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ABSTRACT. We consider the derivative NLS equation in one spatial dimension,
which is known to be completely integrable. We prove that the orbits of L2
bounded and equicontinuous sets of initial data remain bounded and equicon-
tinuous, not only under this flow, but under the entire hierarchy. This allows
us to remove the small-data restriction from prior conservation laws and global
well-posedness results.

1. INTRODUCTION

The derivative nonlinear Schrédinger equation,
(DNLS) iga+d" +i(lalq) =0,

describes the time evolution of a complex-valued function ¢ on the line. (Here and
below, primes denote spatial derivatives.) It arises both as an effective equation in
plasma physics [14,/33,134] and as an example of a completely integrable PDE [20].

As a conspicuous dispersive equation, the well-posedness question for
has received considerable attention over the years. As we shall discuss more fully
below, a robust theory of local well-posedness has been known for some time, as
has a small-data global theory. However, it was only very recently that global
well-posedness could be proved for large data (even of Schwartz class). The central
bottle-neck in the theory of this equation has been obtaining satisfactory a priori
bounds for solutions. This is startling — as a completely integrable system,
admits infinitely many conservation laws!

Preeminent among the conserved quantities for (DNLS)) is

(11) M@= [ lafe) do
This is manifestly coercive; moreover, it is invariant under the scaling
(1.2) q(t,x) — Vhq(h*t, hx) for h>0

that preserves (DNLS]). When we spoke of small-data well-posedness, we precisely
meant under a restriction on the size of M (q).
While (DNLS)) admits infinitely many other conserved quantities, such as

(1.3) Hi(q) = —%/i(qc.?’—ciq’H lq|* da,

(1.4) Halg) = / 4P + 2ilaP(ad — aq') + al® de,

it turns out that none are coercive. We will further justify this claim below when

we discuss the forward/inverse scattering technique. For the moment, let us focus

on M, Hy, and Hy. The failure of their coercivity is best witnessed by a concrete
1
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example: the algebraic soliton. This solution, which will be the central antagonist
in our story, has initial data

_ 2(1 —iw) ;0
(1.5) qa(r) = me /

Direct computation shows
M(Qa) =4m  and Hl(‘]a) = HQ(Qa) = 0;

moreover, these values are inherited by all rescalings of the algebraic soliton.
Thus, no combination of M, H;, and H, can control the H' norm for all solutions
to (DSLS).

In fact, the algebraic soliton serves as a minimal counter-example to the
coercivity of M, Hy, and Hs. This was proved by Wu in [43], who showed that the
simultaneous conservation of M, H;, and Hy does provide an a priori H' bound
for all solutions with M(q) < 4.

Our goal in this paper is to prove that the flow map for preserves L2-
equicontinuity. This question was posed in [22], where it was shown to have robust
consequences both for a priori bounds and for the well-posedness problem. To
formulate matters precisely, we need one preliminary definition:

and evolution ¢(t,z) = qu(x — t)eit/4.

Definition 1.1. A bounded set Q C L?(R) is said to be L?-equicontinuous if

limsup sup / lq(z —y) — q(x)|* dz = 0.
y—=0  geQ

An equivalent formulation of equicontinuity as tightness of the Fourier transforms
will be useful later and is presented in below.

As we do not currently know whether L? initial data leads to (even local) so-
lutions, we formulate the preservation of equicontinuity for a narrower (yet dense)
class of initial data. Specifically, we will consider Schwartz-class initial data. As
we will discuss below, such initial data leads to global Schwartz solutions.

Theorem 1.2. Given an L?-bounded and equicontinuous set Q@ C S(R) of Schwartz-
class initial data for (DNLS)), the attendant collection of orbits

{q(t) : q(0) € Q and t € R}
is also L?-bounded and equicontinuous.

The definition of equicontinuity can easily be adapted to any Banach space of
functions on R. The facts that L? is scaling-critical for and that it coincides
with the conserved quantity M makes this the most natural (and most ambitious)
space to choose here.

Theorem [1.2] is phrased in terms of Schwartz-class solutions, not only because
we know that such solutions exist, but also because they provide an effective way
to address data with less regularity or decay.

The question addressed in Theorem [I.2] was pinpointed as important for the
theory of in [22]; see |22, Conjecture 1.1] as well as the more general
[22, Conjecture 1.2] that we will address in Theorem below. Theorem 1.3
of [22] settled these questions in the case of sets @ with sup{M(q) : ¢ € Q} < 4.
Note that M = 47 is precisely the threshold delineated by the algebraic soliton
that we discussed earlier. Our purpose in this paper is to remove such small data
restrictions.
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The second major theme of [22] was demonstrating important consequences
of L?-equicontinuity for . In formulating such results, [22] introduced a
threshold M, defined by the property that equicontinuity is preserved for sets with
sup M (q) < M,; see |22| Definition 1.4] for the precise formulation. By proving that
M, = oo in this paper, we immediately obtain a number of corollaries from [22].
For example, the following a priori bounds for (arbitrarily large) solutions:

Corollary 1.3. Fiz 0 < s < 5 or s = 1. There is a function C; : [0,00) — [0, 00)
so that

(1.6) Slip\IfJ(t)HHs(R) < Cs(llg0)l = my)

for every solution q(t) to (DNLS|) with initial data ¢(0) € S(R).

The possibility of choosing 0 < s < % or s = 1 in Corollary reflects the fact
that we have grouped together two separate arguments from [22]. For small values
of s this result is [22, Theorem 4.3], which employs conservation of the perturbation
determinant; for s = 1 this recalls |22 Proposition 4.1], which shows how one may
combine equicontinuity with the conserved quantities M and Hs to obtain a priori
bounds.

Prior to [22], Klaus and Schippa [26] proved H*-bounds for 0 < s < % under a
(non-quantitative) small-M restriction. Microscopic conservation laws were derived
under the same restriction in [42]; by the results of this paper, these laws extend
to all values of M.

As mentioned earlier, the theory of has been greatly hindered by the lack
of large-data a priori bounds in H*(R) spaces. This impasse was only very recently
dislodged by Bahouri and Perelman [2]. In a major breakthrough, they proved
with s = % Their paper has served as an important source of inspiration for us.

By employing Corollary as the base step of an inductive scheme, the recent
paper [1] proved a priori bounds in H*(R) spaces for all s > %

It follows from Corollary that a satisfactory local well-posedness theory (as
has long been known in H!(R), for example) is immediately global. Indeed, local
well-posedness guarantees that irregular solutions may be approximated (locally in
time) by Schwartz solutions and consequently inherit their bounds. These bounds
allow the local-in-time construction of solutions to be iterated indefinitely.

Prior to [22], equicontinuity was shown to play an important role in proving
optimal well-posedness for several other completely integrable dispersive equations,
such as KdV, NLS, and mKdV; see [4,|12,[23]. For these arguments, however,
one needs to know that equicontinuity is preserved not merely for the evolution
in question, but for the whole hierarchy. Just such a conjecture was formulated
for in [22] and will be settled in this paper; see Theorem In this
way, |22, Theorem 1.5] yields the following:

Corollary 1.4. For % <s < %, the evolution (DNLS) is globally well-posed in
H:(R).

The notion of well-posedness meant here is this: For any sequence of Schwartz
initial data ¢,(0) that is convergent in H*®(R) the corresponding solutions g, (t)
converge in Cy([—T,T]; H*(R)) for every finite T > 0. As s > ¢, convergence also
holds in L3([-T,T] x R); thus, the limiting trajectory is a distributional solution to
. While these solutions clearly depend continuously on the initial data, it
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was shown in [3|40] that the data-to-solution map cannot be uniformly continuous
on bounded subsets of H*(R) when s < 1.

The previous state of the art for large data local well-posedness in H*(R) spaces
was § > % Local well-posedness has also been studied in Fourier—Lebesgue spaces,
[8H10]; such spaces are better suited for studying invariant measures and were used
for this purpose in [35].

