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Abstract—Spiking neural networks, inspired by biological neu-
ral systems, could process immense volumes of spatio-temporal
data by representing them as spikes. Here, we propose to
implement compact, scalable, energy-efficient spiking neurons
based on the unique insulator-metal transition in Vanadium
dioxide (V O2) which interact through memristive synapses, to
emulate a Liquid State Machine (LSM). Further, we demon-
strate the implementation of this recurrent neural network as
a temporal auto-encoder, and adaptive channel equalizer for
application in neuromorphic signal processing. Our approach
provides a pathway to reduce component count (50 − 100X)
and improve energy efficiency (> 50X) over conventional CMOS
based implementations.

Index Terms—Insulator-Metal-Transition, Spiking Neurons,
Liquid State Machine, Reservoir Computing, Extended Kalman
Filter

I. INTRODUCTION

High-performance computing has historically developed

around the von Neumann architecture and the Boolean com-

puting paradigm, executed on Silicon Complementary Metal

Oxide Semiconductor (CMOS) hardware. Software develop-

ment model has for decades has worked around the CMOS

fabric that has singularly dictated our choice of materials,

devices, circuits and architecture to build our technology. Over

the last decade however, Moore’s law for hardware scaling

has significantly slowed down with its end predicted soon,

primarily due to the prohibitive energy cost of computing

with increasingly smaller devices. At the same time, software

development has taken off with Machine Learning and Arti-

ficial Intelligence dominating the roost. This has given rise

to the notion of ‘neuromorphic computing’ which promises

to radically transform this model of computing to match the

ultimate computer in existence, the brain.

It is well known that the temporal dynamics of biological

neurons encode immense volumes of processing power [1],

[2] in extremely small footprint: ∼ 1012 neurons and ∼ 1015

synapses or neural interconnection in a volume of ∼ 1200cm3,

and power consumption: 10 − 15W . It has been argued that

spike encoded information (spike interval/density modulation)

can be energy-efficient as information is encoded in the dead

times between sparse spikes [3]–[5], and their phase sequenc-

ing [6] and time multiplexing [7] in reservoir computing.
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Fig. 1. a. The proposed hardware unit of the spiking neuron built from a
1T-1R pull-up pull-down configuration of a V O2 layer and an n-channel
MOSFET. b. Large scale neural networks can be fabricated with spiking
neurons by coupling them with dense cross-bar arrays of programmable
memristors forming a synaptic network between various layers of a neural
network.

Spiking networks can have higher representation power and

computational capacity compared to other neural networks

[8]–[10], and are shown to be optimally entropy-efficient

(maximal # of bits/Joule) [11], [12] in biological neurons.

Commercial silicon spiking nets like IBM’s TrueNorth chip

[13]–[15] are seen to be ∼ 800X more energy efficient

than silicon multiprocessors, although lacking integrated on-

chip training. The true challenge with CMOS only hardware

substrate is to find a physical mechanism to initiate, stabilize

and terminate the spikes in a controllable way to leverage

the advantages of scalable networks of spiking neurons, with

small energy-area footprint, in particular for low size, weight

and power (SWaP) applications.

In this work we propose to use Vanadium Dioxide’s

(V O2) unique electrical volatile characteristics arising from

the Insulator-Metal transition (IMT) property to build ultra-

compact and highly energy-efficient hardware units that be-

haves as spiking neuron (fig. 1a) that can encode infor-

mation in the spike intervals/frequency and when coupled

with programmable memristive synapses, say in a cross-bar

array arrangement (fig. 1b), can directly implement dense

spiking recurrent neural networks in hardware. In this work we

specifically illustrate the networks of these spiking neurons to

build a Liquid State Machine (LSMs), the spiking version of a
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Reservoir Computer. We then show that these LSMs built from

spiking neurons can perform non-linear signal processing tasks

such as an adaptive channel equalizer, and learn to predict a

complex time series running blind, i.e. without an external

input. We then conclude by discussing the relative reduction

in component count and power consumption provided by these

hardware units over a purely CMOS implementations of such

spiking neural networks.

