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Abstract—Spiking neural networks, inspired by biological neu-
ral systems, could process immense volumes of spatio-temporal
data by representing them as spikes. Here, we propose to
implement compact, scalable, energy-efficient spiking neurons
based on the unique insulator-metal transition in Vanadium
dioxide (VVO2) which interact through memristive synapses, to
emulate a Liquid State Machine (LSM). Further, we demon-
strate the implementation of this recurrent neural network as
a temporal auto-encoder, and adaptive channel equalizer for
application in neuromorphic signal processing. Our approach
provides a pathway to reduce component count (50 — 100.X)
and improve energy efficiency (> 50.X) over conventional CMOS
based implementations.

Index Terms—Insulator-Metal-Transition, Spiking Neurons,
Liquid State Machine, Reservoir Computing, Extended Kalman
Filter

I. INTRODUCTION

High-performance computing has historically developed
around the von Neumann architecture and the Boolean com-
puting paradigm, executed on Silicon Complementary Metal
Oxide Semiconductor (CMOS) hardware. Software develop-
ment model has for decades has worked around the CMOS
fabric that has singularly dictated our choice of materials,
devices, circuits and architecture to build our technology. Over
the last decade however, Moore’s law for hardware scaling
has significantly slowed down with its end predicted soon,
primarily due to the prohibitive energy cost of computing
with increasingly smaller devices. At the same time, software
development has taken off with Machine Learning and Arti-
ficial Intelligence dominating the roost. This has given rise
to the notion of ‘neuromorphic computing’ which promises
to radically transform this model of computing to match the
ultimate computer in existence, the brain.

It is well known that the temporal dynamics of biological
neurons encode immense volumes of processing power [1],
[2] in extremely small footprint: ~ 10'2 neurons and ~ 10'®
synapses or neural interconnection in a volume of ~ 1200cm?,
and power consumption: 10 — 15W. It has been argued that
spike encoded information (spike interval/density modulation)
can be energy-efficient as information is encoded in the dead
times between sparse spikes [3]-[5], and their phase sequenc-
ing [6] and time multiplexing [7] in reservoir computing.
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Fig. 1. a. The proposed hardware unit of the spiking neuron built from a
IT-IR pull-up pull-down configuration of a VO layer and an n-channel
MOSFET. b. Large scale neural networks can be fabricated with spiking
neurons by coupling them with dense cross-bar arrays of programmable
memristors forming a synaptic network between various layers of a neural
network.

Spiking networks can have higher representation power and
computational capacity compared to other neural networks
[8]-[10], and are shown to be optimally entropy-efficient
(maximal # of bits/Joule) [11], [12] in biological neurons.
Commercial silicon spiking nets like IBM’s TrueNorth chip
[13]-[15] are seen to be ~ 800X more energy efficient
than silicon multiprocessors, although lacking integrated on-
chip training. The true challenge with CMOS only hardware
substrate is to find a physical mechanism to initiate, stabilize
and terminate the spikes in a controllable way to leverage
the advantages of scalable networks of spiking neurons, with
small energy-area footprint, in particular for low size, weight
and power (SWaP) applications.

In this work we propose to use Vanadium Dioxide’s
(VO3) unique electrical volatile characteristics arising from
the Insulator-Metal transition (IMT) property to build ultra-
compact and highly energy-efficient hardware units that be-
haves as spiking neuron (fig. la) that can encode infor-
mation in the spike intervals/frequency and when coupled
with programmable memristive synapses, say in a cross-bar
array arrangement (fig. 1b), can directly implement dense
spiking recurrent neural networks in hardware. In this work we
specifically illustrate the networks of these spiking neurons to
build a Liquid State Machine (LSMs), the spiking version of a
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Reservoir Computer. We then show that these LSMs built from
spiking neurons can perform non-linear signal processing tasks
such as an adaptive channel equalizer, and learn to predict a
complex time series running blind, i.e. without an external
input. We then conclude by discussing the relative reduction
in component count and power consumption provided by these
hardware units over a purely CMOS implementations of such
spiking neural networks.

