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Abstract. A class of evolution equations with nonlocal diffusion is considered in this work.
These are integro-differential equations arising as models of propagation phenomena in continuum
media with nonlocal interactions including neural tissue, porous media, peridynamics, and models
with fractional diffusion, as well as continuum limits of interacting dynamical systems. The principal
challenge of numerical integration of nonlocal systems stems from the lack of spatial regularity
of the data and solutions intrinsic to nonlocal models. To overcome this problem we propose a
semidiscrete numerical scheme based on the combination of sparse Monte Carlo and discontinuous
Galerkin methods. Our method requires minimal assumptions on the regularity of the data. In
particular, the kernel of the nonlocal diffusivity is assumed to be a square integrable function and
may be singular or discontinuous. An important feature of our method is the use of sparsity. Sparse
sampling of points in the Monte Carlo approximation of the nonlocal term allows us to use fewer
discretization points without compromising the accuracy. For kernels with singularities, more points
are selected automatically in the regions near the singularities. We prove convergence of the numerical
method and estimate the rate of convergence. There are two principal ingredients in the error of
the numerical method related to the use of Monte Calro and Galerkin approximations, respectively.
We analyze both errors. Two representative examples of discontinuous kernels are presented. The
first example features a kernel with a singularity, while the kernel in the second example experiences
jump discontinuity. We show how the information about the singularity in the former case and the
geometry of the discontinuity set in the latter translate into the rate of convergence of the numerical
procedure. In addition, we illustrate the rate of convergence estimate with a numerical example of
an initial value problem, for which an explicit analytic solution is available. Numerical results are
consistent with analytical estimates.
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1. Introduction. We propose a numerical method for the initial value problem
(IVP) for a nonlinear heat equation with nonlocal diffusion,

(1.1) Ou(t,x) = f(u,z,t) + / Wz, y)D (u(t,y) —u(t,z))dy, =€ Q CR?

(1.2) u(0,z) = g(z).

For analytical convenience, we take @ = [0, 1]¢ as a spatial domain. Throughout this
paper, when the domain of integration is not specified, it is assumed to be Q). Further,
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g € L3(Q), W € L*(Q?), f is a bounded measurable function on R x @ x R*, which
is Lipschitz continuous in u, continuous in ¢, and integrable in x, and D is a Lipschitz
continuous function on R :

(1.3) |D(u1) — D(u2)| < Lpluys —uz| and |f(u1,z,t) — f(ug, z,t)| < Lylus — usg|
for all (z,t) € @ x R. Throughout this paper we assume

(1.4) sup |D(u)| < 1.

u€R
This assumption may be dropped if an a priori estimate on ||ul|c(o, ;1 (@)) for T > 0 is
available. Here and below, T > 0 is an arbitrary but fixed time horizon. Furthermore,
the analysis below applies to models with the interaction function of a more general
form D(uy,us) provided

(15) |D(’U,1,?)1) — D(’UQ,’UQ)| S LD (|U1 — UQ| —+ |'l)1 — ’1)2|) Vul,uz,vl,vg c R.

However, we keep D(u1,uz2) := D(uz — u1) to emphasize the connection to diffusion
problems.

Equation (1.1) is a nonlocal diffusion problem. It arises as a continuum limit of
interacting particle systems [26, 20, 18]. Equations of this form are used for modeling
population dynamics [33, 8, 32, 2, 7], neural tissue [9], porous media flows [11, 12], and
various other biological and physicochemical processes involving anomalous diffusion
[34, 5]. The key distinction of the evolution equations with nonlocal diffusion from
their classical counterparts is the lack of smoothening property. A priori the solution of
(1.1), (1.2) is a square integrable function in x for all ¢ > 0 [26] and it may have no more
regularity beyond that, unless the initial data and kernel W are smooth [23, Theorem
3.3]. The lack of smoothness is a serious challenge for constructing numerical schemes
for (1.1), (1.2) and for analyzing their convergence. All deterministic quadrature
formulas require at least piecewise differentiability for a guaranteed convergence rate.
The problem is even more challenging in high dimensional spatial domains. The main
idea underlying our approach is to use the Monte Carlo approximation of the nonlocal
term in (1.1). We take advantage of the essential feature of the Monte Carlo method:
the independence of the convergence rate on the regularity of the integrand. The
second key idea is the use of sparsity, which is twofold. First, sparse sampling of points
in the Monte Carlo method is used to minimize computation without compromising
the accuracy. For W with jump discontinuity across Lipschitz hypersurfaces, sparse
sampling of points for evaluating integrals is computationally beneficial for d > 2. If
the discontinuity set has nontrivial fractal dimension, the sparse Monte Carlo method
performs better than its dense counterpart for d = 1 (cf. Lemma 4.3). Furthermore,
sparsity is the key for extending the Monte Carlo method for models with singular
kernels (see section 4.1). Not only does it allow us to apply the Monte Carlo method
for unbounded functions, it also makes it adaptive: more sample points are selected
automatically near the singularities. The combination of these ideas together with
the discontinuous Galerkin method yields a numerical scheme for the IVP (1.1), (1.2)
that performs well under minimal assumptions on the regularity of W and initial data.

This paper is based on our previous work on the continuum limit of interacting
particle systems on convergent graph sequences [23, 24, 19, 26]. The continuum limit is
a powerful tool for studying various aspects of network dynamics including existence,
stability, and bifurcations of spatiotemporal patterns [35, 25, 27, 28]. Very often the
derivation of the continuum limit is based on heuristic considerations and its rigorous
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mathematical justification is a nontrivial problem. Recently, motivated by the theory
of graph limits [22, 21, 6], we proved convergence to the continuum limit for a broad
class of dynamical systems on graphs [23]. Importantly, our proof applies to models on
random graphs [24] including sparse random graphs [19, 26]. These results prepared
the ground for the numerical method proposed in this paper. There is an intimate
relation between the problem of the continuum limit for interacting particle systems
and numerical integration of nonlocal diffusion models. Given a continuum model
(1.1), one can construct the corresponding particle system, approximating (1.1). This
idea was proposed already in [23] but has not been detailed. Further, recent results for
the continuum limit of coupled systems on sparse graphs indicate a strong potential
of sparse discretization for numerical integration of nonlocal problems. It is the goal
of this paper to present these ideas in detail.