II. V O2 INSULATOR-METAL-TRANSITION:

ULTRA-COMPACT SPIKING NEURON

A. Insulator-Metal-Transition, V O2 Characteristics and Con-

trollable Spiking Oscillator

V O2 shows a sharp Insulator Metal Phase Transition (IMT)

[16]–[19] when driven thermally, optically and electrically (fig.

2a). It has been shown that IMT at 340K shows a typical ON-

OFF ratio ∼ 1−5×103 to a max of 105, with a switching speed

∼ 10ns electronically, ∼ 10fs optically, and measured switch-

ing reliability over 109 cycles [20]. The underlying mechanism

is still in debate and seems to be a combination of purely

electronic Mott transition (abrupt opening of a Coulomb gap)

and a simultaneous structural change between monoclinic and

tetragonal/rutile configurations [21]. The main feature of its

output characteristics is a unique volatile hysteresis loop (fig.

2a,b) with two stable states (solid horizontal arms) and two

unstable states (dashed vertical arms) which is distinct from

pinched hysteresis memristor curves used as selectors (e.g.

Ag|HfO2), or magnetic hysteresis curves used in MRAM

technology where both the stables states are accessible at

V ∼ 0 point of the characteristics.

This volatile hysteresis has its center shifted from V =
0 to half the transition voltages VH , VL which proves quite

important for our application. This characteristics allows the

device to move naturally from an oscillatory spiking to a non-

spiking state and vice-versa, simply by adjusting a load line

using an external transistor in the hardware unit as shown in

the schematic fig. 2b. Fig. 3c,d show experimental data and

simulations on the device whose characteristics are presented

in fig. 2a, showing the non-spiking and spiking behavior and

is obtained by a slight shift in the load line (determined by

the resistance of the transistor).

When the transistor load line crosses the stable high resis-

tance state section of the I-V curve, the IMT neuron remains

in the resting state (solid blue line). However as gate voltage

Vin increases the transistor load-line (solid orange line) now

periodically crosses both the unstable (black dashed lines)

arms, and the neuron fires and generates an oscillatory spike

train, as can be seen in fig. 2e. Due to stochastic cycle-to-

cycle variations in VIMT , firing occurs with probability p < 1
leading to probabilistic spiking of the IMT neuron. Further, the

spiking probability can be modulated using the gate voltage,

Vin, which decides the fraction of the voltage range of VT

intersected by the transistor load line.

This unique volatile characteristic generating spike trains,

along with in-built activation and deactivation (much like a real

biological neuron) is naturally suited to provide ultra-compact

and efficient, controlled spiking behavior. Additionally, the

built-in stochasticity of the phase transition in V O2 naturally

provides controllable noise in the device. It is well recognized

that noise is an important feature in building robust neural

network models by preventing over-fitting to training data and

can provide a hardware mechanism to build a natural ‘echo-

state property’ feature useful in recurrent neural networks like

Reservoir Computing as we discuss later.

B. Spike Encoder and Spiking Stochastic Leaky-Integrate-and-

Fire Neuron

We can build an efficient spike-interval/density modulator

using the proposed V O2 unit as shown in fig. 3a. The input

signal is scaled appropriately using an impedance divider

circuit to reflect the movement of the load-line between the

stable high resistance state to the oscillatory state using the

gate voltage applied on the input MOSFET. The simulation

presented in fig. 3b shows the normalized output of the circuit

measured across the load capacitor. A “high” signal, in this

scheme, shifts the load-line to the oscillatory stage by reducing

the transistor resistance and the unit keeps firing, till the input

gate voltage reduces shifting the load-line back to the stable

high R state, causing the spikes to end. Therefore, a simple

1R − 1T unit can generate an efficient and compact spike

modulator based on the intrinsic electrical characteristics of

the device itself.