Many years before Wu'’s 47 result in [43], Hayashi and Ozawa [13] proved that M
and Hy control the H! norm of solutions when M (q) < 2. Using this ingredient,
they proved that is globally well-posed in H!(R) under this restriction on
M. They also proved that such solutions with Schwartz-space initial data remain
Schwartz.

A series of subsequent works, [6,(7,/32,/41], culminated in a proof that
is globally well-posed in H*(R) for s > %, in the M < 27 regime. Following the
discovery of the 4w threshold in [43], the case s > % and M < 47 was treated
in [11].

Combining the large-data bounds proved recently by Bahouri and Perelman [2]
with the local theory discussed above shows that is globally well-posed in
H*(R) for s > % In this way, [2] yields the first large-data global well-posedness
result in Sobolev spaces. Corollary improves upon this yielding global well-
posedness for s > é. This brings us closer to the critical scaling; moreover, even
local well-posedness for large initial data was previously unknown for any s < %

While ill-suited to initial data in H® spaces (due to the poor physical decay), the
inverse scattering technique is extremely powerful, yielding not only well-posedness
of integrable equations, but also detailed information on the long-time behavior
of solutions. This approach to has advanced considerably in recent years
through the efforts of many people: |[15H18,[29H31},[3638]. Given the formulation
of our Theorems [I.2] and it is important here to single out the contribution
of [18] which established that is globally well-posed in H*?(R) = {f €
H?(R) : 22f € L?*(R)}. Combined with the arguments in |13, this result shows
that Schwartz-class initial data lead to global Schwartz-space solutions.

While it is also interesting to study when posed on the circle, we are
currently unable to prove an analogue of our main theorems in that setting. The
results presented in [22] cover both geometries and so a proof of equicontinuity on
the circle would have consequences for the well-posedness problem paralleling those
described above.

The integrable nature of will play a major role in our analysis. This
was first articulated by Kaup and Newell in [20]. In particular, they introduced
operator pencils

—iX2 -0, A
L()‘§q): [ —)\G 7;/\2:189; )
—2iAt 4+ iX%|q|? 2X3q — Mq|?q + iAg
—2X3G + Mq|?q + i\ 20\t — iA?|q|? ’

(1.7)
P(X;q) = l

with spectral parameter A € C, and proved that

(1.8) q(t,z) solves (DNLS) <= 0,L(X;q(t)) = [P(X;q(t)), L(A; q(1))]-
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For the particular case ¢ = 0, we will write

—iA2 — 0, 0 _ 2 {10
(1.9) Lo(A) := 0 2 _o.| = —0y —iX°03 where o3 = {0 J .
A central object of study in the presence of such a Lax representation (|1.8]) is
the scattering matrix. This connects the asymptotic behavior at the two spatial
infinities of solutions to the ODE Ly = 0.
Given A% € R and g € S(R), it is known that there is a unique matrix ¥ with
(1.10) LY =0 and lim \I'(gc)ew‘%‘73 = Id.

rT——0Q

Moreover, the limit

(1.11) S(\) == lim M7y (g)

r—r+00

exists and satisfies

a(h) - (A)] . |a(>\)|2{1—b()\)|2 if A€ R,

(1.12) S(\) = [b(/\) @ 1+ [b(N\)|? if X €iR.

We will review some of this material in Section Bl
The key virtue of a and b is that they evolve in a simple manner as ¢(t) flows

according to (DNLS)). Specifically,
(1.13) a(Aq(t)) =a(X;g(0) and b(X;q(t)) = e~ "*b(); (0)).

This analysis leads to the idea that a();¢) encodes all the conserved quantities
for the flow; in particular, shows that it captures the modulus of b(};q).
For many integrable systems, this has been shown to be the case. However, if we
consider the algebraic soliton ¢, defined in , we find that

R 20\ e'e/? ,
. A 4N 3 3 QX
(1.14) Uz ) =e 77 + IN+1 w2 o | e nre
T Tzt ozt

is the solution to for all A\ € C\ {+%}. This shows that a(\;g,) = 1 and
b(A;qe) =0 for all A2 € R\ {—1}.

We must ask about the significance of the exceptional values of A\. There is a
very compelling argument that they are meaningless. As we will show more fully
below, a(}; ¢) extends to a holomorphic function in the first quadrant and belongs
to Nevanlinna class; as such, the function is determined by its a.e. boundary values.
Thus a();¢,) = 1 as a holomorphic function in the first quadrant.

One valuable approach to analyzing a(};¢), including showing that it is holo-
morphic, is to use that it is given by a certain Fredholm determinant:

(1.15) a(\;q) = det[Ly ' L] = det[1 — X3 (—iA? — 9) 'q(—iA? + 0)"'q],

valid for all A in the (open) first quadrant and ¢ € S(R). We will refer to this
equality as a Jost—Pais identity, honoring [19], and will prove it in Section

If we fully accept our first answer regarding the exceptional values of A, then
there can be no hope of proving Theorem through a();q) alone: it cannot
distinguish g, from zero, nor from any rescaling of ¢, via (L.2). As a()\;q) serves
as a generating function for the polynomial conserved quantities, these functionals
are also incapable of differentiating.
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One of the morals that we have gleaned from the work of Bahouri—Perelman [2]
is that arg[a(\;¢)], when properly interpreted, holds crucial information. This is
difficult to explain directly for g,. So imagine instead an approximating sequence
of Schwartz functions; specifically, a sequence of traditional (bright) solitons, which
are smooth with exponential decay. For such solitons, the function a(};q) is given
by a single Blaschke factor whose zero is inside the open first quadrant. Evidently,
this zero forms a branch point for arg[a();¢)]. As the sequence approaches the
algebraic soliton, this point approaches the point i/2 on the imaginary axis. In
this way, we find it instructive to view the exceptional point as the vestige of a
branch-point for argla(); q)].

It is also true that the Lax operator L(\;q,) has an eigenvalue at the point
A = i/2; indeed, the eigenfunction coincides with the residue of the function
at this point. The paper [27] demonstrates that this eigenvalue exhibits a striking
stability: under a broad class of perturbations (of either sign), the eigenvalue moves
into the first quadrant; it does not dissolve into the continuous spectrum. This
further reinforces our interpretation of the exceptional point as the relic of zeros
of a(A;q), or equivalently branch points of arga();¢)], that have moved to the
boundary.

Once one believes that a()\; ¢) does encode enough information to prove equicon-
tinuity, then one must also believe that an analogue of Theorem holds for the
whole DNLS hierarchy and indeed, for any flow conserving a(A;¢). This is in fact
our principal result, of which Theorem is an elementary corollary:

Theorem 1.5. Let Q C S(R) be L2-bounded and equicontinuous. Then
(1.16) Q. ={q € SMR) :a(X;q) = a(\;q) for some § € Q}
is also L*-bounded and equicontinuous.

We write a(\;¢q) = a(A;§) to emphasize that equality holds as holomorphic
functions on the open first quadrant. Clearly this is guaranteed as soon as the two
functions agree on a sufficiently rich set, for example, the ray A € {\/k e/t g >
0} employed in |22]. That paper also restricts attention to individual connected
components of Q. (there called Q..), their rationale being that well-posed flows
remain within a single such connected component.

Note that Theorem deliberately only addresses ensembles of Schwartz-class
functions. As we have observed earlier, this assertion would not be true if we
required only @ C L? because the function ¢ — a();q) is unable to distinguish
rescalings of the algebraic soliton from one another. Indeed, a();¢) cannot even
distinguish an algebraic soliton from zero! On the other hand, as Lemmal5.2 shows,
a(A; ¢) does encode M (q) for Schwartz functions.

Here, we must acknowledge the deft formulation of the conjectures in [22]: Re-
quiring the initial data to be Schwartz ensures that the function a(};q) retains
enough information about ¢ to be useful, while employing the L? topology guar-
antees robust consequences for the well-posedness problem. Moreover, once well-
posedness is proved, the density of Schwartz space allows us to deduce important
properties for all H® solutions.

