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Abstract. We consider the derivative NLS equation in one spatial dimension,

which is known to be completely integrable. We prove that the orbits of L2

bounded and equicontinuous sets of initial data remain bounded and equicon-
tinuous, not only under this flow, but under the entire hierarchy. This allows

us to remove the small-data restriction from prior conservation laws and global

well-posedness results.

1. Introduction

The derivative nonlinear Schrödinger equation,

(DNLS) i d
dtq + q′′ + i

(
|q|2q)′ = 0,

describes the time evolution of a complex-valued function q on the line. (Here and
below, primes denote spatial derivatives.) It arises both as an effective equation in
plasma physics [14,33,34] and as an example of a completely integrable PDE [20].

As a conspicuous dispersive equation, the well-posedness question for (DNLS)
has received considerable attention over the years. As we shall discuss more fully
below, a robust theory of local well-posedness has been known for some time, as
has a small-data global theory. However, it was only very recently that global
well-posedness could be proved for large data (even of Schwartz class). The central
bottle-neck in the theory of this equation has been obtaining satisfactory a priori
bounds for solutions. This is startling — as a completely integrable system, (DNLS)
admits infinitely many conservation laws!

Preeminent among the conserved quantities for (DNLS) is

M(q) :=

∫
|q(x)|2 dx.(1.1)

This is manifestly coercive; moreover, it is invariant under the scaling

q(t, x) ↦→
√
h q(h2t, hx) for h > 0(1.2)

that preserves (DNLS). When we spoke of small-data well-posedness, we precisely
meant under a restriction on the size of M(q).

While (DNLS) admits infinitely many other conserved quantities, such as

H1(q) = − 1
2

∫
i(qq̄′ − q̄q′) + |q|4 dx,(1.3)

H2(q) =

∫
|q′|2 + 3

4 i|q|
2(qq̄′ − q̄q′) + 1

2 |q|
6 dx,(1.4)

it turns out that none are coercive. We will further justify this claim below when
we discuss the forward/inverse scattering technique. For the moment, let us focus
on M , H1, and H2. The failure of their coercivity is best witnessed by a concrete
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example: the algebraic soliton. This solution, which will be the central antagonist
in our story, has initial data

qa(x) =
2(1− ix)

(1 + ix)2
eix/2 and evolution q(t, x) = qa(x− t)eit/4.(1.5)

Direct computation shows

M(qa) = 4π and H1(qa) = H2(qa) = 0;

moreover, these values are inherited by all rescalings (1.2) of the algebraic soliton.
Thus, no combination of M , H1, and H2 can control the H1 norm for all solutions
to (DNLS).

In fact, the algebraic soliton (1.5) serves as a minimal counter-example to the
coercivity of M , H1, and H2. This was proved by Wu in [43], who showed that the
simultaneous conservation of M , H1, and H2 does provide an a priori H1 bound
for all solutions with M(q) < 4π.

Our goal in this paper is to prove that the flow map for (DNLS) preserves L2-
equicontinuity. This question was posed in [22], where it was shown to have robust
consequences both for a priori bounds and for the well-posedness problem. To
formulate matters precisely, we need one preliminary definition:

Definition 1.1. A bounded set Q ⊆ L2(R) is said to be L2-equicontinuous if

lim sup
y→0

sup
q∈Q

∫
|q(x− y)− q(x)|2 dx = 0.

An equivalent formulation of equicontinuity as tightness of the Fourier transforms
will be useful later and is presented in (1.26) below.

As we do not currently know whether L2 initial data leads to (even local) so-
lutions, we formulate the preservation of equicontinuity for a narrower (yet dense)
class of initial data. Specifically, we will consider Schwartz-class initial data. As
we will discuss below, such initial data leads to global Schwartz solutions.

Theorem 1.2. Given an L2-bounded and equicontinuous set Q ⊆ S(R) of Schwartz-
class initial data for (DNLS), the attendant collection of orbits{

q(t) : q(0) ∈ Q and t ∈ R
}

is also L2-bounded and equicontinuous.

The definition of equicontinuity can easily be adapted to any Banach space of
functions on R. The facts that L2 is scaling-critical for (DNLS) and that it coincides
with the conserved quantity M makes this the most natural (and most ambitious)
space to choose here.

Theorem 1.2 is phrased in terms of Schwartz-class solutions, not only because
we know that such solutions exist, but also because they provide an effective way
to address data with less regularity or decay.

The question addressed in Theorem 1.2 was pinpointed as important for the
theory of (DNLS) in [22]; see [22, Conjecture 1.1] as well as the more general
[22, Conjecture 1.2] that we will address in Theorem 1.5 below. Theorem 1.3
of [22] settled these questions in the case of sets Q with sup{M(q) : q ∈ Q} < 4π.
Note that M = 4π is precisely the threshold delineated by the algebraic soliton
that we discussed earlier. Our purpose in this paper is to remove such small data
restrictions.
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The second major theme of [22] was demonstrating important consequences
of L2-equicontinuity for (DNLS). In formulating such results, [22] introduced a
threshold M∗ defined by the property that equicontinuity is preserved for sets with
supM(q) < M∗; see [22, Definition 1.4] for the precise formulation. By proving that
M∗ = ∞ in this paper, we immediately obtain a number of corollaries from [22].
For example, the following a priori bounds for (arbitrarily large) solutions:

Corollary 1.3. Fix 0 < s < 1
2 or s = 1. There is a function Cs : [0,∞) → [0,∞)

so that

sup
t

∥q(t)∥Hs(R) ≤ Cs

(
∥q(0)∥Hs(R)

)
(1.6)

for every solution q(t) to (DNLS) with initial data q(0) ∈ S(R).

The possibility of choosing 0 < s < 1
2 or s = 1 in Corollary 1.3 reflects the fact

that we have grouped together two separate arguments from [22]. For small values
of s this result is [22, Theorem 4.3], which employs conservation of the perturbation
determinant; for s = 1 this recalls [22, Proposition 4.1], which shows how one may
combine equicontinuity with the conserved quantities M and H2 to obtain a priori
bounds.

Prior to [22], Klaus and Schippa [26] proved Hs-bounds for 0 < s < 1
2 under a

(non-quantitative) small-M restriction. Microscopic conservation laws were derived
under the same restriction in [42]; by the results of this paper, these laws extend
to all values of M .

As mentioned earlier, the theory of (DNLS) has been greatly hindered by the lack
of large-data a priori bounds in Hs(R) spaces. This impasse was only very recently
dislodged by Bahouri and Perelman [2]. In a major breakthrough, they proved (1.6)
with s = 1

2 . Their paper has served as an important source of inspiration for us.
By employing Corollary 1.3 as the base step of an inductive scheme, the recent

paper [1] proved a priori bounds in Hs(R) spaces for all s ≥ 1
2 .

It follows from Corollary 1.3 that a satisfactory local well-posedness theory (as
has long been known in H1(R), for example) is immediately global. Indeed, local
well-posedness guarantees that irregular solutions may be approximated (locally in
time) by Schwartz solutions and consequently inherit their bounds. These bounds
allow the local-in-time construction of solutions to be iterated indefinitely.

Prior to [22], equicontinuity was shown to play an important role in proving
optimal well-posedness for several other completely integrable dispersive equations,
such as KdV, NLS, and mKdV; see [4, 12, 23]. For these arguments, however,
one needs to know that equicontinuity is preserved not merely for the evolution
in question, but for the whole hierarchy. Just such a conjecture was formulated
for (DNLS) in [22] and will be settled in this paper; see Theorem 1.5. In this
way, [22, Theorem 1.5] yields the following:

Corollary 1.4. For 1
6 ≤ s < 1

2 , the evolution (DNLS) is globally well-posed in
Hs(R).

The notion of well-posedness meant here is this: For any sequence of Schwartz
initial data qn(0) that is convergent in Hs(R) the corresponding solutions qn(t)
converge in Ct([−T, T ];Hs(R)) for every finite T > 0. As s ≥ 1

6 , convergence also

holds in L3([−T, T ]×R); thus, the limiting trajectory is a distributional solution to
(DNLS). While these solutions clearly depend continuously on the initial data, it
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was shown in [3,40] that the data-to-solution map cannot be uniformly continuous
on bounded subsets of Hs(R) when s < 1

2 .
The previous state of the art for large data local well-posedness in Hs(R) spaces

was s ≥ 1
2 . Local well-posedness has also been studied in Fourier–Lebesgue spaces,

[8–10]; such spaces are better suited for studying invariant measures and were used
for this purpose in [35].

Many years before Wu’s 4π result in [43], Hayashi and Ozawa [13] proved thatM
and H2 control the H1 norm of solutions when M(q) < 2π. Using this ingredient,
they proved that (DNLS) is globally well-posed in H1(R) under this restriction on
M . They also proved that such solutions with Schwartz-space initial data remain
Schwartz.

A series of subsequent works, [6, 7, 32, 41], culminated in a proof that (DNLS)
is globally well-posed in Hs(R) for s ≥ 1

2 , in the M < 2π regime. Following the

discovery of the 4π threshold in [43], the case s ≥ 1
2 and M < 4π was treated

in [11].
Combining the large-data bounds proved recently by Bahouri and Perelman [2]

with the local theory discussed above shows that (DNLS) is globally well-posed in
Hs(R) for s ≥ 1

2 . In this way, [2] yields the first large-data global well-posedness
result in Sobolev spaces. Corollary 1.4 improves upon this yielding global well-
posedness for s ≥ 1

6 . This brings us closer to the critical scaling; moreover, even

local well-posedness for large initial data was previously unknown for any s < 1
2 .

While ill-suited to initial data in Hs spaces (due to the poor physical decay), the
inverse scattering technique is extremely powerful, yielding not only well-posedness
of integrable equations, but also detailed information on the long-time behavior
of solutions. This approach to (DNLS) has advanced considerably in recent years
through the efforts of many people: [15–18, 29–31, 36–38]. Given the formulation
of our Theorems 1.2 and 1.5, it is important here to single out the contribution
of [18] which established that (DNLS) is globally well-posed in H2,2(R) = {f ∈
H2(R) : x2f ∈ L2(R)}. Combined with the arguments in [13], this result shows
that Schwartz-class initial data lead to global Schwartz-space solutions.