The same unit can also be used to build a spiking neuron,

where the input signal gets integrated over time in the gate

capacitor and if it reaches a threshold, the neuron fires and

generates spikes. Our proposed unit naturally embodies a spike

generator based on the input signal at the input terminal.

Instead of a smooth analog signal from some sensor (as in case

of the spike encoder), if we provide spiking signals using a

resistive-capacitive metallic interconnect to the input terminal,

the gate capacitor can integrate the charge provided by these

spikes naturally over a few characteristic RC time constants

of the interconnect + gate capacitor and can move the unit

from non-spiking to spiking state. Being a volatile device, this

built-up charge will leak away. Therefore if the input spike

train is stopped, the unit will move back to a non-spiking

state. This illustrates the principle of the same spike encoder

effectively working as a leaky-integrate-and-fire (LIF) neurons.

Additionally, the inherent stochastic nature of the transition

voltage VH and VL discussed previously, changes the spiking

voltage/charge threshold creating inherent stochasticity in the

activation/spike generation.

III. LIQUID STATE MACHINES FROM V O2 SPIKING

NEURONS

A. Dynamical Recurrent Neural Networks: Reservoir Comput-

ing

Reservoir Computing [22] is a biologically inspired model

of computing where a set of non-linear units or neurons are

assembled together in recurrent fashion, i.e. with bidirectional

feedbacks between various neurons (fig. 4a). To this “reser-

voir” of neurons a temporal signal is imposed, giving rise
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Fig. 2. a. Experimental characteristics of the a V O2 film showing its shifted volatile hysteresis I-V curve. b. Schematic of the I-V curve to illustrate the
utilization of a controllable load-line to go from non-spiking to spiking states. c. Non-spiking behavior of the neuron. d. Spiking behavior of the neuron. e.
Movement from non-spiking to spiking behavior by moving the load-line using the gate input gate voltage to the device. It can be seen that spike frequency
or spike density increases with the increasing input voltage.

Fig. 3. a. Spike encoder using the proposed unit along with an impedance
divider circuit at the input to appropriately scale the input voltage to control
the movement of the load-line created by the transistor. b. Example of a spike
interval/density encoding of an arbitrary input signal.

to collective excitations. An inference is made by harvesting

or sampling these collective reservoir states using a readout

layer which can be a linear or logistic readout, or even

a deep network. In this model of computing, the reservoir

is never trained - only the readout layer(s) is trained (Fig.

2b). This model of computing also allows attaching different

readouts to the same reservoir to carry out different inferencing

tasks, embodying the inherent parallelism of biological neural

Fig. 4. a. A schematic of a reservoir computing. b. Comparison between the
mathematical model of an Extended Kalman Filter (EKF) and a Liquid State
Machine (LSM).

systems (fig. 4c). Reservoir computing is particularly suited to

spatio-temporal inferencing tasks due to the recurrence, as the

signature of an input signal provided to the reservoir continues

to persist in the reservoir for a certain time period (also called

the echo-state property) which allows the readout to harvest

different time samples of the same input signal by reading

from different nodes at the same time. Reservoir computing is

presented in two different forms in the literature: if the neurons

are logistic and the signal analog, it is called an Echo State

Network (ESN) [23], whereas if the neurons are spiking and

signals are encoded in spike domain, the model is called a

Liquid State Machine (LSM) [24]–[26].

B. Reservoir Computing and Signal Processing

Kalman filters [27], [28] are a class of adaptive filters that

can be used to learn and predict the states of a dynamical

system from their histories and extract independent variables
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from dependent variables of state of such a system. A Kalman

filter consists of a dynamical system composing a “state

space”, and an “observer system” that samples the state space

to generate an estimate or an inference. Being a dynamical

system, the state and therefore the observations are correlated

in time (fig. 4b). In a regular Kalman filter, the state space

is a linear function of the input signal and the observation is

made by sampling the state of the dynamical system to yield

the observed signal. Extended Kalman Filters (EKFs) extend

conventional Kalman filters to nonlinear signal processing.

