. (2017);

Simonyan & Zisserman, (2014b); Ma et al., (2021) on our

dataset. The results are shown in Fig. 19a–d, where the high-

dimensional feature data are visualized in two dimensions,

providing insight into the underlying structure of the feature

embeddings. We found that the clusters of our model are more

clearly defined and grouped compared to other models. To

provide a clearer visualization, we opted to zoom in on the

clusters by using smaller scales in Fig. 19d. In addition, we

use silhouette scores to measure the similarity of data points

within clusters to those in other clusters. Our model yields a

higher silhouette score of 0.009, indicating that the clusters

are more clearly defined and separated in the t-SNE visual-

ization. Thus, visual and quantitative analyses show that our

model performs better than other models.

Conclusion

In this paper, we create a fine-grained activity dataset that

contains 15 fine-grained activities in the assembly of a desk-

top carving machine. We design a new two-stage network

to classify the fine-grained activities in assembly. In this

proposed network, we fuse multi-visual modalities, specif-

ically red–green–blue (RGB) and hand skeleton frames, to

capture fine-grained activity details. In the first stage, we

use a pre-trained VGG-16 model to extract the scene-level

activity features. In the second stage, this network uses the

Long Short-Term Memory (LSTM) to extract the activi-

ties’ temporal-level features. In designing this network, we

compare the effects of different data input lengths, differ-

ent types of pre-trained models in transfer learning, different

Recurrent Neural Networks (RNNs), and different fusion

mechanisms on recognition performance. We conduct fine-

grained activity prediction using the partial video observation

method and propose a new fusion recognition-prediction

model to recognize and predict continuous fine-grained activ-

ities. The experimental results using the trimmed videos as

the inputs show that: (i) An average recognition accuracy

of 99.98% is obtained using the recognition model with an

input length of 20 frames, a VGG-16 pre-training model, an

LSTM structure, and a late-fusion mechanism. (ii) An aver-

age prediction accuracy of 97.82% is obtained using 50%

of the activity onset information in activity prediction. The

experimental results using an untrimmed video with contin-

uous fine-grained activities as the inputs show that: (i) Our

fusion model achieves an average recognition accuracy of

91.33% with a speed of 0.032 s (faster than real-time) for

an activity sequence with an input frame rate of 30 frames

per second (fps). (ii) This fusion model correctly detects

activity change within about 5 frames (< 0.16 s) and cor-

rectly predicts upcoming activities about 10 frames (0.33 s)

in advance. Compared with state-of-the-art models in the lit-

erature, our fusion model outperforms those models using

RGB frames and pre-trained data on the ImageNet dataset in

recognizing the UCF101 public dataset. Our model also beats

the state-of-the-art models in recognizing continuous fine-

grained assembly activities. The comparison results show

that our model has established a new annotation baseline in

the recognition and prediction of continuous assembly activ-

ities.
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Fig. 19 Performance of different models in t-SNE visualization

Several future extensions of our study described in this

paper are envisaged, including exploring other modalities,

such as brain waves and eye gaze, to identify the worker’s

intention in assembly, improving the recognition of the con-

tinuous fine-grained activities in assembly by combing the

information about tools and parts used in the assembly, and

designing a real-time monitor system to improve assem-

bly efficiency by providing assembly guidance based on the

worker’s current activities.
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