II. VOy INSULATOR-METAL-TRANSITION:
ULTRA-COMPACT SPIKING NEURON

A. Insulator-Metal-Transition, V Oy Characteristics and Con-
trollable Spiking Oscillator

V' O5 shows a sharp Insulator Metal Phase Transition (IMT)
[16]-[19] when driven thermally, optically and electrically (fig.
2a). It has been shown that IMT at 340K shows a typical ON-
OFF ratio ~ 1—5x10? to a max of 10°, with a switching speed
~ 10ns electronically, ~ 10 f s optically, and measured switch-
ing reliability over 10° cycles [20]. The underlying mechanism
is still in debate and seems to be a combination of purely
electronic Mott transition (abrupt opening of a Coulomb gap)
and a simultaneous structural change between monoclinic and
tetragonal/rutile configurations [21]. The main feature of its
output characteristics is a unique volatile hysteresis loop (fig.
2a,b) with two stable states (solid horizontal arms) and two
unstable states (dashed vertical arms) which is distinct from
pinched hysteresis memristor curves used as selectors (e.g.
Ag|H fO5), or magnetic hysteresis curves used in MRAM
technology where both the stables states are accessible at
V' ~ 0 point of the characteristics.

This volatile hysteresis has its center shifted from V =
0 to half the transition voltages Vi,V which proves quite
important for our application. This characteristics allows the
device to move naturally from an oscillatory spiking to a non-
spiking state and vice-versa, simply by adjusting a load line
using an external transistor in the hardware unit as shown in
the schematic fig. 2b. Fig. 3c,d show experimental data and
simulations on the device whose characteristics are presented
in fig. 2a, showing the non-spiking and spiking behavior and
is obtained by a slight shift in the load line (determined by
the resistance of the transistor).

When the transistor load line crosses the stable high resis-
tance state section of the I-V curve, the IMT neuron remains
in the resting state (solid blue line). However as gate voltage
Vin increases the transistor load-line (solid orange line) now
periodically crosses both the unstable (black dashed lines)
arms, and the neuron fires and generates an oscillatory spike
train, as can be seen in fig. 2e. Due to stochastic cycle-to-
cycle variations in V77, firing occurs with probability p < 1
leading to probabilistic spiking of the IMT neuron. Further, the
spiking probability can be modulated using the gate voltage,
Vin, which decides the fraction of the voltage range of Vp
intersected by the transistor load line.

This unique volatile characteristic generating spike trains,
along with in-built activation and deactivation (much like a real
biological neuron) is naturally suited to provide ultra-compact

and efficient, controlled spiking behavior. Additionally, the
built-in stochasticity of the phase transition in V' Os naturally
provides controllable noise in the device. It is well recognized
that noise is an important feature in building robust neural
network models by preventing over-fitting to training data and
can provide a hardware mechanism to build a natural ‘echo-
state property’ feature useful in recurrent neural networks like
Reservoir Computing as we discuss later.

B. Spike Encoder and Spiking Stochastic Leaky-Integrate-and-
Fire Neuron

We can build an efficient spike-interval/density modulator
using the proposed V Os unit as shown in fig. 3a. The input
signal is scaled appropriately using an impedance divider
circuit to reflect the movement of the load-line between the
stable high resistance state to the oscillatory state using the
gate voltage applied on the input MOSFET. The simulation
presented in fig. 3b shows the normalized output of the circuit
measured across the load capacitor. A “high” signal, in this
scheme, shifts the load-line to the oscillatory stage by reducing
the transistor resistance and the unit keeps firing, till the input
gate voltage reduces shifting the load-line back to the stable
high R state, causing the spikes to end. Therefore, a simple
1R — 17 unit can generate an efficient and compact spike
modulator based on the intrinsic electrical characteristics of
the device itself.