Let us now turn to the question of how Theorem will be proved. While the
argument is ultimately quantitative in nature, for the sake of clarity, our synopsis
here will be purely qualitative. We will employ Littlewood-Paley projections to
decompose ¢ into frequency pieces; these are defined in .
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Suppose Theorem [I.5] were to fail. It is not difficult to show that @, is bounded
in L? and so this failure must be witnessed by a sequence of functions ¢, that
is bounded but not equicontinuous. Moreover, this sequence is accompanied by
another sequence ¢, € @ that is equicontinuous and satisfies a(\;¢,) = a(X;Gn),
whence M(g,) = M(gy,).

Due to the failure of equicontinuity, for fixed N and n large, P~ g, must carry
non-trivial L? norm. From this and a simple pigeonhole argument, we may find a
wide (n-dependent) frequency window e3N; < |¢] < e73N; with three properties:
(L.17)  ||Psesn,Gnll €1, ||[Pse-snanll 21, and  ||Pasn,c.<c-sn, gnll <1
valid for any n sufficiently large.

We now focus on a particular choice of spectral parameter, namely, A\; = v/i[N7.

As G, essentially vanishes at such high frequencies, we can understand a(A;Gy)
very well; indeed,

(1~18) arg[a(Alﬂjn)] ~ _%M((jn)

Because A1 is well separated from the frequency regions inhabited by ¢, we may
likewise understand argla(\1;g,)] as the sum of the low- and high-frequency con-
tributions:

(1.19) argla(A1; qn)] =~ argla(A1; P<n,¢n)] + argla(A1; P> n, gn)]-
By analyzing these summands, we will deduce that
(1.20) argla(Ai; qn)] & —5 M (P<n,qn).

This yields a contradiction: as a(};¢,) = a(\;§y), it follows that that
M(Psnyqn) = M(gn) — M(P<n,qn) = M(qn) + 2argla(M, ¢,)] = 0,

which is inconsistent with the middle condition in .

We have been deliberately vague about the precise meaning of argla(); ¢)] in
this outline; it is by no means trivial. In fact, we shall only be employing this
argument when a(};¢,) has no zeros in the sector {A € C: § < argA < 7}. In
this case, there is no trouble in choosing the correct branch of log[a(); ¢)] and the
above provides a relatively faithful account of what is done in Section

Suppose now that a();g,) has a single zero in this sector. Then so too does
a(A; ¢n). We will employ a Bécklund transformation to remove this zero from both.
We give a brief review of this transformation at the beginning of Section [6] following
[36], which we also recommend for further discussion and historical references.

Applying the Bécklund transformation to ¢, and §, yields two new functions
B(¢,) and B(g,,); moreover,

a()\;B(qn)) = a()\;B(qn))
and this function is zero-free in the sector {A € C: § < argA < T}. In Section
we prove that the sequence B(§,) inherits equicontinuity from §,. This allows us
to infer equicontinuity of B(g,,) from the argument presented above. This does not
suffice: we must show that the sequence ¢, is equicontinuous.

In general, we cannot expect to infer equicontinuity of ¢, from B(g,,); the location
of the zero that is removed matters very much here. However, by Proposition
the location of this zero is very strongly constrained by the equicontinuity of .
This will allow us to demonstrate that equicontinuity of both ¢, and B(qg,,) ensures
equicontinuity of ¢,. This settles the case of one zero in the sector.
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While one could imagine applying iterated Backlund transformations to reduce
profiles ¢, with more zeros to the argument above, we find it more convenient to
argue by induction on the number of zeros. The details are provided in Section

Finally, let us provide a more thorough description of the role of each section in
completing these arguments.

In Section [2f we study the function a(}\;¢) through the determinantal represen-
tation . We will use this approach to analyze how this quantity behaves when
—iA2 € [0, 00) is far from the Fourier support of ¢; see Proposition This is used
to justify and ((1.20)).

The expression epresents a form of asymptotic factorization. This is
proved in Proposition[2.6] The fact that this represents decoupling under separation
of scales (rather than via translation) distinguishes it from the related factorization
results in |2}[25].

In Section [3] we analyze a(};q) from the point of view of (time-independent)
scattering theory. We prove that a(A;q) depends on both A and ¢ in a smooth
fashion (in the closed first quadrant) and use this to verify the Jost—Pais identity.
We also prove Proposition [3.7, which documents how equicontinuity constrains the
location of any zeros of a(;q).

In Section we prove the trace formula for general Schwartz q. The parallel
result for those Schwartz ¢ without spectral singularities was an important tool
in [2]. One application of the trace formula is that it provides a (finite) upper bound
on the total number of zeros that may lie within the sector {\ € C: § < argA < T}.
We also use it in Lemma to derive a lower bound on a.

Section |5 proves Theorem for sets @ where a(A; ¢) has no zeros in the sector
{AeC: g <argA < Z1. This constitutes the base step of our inductive argument.

We begin Section [6| by reviewing the Bécklund transform associated to F,
closely following [36]. The principal novelty of this section is Proposition [6.3| which
shows (to put it loosely) that both the Backlund transform and its inverse preserve
L?-equicontinuity. The paper ends with Section [7, which completes the inductive
step of our argument.

1.1. Notation. As it will take us some time to develop the necessary prerequisites
for proving the Jost—Pais identity , we must introduce an alternate notation
for the determinant appearing there. Considering that the spectral parameter A
only appears squared here, it is natural to adopt a different parameterization based
on k=X €Ct={keC:Imk > 0}, with the happy consequence that we shall
be able to employ the well-documented theory of holomorphic functions in the half
plane.
Given k € C* and ¢ € L?(R), we first define operators

P and T(kig) = (2k+0) 7q(tk—0) 2.

Nl

A(k;q) = (k- 0) 2q(1k+0)
From (24, Lemma 4.1] we have

> G(€ — 2Rek)|?

(20 A, = 113, ~ | tog(d+ i) 1L 2Re0)

< 1 g2
4|Imk|2+|£‘2 5'\’ Imqu”Lza

where J5 denotes the class of Hilbert-Schmidt operators. This estimate shows that
for any q € L? the perturbation determinant

(1.22) a(k; q) == det[1 — kA(k; ¢)T'(k; q)]
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is well-defined and analytic for k¥ € C*. This is not precisely the determinant
appearing in ((1.15)) but it is easy to prove that they agree: As

[k(—ik — 0) " q(—ik +0)'ql|,, < |k| - llalZ- /R |k — €72 dg < 0,
we may permute the factors and so deduce that
(1.23) a(k; q) = det[1 — k(—ik — 9) " "q(—ik + 9)'q].

The virtue of adopting as our primary definition of the perturbation deter-
minant is that it is better suited to estimating the contribution of each Littlewood—
Paley piece of ¢ and q.

Our notation for the Littlewood—Paley decomposition is standard: For each N €
27 we define Py as a smooth localization (based on a partition of unity) to those
frequencies £ € R with % < |€] < 2N. We then define

(1.24) Poy = Z Px and Poy=1— Poy.
K>N

Note that if ¢ is Schwartz, then so are gy := Pngq, g<n := P<ngq, and ¢> n := Ps nq.
In light of (1.1f), we will avoid using M as a dyadic frequency parameter. Rather,
given M > 0, we define the ball

(1.25) By = f{q e L g3 < M}

This vocabulary allows us to give a more quantitative Fourier-based characteri-
zation of equicontinuity: @@ C Bjs is equicontinuous if and only if, for any € > 0,
we may find N = N(e,Q) € 2% so that

(1.26) sup ||q>NH%2 < e2M.
q€Q

This equivalence is quite elementary to verify; see 23, §5] for details.
As our last piece of notation, we recall the Pauli matrices:

0 1 0 —i 1 0
(1.27) 01—{1 0}, 02—[2. 0}, and 03—{0 _J,

the last of which was seen already in (|1.9).