While it is also interesting to study (DNLS) when posed on the circle, we are
currently unable to prove an analogue of our main theorems in that setting. The
results presented in [22] cover both geometries and so a proof of equicontinuity on
the circle would have consequences for the well-posedness problem paralleling those
described above.

The integrable nature of (DNLS) will play a major role in our analysis. This
was first articulated by Kaup and Newell in [20]. In particular, they introduced
operator pencils

(1.7)

L(λ; q) =

[
−iλ2 − ∂x λq

−λq̄ iλ2 − ∂x

]
,

P (λ; q) =

[
−2iλ4 + iλ2|q|2 2λ3q − λ|q|2q + iλq′

−2λ3q̄ + λ|q|2q̄ + iλq̄′ 2iλ4 − iλ2|q|2

]
,

with spectral parameter λ ∈ C, and proved that

q(t, x) solves (DNLS) ⇐⇒ ∂tL(λ; q(t)) = [P (λ; q(t)), L(λ; q(t))].(1.8)
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For the particular case q ≡ 0, we will write

L0(λ) :=

[
−iλ2 − ∂x 0

0 iλ2 − ∂x

]
= −∂x − iλ2σ3 where σ3 =

[
1 0
0 −1

]
.(1.9)

A central object of study in the presence of such a Lax representation (1.8) is
the scattering matrix. This connects the asymptotic behavior at the two spatial

infinities of solutions to the ODE Lψ⃗ = 0.
Given λ2 ∈ R and q ∈ S(R), it is known that there is a unique matrix Ψ with

LΨ = 0 and lim
x→−∞

Ψ(x)eiλ
2xσ3 = Id.(1.10)

Moreover, the limit

S(λ) := lim
x→+∞

eiλ
2xσ3Ψ(x)(1.11)

exists and satisfies

S(λ) =

[
a(λ) −b(λ̄)
b(λ) a(λ̄)

]
with |a(λ)|2 =

{
1− |b(λ)|2 if λ ∈ R,
1 + |b(λ)|2 if λ ∈ iR.

(1.12)

We will review some of this material in Section 3.
The key virtue of a and b is that they evolve in a simple manner as q(t) flows

according to (DNLS). Specifically,

(1.13) a(λ; q(t)) = a(λ; q(0)) and b(λ; q(t)) = e−4iλ4tb(λ; q(0)).

This analysis leads to the idea that a(λ; q) encodes all the conserved quantities
for the flow; in particular, (1.12) shows that it captures the modulus of b(λ; q).
For many integrable systems, this has been shown to be the case. However, if we
consider the algebraic soliton qa defined in (1.5), we find that

(1.14) Ψ(x;λ) = e−iλ2xσ3 + 4λ
4λ2+1

[
2iλ
x−i

eix/2

x−i

− e−ix/2

x+i − 2iλ
x+i

]
e−iλ2xσ3

is the solution to (1.10) for all λ ∈ C \ {± i
2}. This shows that a(λ; qa) ≡ 1 and

b(λ; qa) ≡ 0 for all λ2 ∈ R \ {− 1
4}.

We must ask about the significance of the exceptional values of λ. There is a
very compelling argument that they are meaningless. As we will show more fully
below, a(λ; q) extends to a holomorphic function in the first quadrant and belongs
to Nevanlinna class; as such, the function is determined by its a.e. boundary values.
Thus a(λ; qa) ≡ 1 as a holomorphic function in the first quadrant.

One valuable approach to analyzing a(λ; q), including showing that it is holo-
morphic, is to use that it is given by a certain Fredholm determinant:

a(λ; q) = det
[
L−1
0 L

]
= det

[
1− λ2(−iλ2 − ∂)−1q(−iλ2 + ∂)−1q̄

]
,(1.15)

valid for all λ in the (open) first quadrant and q ∈ S(R). We will refer to this
equality as a Jost–Pais identity, honoring [19], and will prove it in Section 3.

If we fully accept our first answer regarding the exceptional values of λ, then
there can be no hope of proving Theorem 1.2 through a(λ; q) alone: it cannot
distinguish qa from zero, nor from any rescaling of qa via (1.2). As a(λ; q) serves
as a generating function for the polynomial conserved quantities, these functionals
are also incapable of differentiating.
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One of the morals that we have gleaned from the work of Bahouri–Perelman [2]
is that arg[a(λ; q)], when properly interpreted, holds crucial information. This is
difficult to explain directly for qa. So imagine instead an approximating sequence
of Schwartz functions; specifically, a sequence of traditional (bright) solitons, which
are smooth with exponential decay. For such solitons, the function a(λ; q) is given
by a single Blaschke factor whose zero is inside the open first quadrant. Evidently,
this zero forms a branch point for arg[a(λ; q)]. As the sequence approaches the
algebraic soliton, this point approaches the point i/2 on the imaginary axis. In
this way, we find it instructive to view the exceptional point as the vestige of a
branch-point for arg[a(λ; q)].

It is also true that the Lax operator L(λ; qa) has an eigenvalue at the point
λ = i/2; indeed, the eigenfunction coincides with the residue of the function (1.14)
at this point. The paper [27] demonstrates that this eigenvalue exhibits a striking
stability: under a broad class of perturbations (of either sign), the eigenvalue moves
into the first quadrant; it does not dissolve into the continuous spectrum. This
further reinforces our interpretation of the exceptional point as the relic of zeros
of a(λ; q), or equivalently branch points of arg[a(λ; q)], that have moved to the
boundary.

Once one believes that a(λ; q) does encode enough information to prove equicon-
tinuity, then one must also believe that an analogue of Theorem 1.2 holds for the
whole DNLS hierarchy and indeed, for any flow conserving a(λ; q). This is in fact
our principal result, of which Theorem 1.2 is an elementary corollary:

Theorem 1.5. Let Q ⊆ S(R) be L2-bounded and equicontinuous. Then

Q∗ =
{
q ∈ S(R) : a(λ; q) ≡ a(λ; q̃) for some q̃ ∈ Q

}
(1.16)

is also L2-bounded and equicontinuous.

We write a(λ; q) ≡ a(λ; q̃) to emphasize that equality holds as holomorphic
functions on the open first quadrant. Clearly this is guaranteed as soon as the two
functions agree on a sufficiently rich set, for example, the ray λ ∈ {

√
κeiπ/4 : κ >

0} employed in [22]. That paper also restricts attention to individual connected
components of Q∗ (there called Q∗∗), their rationale being that well-posed flows
remain within a single such connected component.

Note that Theorem 1.5 deliberately only addresses ensembles of Schwartz-class
functions. As we have observed earlier, this assertion would not be true if we
required only Q ⊆ L2 because the function q ↦→ a(λ; q) is unable to distinguish
rescalings of the algebraic soliton from one another. Indeed, a(λ; q) cannot even
distinguish an algebraic soliton from zero! On the other hand, as Lemma 5.2 shows,
a(λ; q) does encode M(q) for Schwartz functions.

Here, we must acknowledge the deft formulation of the conjectures in [22]: Re-
quiring the initial data to be Schwartz ensures that the function a(λ; q) retains
enough information about q to be useful, while employing the L2 topology guar-
antees robust consequences for the well-posedness problem. Moreover, once well-
posedness is proved, the density of Schwartz space allows us to deduce important
properties for all Hs solutions.

Let us now turn to the question of how Theorem 1.5 will be proved. While the
argument is ultimately quantitative in nature, for the sake of clarity, our synopsis
here will be purely qualitative. We will employ Littlewood–Paley projections to
decompose q into frequency pieces; these are defined in (1.24).
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Suppose Theorem 1.5 were to fail. It is not difficult to show that Q∗ is bounded
in L2 and so this failure must be witnessed by a sequence of functions qn that
is bounded but not equicontinuous. Moreover, this sequence is accompanied by
another sequence q̃n ∈ Q that is equicontinuous and satisfies a(λ; qn) ≡ a(λ; q̃n),
whence M(qn) =M(q̃n).

Due to the failure of equicontinuity, for fixed N and n large, P>Nqn must carry
non-trivial L2 norm. From this and a simple pigeonhole argument, we may find a
wide (n-dependent) frequency window ε3N1 < |ξ| < ε−3N1 with three properties:

(1.17) ∥P>ε3N1
q̃n∥ ≪ 1, ∥P>ε−3N1

qn∥ ≳ 1, and ∥Pε3N1<·≤ε−3N1
qn∥ ≪ 1

valid for any n sufficiently large.
We now focus on a particular choice of spectral parameter, namely, λ1 =

√
iN1.

As q̃n essentially vanishes at such high frequencies, we can understand a(λ1; q̃n)
very well; indeed,

arg[a(λ1; q̃n)] ≈ − 1
2M(q̃n).(1.18)

Because λ1 is well separated from the frequency regions inhabited by qn we may
likewise understand arg[a(λ1; qn)] as the sum of the low- and high-frequency con-
tributions:

(1.19) arg[a(λ1; qn)] ≈ arg[a(λ1;P≤N1qn)] + arg[a(λ1;P>N1qn)].

By analyzing these summands, we will deduce that

(1.20) arg[a(λ1; qn)] ≈ − 1
2M(P≤N1

qn).

This yields a contradiction: as a(λ; qn) ≡ a(λ; q̃n), it follows that that

M(P>N1qn) ≈M(qn)−M(P≤N1qn) ≈M(q̃n) + 2 arg[a(λ1, qn)] ≈ 0,

which is inconsistent with the middle condition in (1.17).
We have been deliberately vague about the precise meaning of arg[a(λ; q)] in

this outline; it is by no means trivial. In fact, we shall only be employing this
argument when a(λ; q̃n) has no zeros in the sector {λ ∈ C : π

8 < arg λ < π
2 }. In

this case, there is no trouble in choosing the correct branch of log[a(λ; q)] and the
above provides a relatively faithful account of what is done in Section 5.