EKFs are the de-facto standard in GPS tracking, navigation

systems and nonlinear state estimation theory.

It can be seen that there are strong parallels between

Reservoir computing and EKFs. The reservoir corresponds

to the non-linear dynamical state space, while the readout

corresponds to the observer (fig. 4b,c). ESNs have been

presented in literature [29]–[31] as an approach to train EKFs

composed of logistic neurons, whereas LSMs were developed

as a plausible model of biological cognitive systems where

extremely rich cognitive tasks can be carried out with rather

small sets of neurons and limited localized learning. This

obvious connection makes V O2 based Liquid State Machines

work as hardware embodiment of the mathematical model

of an EKF to perform signal processing and control tasks.

Compactness and energy efficiency is achieved by directly

implementing the reservoir in the dynamics of the network of

spiking neurons and programmable synapses built from mem-

ristive interconnects at the readout layer. Our proposed unit

and their networks embed the paradigm of spiking neurons and

EKF inherently in their physics and make them particularly

suited for signal processing tasks as we show next.

IV. TEMPORAL PROCESSING TASKS

In this section we discuss two example temporal data/signal

processing tasks using the LSMs by leveraging their connec-

tion to EKFs. These examples show that it is possible to im-

plement highly compact and energy-efficient signal processors

using small spiking neural networks built from V O2 neurons.

A. Temporal Predictor

An autoencoder learns the underlying representation or

generating function of a set of a data. When applied to a

time series data it can be useful in predictive tasks such as

navigation and control. In this mode the encoder predicts the

next few steps of the sequence which can be used to carry

out the navigation and control task. Best in class systems for

such tasks are EKFs which can be used to predict the “next

step” for a moving object given a history of the past and the

current trajectory. Therefore, EKFs can work as temporal auto-

encoder, i.e. an encoder for time-series data. We implement a

temporal auto-encoder using a V O2 LSM based EKF, shown

in fig. 5a. In this task we attempt to learn and reproduce this

signal blindly, i.e. once it is learned we want to test if we can

generate the “next steps” purely from the LSMs self generated

output and how well this predicted signal matches with the

original signal generator.

A periodic and subtly chaotic source is provided to the

system as the input signal. The input signal is first converted

into the spike domain and then provided to a 20-node LSM. A

linear weighted sampler is used to readout the reservoir states

and thereafter demodulated to generate the output signal. After

harvesting a large number of reservoir states, we adjust the

sampler weight using a linear regression technique as popular

in the reservoir computing community.

During the testing phase, we disconnect the source and

connect the readout of the LSM back to its own input,

providing the input signal for the next time-step. Therefore, in

this testing step the LSM tries to keep generating the source

signal blindly looking at its own output, without any corrective

feedback or knowledge of the testing signal, generated from

the same source that was used during the training phase. Our

simulations show that the LSM can do this predictive task

reasonably well for 10-15 steps for the given function, however

it starts to diverge as the number of steps increase without a

corrective feedback (fig. 5b,c). This is to be expected due to

the finite memory capacity of the LSM. Even excellent cog-

nitive machines like humans cannot predict such trajectories

indefinitely.

During our simulations, we found that extremely small

reservoirs (# of nodes = 1-5) find it difficult to learn complex

signals, however as the network size is increased the accuracy

begins to improve as the state space of the LSM expands with

the size of the network allowing it to remember more complex

‘high frequency’ components of the input signal.

B. MMSE Channel Equalizer

A communication channel can inherently inject all kinds of

non-linear distortions, inter symbol interference, and noise in

a signal. The task of equalization is to recover the underlying

“clear” signal from the distorted signal. An equalizer can

be constructed in multiple ways depending on how they are

supposed to be used. We implement an EKF based MMSE

(minimum mean square error) equalizer using V O2 LSM

which attempts to reconstruct a signal which has been distorted

by a telecommunication media (fig. 5d).