Acknowledgements. R. K. was supported by NSF grant DMS-1856755 and M. V.
by grants DMS-1763074 and DMS-2054194.
2. THE PERTURBATION DETERMINANT

In this section we analyze the perturbation determinant a(k; ¢) defined in (|1.22)).
We begin with some basic estimates for the determinant:

Lemma 2.1. Let A€ J,. Then

(2.1) |det(1+ A)| < exp(||All3,),
(2.2) |det(1+ A) — 1| < [[A]l3, exp(]|All2,),
(2.3) |det(1+ A) — exp{tr A}| < 5[|A[5, exp(||Alls,).

Further, if B € 31 and we have
1+ ||A||31 + HB”jl < Mv
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then

(2.4) det(1+ A)det(1 + B) = det[(1 + A)(1 + B)],

(2.5) |det(1+ A) —det(1 + B)| < eM||A - Blls,,

(26)  |det(1 + A) — det(1 + B)| < &M (|tr(A —B)| +A- B||j2).

Proof. The estimate ([2.3) is proved in |22, Lemma 3.2] by combining the Weyl
inequalities (cf. |39, Theorem 1.15]) with the identity

1
det(1+A)=1+ E E E )‘i1)‘i2"'/\in'
n=1"""41, .,i,
ziistinlct

Here, A; are the non-zero eigenvalues of A repeated according to algebraic multi-
plicity. This expression also yields (2.1]) and ([2.2)):

tas@D < > (3 l)" < RESED),
n=0 " 7

= e+~

The identity (2.4) is proved in [39, Theorem 3.5] and the estimate (2.5) in |39,
Theorem 3.4].
For ([2.6) we employ the regularized determinant

deta(1 4+ A) = det(1 + A) exp{—tr A},
and from [39, Theorem 9.1] we have
|deto(1 + A) — deta(1 + B)| < e2M A= B|5,.
We then combine this with to obtain
LHS([2.6) < |det(1 + A) — exp{tr(A — B)} det(1 + B)|
+ |exp{tr(A — B)} — 1||det(1 + B)|
< eM‘detg(l + A) — dety(1+ B)| + €2M’t1‘(A - B)|
<62M2(|tr(AfB)|+||AfB||g2). O

[e's) n 00 A I
LSED < 30 () < 14l 30 1Al < RusE).
n=1 " 3

Next, we record some useful estimates for frequency-localized potentials. For
N € 2%, we introduce the notation

An = A(k;gn), I'n =T(k;ign),
with similar definitions for A<y, I'< v, etc. Operator estimates for I' can be deduced
from those for A (and vice versa) by conjugating with a spatial reflection. Thus,

we will typically only state these bounds in terms of either A or I" in what follows.
The following estimates are essentially identical to those in |22, Lemma 2.4]:

Lemma 2.2. For k € Ct we have the estimate
(2.7) VImk[Allop < VImE|Alls, < llgllze-

Further, if k = ix € iRt and N € 2%, we have the estimates

(2.8) VEllA<nllop < /% la<nllze,
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2
(2.9) VAN, S w7 log(4 + 37) lasw e

Proof. The estimate (2.7) follows from (1.21). Using Bernstein’s inequality, for
k =1k we may bound

AN llop S Lllanllze S Y |lgn]|ze-

We then sum to obtain (2.8)). The estimate (2.9)) follows from (|1.21)) and the fact

that
IAsnI3, ~ D IAKIB,. O
K>N

Our first application of Lemmas [2.1] and [2.2] is a description of the behavior
of a(ik;q) for k large and small. Such asymptotics were also analyzed in . via

similar operator-theoretic means, although their primary focus was on the case
q € H'/?(R).

Proposition 2.3. Let 0 < e < % and q € By, where By is as defined in (1.25)).
(i) If N € 2% is chosen so that

(2.10) lgsnl7e <M,

then, for any k > Eﬂz, we have
i
(2.11) alik; q) — e 2llalz T

(ii) If N € 2% is chosen so that

(2.12) la<n |22 < €M,
then, for any 0 < k < 2N, we have
(2.13) )a(in;q) — 1‘ Swellog(d).

Proof. (i) Taking k = ix for k > &% %, we apply (2.7) and (2.8) to bound

VE[Allop < VEIIAs N3, + VEIA<Nllop S llgsnllzz + 1/ Fllalle S evM.
We then apply (2.7) and (2.3) to obtain
Ja(ins @) = exp{~ tr(imAT) }| S K2 IAJ2, TN, exp (kA ], T,
S e M exp(CM),

for some constant C' > 0.
A computation (see [22, Lemma 2.2]) shows that

2.14 A(f F(€)h
(2.14) (AP0} = [ e FORE
Using (2.14) with f = h = g and k = ik, we have

Slalf — {imar} = | lg';;% i,

and hence for k > Eﬂz,

Sl = tr{inAT}| S a3 + lasnl3e S 20,
Combining these bounds, we obtain (2.11)).
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(ii) Assuming k = ix with 0 < k < 2N, and combining ([2.7) with (2.9), we obtain
VA, < VE[A<n 5, + VEIAS N5,

S llaswllze + /4 log(4+ 35) gl 22
S Ey/log(é)m.
We then apply to bound
)a(m; q) — 1‘ < kl|A |5, |IT 15, eXp(liHAH;z \|r||32) < e2log (L) M exp(CM),
for some C > 0, which gives us (2.13)). O

Proposition [2.3] provides an alternate path to proving the following result shown
already in :

Corollary 2.4. For all ¢ € L? we have
i i) = i i q) = e~ sllall3s
i%a(zn, q)=1 and ngr(;a(m,q) e 2l4llz2,
From Proposition [2.3(i), we also obtain the following:

Corollary 2.5. Let ¢ > 0 and Q C By be equicontinuous. Given N € 27 so that
Q satisfies (1.26) and k> %5, we have
(2.15) sup |a(ik; q) — e~ 3llal <ar €2

q€Q

In our proof of Theorem we will employ the estimates of Proposition in
conjunction with the following factorization property:

Proposition 2.6 (Factorization). Let 0 < ¢ < I be a dyadic number and q € By.
If N € 2% is such that

(2.16) g0 v << 2 122 < el 2,
then
(2.17) a(ik; q) — a(ik; g<n) a(ik; q>N)‘ <a €2 uniformly for k > 0.

Proof. Let k =ik for k > 0.
If 0 < k < N, we may apply (2.7) and (2.9) with the hypothesis (2.16) to
estimate

VRl Nl < VAIAy <.l + VAEIA 5,

< eyl + /5 log(4+ 205 gl o
<eVM.
Conversely, if K > N then from , , and we have
VEIT<nllop £ VEITesn<. <z, + VEIT<csn [lop

3
Slgesne <y llze +/ S alre

<evM.
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Combining these bounds, we deduce that
(2.18)  KllAs N5, T <nllop + AT N [l3. [IA<nllop £ €M uniformly for & > 0.

From , we get
tr{ikA<nTsn} = /R%i%igm(igv(f) dg.
Frequency support considerations then allow us to use to bound
(2.19) ‘tr{iﬁASNr>N}| S Hq53N<-§N||L2||QN<.gE%||L2 Se’M.
We now apply , , and to bound
‘a(m; g<n) a(ir; g>n) — det [1 —ikA<nT<n — mA>NF>N} ‘
S KA <N lopl T <n llopl|As w1l [T v |5, exp(CM?)
< et M exp(CMQ),
for some C > 0. Second, we use , , and to bound

‘a(iﬁ; q) — det [1 —ikA<nT<ny — mA>NF>N} ’

< {!tr{iﬁASNBNH + |tr{ikAs ND<n} + Kl A< [lopIT> N I3,

+ K[[As N7, ||F<N||op} exp(CM?)

<&M exp(CM2),
which completes the proof of (2.17)). O

3. THE RECIPROCAL OF THE TRANSMISSION COEFFICIENT

In this section, we analyze a();¢) which is defined through the asymptotic be-
havior (as ¢ — 400) of solutions to the Kaup—Newell system

(3.1) W = —iosA2h + A [_Oq g} b

We begin by discussing the key identities for ¢ € C°(R). In this case, it is trivial
to see that there are matrix solutions U to (3.1]) satisfying
(3.2) Tt (2 )\)ei)‘%w3 =1d for +z sufficiently large.