In the next section, we present a discretization scheme for (1.1), which can be
viewed as an interacting dynamical system on a sparse random graph. The structure
of the graph is determined by the kernel W, which defines the asymptotic connectivity
of the graph sequence parametrized by the size of the graph. In the theory of graph
limits, such functions are called graphons [21]. In section 3, we prove convergence of
the semidiscrete (discrete in space and continuous in time) approximation of (1.1) and
turn to estimating the rate of convergence in sections 4 and 5. There are two main
factors contributing to the error of approximation. The first is due to approximating
the nonlocal term in (1.1) by a random sum (Monte Carlo method), while the second
is due to approximating the kernel and the initial data by piecewise constant functions
(discontinuous Galerkin method). The rate of convergence of the sparse Monte Carlo
approximation follows from our previous results [26, Theorem 4.1]. Convergence of
piecewise constant approximation in the L?-norm follows from classical theorems of
analysis (cf. the Lebesgue-Besicovitch theorem [16] or the-Martingale convergence
theorem [36]). However, neither of these theorems provides the rate of convergence.
In fact, the example in section 4.2 shows that without additional hypotheses the
algebraic convergence may be arbitrarily slow. To this end, we study what determines
the rate of convergence of piecewise constant approximations for a square integrable
function. For Holder continuous functions the answer is simple (cf. Lemma 4.1). For
discontinuous functions, on the other hand, the answer naturally depends on the type
of discontinuity. In section 4, we consider two examples elucidating this issue. The first
example is based on a singular (unbounded) graphon. It shows how the information
about the singularity translates into the rate of convergence estimate. Here, we also
see how to use sparsity to optimize computation. The second example is adapted
from [23]. This is a bounded graphon with jump discontinuity (section 4.2). In this
case, the convergence rate depends on the geometry of the set of the discontinuity (cf.
Lemma 4.3). In light of these examples, in section 5, we perform convergence analysis
under general assumptions on W. In section 6, we extend the rate of convergence
analysis to the fully discrete scheme. In section 7, we illustrate rate of convergence
estimates with a numerical example. Here, we choose a nonlinear problem, which has
an explicit solution. This allows us to verify the rate of convergence of the L?-error
as the discretization step tends to zero. Special attention is paid to the dependence
of the convergence rate on sparsity. Finally, in section 8 we present a proof of a
technical lemma, Lemma 3.3, which extends the corresponding result in [26] to models
in multidimensional domains and affords a wider range of sparsification.

Numerical methods for nonlocal diffusion problems have been the subject of in-
tense research recently due to their increased use in modeling [30, 15, 14, 5, 4, 31].
Compared to the existing results, the contribution of the present work is that our
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method applies to problems with nonlinear diffusivity as well as to problems with
a more general form of the interaction function (cf. (1.5)). The main focus of this
paper is how to deal with models with low regularity of the data. We believe that
the combination of the Monte Carlo and discontinuous Galerkin methods provides an
effective tool for numerical integration of nonlocal problems under minimal regularity
assumptions.

2. The model and its discretization. In this section, we formulate the tech-
nical assumptions on the kernel W and describe the numerical scheme for solving the
IVP (1.1)—(1.2).

We assume that W € L2(Q?) is subject to the following assumptions:

(W-1) max{esssupzeQ/|W(x,y)|dy, esssupyEQ/|W(9:,y)|dx} < Wj.

THEOREM 2.1. Let W € L*(Q?) satisfy (W-1). Then for any g € L*(Q) and
T > 0 there is a unique solution of the IVP (1.1), (1.2) u € C1(0,T; L*(Q)).

Proof. The proof is as in [19, Theorem 3.1] with minor adjustments. 0

Next, we note that the kernel in the nonlocal term may be assumed nonnegative.
Indeed, by writing W = W+ — W™ as the difference of its positive and negative parts,
one can rewrite (1.1) as

Ou(t,z) = f(u,x,t) + /W*(x,y)D (u(t,y) — u(t,z)) dy

(2.1) «—/W“Wwﬂﬂwtw—uwxww,

where the nonlocal term splits into the difference of two terms with nonnegative
kernels. Thus, without loss of generality, in the remainder of this paper we will
assume

(2.2) W > 0.

We approximate the IVP (1.1), (1.2) by the following system of ordinary differential
equations:

(23) un,i = fnﬁ(un,fa t) + (annd)_l Z an,ﬁD(un,j - unﬁ)’
j€[n)d
(2.4) Uy, 5(0) = g i,
where i := (iy, 42, ...,iq4) € [n]¢, [n] == {1,2,...,n}, and
(2.5) gni=n" g(@)dz,  f,5(u,t) =n? f(u, z,t)dz,
Qni Qni
1 1 1
(2.6) c%;:{“ ,“>X{W,w>x x{w ,w).
’ n 'n n 'n n 'n

The approximate solution of (1.1), (1.2) is then defined as follows:

(2.7) un(t,x) = Z u, ;(t)1q, ; ().

i€[n]d
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Next, we define random {0, 1}-valued matrix (a,, ;7). To this end, let

n,ij
(2.8) an=n"" 0<y<l.
The case W € L*(Q?) is slightly different and so we treat it separately. Thus, there

are two cases to consider.

(i) Suppose W € L>(Q?). Without loss of generality, we further assume that
0 < W < 1. Then let

(2.9) Wi = n2d/ W(z,y)dzdy
QnﬁXQnJ
and
(2.10) Pla, 5 =1) = W, 5. i,j € [n]".

(i) Alternatively, if W is in L?(Q?) but not in L°(Q?) then let

(2.11) Wi (2,y) == a, ' AW (2,y) and W, ;5 = n2d/ W (x,y)ndzdy,
QniXQn 5

n,i n,j

where a, is defined in (2.8) with v € (0,1). Then

(2.12) Pa, 5 =1) = anW, 35, 4, € [n]%.