The same unit can also be used to build a spiking neuron,
where the input signal gets integrated over time in the gate
capacitor and if it reaches a threshold, the neuron fires and
generates spikes. Our proposed unit naturally embodies a spike
generator based on the input signal at the input terminal.
Instead of a smooth analog signal from some sensor (as in case
of the spike encoder), if we provide spiking signals using a
resistive-capacitive metallic interconnect to the input terminal,
the gate capacitor can integrate the charge provided by these
spikes naturally over a few characteristic RC' time constants
of the interconnect + gate capacitor and can move the unit
from non-spiking to spiking state. Being a volatile device, this
built-up charge will leak away. Therefore if the input spike
train is stopped, the unit will move back to a non-spiking
state. This illustrates the principle of the same spike encoder
effectively working as a leaky-integrate-and-fire (LIF) neurons.
Additionally, the inherent stochastic nature of the transition
voltage Vy and Vi, discussed previously, changes the spiking
voltage/charge threshold creating inherent stochasticity in the
activation/spike generation.

III. LIQUID STATE MACHINES FROM V O5 SPIKING
NEURONS

A. Dynamical Recurrent Neural Networks: Reservoir Comput-
ing

Reservoir Computing [22] is a biologically inspired model
of computing where a set of non-linear units or neurons are
assembled together in recurrent fashion, i.e. with bidirectional
feedbacks between various neurons (fig. 4a). To this “reser-
voir” of neurons a temporal signal is imposed, giving rise
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Fig. 2. a. Experimental characteristics of the a VO2 film showing its shifted volatile hysteresis I-V curve. b. Schematic of the I-V curve to illustrate the
utilization of a controllable load-line to go from non-spiking to spiking states. c. Non-spiking behavior of the neuron. d. Spiking behavior of the neuron. e.
Movement from non-spiking to spiking behavior by moving the load-line using the gate input gate voltage to the device. It can be seen that spike frequency

or spike density increases with the increasing input voltage.
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Fig. 3. a. Spike encoder using the proposed unit along with an impedance
divider circuit at the input to appropriately scale the input voltage to control
the movement of the load-line created by the transistor. b. Example of a spike
interval/density encoding of an arbitrary input signal.

to collective excitations. An inference is made by harvesting
or sampling these collective reservoir states using a readout
layer which can be a linear or logistic readout, or even
a deep network. In this model of computing, the reservoir
is never trained - only the readout layer(s) is trained (Fig.
2b). This model of computing also allows attaching different
readouts to the same reservoir to carry out different inferencing
tasks, embodying the inherent parallelism of biological neural

Computing

Fig. 4. a. A schematic of a reservoir computing. b. Comparison between the
mathematical model of an Extended Kalman Filter (EKF) and a Liquid State
Machine (LSM).

systems (fig. 4c). Reservoir computing is particularly suited to
spatio-temporal inferencing tasks due to the recurrence, as the
signature of an input signal provided to the reservoir continues
to persist in the reservoir for a certain time period (also called
the echo-state property) which allows the readout to harvest
different time samples of the same input signal by reading
from different nodes at the same time. Reservoir computing is
presented in two different forms in the literature: if the neurons
are logistic and the signal analog, it is called an Echo State
Network (ESN) [23], whereas if the neurons are spiking and
signals are encoded in spike domain, the model is called a
Liquid State Machine (LSM) [24]-[26].

B. Reservoir Computing and Signal Processing

Kalman filters [27], [28] are a class of adaptive filters that
can be used to learn and predict the states of a dynamical
system from their histories and extract independent variables
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from dependent variables of state of such a system. A Kalman
filter consists of a dynamical system composing a “state
space”, and an “observer system” that samples the state space
to generate an estimate or an inference. Being a dynamical
system, the state and therefore the observations are correlated
in time (fig. 4b). In a regular Kalman filter, the state space
is a linear function of the input signal and the observation is
made by sampling the state of the dynamical system to yield
the observed signal. Extended Kalman Filters (EKFs) extend
conventional Kalman filters to nonlinear signal processing.
EKFs are the de-facto standard in GPS tracking, navigation
systems and nonlinear state estimation theory.