Indeed, equality holds as soon as x is large enough to lie beyond the support of q.
Moreover, for each z € R, the map A — U*(z; \) is entire and det U+ = 1.

Note that the solution ¥ appearing in the introduction is precisely ¥~. More-
over, when ¢ € C°(R), it is evident that limit (1.11)) exits and defines a matrix of
determinant one. To verify (1.12]), we need to employ certain symmetries of ([3.1)).

If 9 is a solution of (3.1) then o031 is a solution with A replaced by —\, and

01037 is also a solution with A replaced by A. (Here we use the notations (1.27).)
By comparing asymptotic behavior, we deduce that

(3.3a) TE (2 \) = 030% (2; —\)os,
(3.3b) U (2;\) = 01030% (23 V) oo
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The assertions follow from this and the fact that det S(\;q) = 1.

Moving forward, we would like to focus on the particular matrix element ¥,
of the Jost solution ¥~ which we will characterize as the solution of certain inte-
gral equations. Our ultimate aim is to provide useful means of analyzing the key
quantity a(A; ¢). Initially, this will just be for ¢ € C°(R).

The role of a and b as scattering coefficients is apparent from the relation
(3.4) U (z) = ae~N'T 4 peire

for x to the right of the support of q. Concretely, 1/a represents the amplitude of
the transmitted wave, while b/a represents the amplitude of the reflected wave.

Our first approach is via a Fredholm integral equation. From (3.4) and (3.2)), we
know that

— JE— — —iX’z
Uo, g0y, and ¥ —a(Ne
are all square-integrable when A\?> € C*; moreover, they satisfy
(—id2 4+ 0)Uy; = —AqUy, and (—iA? — O)[Uy; —a(A)e 7] = —\qly;.

Thus, for A2 € CT we have
(3.5) UL (2) — a(\)e ™7 = A2 (—ix2 — 9) " Lq(—iA% + )" 'q Uy,
This representation will be used to prove the Jost—Pais identity (|1.15)) in Lemma

A second approach is to represent Wi; as the solution of the Volterra equation

(3.6) ‘Pfl(””):efm‘”/ / N @250 4 () ()W, (y) dy ds,

which follows simply from the initial conditions: ¥1;(x) = e~ and Uh(z)=0
for every x to the left of the support of ¢ € C2°(R).
While (3.6) is perfectly satisfactory for constructing a(}; q) via

. iXlzq,— > ° iAZ(2s— — —
(3.7) aOva) = Jim V@) = 1= ¥ [ [ N )q) g () dyds

and for verifying most of the properties we need, it is not well suited to describing
the large-\ asymptotics. In order to give a similar representation that will serve all
our needs, we adopt a change of unknowns introduced already in [20]: Setting

(z) = eFim@es {_%;(gj) 3] [\1/11(:5)} with m(x):/m lq(y)[* dy,

Wy (2) oo
we find that
. . 0 m P _
(38) A =—iogAPy —i [_re_im “ }7 where =34 + 7|q]°7.

Remark 3.1. In deriving the equation for ~, we used the following general result:
P9, +iX%03 — Q) = (0, + iN?03 — Q)P < QP = P' +iX?[o3, P] + PQ.

Using the first component of the vector ~, we build ¢(z) := N Ty, (). For this
function, we have the following analogues of (3.6)) and (3.7)):

(39)  d@)=1+ / w / (2N (=) +im(&)=im() g (5)r () b (y) dy ds,

(3.10) exliliza();q) = lim ¢(x).

Tr—00
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This is the representation that will allow us to prove the estimates we need. Notice
that in both and , the spectral parameter A\ only appears squared. Thus,
it is natural to adopt k = A? with Imk > 0 as our primary parameter (as in
Section ; by vk, we will always mean the value in the first quadrant.

We will need two further notations: We write X for the Banach space of holo-
morphic functions f: CT — C such that f and f’ extend continuously to OCT and
for which
(3.11) 1£lx = sup (ISR + R f (R)]) < oc.

keCt
The space X is readily seen to be a closed subspace of the Hardy space H>(CT).
We also recall the notation H*#(R) denoting the completion of S(R) in the norm

lalZras = g lZ2 + 12} 172 + 1) 172 + ()¢ 12 + ) g2

Lemma 3.2. The function q — ezllalze a(vk;q) — 1 extends from g € C°(R) to a
real-analytic X -valued function of ¢ € H**(R).

Proof. First we construct the solution ¢(x; k) by interpreting (3.9) as the Volterra
integral equation

(312) o1+ 40 with [A0)(0)= [ A,y W00ty dy
and integral kernel
Afwgi) = [ Mo mig () d,
y

We will solve by iteration, working in the Banach space C comprised of
those bounded continuous functions ¢ : R — C that have limits as * — =00,
which we endow with the supremum norm (or equivalently, in the Banach space
of continuous functions on the two-point compactification [—oo,00]). This small

wrinkle is helpful in light of (3.10)).
Estimating the kernel either directly or after integrating by parts in s, we find

Az, 55 0)] S lallelr@) - and A,y B S 67 lalls + 1™ 2g) 11 | r(y)]

uniformly for Imk > 0. This shows ||A¢|ze < (k)7'|p| L. Additionally, for
x < 2’ we have

’
T

[ 1Ayt - A i)y < s [ lats)ds,

x

which shows that in fact A : C — C. Iterating the bounds above shows

n 1 [C(llgllme)]"
||A HC%C < n'[(/€>] )

which in turn guarantees that ¢ can be constructed as ¢ = ZZOZO A™1.

This series construction shows that, when viewed as a C-valued function, ¢(x; k, q)
has real-analytic dependence on ¢ € H*4(R), is a continuous function of & in the
closed upper half-plane, and is a holomorphic function of k¥ € C*. Our estimates
on A also show the quantitative bound

le2laliza(VE; q) — 1| + sup [@(x; by q) — 1] S (k)Y
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uniformly for k¥ € C* and ¢ in bounded subsets of H**(R).
Mimicking the arguments above, we first see that

| A,y 0] < k)7 C(llgllas) ()r(y)]

and then that the k-derivative of a(v/k; ) is bounded and continuous on the closed
upper half-plane. This does not quite suffice to prove the (k)~2 decay we require;
the sole obstruction is the term

lim -4 [A1]( / / 2i(s — y)e2 R FImS)=imW) o5\ (1) ds dy,

r—00

which the preceding arguments only show to be O({k)~!). The key to handling this
term is to first integrate by parts in y:

o) o
2ik lim - [Al]( )= _/ / Qi(s_y)[%e2ik(s—y)]eim(s)—im(y)q(s)r(y) ds dy
- Yy

Tr—ro0
/ / eZik(s—y)%y [2@'(5 _ y)eim(S)—im(y)q(S)r(y)] dy ds
—00 J—00

and only then integrate by parts in s. In this way we obtain
8983} ZZ

|(2zk)2 hm 4 A1)( //
/Iq s)| ds,

which is easily estimated in terms of ||q|| g4.4. O

= )T mD g 5)r(y)]| dy ds

We are now ready to prove the Jost—Pais identity stated earlier as (1.15). Our
argument is modeled on |21, Lemma 2.8], which retains much of the spirit of the
original [19]. For a very different approach to such results, see |39, Proposition 5.7].

Lemma 3.3 (A Jost—Pais identity). For ¢ € S(R) and k € C* we have
(3.13) a(k; q) = a(Vk; q).

Proof. Recall that a(k;q) is a continuous function of ¢ € L? and a holomorphic
function of k € C*. Similarly, by Lemma a(\/E; q) depends continuously on
g € H**(R) and is also holomorphic for k € CT. Thus, it suffices to prove the
identity only for ¢ € C°(R) and at those k where a(k;q) # 0.