Matrix (a,,;;) defines a random graph I',, = (V(I',), E(T',)) with the set of nodes
V(T,) = [n]? and the edge set E(I',,) C V(') x V(I';,). Two nodes i € [n]¢ and j €
[n] are connected by an edge iff a,, ;; = 1. The set of all pairs of connected nodes forms
the edge set E(T',,). Graphs constructed using the algorithm given above are called
W-random graphs [22, 6]. The asymptotic behavior of such graphs is determined by
a nonnegative integrable function W, called a graphon. The construction based on
(2.9) yields a dense graph sequence (T',), i.e., the cardinality of the edge set |E(T,)|
is O (JV(I'n)[?). If we use (2.10) or (2.12) instead, the resulting graph sequence (I';,)
is sparse, i.e., |[E(I'y)| = o (|[V(I'y)[?). W-random graphs play an important role in
the theory of graph limits [21]. The discretization scheme (2.3) can be interpreted as
an interacting particle system on a random graph, whose continium limit is (1.1) [26].

3. Convergence of the semidiscrete scheme. In this section, we study con-
vergence of the discrete scheme (2.3), (2.4). We first deal with the more general case
of unbounded graphon W and then specialize the result for W € L*(Q?).

The following technical assumption on W is needed to justify a wider range of
sparse sampling in the Monte Carlo method. Let nonnegative W € L*(Q?) satisfy

(W-1s)

max {esssupweQ/Wk(x,y)dy, esssupyeQ/Wk(m,y)dm} < Wi, ke{1,2,34})

THEOREM 3.1. Suppose nonnegative W € L*(Q?) is subject to (W-1s), and D,
f, and g are as in (1.1), (1.2). Further, a,, = n~% for some v € (0,1). Then for
arbitrary 0 < § < 1 —~, we have
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sup |lu(t, ) — un(t,)ll2(Q)
t€[0,7]

u€R, t€[0,T]

C (”g - gn||L2(Q) + sup ||f(u7 7t) - fn(u7 7t)||L2(Q)

BD = Wi + W = Pl + n‘d“‘”“””),

where C' is a positive constant independent of n, and P, W,, =: W, stands for the L?
-projection of W, onto the finite-dimensional subspace

(32) Xn = Span{lQn iXQn 0 (Ea 5) € [n]2d}v
Wn(xay) = Z Wn R QnZXQn ( y)

(i.3)€

and

n(u, 2, t) Zf,”utlQm( ).

16[ 14
Estimate (3.1) holds almost surely (a.s.) with respect to the random graph model.

Remark 3.1. The theorem still holds without (W-1s), i.e., for square integrable
W subject to (W-1). In this case, the last term on the right-hand side of (3.1) is
replaced by n=41/2=7=9) '~ € (0,1/2), and 6 < 1/2 — ~. Unlike (W-1), (W-1s) is not
needed for the wellposedness of the IVP (1.1), (1.2).

The first two terms on the right-hand side of (3.1) correspond to the error of
approximation of the initial data g € L? *(Q) and f(u,x,t) by the step functions in x.
Further, ||W,,—W|[2, (@2) and Wy =Py W |22 (@2) bound the error of approximation of
W by a bounded step function W,,. Here, the first term ||WW,, WHLZ(QQ is the error of
truncating W and the second term |W,, — P, W,||2 72(q2) 18 the error of approximation
of the truncated function W, by projecting it onto a finite-dimensional subspace.
Finally, the last term on the right-hand side of (3.1) is the error of the approximation
of the nonlocal term by the random sum in (2.3).

For bounded graphons W, Theorem 3.1 implies the following result.

COROLLARY 3.2. Let W € L*(Q?). Then under the assumptions of Theorem
3.1 we have

(33) sup |lu(t,-) — un(t, )|l L2(Q)
t€[0,T]

C <||g_gn||L2(Q) + sup ||f(u7'7t) _fn(ua'at)HLz(Q)

u€R, t€[0,T]
+ HWn — Pan||L2(Q2) + nd(lwé)/2> a.s.,

where C is a positive constant independent of n.

Remark 3.2. From (3.3) one can see how to use sparse sampling of points in
the Monte Carlo method to optimize computation. If the larger of the two errors of
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approximation of g and W by step functions is O(n™") with 0 < x < d/2 (cf. section
4.2) and the nonlinearity f(-) does not depend on z, then taking v = 1 — 2k one can
use sparse discretization without compromising the accuracy. This has the following
computational advantages over dense random and, moreover, deterministic spatial
discretization schemes. The evaluation of an integral over [0, 1]% using the rectangular
rule requires O(nd) operations, whereas using a given set of random sample of points
requires on average O(n%(1=7)).

The proof of Theorem 3.1 modulo a few minor details proceeds as the proof of
convergence to the continuum limit in [24, 26]. First, the solution of the IVP (2.3),
(2.4) is compared to that of the IVP for the averaged equation:

(3.4) b= Fri(vnpt) +07 > W, 5D(u, 5 —u,3), i€ [n]
j€ln]d
(3.5) v, 7(0) = gy 7

Then the solution of the averaged problem is compared to the solution of the IVP
(1.1), (1.2). It is convenient to view the solution of the averaged problem as a function
on RT x Q:

(3.6) vn(t,x) = Y vi(D)1g, ().
i€[n]d

Likewise, the solution of the discrete problem (2.3), (2.4) u, (¢, x) is defined in (2.7).
We recast the IVP (3.4), (3.5) as follows:

3.7) Opvn(t, x) = fo(vn(t, x), 2,t) + /Wn(x,y)D(vn(t,y) — un(t, ) dy,

(38) ’Un(O,l’) = gn(‘r)
The first step of the proof of convergence of the numerical scheme (2.3), (2.4) is
accomplished in the following lemma.