Suppose now that a(λ; q̃n) has a single zero in this sector. Then so too does
a(λ; qn). We will employ a Bäcklund transformation to remove this zero from both.
We give a brief review of this transformation at the beginning of Section 6 following
[36], which we also recommend for further discussion and historical references.

Applying the Bäcklund transformation to qn and q̃n yields two new functions
B(qn) and B(q̃n); moreover,

a
(
λ;B(qn)

)
≡ a
(
λ;B(q̃n)

)
and this function is zero-free in the sector {λ ∈ C : π

8 < arg λ < π
2 }. In Section 6,

we prove that the sequence B(q̃n) inherits equicontinuity from q̃n. This allows us
to infer equicontinuity of B(qn) from the argument presented above. This does not
suffice: we must show that the sequence qn is equicontinuous.

In general, we cannot expect to infer equicontinuity of qn fromB(qn); the location
of the zero that is removed matters very much here. However, by Proposition 3.7,
the location of this zero is very strongly constrained by the equicontinuity of q̃n.
This will allow us to demonstrate that equicontinuity of both q̃n and B(qn) ensures
equicontinuity of qn. This settles the case of one zero in the sector.
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While one could imagine applying iterated Bäcklund transformations to reduce
profiles qn with more zeros to the argument above, we find it more convenient to
argue by induction on the number of zeros. The details are provided in Section 7.

Finally, let us provide a more thorough description of the role of each section in
completing these arguments.

In Section 2, we study the function a(λ; q) through the determinantal represen-
tation (1.15). We will use this approach to analyze how this quantity behaves when
−iλ2 ∈ [0,∞) is far from the Fourier support of q; see Proposition 2.3. This is used
to justify (1.18) and (1.20).

The expression (1.19) represents a form of asymptotic factorization. This is
proved in Proposition 2.6. The fact that this represents decoupling under separation
of scales (rather than via translation) distinguishes it from the related factorization
results in [2, 25].

In Section 3, we analyze a(λ; q) from the point of view of (time-independent)
scattering theory. We prove that a(λ; q) depends on both λ and q in a smooth
fashion (in the closed first quadrant) and use this to verify the Jost–Pais identity.
We also prove Proposition 3.7, which documents how equicontinuity constrains the
location of any zeros of a(λ; q).

In Section 4, we prove the trace formula (4.4) for general Schwartz q. The parallel
result for those Schwartz q without spectral singularities was an important tool
in [2]. One application of the trace formula is that it provides a (finite) upper bound
on the total number of zeros that may lie within the sector {λ ∈ C : π

8 < arg λ < π
2 }.

We also use it in Lemma 4.3 to derive a lower bound on a.
Section 5 proves Theorem 1.5 for sets Q where a(λ; q) has no zeros in the sector

{λ ∈ C : π
8 < arg λ < π

2 }. This constitutes the base step of our inductive argument.
We begin Section 6 by reviewing the Bäcklund transform associated to (DNLS),

closely following [36]. The principal novelty of this section is Proposition 6.3 which
shows (to put it loosely) that both the Bäcklund transform and its inverse preserve
L2-equicontinuity. The paper ends with Section 7, which completes the inductive
step of our argument.

1.1. Notation. As it will take us some time to develop the necessary prerequisites
for proving the Jost–Pais identity (1.15), we must introduce an alternate notation
for the determinant appearing there. Considering that the spectral parameter λ
only appears squared here, it is natural to adopt a different parameterization based
on k = λ2 ∈ C+ = {k ∈ C : Im k > 0}, with the happy consequence that we shall
be able to employ the well-documented theory of holomorphic functions in the half
plane.

Given k ∈ C+ and q ∈ L2(R), we first define operators

Λ(k; q) =
(
1
i k − ∂

)− 1
2 q
(
1
i k + ∂

)− 1
2 and Γ(k; q) =

(
1
i k + ∂

)− 1
2 q̄
(
1
i k − ∂

)− 1
2 .

From [24, Lemma 4.1] we have

(1.21) ∥Λ∥2I2
= ∥Γ∥2I2

∼
∫
R
log
(
4 + |ξ|2

| Im k|2
) |q̂(ξ − 2Re k)|2√

4| Im k|2 + |ξ|2
dξ ≲ 1

Im k∥q∥
2
L2 ,

where I2 denotes the class of Hilbert–Schmidt operators. This estimate shows that
for any q ∈ L2 the perturbation determinant

a(k; q) := det
[
1− kΛ(k; q)Γ(k; q)

]
(1.22)
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is well-defined and analytic for k ∈ C+. This is not precisely the determinant
appearing in (1.15) but it is easy to prove that they agree: Ask(−ik − ∂)−1q(−ik + ∂)−1q̄


I1

≤ |k| · ∥q∥2L2

∫
R
|k − ξ|−2 dξ <∞,

we may permute the factors and so deduce that

a(k; q) = det
[
1− k(−ik − ∂)−1q(−ik + ∂)−1q̄

]
.(1.23)

The virtue of adopting (1.22) as our primary definition of the perturbation deter-
minant is that it is better suited to estimating the contribution of each Littlewood–
Paley piece of q and q̄.

Our notation for the Littlewood–Paley decomposition is standard: For each N ∈
2Z we define PN as a smooth localization (based on a partition of unity) to those
frequencies ξ ∈ R with N

2 ≤ |ξ| ≤ 2N . We then define

(1.24) P>N =
∑
K>N

PK and P≤N = I − P>N .

Note that if q is Schwartz, then so are qN := PNq, q≤N := P≤Nq, and q>N := P>Nq.
In light of (1.1), we will avoid usingM as a dyadic frequency parameter. Rather,

given M > 0, we define the ball

BM =
{
q ∈ L2 : ∥q∥2L2 ≤M

}
.(1.25)

This vocabulary allows us to give a more quantitative Fourier-based characteri-
zation of equicontinuity: Q ⊆ BM is equicontinuous if and only if, for any ε > 0,
we may find N = N(ε,Q) ∈ 2Z so that

(1.26) sup
q∈Q

∥q>N∥2L2 ≤ ε2M.

This equivalence is quite elementary to verify; see [23, §5] for details.
As our last piece of notation, we recall the Pauli matrices:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, and σ3 =

[
1 0
0 −1

]
,(1.27)

the last of which was seen already in (1.9).

Acknowledgements. R. K. was supported by NSF grant DMS-1856755 and M. V.
by grants DMS-1763074 and DMS-2054194.

2. The perturbation determinant

In this section we analyze the perturbation determinant a(k; q) defined in (1.22).
We begin with some basic estimates for the determinant:

Lemma 2.1. Let A ∈ I1. Then⏐⏐det(1 +A)
⏐⏐ ≤ exp(∥A∥I1),(2.1) ⏐⏐det(1 +A)− 1
⏐⏐ ≤ ∥A∥I1 exp(∥A∥I1),(2.2) ⏐⏐det(1 +A)− exp{trA}
⏐⏐ ≤ 1

2∥A∥
2
I2

exp(∥A∥I1
).(2.3)

Further, if B ∈ I1 and we have

1 + ∥A∥I1
+ ∥B∥I1

≤M,
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then

det(1 +A) det(1 +B) = det
[
(1 +A)(1 +B)

]
,(2.4) ⏐⏐det(1 +A)− det(1 +B)

⏐⏐ ≤ eM∥A−B∥I1
,(2.5) ⏐⏐det(1 +A)− det(1 +B)

⏐⏐ ≤ e2M
2
(⏐⏐tr(A−B)

⏐⏐+ ∥A−B∥I2

)
.(2.6)

Proof. The estimate (2.3) is proved in [22, Lemma 3.2] by combining the Weyl
inequalities (cf. [39, Theorem 1.15]) with the identity

det(1 +A) = 1 +

∞∑
n=1

1

n!

∑
i1,...,in
distinct

λi1λi2 . . . λin .

Here, λj are the non-zero eigenvalues of A repeated according to algebraic multi-
plicity. This expression also yields (2.1) and (2.2):

LHS(2.1) ≤
∞∑

n=0

1

n!

(∑
j

|λj |
)n

≤ RHS(2.1),

LHS(2.2) ≤
∞∑

n=1

1

n!

(∑
j

|λj |
)n

≤ ∥A∥I1

∞∑
ℓ=0

∥A∥ℓI1

(ℓ+ 1)!
≤ RHS(2.2).

The identity (2.4) is proved in [39, Theorem 3.5] and the estimate (2.5) in [39,
Theorem 3.4].

For (2.6) we employ the regularized determinant

det2(1 +A) = det(1 +A) exp{− trA},
and from [39, Theorem 9.1] we have⏐⏐det2(1 +A)− det2(1 +B)

⏐⏐ ≤ e
1
2M

2

∥A−B∥I2 .

We then combine this with (2.1) to obtain

LHS(2.6) ≤
⏐⏐det(1 +A)− exp

{
tr(A−B)

}
det(1 +B)

⏐⏐
+
⏐⏐exp{tr(A−B)

}
− 1
⏐⏐⏐⏐det(1 +B)

⏐⏐
≤ eM

⏐⏐det2(1 +A)− det2(1 +B)
⏐⏐+ e2M

⏐⏐tr(A−B)
⏐⏐

≤ e2M
2
(⏐⏐tr(A−B)

⏐⏐+ ∥A−B∥I2

)
. □

Next, we record some useful estimates for frequency-localized potentials. For
N ∈ 2Z, we introduce the notation

ΛN = Λ(k; qN ), ΓN = Γ(k; qN ),

with similar definitions for Λ≤N , Γ≤N , etc. Operator estimates for Γ can be deduced
from those for Λ (and vice versa) by conjugating with a spatial reflection. Thus,
we will typically only state these bounds in terms of either Λ or Γ in what follows.

The following estimates are essentially identical to those in [22, Lemma 2.4]:

Lemma 2.2. For k ∈ C+ we have the estimate

(2.7)
√
Im k∥Λ∥op ≤

√
Im k∥Λ∥I2

≲ ∥q∥L2 .