When a(k;q) # 0, the identity shows that the linear equation is
uniquely solvable. We wish to write the solution via Fredholm expansion. To this
end, we first introduce the kernel

(3.14) Az,y) = _k/ e—ik(;c—zs.;.y)q(s)q(y) ds
zVy
of the operator A = —k(—ik — 0)~'q(~ik + )", as well as
Ti1y.e.yTp
! (yl’ T yn> = det [A(z 3] iy

As discussed in [39, Ch. 5], the determinant admits the expansion

o0

a(k;Q)zdet(1—|—A):1+Z/ A(Zﬂ,...,w) —
=17y <<w Y155 Ye
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and (when this is non-zero) we may write (1 + A)~! =1 — B, where B has kernel

1 = TyYly---s Y
B(r,y) = —&— / A( ey dyy - - - dyy.
Cl(k,q) ; y1<--<ye YsYi,---5Y¢

Thus, we may write the solution of (3.5) as
(3.15) U, (x) = a(k; g)e ™™ {1 — etk / B(x,y)e kv dy} .
Observe that if z < y; < min{y, ya,...,ys}, then
A (‘Tvylv"‘vy€> _ O,
Y, Yty - -5 Ye
because it is the determinant of a matrix whose first two rows are linearly dependent.
On the other hand, if <y < min{y,y2,...,ye}, then

eikmA (xvyla"'aye) e—iky :A(yvylv"'7yé> )
Y Y, -5 Ye Y Yty Ye

Combining these observations, we find that for < min supp(q),

) ) 1 e
e”“”/B(:v,y)e—”“y dy = / A (yylye> dyy -+~ dye dy
CL(k,q) ; y<y1 <---<yp Ys Yty -5 Ye
1
= a(k;q) —1).
g (@kia) 1)

Returning to (3.15) and recalling that W, (z) = e~ for x to the left of the
support of g, we deduce that

l=a[l-1(a-1)],
and hence a(k) = a(vVk), as required. O

Having proved (3.13)), we no longer need these two separate notations. We favor
a(k; q), even when k € R, despite the fact that all our analysis of these boundary
values rests on the scattering interpretation.

Proposition 3.4. (i) The map H** > q (a—e_%”q”;) € X is locally Lipschitz.
(ii) If g € S(R) and 0 € (0,7, then a(k; q) has only finitely many zeros in the sector
{ke(C:@Sarngﬂ'}.

(iii) For ¢ € S(R) and k € R we have the following behavior for a(k;q) :

(3.16) a(0) =1, la(k)| > 1ifk <0, and |a(k)] <1 ifk>0.
Proof. The claims follow from Lemmas and where we note that (3.16)) is a
consequence of ((1.12)). O

Our last results in this section concern the zeros of the perturbation determinant.
Given ¢ € L?, (1.23) shows that a(k;q) has a zero at k = z € C* if and only if
there is a non-zero ¢ € L? so that

(3.17) ¢ = 2z(—iz — 0) 'q(—iz + 9)"'qe.
Recalling the definition of Bys from (1.25)), we then have the following:
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Lemma 3.5. Let ¢ € By and suppose that ¢ € L? is a non-zero solution to (3.17)
with z € CT. Then the vector-valued function v with

br=¢ and = —zZ(—iz+0) qp

belongs to H'(R) and is a solution to

(3.18) Y = —io3z + V2 [_Oq (Cﬂ 2.
Further, we have the estimates

(3.19) 9l 22 S [2(M)]19]| 2,

(3.20) [0l < (121(M)) * 9]l 22

Proof. As ¢ € L? is a solution of (3.17) and ¢ € L?, it is clear that ¢ € H' and
thence that 1 € H' and solves (3.18).

The Gagliardo—Nirenberg inequality gives us

1 1
191122 < l2lllWllce + VIzlllallzz ¥z~ < [2l¥lle + Vzlllal 90 721191 72
and the estimate (3.19) follows from Young’s inequality.
Combining the Gagliardo—Nirenberg inequality
9 3,1
907 S Nz 17z
with (3.19)) yields (3.20]). d

Remark 3.6. For each z € CT, constancy of the Wronskian guarantees that the
ODE admits at most one solution in H!, up to scalar multiples. By unique-
ness for ODEs, this solution is non-vanishing at each x € R. Note that this con-
strains the geometric multiplicity of eigenvalues, but not their algebraic multiplicity.
Thus, we cannot conclude that the perturbation determinant has only simple zeros.

We now apply Lemma [3.5] to obtain:

Proposition 3.7 (Zero-free region). Let Q C By be equicontinuous. Given e > 0,
choose N € 2% so that (1.26)) holds. If ¢ € Q, z € CT, and a(z;q) = 0, then

(3.21) lz2| <& or argzSae.

Proof. Applying Lemma we may find a solution ¢p € H' of (3.18) so that
l||L2 = 1. Taking the inner product of (3.18) with o3¢ and then taking the real
part, we obtain

Im /2 = —Re(y1, qib2).
Applying (2.10) and (3.20]), we then have

Im /2 < (1, qv2)| < lasnllzl[¥l7e + llgsnlcellolis S VNM +ev/]2IM (M),
which gives us (3.21]). O
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4. THE TRACE FORMULA

An important ingredient in our proof of Theorem [L.5| will be the following propo-
sition, which appears as |2, Lemma 2.3]. For completeness, we give a simple, self-
contained proof here:

Proposition 4.1 (Mass = Zeros + Winding). Let ¢ € S(R) and 6 € (0, 7] so that
a(k;q) has no zeros on the ray e?RY. Then

6

+ooei ,
(4.1) lal2s = 4mt — %/ £ g,
0

where £ denotes the number of zeros in the region {k € C: 0 < argk < 7}, counted
according to multiplicity.

Proof. We first treat § = 7. By Proposition [3.4]
0
a’(k i .
(4:2) | 28 k- 4lalis = 2mid(a),

for some d(q) € Z. As the left hand side is continuous as a map from S(R) — C
and d(0) = 0, we must have d(¢q) = 0 for all ¢ € S(R).
For 6 € (0,7), (4.1)) follows from Proposition [3.4and the argument principle. [

Proposition [4.1] provides a direct connection between ¢ and the analytic function
a(k; q). The trace formula below has the same structure. We prove it here for
general ¢ € S(R), following the path established already in [44]. The trace formula
for those ¢ € S(R) without spectral singularities played an important role in [2].

Proposition 4.2 (The trace formula). Fiz ¢ € S(R) and let {z;} enumerate the
zeros of a(k;q) in Ct, repeated according to multiplicity. Then there is a finite
positive measure jig on R so that

(4.3) a(k) = | | i—j::—g exp {;/ e d,uq(s)] for all k € CT,
R
and the following trace formula holds

(4.4) lall2. =4 arg(z) + 2 / dytg(s).

Proof. We begin by proving (4.3). This will follow by combining the properties of
a(k; q) described in Proposition with the general theory of inner/outer factor-

ization as discussed, for example, in |28].
As a(k; q) is a non-zero bounded holomorphic function in C* that extends con-
tinuously to the boundary,

(4.5) % <oo and jizlogla(s;q)| € L'(R).

Moreover, a(k; q) admits the factorization
(4.6) a(k; q) = ¢’?B(k)O(k)S (k)
where ¢ € [0,27), B(k) is the Blaschke product formed from the zeros {z;}, and

the outer factor O(k) and the singular inner factor S(k) take the form

O(k) exp{;/R[kis + 552) 1og|a(5)ds},
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S(k) = exp{iﬁk — ;’/R[kis + 1222] da(s)}.

do(s)
1+s2

Here 8 > 0 and o is a positive measure satisfying [ < oo that is singular with
respect to Lebesgue measure.