LEMMA 3.3. Let nonnegative W € L*(Q?) subject to (W-1s), and a,, = n~%, v €
(0,1) (c¢f. (2.11)). Then for any T > 0 for solutions of (2.3) and (3.4) subject to the
same initial conditions, we have

(3.9) sup [|un(t, ) — vn(t, )| r2() < Cn~ 77972 s,
t€[0,T]

where 0 < § < 1 —y, and positive constant C independent of n.

The proof of the lemma is technical and is relegated to section 8. The result
still holds for square integrable functions without the additional assumption (W-1s),
albeit for a narrower range of v € (0,0.5) (cf. [26, Theorem 4.1]).

Proof of Theorem 3.1. Denote the difference between the solutions of the original
IVP (1.1), (1.2) and the averaged IVP (3.7), (3.8):

(3.10) wy(t, ) = u(t, z) — v, (t, x).
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By subtracting (3.7) from (1.1), multiplying the resultant equation by w,,, and inte-
grating over (), we obtain

(3.11)
/6twn(t, 2wy (t, x)dx

= /(f(u(t,x),x,t) — flon(t, ), z,t)) wy(t, x)dx
+ / (f(on(t, ), 2,t) = fr(vn(t, x), 2, 1) wn(t, z)de
+ [ [ W) (DGtt) = u(t.2) = Dlwn(t.) = wnt. )] wn(t.2)dyda
4 [ [ OV @) = Wale,) Dlenttg) = oalt,2))wn (b, 2)dyda

Using Lipschitz continuity of f(u,z,t) in v and an elementary case of the Young’s
inequality, we obtain

(3.12) ’/(f(u(t,m),x,t) — fon(t, ), z,t)) wy(t, x)dx

(3.13) ‘ /

< Lf/wn(t,x)2dx,

&, t) — fu(vp(t, ), x,t)) wy(t, z)dx

(f(Un(t,I),.'E,t) - fn(vn<t,x),l‘7t))2 dx
llwn (2, )11,

where || - || stands for the L?(Q)-norm. Recall that D is bounded by 1 (cf. (1.4)).
Using this bound and the Young’s inequality, we obtain

—

f(vn
<1
=3
+

N[ =

(3.14)
] / / (2,5) — Wa,)) D(walt, ) — vt )t 2)dyde| < 5 IW = W)

+ 5 ol
Finally, using Lipschitz continuity of D and Young’s inequality, we estimate
’//W x,y) [D(u(t,y) —u(t,z)) — D(vp(t,y) — vn(t, x))] wn(t, x)dydz
<Lp / / W (z,y) (lwn(t, y)| + [wn(t, 2)]) [wa(t, 2)|dyde
G190 < [ [ Wi (FhoanP + Gl ) duis

L
3 D//ny|wntx 2dyalav—i——//Wa:y|wnty)| dydzx
< AW Lp [lwn?

where we used the Fubini theorem and (W-1) in the last line.
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By combining (3.11)—(3.15), we arrive at
(3.16)

d
7 lwn(, W? < Llpwoa (8 )17+ sup (| F(uy o 8) = falu, - )]+ [[Wa = W12,
uw€ER, t€[0,T]
where L =1 + 2Ly + LD(3W1 + WQ).
By Gronwall’s inequality, we have

Sup}Hwn( ol

<eLT/2\/|w M+ sup [ F(ut) = fulu B2+ [Wa = W2a e,
uw€R, t€[0,T]

< elT/2 <||9 —nllee)+  sup ([ f(u, 5 t) = fulu, - )] + [[Wy — W||L2(Q2)> .

w€eR, t€[0,T]
O

4. Two examples. The error of approximation of the nonlocal term by a ran-
dom sum, the last term on the right-hand side of (3.1), is known explicitly. Next in
importance is the error of approximation of the square integrable graphon W by the
step function W,,. This error depends on the regularity of the graphon W. In this
section, we consider two representative examples of W: a singular graphon (section
4.1) and a bounded graphon with jump discontinuities (section 4.2). Motivated by
these examples in the next section, we will analyze the rate of convergence estimates
under general assumptions on graphon W.

We will begin with the following estimate for Holder continuous functions. To
this end, ¢ € LP(Q), p > 1, and

= Z ¢n,21Qn,;(I)7 ¢n,f = nd (]S(I)dfﬁ

i€[n]d Qn,i

LEMMA 4.1. Suppose ¢ € LP(Q), p > 1, is a Hélder continuous function

(4.1) 6(x) — p(y)| < Clz —yl®, z,y€@, Be(0,1]
Then
(4.2) 6 = ¢nllr(@) < CR.

Here and below, h :=n"1.

Proof. Using Jensen’s inequality and (4.2), we have

16— 6ullticy = [ | 3 <¢<x> g ¢<y>dy> 1,,(2)| do
L2(Q) /Q =, /Qm
(43) =; /Q e /Q o) o) dy| do

/ / o(y)P dady

< cphpﬂ.
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Remark 4.1. Below, we will freely apply Lemma 4.1 to functions on ) and on
Q2. The latter are clearly covered by the lemma by taking Q := Q2.

4.1. A singular graphon. Consider the problem of approximation by step func-
tions of the singular kernel graphon

(4.4) W(z,y) = z,y €Q=1[0,1]4,

z =y’
where 0 < A < d/2.
LEMMA 4.2. For v € (0,1/2) and 0 < A < d/2 we have

(4.5) IW = Wall2(gn) < max {0 (k005D 0 (n=(+3)) .

Proof.

1. Below, we will use the change of variables (z,y) = T'(u, v) for (z,y) and (u,v)
from R4, defined by

(4.6) w,=x; —y; and v; =ux; +y;, 1 €[d].

2. Let o, = n~ % and recall that W,, = h=% A W. Denote Q = {(x,y) €Q?:
|z —y|™* > h_d”*}. Further,

- 1 2
|WW7L||%2(Q2)/Q(|$_?J|/\RdV) d:L'dy

1 2
< Cl/ 0 <>\ — nd’7> du
(ul<n =y \ul

B 1 2
< 02/ (A — n‘h) rd=tdr
0 T
=0 ((a-2x) ),
where we used (4.6) followed by the change to polar coordinates. Thus,
(4.8) (W — W’I’LHL2(Q2) =0 (hd’y(%_l)) ,0< A <d/2, v>0.