Further, if k = iκ ∈ iR+ and N ∈ 2Z, we have the estimates
√
κ∥Λ≤N∥op ≲

√
N
κ ∥q≤N∥L2 ,(2.8)



LARGE-DATA EQUICONTINUITY FOR THE DERIVATIVE NLS 11

√
κ∥Λ>N∥I2 ≲

√
κ
N log

(
4 + N2

κ2

)
∥q>N∥L2 .(2.9)

Proof. The estimate (2.7) follows from (1.21). Using Bernstein’s inequality, for
k = iκ we may bound

∥ΛN∥op ≲ 1
κ∥qN∥L∞ ≲

√
N
κ ∥qN∥L2 .

We then sum to obtain (2.8). The estimate (2.9) follows from (1.21) and the fact
that

∥Λ>N∥2I2
∼
∑
K>N

∥ΛK∥2I2
. □

Our first application of Lemmas 2.1 and 2.2 is a description of the behavior
of a(iκ; q) for κ large and small. Such asymptotics were also analyzed in [2] via
similar operator-theoretic means, although their primary focus was on the case
q ∈ H1/2(R).

Proposition 2.3. Let 0 < ε < 1
2 and q ∈ BM , where BM is as defined in (1.25).

(i) If N ∈ 2Z is chosen so that

(2.10) ∥q>N∥2L2 ≤ ε2M,

then, for any κ ≥ N
ε2 , we have

(2.11)
⏐⏐⏐a(iκ; q)− e−

i
2∥q∥

2
L2

⏐⏐⏐ ≲M ε2.

(ii) If N ∈ 2Z is chosen so that

(2.12) ∥q≤N∥2L2 ≤ ε2M,

then, for any 0 < κ ≤ ε2N , we have

(2.13)
⏐⏐⏐a(iκ; q)− 1

⏐⏐⏐ ≲M ε2 log
(
1
ε

)
.

Proof. (i) Taking k = iκ for κ ≥ N
ε2 , we apply (2.7) and (2.8) to bound

√
κ∥Λ∥op ≤

√
κ∥Λ>N∥I2

+
√
κ∥Λ≤N∥op ≲ ∥q>N∥L2 +

√
N
κ ∥q∥L2 ≲ ε

√
M.

We then apply (2.7) and (2.3) to obtain⏐⏐⏐a(iκ; q)− exp
{
− tr

(
iκΛΓ

)}⏐⏐⏐ ≲ κ2∥Λ∥2op∥Γ∥2I2
exp
(
κ∥Λ∥I2

∥Γ∥I2

)
≲ ε2M2 exp

(
CM

)
,

for some constant C > 0.
A computation (see [22, Lemma 2.2]) shows that

tr
{
kΛ(f)Γ(h)

}
=

∫
R

ik

2k + ξ
f̂(ξ)ĥ(ξ) dξ.(2.14)

Using (2.14) with f = h = q and k = iκ, we have

i
2∥q∥

2
L2 − tr

{
iκΛΓ

}
=

∫
R

iξ|q̂(ξ)|2

2(2iκ+ ξ)
dξ,

and hence for κ ≥ N
ε2 ,⏐⏐⏐ i2∥q∥2L2 − tr

{
iκΛΓ

}⏐⏐⏐ ≲ N
κ ∥q≤N∥2L2 + ∥q>N∥2L2 ≲ ε2M.

Combining these bounds, we obtain (2.11).
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(ii) Assuming k = iκ with 0 < κ ≤ ε2N , and combining (2.7) with (2.9), we obtain
√
κ∥Λ∥I2 ≤

√
κ∥Λ≤N∥I2 +

√
κ∥Λ>N∥I2

≲ ∥q≤N∥L2 +

√
κ
N log

(
4 + N2

κ2

)
∥q∥L2

≲ ε
√

log
(
1
ε

)√
M.

We then apply (2.2) to bound⏐⏐⏐a(iκ; q)− 1
⏐⏐⏐ ≲ κ∥Λ∥I2

∥Γ∥I2
exp
(
κ∥Λ∥I2

∥Γ∥I2

)
≲ ε2 log

(
1
ε

)
M exp

(
CM

)
,

for some C > 0, which gives us (2.13). □

Proposition 2.3 provides an alternate path to proving the following result shown
already in [2]:

Corollary 2.4. For all q ∈ L2 we have

lim
κ→0

a(iκ; q) = 1 and lim
κ→∞

a(iκ; q) = e−
i
2∥q∥

2
L2 .

From Proposition 2.3(i), we also obtain the following:

Corollary 2.5. Let ε > 0 and Q ⊆ BM be equicontinuous. Given N ∈ 2Z so that
Q satisfies (1.26) and κ ≥ N

ε2 , we have

(2.15) sup
q∈Q

⏐⏐⏐a(iκ; q)− e−
i
2∥q∥

2
L2

⏐⏐⏐ ≲M ε2.

In our proof of Theorem 1.5, we will employ the estimates of Proposition 2.3 in
conjunction with the following factorization property:

Proposition 2.6 (Factorization). Let 0 < ε ≤ 1
4 be a dyadic number and q ∈ BM .

If N ∈ 2Z is such that

(2.16) ∥qε3N<·≤ N
ε3
∥L2 ≤ ε∥q∥L2 ,

then

(2.17)
⏐⏐⏐a(iκ; q)− a(iκ; q≤N ) a(iκ; q>N )

⏐⏐⏐ ≲M ε2 uniformly for κ > 0.

Proof. Let k = iκ for κ > 0.
If 0 < κ ≤ N , we may apply (2.7) and (2.9) with the hypothesis (2.16) to

estimate
√
κ∥Λ>N∥I2

≤
√
κ∥ΛN<·≤ N

ε3
∥I2

+
√
κ∥Λ> N

ε3
∥I2

≲ ∥qε3N<·≤ N
ε3
∥L2 +

√
κε3

N log
(
4 + N2

ε6κ2

)
∥q∥L2

≲ ε
√
M.

Conversely, if κ ≥ N then from (2.7), (2.8), and (2.16) we have
√
κ∥Γ≤N∥op ≤

√
κ∥Γε3N<·≤N∥I2

+
√
κ∥Γ≤ε3N∥op

≲ ∥qε3N<·≤ N
ε3
∥L2 +

√
ε3N
κ ∥q∥L2

≲ ε
√
M.
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Combining these bounds, we deduce that

(2.18) κ∥Λ>N∥I2
∥Γ≤N∥op + κ∥Γ>N∥I2

∥Λ≤N∥op ≲ ε2M uniformly for κ > 0.

From (2.14), we get

tr
{
iκΛ≤NΓ>N

}
=

∫
R

iκ
2κ−iξ q̂>N (ξ)q̂≤N (ξ) dξ.

Frequency support considerations then allow us to use (2.16) to bound

(2.19)
⏐⏐tr{iκΛ≤NΓ>N

}⏐⏐ ≲ ∥qε3N<·≤N∥L2∥qN<·≤ N
ε3
∥L2 ≲ ε2M.

We now apply (2.4), (2.5), and (2.18) to bound⏐⏐⏐a(iκ; q≤N ) a(iκ; q>N )− det
[
1− iκΛ≤NΓ≤N − iκΛ>NΓ>N

]⏐⏐⏐
≲ κ2∥Λ≤N∥op∥Γ≤N∥op∥Λ>N∥I2

∥Γ>N∥I2
exp
(
CM2

)
≲ ε4M2 exp

(
CM2

)
,

for some C > 0. Second, we use (2.6), (2.18), and (2.19) to bound⏐⏐⏐a(iκ; q)− det
[
1− iκΛ≤NΓ≤N − iκΛ>NΓ>N

]⏐⏐⏐
≲

{⏐⏐tr{iκΛ≤NΓ>N}
⏐⏐+ ⏐⏐tr{iκΛ>NΓ≤N}

⏐⏐+ κ∥Λ≤N∥op∥Γ>N∥I2

+ κ∥Λ>N∥I2
∥Γ≤N∥op

}
exp
(
CM2

)
≲ ε2M exp

(
CM2

)
,

which completes the proof of (2.17). □

3. The reciprocal of the transmission coefficient

In this section, we analyze a(λ; q) which is defined through the asymptotic be-
havior (as x→ ±∞) of solutions to the Kaup–Newell system

(3.1) ψ′ = −iσ3λ2ψ + λ

[
0 q
−q̄ 0

]
ψ.

We begin by discussing the key identities for q ∈ C∞
c (R). In this case, it is trivial

to see that there are matrix solutions Ψ± to (3.1) satisfying

(3.2) Ψ±(x;λ)eiλ
2xσ3 = Id for ±x sufficiently large.

Indeed, equality holds as soon as x is large enough to lie beyond the support of q.
Moreover, for each x ∈ R, the map λ ↦→ Ψ±(x;λ) is entire and detΨ± = 1.

Note that the solution Ψ appearing in the introduction is precisely Ψ−. More-
over, when q ∈ C∞

c (R), it is evident that limit (1.11) exits and defines a matrix of
determinant one. To verify (1.12), we need to employ certain symmetries of (3.1).

If ψ is a solution of (3.1) then σ3ψ is a solution with λ replaced by −λ, and
σ1σ3ψ̄ is also a solution with λ replaced by λ̄. (Here we use the notations (1.27).)
By comparing asymptotic behavior, we deduce that

Ψ±(x;λ) = σ3Ψ
±(x;−λ)σ3,(3.3a)

Ψ±(x;λ) = σ1σ3Ψ±(x; λ̄)σ3σ1.(3.3b)
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The assertions (1.12) follow from this and the fact that detS(λ; q) = 1.
Moving forward, we would like to focus on the particular matrix element Ψ−

11

of the Jost solution Ψ−, which we will characterize as the solution of certain inte-
gral equations. Our ultimate aim is to provide useful means of analyzing the key
quantity a(λ; q). Initially, this will just be for q ∈ C∞

c (R).
The role of a and b as scattering coefficients is apparent from the relation

(3.4) Ψ−
11(x) = ae−iλ2x + beiλ

2x

for x to the right of the support of q. Concretely, 1/a represents the amplitude of
the transmitted wave, while b/a represents the amplitude of the reflected wave.