It can be seen that there are strong parallels between
Reservoir computing and EKFs. The reservoir corresponds
to the non-linear dynamical state space, while the readout
corresponds to the observer (fig. 4b,c). ESNs have been
presented in literature [29]-[31] as an approach to train EKFs
composed of logistic neurons, whereas LSMs were developed
as a plausible model of biological cognitive systems where
extremely rich cognitive tasks can be carried out with rather
small sets of neurons and limited localized learning. This
obvious connection makes VO, based Liquid State Machines
work as hardware embodiment of the mathematical model
of an EKF to perform signal processing and control tasks.
Compactness and energy efficiency is achieved by directly
implementing the reservoir in the dynamics of the network of
spiking neurons and programmable synapses built from mem-
ristive interconnects at the readout layer. Our proposed unit
and their networks embed the paradigm of spiking neurons and
EKF inherently in their physics and make them particularly
suited for signal processing tasks as we show next.

IV. TEMPORAL PROCESSING TASKS

In this section we discuss two example temporal data/signal
processing tasks using the LSMs by leveraging their connec-
tion to EKFs. These examples show that it is possible to im-
plement highly compact and energy-efficient signal processors
using small spiking neural networks built from V' O, neurons.

A. Temporal Predictor

An autoencoder learns the underlying representation or
generating function of a set of a data. When applied to a
time series data it can be useful in predictive tasks such as
navigation and control. In this mode the encoder predicts the
next few steps of the sequence which can be used to carry
out the navigation and control task. Best in class systems for
such tasks are EKFs which can be used to predict the “next
step” for a moving object given a history of the past and the
current trajectory. Therefore, EKFs can work as temporal auto-
encoder, i.e. an encoder for time-series data. We implement a
temporal auto-encoder using a V Oy LSM based EKF, shown
in fig. 5a. In this task we attempt to learn and reproduce this
signal blindly, i.e. once it is learned we want to test if we can
generate the “next steps” purely from the LSMs self generated
output and how well this predicted signal matches with the
original signal generator.

A periodic and subtly chaotic source is provided to the
system as the input signal. The input signal is first converted
into the spike domain and then provided to a 20-node LSM. A
linear weighted sampler is used to readout the reservoir states
and thereafter demodulated to generate the output signal. After
harvesting a large number of reservoir states, we adjust the
sampler weight using a linear regression technique as popular
in the reservoir computing community.

During the testing phase, we disconnect the source and
connect the readout of the LSM back to its own input,
providing the input signal for the next time-step. Therefore, in
this testing step the LSM tries to keep generating the source
signal blindly looking at its own output, without any corrective
feedback or knowledge of the testing signal, generated from
the same source that was used during the training phase. Our
simulations show that the LSM can do this predictive task
reasonably well for 10-15 steps for the given function, however
it starts to diverge as the number of steps increase without a
corrective feedback (fig. 5b,c). This is to be expected due to
the finite memory capacity of the LSM. Even excellent cog-
nitive machines like humans cannot predict such trajectories
indefinitely.

During our simulations, we found that extremely small
reservoirs (# of nodes = 1-5) find it difficult to learn complex
signals, however as the network size is increased the accuracy
begins to improve as the state space of the LSM expands with
the size of the network allowing it to remember more complex
‘high frequency’ components of the input signal.

B. MMSE Channel Equalizer

A communication channel can inherently inject all kinds of
non-linear distortions, inter symbol interference, and noise in
a signal. The task of equalization is to recover the underlying
“clear” signal from the distorted signal. An equalizer can
be constructed in multiple ways depending on how they are
supposed to be used. We implement an EKF based MMSE
(minimum mean square error) equalizer using VO, LSM
which attempts to reconstruct a signal which has been distorted
by a telecommunication media (fig. 5d).

In this task the LSM tries to generate output y(¢) that
is as close to input d(t) from the distorted signal u(t) as
possible. The original signal d(¢) passes through a medium
which introduces inter-symbol interference, non-linear distor-
tions and noise to generate the distorted signal w(t). This
distorted signal is then converted into the spike domain using
V' Os spike modulator, which is then provided to a 20 node
LSM built from assembling together VO neurons. Then we
generate a weighted sample of the reservoir states, which
is then demodulated to recover the original signal. During
the training phase, we adjust the weighted sampling matrix
using linear regression. After successful training, we test the
equalizer which can now recover the original signal from
the distorted one successfully as shown in fig. Se. In our
simulations we found that we could achieve a symbol recovery
rate between 85— 100% depending on the degree of distortion
and LSM network size.
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Fig. 5. a. Temporal Predictor setup using a V'O2 LSM. The input signal is spike encoded and provided to the reservoir and readout using a linear sampler and