3. Next we turn to estimating HV~Vn — WnHLQ(Qz). Since the truncated function

W, is Lipschitz continuous on @2, by Lemma 4.1,

HW" —w, < L(W)h.

L2(Q?)

It remains to estimate the Lipschitz constant L(W,) < ess supQ2|VWn|. On
Q2 - Q7

(4.9) |VWn| = Az — y|71*)‘ |V($,y)|:17 — yH = \@Mx - y|71*)‘.
The gradient approaches its greatest value as |z — y| \, R Thus,

ess Sup g2 IVW,| = VaAR~ D (5+1)
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and
(4.10) vaﬁ-vvn =0 (nt=n0r3)).
L2(Q?)
4. The statement of the lemma follows (2.11) and (4.10) and the triangle
inequality. O

Next we choose v to optimize the rate of convergence in (4.5). By setting the
two exponents of h on the right-hand side of (4.5) equal, we see that the rate is
optimal for

2
TTAdd+ )

With this choice of 7,
W = Wil 1202 = O(hez (55 -1),

To optimize the rate of convergence of the numerical scheme (2.3), (2.4), one has to
choose v € (0,1) to maximize the smallest of the following three exponents:

d 1 d
d’y<2A_1>7 1_d’7<1+A)7 5(1_7)a
where the last exponent comes from the error of the Monte Carlo approximation (cf.

(3.1)).

4.2. {0,1}-valued functions. The following example is adapted from [23]. It
shows how jump discontinuities affect the rate of convergence of approximation by
piecewise constant functions. The accuracy of approximation depends on the geome-
try of the hypersurface of discontinuity, more precisely, on its fractal dimension.

Let Q7 be a closed subset of ) and consider

{l,erﬁ

0 otherwise.

(4.11) o(x) =

Denote by Q™ the boundary of @ and recall the upper box-counting dimension of
Q™+

—  log N;,(0Q™)

4.12 =1 e

(4.12) B i=limpy0 = log h

where N, (0Q™) stands for the number of Q,, 7, i,j € [n]?, having nonempty intersec-
tion with dQ™ (cf. [17]). For instance, the upper box-counting dimension of the von
Koch curve is log4/log3 (see [17, Problem 2.5]).

LEMMA 4.3. Let ¢ be defined by (4.11) and let ¢,, stand for the L?-projection of
¢ on X, (cf. (3.2)). Then

a—8
P

(4.13) ¢ — dnllzr(@) < Ch

for some positive C' independent on n.
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Proof. As in (4.3), we have

(4.14) 16 = bnllf ey <H 74D [f(z) = f(2)| dzda.
@) N
= a’Qni n,i
i€[n]
Note that the only nonzero terms in the sum on the right-hand side of (4.14) are the
integrals over @Q,, ; X @Q,, ;’s having nonempty intersection with 0Q™. Thus,

where we used (4.12). 0

Remark 4.2. Note that as § — d — 0 the rate of convergence in (4.13) can be
made arbitrarily low.

5. The rate of convergence of the semidiscrete scheme.

5.1. Approximation by step functions. In this section, we address the rate
of convergence of the Galerkin component of the numerical scheme (2.3), (2.4). Specif-
ically, we study the error of the approximation of the graphon W € L?(Q?) and the
initial data g € L?(Q) by step functions.

We will need an LP-modulus of continuity of function on a unit d-cube Q = [0, 1]%.
In fact, we only need the L2-modulus of continuity but present the analysis in a more
general LP-setting, since this does not require any extra effort. For functions on the
real line, the definition of the LP-modulus of continuity can be found in [1, 13]. Here,
we present a suitable adaptation of this definition for the problem at hand.

DEFINITION 5.1. For ¢ € LP(Q) we define the LP-modulus of continuity

(5.1) wp(9,98) = sup [[¢(- + &) — d()llLr(@e)» 0 >0,
[€loo <O

where €] = max;e(q) |&i] and Qe = {x € Q: 4§ € Q}.

For a € (0,1], we define a generalized Lipschitz space!
(5.2) Lip (o, LP(Q)) = {¢ € LP(Q) : 3C > 0: wy(p,0) < C6*}.

Clearly Lip (o, LP(Q)) contains a-Hdélder continuous functions. However, Lipschitz
spaces are much larger than Holder spaces. For instance, Lip (1/p, L?(Q)) contains
discontinuous functions.

Below, we express the error of approximation of ¢ € LP(Q) by a step function
through wy(¢, h). The analysis works out a little cleaner for dyadic discretization of
@, which will be assumed for the remainder of this section. Thus, we approximate
¢ € LP(Q) by a piecewise constant function

(5.3) Gam (2) = D DQum 1@y 5 (1),
ic[2m]d
where ¢q,,, ; stands for the mean value of ¢ on Qqm ;,

PQym 5 () =24 /Q | i(b(;r:)dx, i€2m].

1Below, we will freely apply the definitions and various estimates established for functions on @Q
to functions on @2, for which they are trivially valid by setting d := 2d. In particular, the definitions
of the modulus of continuity and the corresponding Lipschitz spaces obviously translate to functions
on Q2.
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LEMMA 5.2. For ¢ € Lip (o, LP(Q)), we have

(5.4) ¢ — ¢om

(@) < €27

where C' is independent of m.

Proof. Fix m € N and denote h := 27™. To simplify notation, throughout the
proof we drop 2™ in the subscript of zom ; and Qgm ;.
Denote
) h
Tiy—1+ (Ja + 1)2>

j . h . h . h
Q = {%‘11 +J15, T -1+ (1 + 1)2> X X |:1'id1 +Jd5>

2 2
and
h h
Q; = |:xi1—1axi1—1 + 2> X oo X |:£Cid—1;$id—1 + 2) .
Note
(55) [ owas=[ o(s+ig)as
where

L R Y | Lk
S 12— S1 312782 322,-~-78d ]d2 .