Our first approach is via a Fredholm integral equation. From (3.4) and (3.2), we
know that

Ψ−
21, q̄Ψ−

11, and Ψ−
11 − a(λ)e−iλ2x

are all square-integrable when λ2 ∈ C+; moreover, they satisfy

(−iλ2 + ∂)Ψ−
21 = −λq̄Ψ−

11 and (−iλ2 − ∂)[Ψ−
11 − a(λ)e−iλ2x] = −λqΨ−

21.

Thus, for λ2 ∈ C+ we have

Ψ−
11(x)− a(λ)e−iλ2x = λ2(−iλ2 − ∂)−1q(−iλ2 + ∂)−1q̄Ψ−

11.(3.5)

This representation will be used to prove the Jost–Pais identity (1.15) in Lemma 3.3.
A second approach is to represent Ψ−

11 as the solution of the Volterra equation

(3.6) Ψ−
11(x) = e−iλ2x − λ2

∫ x

−∞

∫ s

−∞
e−iλ2(x−2s+y)q(s)q̄(y)Ψ−

11(y) dy ds,

which follows simply from the initial conditions: Ψ−
11(x) = e−iλ2x and Ψ−

12(x) = 0
for every x to the left of the support of q ∈ C∞

c (R).
While (3.6) is perfectly satisfactory for constructing a(λ; q) via

(3.7) a(λ; q) = lim
x→∞

eiλ
2xΨ−

11(x) = 1− λ2
∫ ∞

−∞

∫ s

−∞
eiλ

2(2s−y)q(s)q̄(y)Ψ−
11(y) dy ds

and for verifying most of the properties we need, it is not well suited to describing
the large-λ asymptotics. In order to give a similar representation that will serve all
our needs, we adopt a change of unknowns introduced already in [20]: Setting

γ(x) = e
1
2 im(x)σ3

[
1 0

− 1
2 q̄(x) iλ

] [
Ψ−

11(x)
Ψ−

21(x)

]
with m(x) =

∫ x

−∞
|q(y)|2 dy,

we find that

γ′ = −iσ3λ2γ − i

[
0 qeim

−re−im 0

]
γ where r = i

2 q̄
′ + 1

4 |q|
2q̄.(3.8)

Remark 3.1. In deriving the equation for γ, we used the following general result:

P (∂x + iλ2σ3 −Q) = (∂x + iλ2σ3 − Q̃)P ⇐⇒ Q̃P = P ′ + iλ2[σ3, P ] + PQ.

Using the first component of the vector γ, we build ϕ(x) := eiλ
2xγ1(x). For this

function, we have the following analogues of (3.6) and (3.7):

ϕ(x) = 1 +

∫ x

−∞

∫ s

−∞
e2iλ

2(s−y)+im(s)−im(y)q(s)r(y)ϕ(y) dy ds,(3.9)

e
i
2∥q∥

2
L2a(λ; q) = lim

x→∞
ϕ(x).(3.10)
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This is the representation that will allow us to prove the estimates we need. Notice
that in both (3.6) and (3.9), the spectral parameter λ only appears squared. Thus,
it is natural to adopt k = λ2 with Im k ≥ 0 as our primary parameter (as in

Section 2); by
√
k, we will always mean the value in the first quadrant.

We will need two further notations: We write X for the Banach space of holo-
morphic functions f : C+ → C such that f and f ′ extend continuously to ∂C+ and
for which

∥f∥X = sup
k∈C+

(
⟨k⟩|f(k)|+ ⟨k⟩2|f ′(k)|

)
<∞.(3.11)

The space X is readily seen to be a closed subspace of the Hardy space H∞(C+).
We also recall the notation H4,4(R) denoting the completion of S(R) in the norm

∥q∥2H4,4 = ∥q(4)∥2L2 + ∥⟨x⟩q′′′∥2L2 + ∥⟨x⟩2q′′∥2L2 + ∥⟨x⟩3q′∥2L2 + ∥⟨x⟩4q∥2L2 .

Lemma 3.2. The function q ↦→ e
i
2∥q∥

2
L2a(

√
k; q)− 1 extends from q ∈ C∞

c (R) to a
real-analytic X-valued function of q ∈ H4,4(R).

Proof. First we construct the solution ϕ(x; k) by interpreting (3.9) as the Volterra
integral equation

ϕ = 1 +Aϕ with [Aϕ](x) =

∫ x

−∞
A(x, y; k)ϕ(y) dy(3.12)

and integral kernel

A(x, y; k) =

∫ x

y

e2ik(s−y)+im(s)−im(y)q(s)r(y) ds.

We will solve (3.12) by iteration, working in the Banach space C comprised of
those bounded continuous functions φ : R → C that have limits as x → ±∞,
which we endow with the supremum norm (or equivalently, in the Banach space
of continuous functions on the two-point compactification [−∞,∞]). This small
wrinkle is helpful in light of (3.10).

Estimating the kernel either directly or after integrating by parts in s, we find

|A(x, y; k)| ≲ ∥q∥L1 |r(y)| and |A(x, y; k)| ≲ |k|−1
[
∥q∥L∞ + ∥(eim/2q)′∥L1

]
|r(y)|

uniformly for Im k ≥ 0. This shows ∥Aφ∥L∞ ≲ ⟨k⟩−1∥φ∥L∞ . Additionally, for
x < x′ we have ∫

|A(x, y; k)−A(x′, y; k)| dy ≤ ∥r∥L1

∫ x′

x

|q(s)| ds,

which shows that in fact A : C → C. Iterating the bounds above shows

∥An∥C→C ≤ 1

n!

[
C
(
∥q∥H4,4

)
⟨k⟩

]n
,

which in turn guarantees that ϕ can be constructed as ϕ =
∑∞

n=0A
n1.

This series construction shows that, when viewed as a C-valued function, ϕ(x; k, q)
has real-analytic dependence on q ∈ H4,4(R), is a continuous function of k in the
closed upper half-plane, and is a holomorphic function of k ∈ C+. Our estimates
on A also show the quantitative bound⏐⏐e i

2∥q∥
2
L2a(

√
k; q)− 1

⏐⏐+ sup
x

|ϕ(x; k, q)− 1| ≲ ⟨k⟩−1,
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uniformly for k ∈ C+ and q in bounded subsets of H4,4(R).
Mimicking the arguments above, we first see that⏐⏐ d

dkA(x, y; k)
⏐⏐ ≲ ⟨k⟩−1C

(
∥q∥H4,4

)
⟨y⟩|r(y)|

and then that the k-derivative of a(
√
k; q) is bounded and continuous on the closed

upper half-plane. This does not quite suffice to prove the ⟨k⟩−2 decay we require;
the sole obstruction is the term

lim
x→∞

d
dk [A1](x) =

∫ ∞

−∞

∫ ∞

y

2i(s− y)e2ik(s−y)+im(s)−im(y)q(s)r(y) ds dy,

which the preceding arguments only show to be O(⟨k⟩−1). The key to handling this
term is to first integrate by parts in y:

2ik lim
x→∞

d
dk [A1](x) = −

∫ ∞

−∞

∫ ∞

y

2i(s− y)
[
∂
∂y e

2ik(s−y)
]
eim(s)−im(y)q(s)r(y) ds dy

=

∫ ∞

−∞

∫ s

−∞
e2ik(s−y) ∂

∂y

[
2i(s− y)eim(s)−im(y)q(s)r(y)

]
dy ds

and only then integrate by parts in s. In this way we obtain⏐⏐(2ik)2 lim
x→∞

d
dk [A1](x)

⏐⏐ ≲ ∫∫ ⏐⏐⏐ ∂2

∂s∂y

[
2i(s− y)eim(s)−im(y)q(s)r(y)

]⏐⏐⏐ dy ds
+

∫
|q(s)r(s)| ds,

which is easily estimated in terms of ∥q∥H4,4 . □

We are now ready to prove the Jost–Pais identity stated earlier as (1.15). Our
argument is modeled on [21, Lemma 2.8], which retains much of the spirit of the
original [19]. For a very different approach to such results, see [39, Proposition 5.7].

Lemma 3.3 (A Jost–Pais identity). For q ∈ S(R) and k ∈ C+ we have

(3.13) a(k; q) = a(
√
k; q).

Proof. Recall that a(k; q) is a continuous function of q ∈ L2 and a holomorphic

function of k ∈ C+. Similarly, by Lemma 3.2, a(
√
k; q) depends continuously on

q ∈ H4,4(R) and is also holomorphic for k ∈ C+. Thus, it suffices to prove the
identity (3.13) only for q ∈ C∞

c (R) and at those k where a(k; q) ̸= 0.
When a(k; q) ̸= 0, the identity (1.23) shows that the linear equation (3.5) is

uniquely solvable. We wish to write the solution via Fredholm expansion. To this
end, we first introduce the kernel

A(x, y) = −k
∫ ∞

x∨y

e−ik(x−2s+y)q(s)q̄(y) ds(3.14)

of the operator A = −k(−ik − ∂)−1q(−ik + ∂)−1q̄, as well as

A

(
x1, . . . , xn
y1, . . . , yn

)
= det

[
A(xi, yj)

]
1≤i,j≤n

.

As discussed in [39, Ch. 5], the determinant admits the expansion

a(k; q) = det(1 +A) = 1 +

∞∑
ℓ=1

∫
y1<···<yℓ

A

(
y1, . . . , yℓ
y1, . . . , yℓ

)
dy1 · · · dyℓ,
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and (when this is non-zero) we may write (1 +A)−1 = 1−B, where B has kernel

B(x, y) =
1

a(k; q)

∞∑
ℓ=0

∫
y1<···<yℓ

A

(
x, y1, . . . , yℓ
y, y1, . . . , yℓ

)
dy1 · · · dyℓ.