By Proposition we know that there is a § > 0 so that § < |z;] < 6! and
0 < argz; < m — ¢, uniformly in j. Likewise, it shows that log|a(s;¢)| is O(|s|) as
s — 0 and O(|s|™!) as |s| — oo. In this way, we may upgrade (4.5) to

(4.7) Zargzj <oo and 0<—21logla(s;q)| € L'(R),

Vzhere positivity is deduced from (3.16]). These observations allow us to replace
B(k) and O(k) by

(4.8) B(k) = H i—; ::2 and O(k) = exp{fr /R [+ + 1] log|a(s)| ds},

provided we update ¢ accordingly.
A universal property of the factorization (4.6) is that the non-tangential limit

of a(k;q) must vanish o-almost everywhere. Consequently, Proposition con-
do (s
[s]

fines the support of o to a compact subset of (0,00). In particular, [ < Q.

Likewise, as |a(ix; )| — 1 as k — oo, we see that 5 = 0.
In light of all this, we may write a(k) = ¢*? B(k)O(k)S(k) with singular factor

(4.9) S(k) = exp{—jT / (o= + 1] da(s)}
R
and consequently the representation (4.3)) will hold with the finite positive measure
dpig(s) = —1log la(s; q)| ds + do(s),

S

once we verify that e = 1. This last step is easily deduced by setting k = ix and
sending £ — 0; indeed, by the dominated convergence theorem, O(ix) and S(ik)
converge to 1 as k — 0.

The trace formula (4.4) now follows from (4.1]) and (4.3)). O

Lemma 4.3. Fiz ¢ € S(R). If the perturbation determinant a(k;q) has no zeros
in the sector

(4.10) S={keC:Z <argk<m},
then it admits the lower bound
(4.11) la(ic)| Zam 1 uniformly for k > 0.

Proof. Proposition ensures that
0< %/Rduq(s) < M.
Thus, for £ = ix we may bound
e[ [ 5 duo)] | 2 (- 420).

For fixed 0 € (0, 7], elementary calculus shows that the function

iz —e'? |2
T+

ix — e 10
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achieves its minimum value on Rt at x = 1. Thus for x,r > 0,
-1 1 —sind

) )
=08 1+ sind

Noting that the right-hand side is a concave function of @ € [0, 7], the Mean Value
Theorem guarantees that

ik —ret?
log

ik —re—10

ik —ret

0
(4.12) log w‘ > —2v20 for 60¢€l0,7]

1tk —re-

We now enumerate the zeros of a(k;q) in C* by {z;}. As argz; < T, we may

apply (4.12) to the Blaschke product in (4.8)) and then use (4.4) to estimate

|B(ix)| > exp(—2x/§2argzj) > exp(—%M).

This completes the proof of (4.11)). O

5. THE BASE CASE

Our proof of Theorem will proceed by induction on the number of zeros of
the perturbation determinant in the region ¥ defined in (4.10). To this end, we
make the following definition:

Definition 5.1. We say that a set @ C S(R) has order J > 0 if, for every ¢ € Q,
a(k; q) has exactly J zeros (counted by multiplicity) in the region X.

Given a set @@ C S(R), we define the set
(5.1) Q. = {q € S(R) : a(k; q) = a(k; ) for some G € Q}.

Here, by a(k;q) = a(k;G) we mean a(k;q) = a(k;q) for all k € CT. Tt is clear
that if @ has order J > 0, in the sense of Definition [5.1} then @, also has order J.
Moreover, taking # = 7 in Proposition 4.1} we obtain the following;:

Lemma 5.2. If ¢, € S(R) satisfy a(k;q) = a(k;q), then
lallzz = 1l z2-
As a consequence, if Q C Bys then Q. C Byy.
We are now in a position to prove the base case of our inductive argument:

Proposition 5.3 (The base case). If Q C By NS(R) is an equicontinuous set of
order 0 then Q. C By NS(R) is equicontinuous.

Proof. As @ is equicontinuous, given a dyadic 0 < ¢ < % sufficiently small (depend-
ing only on M), we may find Ny € 2% so that Q satisfies (1.26]).
From Corollary the definition (5.1)) of @, and Lemma @ we may bound

i 2
= sup|a(ik;q) — e~ zllallie <ue? forall k> %

q€Q

(52) sup a(i,‘@;q) _e—%l\q\liz
qEQ

To prove the proposition, we will show that there exists N, = N, (e, No, M) € 2%
so that

(5.3) sup [lg>n. 72 Sar €”log(2).

qEQ
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For each ¢ € @, the pigeonhole principle ensures that there exists N7 =
Ni(gq,¢e) € 2% satisfying

—2
(5.4) Mo < Ny < Dpefe

so that ¢ satisfies (2.16]) with N = N;. We then claim that

~

(5.5) ‘a(m; q) — a(ir; q<n, )| Sar €2 log(1) uniformly for x> 0.

As a first step toward proving (5.5), we employ each part of Proposition
Applying part (i) to g<n, with N = &*N; yields

(5.6) ’a(m; g<n,) — e zllasm e <are® uniformly for x> eNy,

while applying part (ii) to g>n, with N = % yields
(5.7) ‘a(m; qsN,) — 1‘ Sarellog(l)  umiformly for 0< k< 21

Let us first prove (5.5) in the regime k > eNj: We estimate

‘a(iﬁ; q) —a(ik; g<n,)| < (a(m; q) — a(ilNy; q)‘ + ‘a(if-”»; q<n,) — a(iN1;q<n,)

+ ‘a(iNl; q) — a(iN1; g<n, )a(iN1; >N, )

OTSWES

+ ‘a(iNl; qSNl)
Sarellog(d)

by using (5.2) and (5.6) on the first line, (2.17)) on the second, and (5.7) on the
third.

To complete the proof of (5.5)), we argue as follows: If 0 < k < %, then (2.17)
and (5.7 guarantee that

‘a(m; q) —a(ik; g<n,)| < ’a(m; q) — a(ik; g<n, )a(ik; ¢> N, )

+ ’a(i’%;qSN1) ‘a(iH;Q>N1) - 1‘
Sue’log(L).

By assumption, a(k; g) has no zeros in ; thus (4.11)) holds. Combining this with
(5.5) shows that for e sufficiently small (depending only on M),

|a(m; q)} >y 1 and |a(i/<a;q§N)| = L
Combining this with (5.5)) yields (mirroring Rouché’s Theorem)
K 1(4 ) K /(4 )
. a’(ix;q _ a (19<N < 2 1

provided ¢ is sufficiently small (depending only on M). Thus, using (4.1 we deduce

lg>an 12 < llaliZe = lla<n, 172 Sar e log(2).

This proves that (5.3) holds with the choice N, = 4N05*4e*65_2. O
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6. THE BACKLUND TRANSFORM

We begin this section by describing the Bécklund transform for (DNLS)), closely
following [36]. The ultimate purpose of this section is to determine the behavior of
equicontinuous sets under this transformation; this is the subject of Proposition

If ¢ € S(R) and a(k; q) has a zero at k = z € C*, Lemma ensures that we
can find a non-zero solution 1 = (1)1,12)" € H' of (3.18). In view of Remark
1 is unique up to scalar multiples and nowhere vanishing. We then define
(6.1) d(z;2) = V|1 (@) + Vz[Y2()
and observe that, since z € C,

(6.2) [d(as2)] > |Re V2| [(a)[> > 0.

As a consequence, we may define

d(z; z) 1 ()¢ ()

d(z;2) d(z;z)

The corresponding Backlund transform of ¢ is then defined to be

(6.4) B(g;2) = G?¢ + GS.

Note that G, S, and B depend on z and ¢, but not on %, due to homogeneity and
Remark 3.6

Lemma 6.1. Let g € S(R) be such that a(k;q) has a zero at k = 2 € C*. Then
G € C™ and S € S(R) satisfy

(6.3) G(z;2) = and S(z;z) =4Imz

65 Gl =1 and (G < 11 v (IB@)2 + a2,

66)  [Sl~ <4z and 8= < [l (IB@I: + lalle).
Moreover, B(q; z) € S(R) and for any k € CH\{z} we have

(6.7) a(k; B(q; 2)) = 2= a(ks q).