Using (5.5), we write
¢ h
(5.6) Pom+1 (T Z Z < ) / <s +j= ) ds1, ( ).
i€[2m]d je{0,1}4 @3

Further, using

Lo = Y 1gi),

je{o,1}d

/Qigb(s) > / <s+k >d

jef{o,1}d

we rewrite (5.3) as follows:

(B.7) am(z)= > > ()d > / <s+k )d 1,5 ().

ie[2m]d je{0,1}4 ke{0,1}d ‘

By subtracting (5.6) from (5.7) we have

Gam—pmir = Y Y =8y / {¢<5+E;)¢<s+jg)]ds 1oi-

’
ig[2m]d jG{Ol}d ke{0,1}d Q3
k#j
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Further,

5.8

o h h :

|¢2m—¢)2m+1‘ < Z Z Z / |: (S+k2>—¢<5+]2):| dS ]_QQ
i€[2m]4 je{0,1}4 kefo,1}d 7

k#j

Integrating both sides of (5.8) over @ and using Jensen’s inequality, we continue
(5.9)

R S SRS DI DD /’ (S+kg)—¢(3+5g)

i
JE{O 1} kefo.13d i€[2m]? Q
k#j

< 292" — 1wy (6, ).

p

ds

Thus,
1/ - _
|p2m — pam+1|Lr(@) < [Qd(2d -1)] pwp(¢,2 (mA1)y —: Oy pwp (¢, 27D,
Since ¢ € Lip (o, LP(Q)), we have
(5.10) |pam — pom+1||Lr(g) < C27™,

where C' depends on ¢, d, and p but not m.
Let m € N be arbitrary but fixed. For any integer M > m we have

ot — pam || Lr(@) =

M-—1
D7 (Garr1 — par)
k=m

< Z [ par+r — dorll 1o ()
k=m

(5.11) @)

oo oo
< wp(¢72—(k+1)) < 9—p+1 Z C2a(k+1) < o2 om,
k=m k=m

By passing M to infinity in (5.11), we get (5.4).

5.2. The rate of convergence. We now can combine Theorem 3.1 and Lemma
5.4 to estimate the convergence rate for (2.3), (2.4). For the model with a bounded
graphon W (cf. (i) in section 2) we have the following theorem.

THEOREM 5.3. Suppose that in addition to the assumptions of Theorem 3.1, for
some «; € (0,1], i € [3], g € Lip (al,Lz(Q)) , W € Lip (O[Q,LQ(QQ)) N L>(Q?%), and
f(u,-,t) € Lip (a3, L*(Q)) uniformly for (u,t) € R x [0,T], i.e
(5.12) wa(f(u,-,1t),0) < CH*,

where C' > 0 is independent of (u,t).
Then

d
(5.13) max |lu(t,") —un(t,)|| <Cn™%, o =min {al,ag,ag, 3 (1- 'y)} , a.s.

te[0,T]

Here, C' is independent of n.
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Remark 5.1. Note the error estimate of the semidiscrete scheme holds with
probability 1 with respect to the realization of the random graph sequence used to
approximate the nonlocal term.

Remark 5.2. As an example of f satisfying condition (5.12), consider f(u,z,t) =
x(x)F(u,t), where F(u,t) is a bounded function and x(x) is a piecewise constant
function. Such nonlinearities arise naturally in modeling piecewise constant media.

If W € L?(Q?) has singularities, then the convergence rate may also depend
on the accuracy of approximation of W by the truncated function W,. We do not
estimate the truncation error for a general W € L?(Q?). For an example of how this
error can be estimated for a given graphon in practice, we refer to the example in
section 4.1.

6. Fully discrete scheme. Our main focus so far has been the accuracy of the
semidiscrete scheme (2.3), i.e., the accuracy of the spatial approximation. To find a
numerical solution of (2.3), one also needs to discretize time. To this end, one can use
the Euler method or a higher order scheme, e.g., one of the methods of the Runge—
Kutta family. In this section, we show that the standard error estimates available
for these methods (cf. [3]) apply to the semidiscrete scheme (2.3). We show that
the right-hand side of (2.3) satisfies the assumptions used in the error analysis of
the Euler’s method in [3] and comment on the conditions used in the analysis of the
Runge-Kutta methods.

Given 0 < 7 < 1, consider the Euler discretization of (2.3)

(6.1) ul 5(tip1) =ul ;(t:) + 7F, 5 (ul,t;), i€ t;=ir, i=0,1,..., M,

n,t

where
1

(6.2) Fri(0,8) = fui(vi ) + —5 > a, 5D (v;—v;)
" jem)e

and M = [L].

Further, by using linear interpolation, we extend the time domain of ], from the
discrete set of points {t;,4=0,1,..., M} to [0,T],

(6.3)
M t—t; .

)= 3 05000+ (150000 —105(00) [ a0 T < 0T

and define

(6.4) up (t,x) = Z u;g(t)lQM(x).

i€[n]d

THEOREM 6.1. In addition to the assumptions of Theorem 5.3, suppose that D
and f are continuously differentiable functions on R and R x [0,T1],Ty := T + 1,
respectively, and

(6.5) max {Sup |D'(v)],  sup  {]0:f(v,t)] + &;f(v,t)l}} <C.
vER (v,t)ERX[0,T1]
Then

(6.6) max ||u(t,-) —u (t,-)]] < Cin~% + Car, as.,
t€[0,T)

where Cy and Cy are independent of n and 7, and « is the same as in (5.13).
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Remark 6.1. If f and D have continuous partial derivatives up to order k£ > 2,
the analysis below can be extended to the kth order Runge-Kutta method. Verifying
the Lipschitz continuity of the right-hand side of the numerical scheme (6.1), the key
step in the analysis, remains the same as in the proof of Lemma 6.2 for the Euler
method.