Thus, we may write the solution of (3.5) as

Ψ−
11(x) = a(k; q)e−ikx

[
1− eikx

∫
B(x, y)e−iky dy

]
.(3.15)

Observe that if x ≤ y1 ≤ min{y, y2, . . . , yℓ}, then

A

(
x, y1, . . . , yℓ
y, y1, . . . , yℓ

)
= 0,

because it is the determinant of a matrix whose first two rows are linearly dependent.
On the other hand, if x ≤ y ≤ min{y1, y2, . . . , yℓ}, then

eikxA

(
x, y1, . . . , yℓ
y, y1, . . . , yℓ

)
e−iky = A

(
y, y1, . . . , yℓ
y, y1, . . . , yℓ

)
.

Combining these observations, we find that for x < min supp(q),

eikx
∫
B(x, y)e−iky dy =

1

a(k; q)

∞∑
ℓ=0

∫
y<y1<···<yℓ

A

(
y, y1, . . . , yℓ
y, y1, . . . , yℓ

)
dy1 · · · dyℓ dy

=
1

a(k; q)

(
a(k; q)− 1

)
.

Returning to (3.15) and recalling that Ψ−
11(x) = e−ikx for x to the left of the

support of q, we deduce that

1 = a
[
1− 1

a (a− 1)
]
,

and hence a(k) = a(
√
k), as required. □

Having proved (3.13), we no longer need these two separate notations. We favor
a(k; q), even when k ∈ R, despite the fact that all our analysis of these boundary
values rests on the scattering interpretation.

Proposition 3.4. (i) The map H4,4 ∋ q ↦→
(
a−e− i

2∥q∥
2
L2
)
∈ X is locally Lipschitz.

(ii) If q ∈ S(R) and θ ∈ (0, π], then a(k; q) has only finitely many zeros in the sector{
k ∈ C : θ ≤ arg k ≤ π

}
.

(iii) For q ∈ S(R) and k ∈ R we have the following behavior for a(k; q) :

(3.16) a(0) = 1, |a(k)| ≥ 1 if k < 0, and |a(k)| ≤ 1 if k > 0.

Proof. The claims follow from Lemmas 3.2 and 3.3, where we note that (3.16) is a
consequence of (1.12). □

Our last results in this section concern the zeros of the perturbation determinant.
Given q ∈ L2, (1.23) shows that a(k; q) has a zero at k = z ∈ C+ if and only if
there is a non-zero ϕ ∈ L2 so that

(3.17) ϕ = z(−iz − ∂)−1q(−iz + ∂)−1q̄ϕ.

Recalling the definition of BM from (1.25), we then have the following:
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Lemma 3.5. Let q ∈ BM and suppose that ϕ ∈ L2 is a non-zero solution to (3.17)
with z ∈ C+. Then the vector-valued function ψ with

ψ1 = ϕ and ψ2 = −
√
z
(
−iz + ∂

)−1
q̄ϕ

belongs to H1(R) and is a solution to

(3.18) ψ′ = −iσ3zψ +
√
z

[
0 q
−q̄ 0

]
ψ.

Further, we have the estimates

∥ψ′∥L2 ≲ |z|⟨M⟩∥ψ∥L2 ,(3.19)

∥ψ∥L4 ≲
(
|z|⟨M⟩

) 1
4 ∥ψ∥L2 .(3.20)

Proof. As ϕ ∈ L2 is a solution of (3.17) and q ∈ L2, it is clear that ϕ ∈ H1 and
thence that ψ ∈ H1 and solves (3.18).

The Gagliardo–Nirenberg inequality gives us

∥ψ′∥L2 ≲ |z|∥ψ∥L2 +
√

|z|∥q∥L2∥ψ∥L∞ ≲ |z|∥ψ∥L2 +
√

|z|∥q∥L2∥ψ∥
1
2

L2∥ψ′∥
1
2

L2 ,

and the estimate (3.19) follows from Young’s inequality.
Combining the Gagliardo–Nirenberg inequality

∥ψ∥2L4 ≲ ∥ψ∥
3
2

L2∥ψ′∥
1
2

L2 ,

with (3.19) yields (3.20). □

Remark 3.6. For each z ∈ C+, constancy of the Wronskian guarantees that the
ODE (3.18) admits at most one solution in H1, up to scalar multiples. By unique-
ness for ODEs, this solution is non-vanishing at each x ∈ R. Note that this con-
strains the geometric multiplicity of eigenvalues, but not their algebraic multiplicity.
Thus, we cannot conclude that the perturbation determinant has only simple zeros.

We now apply Lemma 3.5 to obtain:

Proposition 3.7 (Zero-free region). Let Q ⊆ BM be equicontinuous. Given ε > 0,
choose N ∈ 2Z so that (1.26) holds. If q ∈ Q, z ∈ C+, and a(z; q) = 0, then

(3.21) |z| ≤ N
ε2 or arg z ≲M ε.

Proof. Applying Lemma 3.5, we may find a solution ψ ∈ H1 of (3.18) so that
∥ψ∥L2 = 1. Taking the inner product of (3.18) with σ3ψ and then taking the real
part, we obtain

Im
√
z = −Re⟨ψ1, qψ2⟩.

Applying (2.10) and (3.20), we then have

Im
√
z ≤ |⟨ψ1, qψ2⟩| ≲ ∥q≤N∥L∞∥ψ∥2L2 + ∥q>N∥L2∥ψ∥2L4 ≲

√
NM + ε

√
|z|M⟨M⟩,

which gives us (3.21). □



LARGE-DATA EQUICONTINUITY FOR THE DERIVATIVE NLS 19

4. The trace formula

An important ingredient in our proof of Theorem 1.5 will be the following propo-
sition, which appears as [2, Lemma 2.3]. For completeness, we give a simple, self-
contained proof here:

Proposition 4.1 (Mass = Zeros + Winding). Let q ∈ S(R) and θ ∈ (0, π] so that
a(k; q) has no zeros on the ray eiθR+. Then

(4.1) ∥q∥2L2 = 4πℓ− 2
i

∫ +∞eiθ

0

a′(k)
a(k) dk,

where ℓ denotes the number of zeros in the region {k ∈ C : θ < arg k < π}, counted
according to multiplicity.

Proof. We first treat θ = π. By Proposition 3.4,

(4.2)

∫ 0

−∞

a′(k)
a(k) dk −

i
2∥q∥

2
L2 = 2πid(q),

for some d(q) ∈ Z. As the left hand side is continuous as a map from S(R) → C
and d(0) = 0, we must have d(q) = 0 for all q ∈ S(R).

For θ ∈ (0, π), (4.1) follows from Proposition 3.4 and the argument principle. □

Proposition 4.1 provides a direct connection between q and the analytic function
a(k; q). The trace formula (4.4) below has the same structure. We prove it here for
general q ∈ S(R), following the path established already in [44]. The trace formula
for those q ∈ S(R) without spectral singularities played an important role in [2].

Proposition 4.2 (The trace formula). Fix q ∈ S(R) and let {zj} enumerate the
zeros of a(k; q) in C+, repeated according to multiplicity. Then there is a finite
positive measure µq on R so that

(4.3) a(k) =
∏

z̄j
zj

k−zj
k−z̄j

exp

[
1
iπ

∫
R

k
k−s dµq(s)

]
for all k ∈ C+,

and the following trace formula holds

(4.4) ∥q∥2L2 = 4
∑

arg(zj) +
2
π

∫
R
dµq(s).

Proof. We begin by proving (4.3). This will follow by combining the properties of
a(k; q) described in Proposition 3.4 with the general theory of inner/outer factor-
ization as discussed, for example, in [28].

As a(k; q) is a non-zero bounded holomorphic function in C+ that extends con-
tinuously to the boundary,∑

Im zj
1+|zj |2 <∞ and 1

1+s2 log |a(s; q)| ∈ L1(R).(4.5)

Moreover, a(k; q) admits the factorization

a(k; q) = eiφ̃B̃(k)Õ(k)S̃(k)(4.6)

where φ̃ ∈ [0, 2π), B̃(k) is the Blaschke product formed from the zeros {zj}, and
the outer factor Õ(k) and the singular inner factor S̃(k) take the form

Õ(k) = exp

{
i
π

∫
R

[
1

k−s + s
1+s2

]
log |a(s)| ds

}
,
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S̃(k) = exp

{
iβk − i

π

∫
R

[
1

k−s + s
1+s2

]
dσ(s)

}
.

Here β ≥ 0 and σ is a positive measure satisfying
∫ dσ(s)

1+s2 <∞ that is singular with
respect to Lebesgue measure.

By Proposition 3.4, we know that there is a δ > 0 so that δ < |zj | < δ−1 and
0 < arg zj < π − δ, uniformly in j. Likewise, it shows that log |a(s; q)| is O(|s|) as
s→ 0 and O(|s|−1) as |s| → ∞. In this way, we may upgrade (4.5) to∑

arg zj <∞ and 0 ≤ − 1
s log |a(s; q)| ∈ L1(R),(4.7)

where positivity is deduced from (3.16). These observations allow us to replace

B̃(k) and Õ(k) by

B(k) =
∏

z̄j
zj

k−zj
k−z̄j

and O(k) = exp

{
i
π

∫
R

[
1

k−s + 1
s

]
log |a(s)| ds

}
,(4.8)

provided we update φ̃ accordingly.
A universal property of the factorization (4.6) is that the non-tangential limit

of a(k; q) must vanish σ-almost everywhere. Consequently, Proposition 3.4 con-

fines the support of σ to a compact subset of (0,∞). In particular,
∫ dσ(s)

|s| < ∞.

Likewise, as |a(iκ; q)| → 1 as κ→ ∞, we see that β = 0.
In light of all this, we may write a(k) = eiφB(k)O(k)S(k) with singular factor

S(k) = exp

{
− i

π

∫
R

[
1

k−s + 1
s

]
dσ(s)

}
(4.9)

and consequently the representation (4.3) will hold with the finite positive measure

dµq(s) = − 1
s log |a(s; q)| ds+

1
sdσ(s),

once we verify that eiφ = 1. This last step is easily deduced by setting k = iκ and
sending κ → 0; indeed, by the dominated convergence theorem, O(iκ) and S(iκ)
converge to 1 as κ→ 0.