In this task the LSM tries to generate output y(t) that

is as close to input d(t) from the distorted signal u(t) as

possible. The original signal d(t) passes through a medium

which introduces inter-symbol interference, non-linear distor-

tions and noise to generate the distorted signal u(t). This

distorted signal is then converted into the spike domain using

V O2 spike modulator, which is then provided to a 20 node

LSM built from assembling together V O2 neurons. Then we

generate a weighted sample of the reservoir states, which

is then demodulated to recover the original signal. During

the training phase, we adjust the weighted sampling matrix

using linear regression. After successful training, we test the

equalizer which can now recover the original signal from

the distorted one successfully as shown in fig. 5e. In our

simulations we found that we could achieve a symbol recovery

rate between 85−100% depending on the degree of distortion

and LSM network size.
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Fig. 5. a. Temporal Predictor setup using a V O2 LSM. The input signal is spike encoded and provided to the reservoir and readout using a linear sampler and
decoder built from low pass filter and level shifter. During the testing phase, the reservoir’s own output is fed back to the input and the encoder is decoupled
from reservoir. b. & c. Two example simulations of blind signal prediction task. The network reproduces the signal reasonably well for first 15-20 steps but
diverges after that without corrective feedback. d. Channel Equalizer setup using a V O2 LSM. The LSM attempts to reverse the effect of the distortion created
by the media on an input signal. e. Original, distorted, and recovered signal obtained from the equalizer shown together.

V. V O2 SPIKING NEURONS VS. BOOLEAN CMOS

NEURONS: A COMPARATIVE ASSESSMENT

Spiking Neural Networks like LSMs can be emulated

numerically on any Turing Machine, including a Boolean

CMOS processor. However, the hardware primitives of such

a computer do not match the algorithmic model of these

networks. A network composed of the V O2 based hardware

unit directly implements a reservoir, where the collective

dynamics of V O2 switching itself gives rise to reservoir states

being used for the computation. Therefore, the compactness,

energy efficiency, and scalability that can be obtained from

these units can never be matched, even in principle, by a

Boolean emulator. Our proposed unit works in the analog

domain as a controllable spike generator and is composed

of just one transistor with V O2 grown directly on the drain

terminal so its area cost of just 1 transistor. The power

dissipation and energy-delay product of this unit is comparable

to a CMOS inverter due to high ON-OFF ratio, gain, and steep

sub-threshold swing of the device and this has been previously

demonstrated experimentally in a similar structure called the

HyperFET [32]. Therefore, the energy cost of a single self-

contained V O2 spiking neuron is equivalent to the smallest

unit of computing in CMOS circuits. Additionally, since the

signals are represented as spikes in time, it is an inherently

analog mode of computation where a signal can be carried by

just 1 wire, instead of multiple wires as required in a Boolean

implementation, which further reduces the area and energy

cost significantly.

As an illustrative example, consider the work referenced in

[33] as an example of a liquid state machine implementation

using a stochastic Boolean accelerator in a ring-like reservoir

topology, demonstrating a similar temporal prediction task as

this work, required ≈ 13 logical elements, ≈ 13 combinational

functions, and ≈ 6 logic registers per neuron. While without

knowing the exact detailed design of the FPGA used it is

difficult to estimate the total component count, an efficient

design presented in another work [34], demonstrating simi-

lar signal processing tasks as this work, required 4 4-LUT

structures per neuron and a simple count will suggest this

translates to 420 CMOS inverters or 840 MOSFETs. There-

fore, it can be seen that a Boolean implementation can easily

require ∼ 500X more components over the presented unit

to implement a spiking neural network. Even assuming great

leaps in designs of Boolean accelerators for neural networks
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in future, we can safely promise at least 50− 100X reduction

in component count. Considering that the dissipation in V O2

neurons is similar to a CMOS inverter, we expect energy-

efficiency to scale approximately linearly with the component

count improvement, i.e. ∼ 500X in the best case scenario

for V O2 neurons or ∼ 50 − 100X in best case scenario

for CMOS implementations. In [35] it was found that the

V O2 neurons had ∼ 30X decrease in power dissipation over

an equivalent CMOS implementation in a classification task.