Proof. Given \? € C*, Levinson’s Theorem [5, §3.8] guarantees the existence of
solutions ¥*(z; \) to

0 ¢

(6.8) 8w\Ifi:—ia3A2\I/i+)\[q 0} U with  lim  UF(2)er 703 =1d.

r—Eo0

From the boundary conditions, we see that the column ¥ (z) decays exponen-
tially as z — —oo, while ¥, () grows exponentially. Analogously, ¥ (z) grows
and U (z) decays as x — +oo. Note that the decaying Jost solutions are unique;
the growing solutions are not (one may add any multiple of the decaying column).
While this ambiguity prevents one from defining b();q) for A\? ¢ R, it does not
affect a(\; q) since we always have the Wronskian relation

(6.9) a(X;q) =det [y (z,)) U5 (2,N)],
which only involves the decaying solutions.

Let p = \/z € C*. When X\ = y, the ODE in is precisely that satisfied by .
On the other hand, the columns of ¥~ (z; ) (and likewise those of U (x; 1)) form

a basis of solutions to this linear problem. As 1 is non-zero and square integrable,
we deduce that

b(x) = C_W7 (x5 1) = CL 03 (23 1),
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for some non-zero constants C € C. Using the equation (3.18]), we may write

e (a) = [C?J u/:o [_qo(y) e2iﬂ2(2y)q(y)} e~ Ip(y) dy,

o) = |l [ rengy "] ema

As ¢ € S(R), we may use these expressions to show that, for any n € C* that is
supported on [—1,00) and identically 1 on [1,00), we have

@) <e—“‘2w<x> -l&] ) [1- n(x)) (e“”w(x) - [COD e S(R).

This suffices to show that G € C*°, S € S(R), and

I

as T — +00,
(6.10) G(z) >

==

as I — —OoQ.

From (6.2) and (6.3)), for all z € R we have
|G|=1 and |[S|<4|Im+/z|.
Using ([3.18)), we compute
d =2i Imz{fﬂ/—)l% — izl + Z'\/§|1/’2|2]
Using also the identities
(6.11) G?—1 = — 212 (| |' —[y5l') and [uf*(G + G) — L[S]® = 2Re(s?),
we obtain
(6.12) G =L [SB(q) + Sq} and 8 = 2E[B(q) — q].

The estimates (6.5 and follow immediately from these expressions.
Finally, we turn to proving (6.7). Fixing A € C so that Im(\?) > 0 and \? # u?,

we define _
uo1 A2G — |ul? —35AS
AAZ = p? l —iA§  A2G - [p?
This matrix is invertible; indeed, by the second identity in ,
&2 A2 - 2
22— 2
Consider now Y*(x;\) := P(z; \)¥*(2;\). Applying Remark with
and we find that

O YE = —ios\2TE + )\ [_

P(x; N

det P =

0 B(q)
B(g) 0

Using this and we obtain
a(A%;B(q)) = det [YT(A) Y (N)] =det [PTT(A) PUF(N)] = (det P)a(N?;q),
which proves (6.7). ([l

z—+o0

}Ti with  lim  YE(x)e 773 =1d.

Our next result will be useful in proving that the Backlund transform preserves
equicontinuity.
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Lemma 6.2. Let g € S(R) be such that a(k;q) has a zero at k = 2 € CT. Then
(6.13) IB(g)|Z2 = llallZ: — 4arg 2,

and there exists an absolute constant C > 0 so that if N € 2%,
(614) | PonB@)] 2 < lasy llze + Cy/ Jllallzz (VI + llalz2),

(6.15) laswlze < 1P B@I s + 0 Elalle (V12 + llalze).
Proof. A quick computation using the second identity in (6.11)) and (6.12)) yields
(6.16) lg|> = |B(q)|* = —2iGG’.

As z € C*, formula (6.1)) shows that d(z;2) lies in the open right-half plane, and
so G(z;z) € C\ (—00,0]. Thus, integrating (6.16) and using (6.10]), we derive the

identity (6.13).
To prove (6.14)), we decompose

P.n[B(q)] = P>y [GQQ>%] + Pan [GQQS%] + Psn [GS]~
For the first term we use to bound
1Pon [GPas ]l 2 < flas x| 2

For the second, by first considering the Fourier support and then applying (6.5))
and (6.13]) with Bernstein’s inequality, we get

2 2
HP>N[G qg%] HL2 = ||q§%P>% G ]||L2
_1
S N72||G| e |G| £2]lgl| 2
_1, 1
S N7E 2|3 lgl| 7.
For the final term we use (6.5]), , and (6.13)) to bound
I1P>n [GS]llz2 S %(HGHL&HS'HH + ||G/||L2||S||L°°) S wlallallza-

The proof of ([6.15)) is essentially identical to that of (6.14]), once we have observed
that (6.4) may be rewritten in the form

q=G?B(q) — GS. O

We are now ready to prove that the Backlund transform preserves equicontinuity.
Let us first define a set-valued Bécklund transform. For a set @ C S(R), we define

B(Q)={B(g;2) : ¢ € Q, z€ X, and a(z;q) = 0},
where ¥ is as defined in (4.10).
Proposition 6.3. Let M > 0 and Q C By NS(R) be a set of order J > 1 in the

sense of Definition . Taking Q. to be defined as in (5.1), we have the following
properties:
(i) B(Q) C B(Q.) C B(Q)« are subsets of Byy NS(R) of order J — 1.
(ii) If @ is equicontinuous, then B(Q) is equicontinuous.
(iii) If @ and B(Q)« are equicontinuous, then Q. is equicontinuous.
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Proof. By construction and Lemma we have B(Q) C B(Q.) C B(Q). C S(R),
where all three sets B(Q), B(Q«), and B(Q). have order J — 1. As Q C By,
Lemma and the identity (6.13]) yield B(Q)« € Bas. This completes the proof
of (i).

If @ is equicontinuous, Proposition ensures that
(6.17) sup{|z| : ¢ € Qs, z € ¥, and a(z;¢) =0} S 1.
Thus (6.14) gives

limsup sup |[lg>n|lr2 < limsupsup [lgsnllrz =0,
N—oo ¢eB(Q) N—oo ¢eQ

which proves (ii).
Finally, if B(Q). is equicontinuous then B(Q.) C B(Q). is also equicontinuous

and (6.15]) and (6.17) then give us

limsup sup [lg>wllz» S limsup sup [gsnllze =0,
N—oo geQ. N—oo ¢eB(Qy)

which completes the proof of (iii). O

7. INDUCTION ON ZEROS

In this brief section we complete the proof of Theorem [1.5] We proceed by
induction on the number of zeros in the sector ¥ defined in (4.10)); this is formalized
as the notion of order introduced in Definition (.11

Proposition 7.1 (Induction on zeros). If @ C By NS(R) is an equicontinuous
set of order J > 0 then Q. C By NS(R), defined as in (5.1), is equicontinuous.

Proof. We proceed by induction on J. Proposition[5.3] provides the base case J = 0.
For the inductive step, we fix J > 1 and suppose that the statement is true for sets
of order J — 1.

If @ € By NS(R) is an equicontinuous set of order J, Proposition i) en-
sures that B(Q) C By NS(R) is an equicontinuous set of order J —1. Applying the
inductive hypothesis to B(Q) we conclude that B(Q). is equicontinuous. Proposi-
tion iii) then yields that Q. is equicontinuous, as required. O

We finish by showing that our main result, Theorem follows readily from
this proposition:

Proof of Theorem[I.5. For each ¢ € Q, Proposition ensures that a(k;q) has at
most a finite number of zeros in . Moreover, (4.4) ensures there are at most [ |
such zeros. As a consequence, we can decompose

=3
Q=J oY,
J=0

where Q) C By N S(R) is a set of order J. As @ is equicontinuous, each QWY is
equicontinuous, as well.
By Proposition each Qij) C By NS(R) is equicontinuous, and hence
=g
Q.= e
J=0

is equicontinuous. [
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