The trace formula (4.4) now follows from (4.1) and (4.3). □

Lemma 4.3. Fix q ∈ S(R). If the perturbation determinant a(k; q) has no zeros
in the sector

(4.10) Σ =
{
k ∈ C : π

4 < arg k < π
}
,

then it admits the lower bound

(4.11) |a(iκ)| ≳M 1 uniformly for κ > 0.

Proof. Proposition 4.2 ensures that

0 ≤ 2
π

∫
R
dµq(s) ≤M.

Thus, for k = iκ we may bound⏐⏐⏐⏐exp[ 1
iπ

∫
R

iκ
iκ−s dµq(s)

]⏐⏐⏐⏐ ≥ exp
(
− 1

2M
)
.

For fixed θ ∈ (0, π4 ], elementary calculus shows that the function

x ↦→
⏐⏐⏐ ix− eiθ

ix− e−iθ

⏐⏐⏐2
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achieves its minimum value on R+ at x = 1. Thus for κ, r > 0,

log
⏐⏐⏐ iκ− reiθ

iκ− re−iθ

⏐⏐⏐ ≥ log
1− sin θ

1 + sin θ
.

Noting that the right-hand side is a concave function of θ ∈ [0, π4 ], the Mean Value
Theorem guarantees that

(4.12) log
⏐⏐⏐ iκ− reiθ

iκ− re−iθ

⏐⏐⏐ ≥ −2
√
2θ for θ ∈ [0, π4 ].

We now enumerate the zeros of a(k; q) in C+ by {zj}. As arg zj ≤ π
4 , we may

apply (4.12) to the Blaschke product in (4.8) and then use (4.4) to estimate

|B(iκ)| ≥ exp
(
−2

√
2
∑

arg zj

)
≥ exp

(
− 1√

2
M
)
.

This completes the proof of (4.11). □

5. The base case

Our proof of Theorem 1.5 will proceed by induction on the number of zeros of
the perturbation determinant in the region Σ defined in (4.10). To this end, we
make the following definition:

Definition 5.1. We say that a set Q ⊆ S(R) has order J ≥ 0 if, for every q ∈ Q,
a(k; q) has exactly J zeros (counted by multiplicity) in the region Σ.

Given a set Q ⊆ S(R), we define the set

(5.1) Q∗ =
{
q ∈ S(R) : a(k; q) ≡ a(k; q̃) for some q̃ ∈ Q

}
.

Here, by a(k; q) ≡ a(k; q̃) we mean a(k; q) = a(k; q̃) for all k ∈ C+. It is clear
that if Q has order J ≥ 0, in the sense of Definition 5.1, then Q∗ also has order J .
Moreover, taking θ = π in Proposition 4.1, we obtain the following:

Lemma 5.2. If q, q̃ ∈ S(R) satisfy a(k; q) ≡ a(k; q̃), then

∥q∥L2 = ∥q̃∥L2 .

As a consequence, if Q ⊆ BM then Q∗ ⊆ BM .

We are now in a position to prove the base case of our inductive argument:

Proposition 5.3 (The base case). If Q ⊆ BM ∩ S(R) is an equicontinuous set of
order 0 then Q∗ ⊆ BM ∩ S(R) is equicontinuous.

Proof. As Q is equicontinuous, given a dyadic 0 < ε ≤ 1
4 sufficiently small (depend-

ing only on M), we may find N0 ∈ 2Z so that Q satisfies (1.26).
From Corollary 2.5, the definition (5.1) of Q∗, and Lemma 5.2, we may bound

(5.2) sup
q∈Q∗

⏐⏐⏐a(iκ; q)−e− i
2∥q∥

2
L2

⏐⏐⏐ = sup
q∈Q

⏐⏐⏐a(iκ; q)−e− i
2∥q∥

2
L2

⏐⏐⏐ ≲M ε2 for all κ ≥ N0

ε2 .

To prove the proposition, we will show that there exists N∗ = N∗(ε,N0,M) ∈ 2Z

so that

(5.3) sup
q∈Q∗

∥q>N∗∥2L2 ≲M ε2 log
(
1
ε

)
.
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For each q ∈ Q∗, the pigeonhole principle ensures that there exists N1 =
N1(q, ε) ∈ 2Z satisfying

(5.4) N0

ε4 ≤ N1 ≤ N0

ε4 ε
−6ε−2

so that q satisfies (2.16) with N = N1. We then claim that

(5.5)
⏐⏐⏐a(iκ; q)− a(iκ; q≤N1

)
⏐⏐⏐ ≲M ε2 log

(
1
ε

)
uniformly for κ > 0.

As a first step toward proving (5.5), we employ each part of Proposition 2.3.
Applying part (i) to q≤N1

with N = ε3N1 yields

(5.6)
⏐⏐⏐a(iκ; q≤N1

)− e−
i
2∥q≤N1

∥2
L2

⏐⏐⏐ ≲M ε2 uniformly for κ ≥ εN1,

while applying part (ii) to q>N1 with N = N1

ε3 yields

(5.7)
⏐⏐⏐a(iκ; q>N1

)− 1
⏐⏐⏐ ≲M ε2 log

(
1
ε

)
uniformly for 0 < κ ≤ N1

ε .

Let us first prove (5.5) in the regime κ ≥ εN1: We estimate⏐⏐⏐a(iκ; q)− a(iκ; q≤N1
)
⏐⏐⏐ ≤ ⏐⏐⏐a(iκ; q)− a(iN1; q)

⏐⏐⏐+ ⏐⏐⏐a(iκ; q≤N1
)− a(iN1; q≤N1

)
⏐⏐⏐

+
⏐⏐⏐a(iN1; q)− a(iN1; q≤N1

)a(iN1; q>N1
)
⏐⏐⏐

+
⏐⏐⏐a(iN1; q≤N1

)
⏐⏐⏐⏐⏐⏐a(iN1; q>N1

)− 1
⏐⏐⏐

≲M ε2 log
(
1
ε

)
by using (5.2) and (5.6) on the first line, (2.17) on the second, and (5.7) on the
third.

To complete the proof of (5.5), we argue as follows: If 0 < κ ≤ N1

ε , then (2.17)
and (5.7) guarantee that⏐⏐⏐a(iκ; q)− a(iκ; q≤N1)

⏐⏐⏐ ≤ ⏐⏐⏐a(iκ; q)− a(iκ; q≤N1)a(iκ; q>N1)
⏐⏐⏐

+
⏐⏐⏐a(iκ; q≤N1)

⏐⏐⏐⏐⏐⏐a(iκ; q>N1)− 1
⏐⏐⏐

≲M ε2 log
(
1
ε

)
.

By assumption, a(k; q) has no zeros in Σ; thus (4.11) holds. Combining this with
(5.5) shows that for ε sufficiently small (depending only on M),⏐⏐a(iκ; q)⏐⏐ ≳M 1 and

⏐⏐a(iκ; q≤N )
⏐⏐ ≳M 1.

Combining this with (5.5) yields (mirroring Rouché’s Theorem)

lim sup
κ→∞

⏐⏐⏐⏐∫ κ

0

a′(iκ;q)
a(iκ;q) dκ −

∫ κ

0

a′(iκ;q≤N )

a(iκ;q≤N ) dκ
⏐⏐⏐⏐ ≲M ε2 log

(
1
ε

)
,

provided ε is sufficiently small (depending only onM). Thus, using (4.1) we deduce

∥q>4N1
∥2L2 ≤ ∥q∥2L2 − ∥q≤N1

∥2L2 ≲M ε2 log
(
1
ε

)
.

This proves that (5.3) holds with the choice N∗ = 4N0ε
−4e−6ε−2

. □
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6. The Bäcklund transform

We begin this section by describing the Bäcklund transform for (DNLS), closely
following [36]. The ultimate purpose of this section is to determine the behavior of
equicontinuous sets under this transformation; this is the subject of Proposition 6.3.

If q ∈ S(R) and a(k; q) has a zero at k = z ∈ C+, Lemma 3.5 ensures that we
can find a non-zero solution ψ = (ψ1, ψ2)

T ∈ H1 of (3.18). In view of Remark 3.6,
ψ is unique up to scalar multiples and nowhere vanishing. We then define

(6.1) d(x; z) =
√
z|ψ1(x)|2 +

√
z̄|ψ2(x)|2

and observe that, since z ∈ C+,

(6.2) |d(x; z)| ≥ |Re
√
z||ψ(x)|2 > 0.

As a consequence, we may define

(6.3) G(x; z) =
d̄(x; z)

d(x; z)
and S(x; z) = 4 Im z

ψ1(x)ψ̄2(x)

d(x; z)
.

The corresponding Bäcklund transform of q is then defined to be

(6.4) B(q; z) = G2q +GS.

Note that G, S, and B depend on z and q, but not on ψ, due to homogeneity and
Remark 3.6.

Lemma 6.1. Let q ∈ S(R) be such that a(k; q) has a zero at k = z ∈ C+. Then
G ∈ C∞ and S ∈ S(R) satisfy

∥G∥L∞ = 1 and ∥G′∥L2 ≲ | Im
√
z|
(
∥B(q)∥L2 + ∥q∥L2

)
,(6.5)

∥S∥L∞ ≤ 4| Im
√
z| and ∥S′∥L2 ≲ |z|

(
∥B(q)∥L2 + ∥q∥L2

)
.(6.6)

Moreover, B(q; z) ∈ S(R) and for any k ∈ C+\{z} we have

(6.7) a(k;B(q; z)) = z
z̄
k−z̄
k−za(k; q).

Proof. Given λ2 ∈ C+, Levinson’s Theorem [5, §3.8] guarantees the existence of
solutions Ψ±(x;λ) to

(6.8) ∂xΨ
± = −iσ3λ2Ψ± + λ

[
0 q
−q̄ 0

]
Ψ± with lim

x→±∞
Ψ±(x)eiλ

2xσ3 = Id.