The accuracy of the fully discrete scheme relies on the the well-known error esti-
mates for the Euler’s method, which we review next. To this end, we consider

Y = F(Y,t),
(6.7)
Y(0) = Yy € R,

where F' is a continuously differentiable mapping from U := R™ x [0,T1] to R™.
The Euler scheme for (6.7) has the following form:

Y7 (tip1) =Y (L) + 7F (Y7 (), t:),
(6.8)
Y7 (0) = Yo,

where t; = i7, i =0,1,...,M, M = [L].
In order to apply standard error estimates for the Euler’s method to (6.8), we
need to impose the following assumptions:

(6.9) sup |[[|0.F(Y,t)|| < Le,
(Y, t)eU

(6.10) sup |[[|0y F(Y,t)||| < Ly,
(Yt)eU

where

H|B|H = |€I|na’§1 |B£|ooa f = (517527 <. 'gnd)v

oo =

and [{]cc = max;cp,q || Conditions (6.9) and (6.10) guarantee that the second

derivative Y (t) remains bounded. In addition, (6.10) implies Lipschitz continuity of
F(t,-):

[F(Y,t) = F(Z, )] < Ly [Y = Z|

uniformly in ¢. Under these conditions, [3, Theorem 6.3] suitably adjusted to the
multidimensional setting, we have

. ) T T(t; <
(6.11) oax, [V (t:) — Y7 (k)] < O,

where C' is independent of 7.
Since Y (t) is bounded on [0, T3], from (6.11) one can further show

(612) max V(1) - Y7(0)], < Cr.
where o
613) Y70 =3 [V + S0 ) < Y0 L 0

=0
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To apply the error bound (6.12) to (6.1) we need to verify the bounds in (6.9) and
(6.10) for F, defined by (6.2). This is done in the following lemma.

LEMMA 6.2. Suppose that D and f are continuously differentiable functions on
R and R x [0,T}], respectively, and

(6.14)  max {Sup ID'(w)l,  sup  {]def (v, t)] + |5vf(’0,t)}} <C
vER (v,t)ER%[0,T1]

Then (6.9) and (6.10) hold for F,, defined by (6.2) a.s.

Proof.  Below, we use the following vectorization of various arrays on [n]?. Let ¢
be a fixed bijection from [n]¢ to [n?]. Given (03,4 € [n]?) define

vec (07, i € [n]*) = (01,02,...,0,4), where oy =05, Vi € [n]”.

We need to verify conditions (6.9) and (6.10) for F,,. The first condition follows
immediately from (6.5). To verify (6.10), we need to show

(6.15) sup max |(vec (9u, F,, 5(u,t); k € [n]?) ,vec (&; k€ [n]))| < C  as,,
(u,t)eU i€[n]? '

where |vec (&; k € [n]9) ‘OO =1 and (-,-) stands for the inner product in R™".
By direct computation,

_ _ (Oé n ) ! nikD ( u%)v ‘IE:#?’
(6-16) 8u;;Fn,i(u7t) = { Ou u, ) ( ) 1 Z}e[n]d an,ﬁD/ (u3 . ug) . k=i,
and
Spi(u,t) i= (vec 0y, F, 5(u,t); k € [n]*),vec (& k € [n]?))
(617) = auf(uf7 t)f Oén’rL Z an 1]77351 oznn Z an 1k7rk£k7

j€[n]?
where |vec (&; k € [n]d)|oo =1 and
’lTﬁ = D'(u; — u;)

We need to bound [S,, 7(u, t)| uniformly in i € [n]? and (u,t) € U. The bound for the
first term on the right-hand side of (6.17) follows from (6.5). It remains to estimate
the two random sums in (6.17). To this end, first note that

sup _max (1;5§5| <
(u, t)erE[n]d| “ ]|

because of the bound on D’(u) in (6.5) and |{g| < 1. Since a,, ;7 > 0, we have

(an Z an zﬂfyfz <C an Z An 3 zy .

JE€[n]d j€Mm)d

The last sum is bounded a.s. as follows from Lemmas 8.3 and 8.2. The bound for the
other sum in (6.17) is established similarly. |
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Lemma 6.2 allows us to apply the error bound (6.12) to the time discretization
of the semidiscrete problem:

T(t,) = tn(t, )] ooy < CT.
g [ (t,) = (8 )| e < O

This estimate combined with (5.13) proves Theorem 6.1.
We conclude this section with the analysis of the computational cost versus ac-
curacy. Denote the error of approximation

A = t,)—u’(t,-
trer[lg};,]IIU(,) up (t,-)]|

and suppose A = ¢ for a given € > 0. By (6.6), we have

T=0(¢) and nzO(logl).
€

From this, we have that the number of time steps needed to compute the approximate
solution on O(1) time interval is O(e~1). At each time step, the evaluation of the sum
on the right-hand side of (2.3) requires O (nd(l_”f)) operations. Thus, the total number

of operations is
d(1—7)
1 1 1
O (ndu”) =0 ( <10g > ) .
€ € €

7. Numerical example. In this section, we illustrate convergence analysis in
the previous sections with a numerical example. To this end, we consider an IVP for
the continuum Kuramoto model with nonlocal nearest-neighbor coupling [29]:

(7.1) u(t,x) =w+ o K(y — x)sin (u(t, z) — u(t,y)),

(7.2) u(0,z) = ul9(2),

where u(t,z) € T, T = R/27Z, stands for the phase of the oscillator at z € [0, 1],
and w € R is its intrinsic frequency. Function K, describing the connectivity of the
network, is first defined on [0,1/2) by

(7.3) K(SE) = 1{y:\y|§r}(x)v re (—1/2,1/2),
and then extended as a 1-periodic function on R. The initial condition
(7.4) w9 (z) =27 (gz mod 1), qeZ,

is called a g-twisted state (Figure 1(a)). For w = 0, u(?) is a stationary solution of
(7.1). Thus,

(7.5) u(t,z) = (2rqr + wt) mod 27

solves the IVP (7.1), (7.2). We use the explicit solution (7.5) to compute the error of
the numerical integration of (7.1), (7.2).