This strongly supports our lower bound estimates for energy-

efficiency improvement of V O2 spiking neurons over CMOS

implementations.

It should be noted that the estimates provided here are

preliminary and cursory. One of the future directions will be

extending these benchmarks to a wider set of implementations

of LSMs and Kalman filters in FPGAs and ASICs, as well

to other material systems, such as low energy-barrier magnets

which have also been used to implement spiking neurons. The

central goal of this paper is to demonstrate, using proof-of-

concept simulations, that ultra-compact, energy-efficient LSMs

can be fabricated directly from IMT spiking neurons, and

elicit research and exploration interest in the same from the

community.
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[7] D. Marković, N. Leroux, M. Riou, F. Abreu Araujo, J. Torrejon,
D. Querlioz, A. Fukushima, S. Yuasa, J. Trastoy, and P. Bortolotti,
“Reservoir computing with the frequency, phase, and amplitude of spin-
torque nano-oscillators,” Applied Physics Letters, vol. 114, no. 1, p.
012409, 2019.

[8] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[9] W. Maas, “Noisy spiking neurons with temporal coding have more
computational power than sigmoidal neurons,” Advances in Neural

Information Processing Systems, vol. 9, pp. 211–217, 1997.
[10] R. Legenstein and W. Maass, “What makes a dynamical system com-

putationally powerful,” New directions in statistical signal processing:

From systems to brain, pp. 127–154, 2007.
[11] P. Crotty and W. B. Levy, “Energy-efficient interspike interval codes,”

Neurocomputing, vol. 65, pp. 371–378, 2005.
[12] W. B. Levy and R. A. Baxter, “Energy efficient neural codes,” Neural

computation, vol. 8, no. 3, pp. 531–543, 1996.
[13] D. S. Modha, “Introducing a brain-inspired computer,” Published online

at http://www. research. ibm. com/articles/brain-chip. shtml, 2017.
[14] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,

F. Akopyan, B. L. Jackson, N. Imam, C. Guo, and Y. Nakamura, “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[15] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, and G.-J. Nam, “Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.
[16] N. Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone, V. Narayanan,

H. Wen, Z. Cai, V. Gopalan, and R. Engel-Herbert, “Synchronized
charge oscillations in correlated electron systems,” Scientific reports,
vol. 4, p. 4964, 2014.

[17] M. Brahlek, L. Zhang, J. Lapano, H.-T. Zhang, R. Engel-Herbert,
N. Shukla, S. Datta, H. Paik, and D. G. Schlom, “Opportunities in
vanadium-based strongly correlated electron systems,” MRS Communi-

cations, vol. 7, no. 1, pp. 27–52, 2017.
[18] F. J. Morin, “Oxides which show a metal-to-insulator transition at the

Neel temperature,” Physical review letters, vol. 3, no. 1, p. 34, 1959.
[19] Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultra-

fast metal-insulator transitions,” Annual Review of Materials Research,
vol. 41, pp. 337–367, 2011.

[20] L. A. Ladd and W. Paul, “Optical and transport properties of high quality
crystals of V2o4 near the metallic transition temperature,” Solid State

Communications, vol. 7, no. 4, pp. 425–428, 1969.
[21] H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang,

and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-
based two-and three-terminal devices,” New Journal of Physics, vol. 6,
no. 1, p. 52, 2004.

[22] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview of
reservoir computing: theory, applications and implementations,” in Pro-

ceedings of the 15th european symposium on artificial neural networks.

p. 471-482 2007, 2007, pp. 471–482.
[23] H. Jaeger, “The “echo state” approach to analysing and training recur-

rent neural networks-with an erratum note,” Bonn, Germany: German

National Research Center for Information Technology GMD Technical

Report, vol. 148, no. 34, p. 13, 2001.
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