From the boundary conditions, we see that the column Ψ−
1 (x) decays exponen-

tially as x → −∞, while Ψ−
2 (x) grows exponentially. Analogously, Ψ+

1 (x) grows
and Ψ+

2 (x) decays as x → +∞. Note that the decaying Jost solutions are unique;
the growing solutions are not (one may add any multiple of the decaying column).
While this ambiguity prevents one from defining b(λ; q) for λ2 /∈ R, it does not
affect a(λ; q) since we always have the Wronskian relation

(6.9) a(λ; q) = det
[
Ψ−

1 (x, λ) Ψ+
2 (x, λ)

]
,

which only involves the decaying solutions.
Let µ =

√
z ∈ C+. When λ = µ, the ODE in (6.8) is precisely that satisfied by ψ.

On the other hand, the columns of Ψ−(x;µ) (and likewise those of Ψ+(x;µ)) form
a basis of solutions to this linear problem. As ψ is non-zero and square integrable,
we deduce that

ψ(x) = C−Ψ
−
1 (x;µ) = C+Ψ

+
2 (x;µ),
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for some non-zero constants C± ∈ C. Using the equation (3.18), we may write

e−iµ2xψ(x) =

[
0
C+

]
− µ

∫ ∞

x

[
0 e−2iµ2(x−y)q(y)

−q̄(y) 0

]
e−iµ2yψ(y) dy,

eiµ
2xψ(x) =

[
C−
0

]
+ µ

∫ x

−∞

[
0 q(y)

−e2iµ2(x−y)q̄(y) 0

]
eiµ

2yψ(y) dy.

As q ∈ S(R), we may use these expressions to show that, for any η ∈ C∞ that is
supported on [−1,∞) and identically 1 on [1,∞), we have

η(x)

(
e−iµ2xψ(x)−

[
0
C+

])
,
[
1− η(x)

](
eiµ

2xψ(x)−
[
C−
0

])
∈ S(R).

This suffices to show that G ∈ C∞, S ∈ S(R), and

(6.10) G(x) →

⎧⎨⎩
µ
µ̄ as x→ +∞,

µ̄
µ as x→ −∞.

From (6.2) and (6.3), for all x ∈ R we have

|G| = 1 and |S| ≤ 4| Im
√
z|.

Using (3.18), we compute

d′ = 2i Im z
[
qψ̄1ψ2 − i

√
z|ψ1|2 + i

√
z̄|ψ2|2

]
.

Using also the identities

G2 − 1 = − 2i Im z
d2

(
|ψ1|4 − |ψ2|4

)
and |µ|2(G+ Ḡ)− 1

4 |S|
2 = 2Re(µ2),(6.11)

we obtain

(6.12) G′ = 1
2i

[
S̄B(q) + Sq̄

]
and S′ = 2|z|

i

[
B(q)− q

]
.

The estimates (6.5) and (6.6) follow immediately from these expressions.
Finally, we turn to proving (6.7). Fixing λ ∈ C so that Im(λ2) ≥ 0 and λ2 ̸= µ2,

we define

P (x;λ) =
µ

µ̄

1

λ2 − µ2

[
λ2G− |µ|2 − i

2λS

− i
2λS̄ λ2Ḡ− |µ|2

]
.

This matrix is invertible; indeed, by the second identity in (6.11),

detP =
µ2

µ̄2

λ2 − µ̄2

λ2 − µ2
.

Consider now Υ±(x;λ) := P (x;λ)Ψ±(x;λ). Applying Remark 3.1 with (6.12)
and (6.10) we find that

∂xΥ
± = −iσ3λ2Υ± + λ

[
0 B(q)

−B̄(q) 0

]
Υ± with lim

x→±∞
Υ±(x)eiλ

2xσ3 = Id.

Using this and (6.9) we obtain

a(λ2;B(q)) = det
[
Υ−

1 (λ) Υ+
2 (λ)

]
= det

[
PΨ−

1 (λ) PΨ+
2 (λ)

]
= (detP )a(λ2; q),

which proves (6.7). □

Our next result will be useful in proving that the Bäcklund transform preserves
equicontinuity.
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Lemma 6.2. Let q ∈ S(R) be such that a(k; q) has a zero at k = z ∈ C+. Then

(6.13) ∥B(q)∥2L2 = ∥q∥2L2 − 4 arg z,

and there exists an absolute constant C > 0 so that if N ∈ 2Z,P>N [B(q)]

L2 ≤ ∥q>N

8
∥L2 + C

√
|z|
N ∥q∥L2

(√
|z|
N + ∥q∥L2

)
,(6.14)

∥q>N∥L2 ≤
P>N

8
[B(q)]


L2 + C

√
|z|
N ∥q∥L2

(√
|z|
N + ∥q∥L2

)
.(6.15)

Proof. A quick computation using the second identity in (6.11) and (6.12) yields

|q|2 − |B(q)|2 = −2iḠG′.(6.16)

As z ∈ C+, formula (6.1) shows that d(x; z) lies in the open right-half plane, and
so G(x; z) ∈ C \ (−∞, 0]. Thus, integrating (6.16) and using (6.10), we derive the
identity (6.13).

To prove (6.14), we decompose

P>N [B(q)] = P>N

[
G2q>N

8

]
+ P>N

[
G2q≤N

8

]
+ P>N

[
GS
]
.

For the first term we use (6.5) to boundP>N

[
G2q>N

8

]
L2 ≤

q>N
8


L2 .

For the second, by first considering the Fourier support and then applying (6.5)
and (6.13) with Bernstein’s inequality, we getP>N

[
G2q≤N

8

]
L2 =

q≤N
8
P>N

8

[
G2
]

L2

≲ N− 1
2 ∥G∥L∞∥G′∥L2∥q∥L2

≲ N− 1
2 |z| 12 ∥q∥2L2 .

For the final term we use (6.5), (6.6), and (6.13) to bound

∥P>N

[
GS
]
∥L2 ≲ 1

N

(
∥G∥L∞∥S′∥L2 + ∥G′∥L2∥S∥L∞

)
≲ 1

N |z|∥q∥L2 .

The proof of (6.15) is essentially identical to that of (6.14), once we have observed
that (6.4) may be rewritten in the form

q = Ḡ2B(q)− ḠS. □

We are now ready to prove that the Bäcklund transform preserves equicontinuity.
Let us first define a set-valued Bäcklund transform. For a set Q ⊆ S(R), we define

B(Q) =
{
B(q; z) : q ∈ Q, z ∈ Σ, and a(z; q) = 0

}
,

where Σ is as defined in (4.10).

Proposition 6.3. Let M > 0 and Q ⊆ BM ∩ S(R) be a set of order J ≥ 1 in the
sense of Definition 5.1. Taking Q∗ to be defined as in (5.1), we have the following
properties:

(i) B(Q) ⊆ B(Q∗) ⊆ B(Q)∗ are subsets of BM ∩ S(R) of order J − 1.
(ii) If Q is equicontinuous, then B(Q) is equicontinuous.
(iii) If Q and B(Q)∗ are equicontinuous, then Q∗ is equicontinuous.



26 B. HARROP-GRIFFITHS, R. KILLIP, AND M. VIŞAN

Proof. By construction and Lemma 6.1, we have B(Q) ⊆ B(Q∗) ⊆ B(Q)∗ ⊆ S(R),
where all three sets B(Q), B(Q∗), and B(Q)∗ have order J − 1. As Q ⊆ BM ,
Lemma 5.2 and the identity (6.13) yield B(Q)∗ ⊆ BM . This completes the proof
of (i).

If Q is equicontinuous, Proposition 3.7 ensures that

(6.17) sup
{
|z| : q ∈ Q∗, z ∈ Σ, and a(z; q) = 0

}
≲M,Q 1.

Thus (6.14) gives

lim sup
N→∞

sup
q∈B(Q)

∥q>N∥L2 ≲ lim sup
N→∞

sup
q∈Q

∥q>N∥L2 = 0,

which proves (ii).
Finally, if B(Q)∗ is equicontinuous then B(Q∗) ⊆ B(Q)∗ is also equicontinuous

and (6.15) and (6.17) then give us

lim sup
N→∞

sup
q∈Q∗

∥q>N∥L2 ≲ lim sup
N→∞

sup
q∈B(Q∗)

∥q>N∥L2 = 0,

which completes the proof of (iii). □

7. Induction on zeros

In this brief section we complete the proof of Theorem 1.5. We proceed by
induction on the number of zeros in the sector Σ defined in (4.10); this is formalized
as the notion of order introduced in Definition 5.1.

Proposition 7.1 (Induction on zeros). If Q ⊆ BM ∩ S(R) is an equicontinuous
set of order J ≥ 0 then Q∗ ⊆ BM ∩ S(R), defined as in (5.1), is equicontinuous.

Proof. We proceed by induction on J . Proposition 5.3 provides the base case J = 0.
For the inductive step, we fix J ≥ 1 and suppose that the statement is true for sets
of order J − 1.

If Q ⊆ BM ∩ S(R) is an equicontinuous set of order J , Proposition 6.3(ii) en-
sures that B(Q) ⊆ BM ∩S(R) is an equicontinuous set of order J−1. Applying the
inductive hypothesis to B(Q) we conclude that B(Q)∗ is equicontinuous. Proposi-
tion 6.3(iii) then yields that Q∗ is equicontinuous, as required. □

We finish by showing that our main result, Theorem 1.5, follows readily from
this proposition:

Proof of Theorem 1.5. For each q ∈ Q, Proposition 3.4 ensures that a(k; q) has at
most a finite number of zeros in Σ. Moreover, (4.4) ensures there are at most ⌊M

π ⌋
such zeros. As a consequence, we can decompose

Q =

⌊M
π ⌋⋃

J=0

Q(J),

where Q(J) ⊆ BM ∩ S(R) is a set of order J . As Q is equicontinuous, each Q(J) is
equicontinuous, as well.

By Proposition 7.1, each Q
(J)
∗ ⊆ BM ∩ S(R) is equicontinuous, and hence

Q∗ =

⌊M
π ⌋⋃

J=0

Q
(J)
∗

is equicontinuous. □
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