decoder built from low pass filter and level shifter. During the testing phase,
from reservoir. b. & c. Two example simulations of blind signal prediction t:

the reservoir’s own output is fed back to the input and the encoder is decoupled
ask. The network reproduces the signal reasonably well for first 15-20 steps but

diverges after that without corrective feedback. d. Channel Equalizer setup using a VOg2 LSM. The LSM attempts to reverse the effect of the distortion created

by the media on an input signal. e. Original, distorted, and recovered signal

V. VO3 SPIKING NEURONS VS. BOOLEAN CMOS
NEURONS: A COMPARATIVE ASSESSMENT

Spiking Neural Networks like LSMs can be emulated
numerically on any Turing Machine, including a Boolean
CMOS processor. However, the hardware primitives of such
a computer do not match the algorithmic model of these
networks. A network composed of the VOs based hardware
unit directly implements a reservoir, where the collective
dynamics of V' O, switching itself gives rise to reservoir states
being used for the computation. Therefore, the compactness,
energy efficiency, and scalability that can be obtained from
these units can never be matched, even in principle, by a
Boolean emulator. Our proposed unit works in the analog
domain as a controllable spike generator and is composed
of just one transistor with V' Oy grown directly on the drain
terminal so its area cost of just 1 transistor. The power
dissipation and energy-delay product of this unit is comparable
to a CMOS inverter due to high ON-OFF ratio, gain, and steep
sub-threshold swing of the device and this has been previously
demonstrated experimentally in a similar structure called the
HyperFET [32]. Therefore, the energy cost of a single self-
contained VO, spiking neuron is equivalent to the smallest

obtained from the equalizer shown together.

unit of computing in CMOS circuits. Additionally, since the
signals are represented as spikes in time, it is an inherently
analog mode of computation where a signal can be carried by
just 1 wire, instead of multiple wires as required in a Boolean
implementation, which further reduces the area and energy
cost significantly.

As an illustrative example, consider the work referenced in
[33] as an example of a liquid state machine implementation
using a stochastic Boolean accelerator in a ring-like reservoir
topology, demonstrating a similar temporal prediction task as
this work, required ~ 13 logical elements, ~ 13 combinational
functions, and ~ 6 logic registers per neuron. While without
knowing the exact detailed design of the FPGA used it is
difficult to estimate the total component count, an efficient
design presented in another work [34], demonstrating simi-
lar signal processing tasks as this work, required 4 4-LUT
structures per neuron and a simple count will suggest this
translates to 420 CMOS inverters or 840 MOSFETs. There-
fore, it can be seen that a Boolean implementation can easily
require ~ 500X more components over the presented unit
to implement a spiking neural network. Even assuming great
leaps in designs of Boolean accelerators for neural networks
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in future, we can safely promise at least 50 — 100X reduction
in component count. Considering that the dissipation in VOq
neurons is similar to a CMOS inverter, we expect energy-
efficiency to scale approximately linearly with the component
count improvement, i.e. ~ 500X in the best case scenario
for VOy neurons or ~ 50 — 100X in best case scenario
for CMOS implementations. In [35] it was found that the
VO3 neurons had ~ 30X decrease in power dissipation over
an equivalent CMOS implementation in a classification task.
This strongly supports our lower bound estimates for energy-
efficiency improvement of VO spiking neurons over CMOS
implementations.

It should be noted that the estimates provided here are
preliminary and cursory. One of the future directions will be
extending these benchmarks to a wider set of implementations
of LSMs and Kalman filters in FPGAs and ASICs, as well
to other material systems, such as low energy-barrier magnets
which have also been used to implement spiking neurons. The
central goal of this paper is to demonstrate, using proof-of-
concept simulations, that ultra-compact, energy-efficient LSMs
can be fabricated directly from IMT spiking neurons, and
elicit research and exploration interest in the same from the
community.
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