To estimate the rate of convergence of the numerical scheme (2.3), (2.4) we use
the following values of parameters: r = 0.2, w = 0.5, and g = 3. For these parameter
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F1G. 1. (a) The 3-twisted state used to initialize the Kuramoto model (7.1). (b) The numerically
estimated exponent characterizing convergence of the numerical scheme (2.3), (2.4), a, 1s plotted as
a function of v (see section 7). The numerical estimates and the theoretical predictions are plotted
using the black stars and red circles, respectively. Vertical bars indicate one standard deviation of
the 200 random samples.

. b S .

FiG. 2. Pizel pictures of the adjacency matrices of sparse graphs generated with the following
values of v: (a) 0.2, (b) 0.5, and (c) 0.9.

values, the traveling wave solution (7.5) is unstable. We integrated (7.1) numerically
for t € [0,0.5], using the fourth order Runge-Kutta method with the time step 7 =
0.01. The error of the Runge-Kutta method, i.e., of the discretization in time, is
expected to be significantly smaller than that of the discretization in space (cf. (2.3),
(2.4)). We verified this by repeating our numerical experiments for different values of
7 (see Figure 2). This did not affect the results.

We integrated (7.1) numerically for different values of v € (0,1). For each value
of v we compute approximate solutions of (7.1), (7.2) for n = 256 and n = 512. Then
we computed the error of approximation for each n: e, 256 and e, 512 and the rate of
convergence

In (ey,256/€4,512)

(7.6) oy = o

We repeated this experiment 200 times. The means and standard deviations of a., are
plotted in Figure 1(b). The numerical estimates of the convergence rate show very
good agreement with the theoretical estimate (1 — «)/2 for most values of v. For the
two smallest values of v the deviation from the theoretical estimates is bigger, but it
is still within one standard deviation. We attribute this to the decrease of accuracy
of the algorithm for generating sparse graphs for small v for values of n used in these
experiments.

8. Proof of Lemma 3.3. In this section, we prove Lemma 3.3. The proof
follows the lines of the proof of Theorem 4.1 in [26], which covers v € (0,1/2) for
d = 1. Extension to the multidimensional case d > 1 is straightforward. Lemmas 8.3
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and 8.4 adapted from [10] allow us to extend the range of v to (0,1). The reader not
interested in the extended range of v may find a simpler proof in [26] easier to follow.
For those interested in the full range of v, below we present the proof of Lemma 3.3.

THEOREM 8.1. Let nonnegative W € L*(Q?) satisfy
(W-1s)
max {esssuper/Wk(x,y)dy, esssupyeQ/Wk(x,y)dm} < Wi, ke,

and

d
(8.1) lim inf Anht

n—oo Inn

> 0.

Then for solutions of (2.3) and (3.4) subject to the same initial conditions and arbi-
trary 0 < € < 1/2, we have

(8.2) sup |un(t, ) — valt, )|l z2(@) < Clann®)t/?7¢  as.
t€[0,T)

for arbitrary T > 0 and positive constant C independent of n. In particular, for
an =n"Y ~v¢€(0,1), we have

(83) sup Hun(tv ) - Un( )||L2(Q) <Cn~ d1=r=0)/2 a.S.,
t€[0,T]

where 0 < § <1 — -~ can be taken arbitrarily small.
We precede the proof of Theorem 8.1 with several auxiliary estimates.

LEMMA 8.2. From (W-1s) it follows that

8.4) max < sup max n~ %
( ) nGIR)ME[n]L‘ Z

sup | max n- Z < Wi, kel4].

b
nzg neNjEn ot nzg

Proof. We prove (8.4) assuming that nonnegative W is in L?(Q?), but not in
L>(Q?). In this case, W,, ;; are defined by (2.11). For arbitrary k € [n]? and n € N,

n,ij
we have
k
Z Wr’f,i,j = Z <n2d/ Ozgl A W(x,y)dxdy)
jEn]¢ je[n)e Qn,iXQnj
Z 2d/ k /\W(x,y)k) dzdy
n,iXQn.j
(8.5)
%z/ (. dody
n, ’LXQ7L J
=n? (nd W’%ix)
Qn,i
< ndV_Vk,
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where we used Jensen’s inequality in the second line and (W-1s) in the last line. Thus,

supmaxn ZW’“—— Wi, ke [k].

n,ij —
Nzé
ne jen]

The bound for sup,,cy maxje,)a n~—4 Z;e[n]d W:@ is proved similarly. |

LEMMA 8.3. For K > 2W1, we have

=1 (K — 2% 2 d
>Kn <ndexp{ 2_( Wl) an .

M_W
n,ij

Ap

(8.6) P [ max

i€[n]d

W1+ O(an) + K

j€n)d

In particular, with probability 1 there exists ng € N such that
n,ij

(8.7) max { max
i€[n]d _

Qp

j€ln]?

for all n > ny.

For the next lemma, we will need the following notation:

(88) Zni(®) =1~ Y by (O,

Jj€[n)d
(89) bn E(t) =D (vn j(t) —Up E(t)) ;
(8.10) Mnij = Onij — Wy i

and Z, = (Z,3, i € [n]9).

LEMMA 8.4. For arbitrary € > 0, we have
(811) 0[772/ eiLSHZ'rL(S)”g,TdeS S O(O{,’Lnd)lfe,
0

where C' is a positive constant independent of n and
1/2

(8.12) 1Za($)llas = | 07" Z Z,5(5)

]G

Proof of Theorem 8.1. Recall that f(u,z,t) and D are Lipschitz continuous
function in w with Lipschitz constants Ly and Lp, respectively.
Further, a,, ;;, are Bernoulli random variables

(8.13) Plan 5 =1) = anW, 3.

Denote 9, ; := v, 7 — up ;. By subtracting (2.3) from (3.4), multiplying the result by
n_dwmg, and summing over i € [n]¢, we obtain
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1d
(8'14) 5@”%1”3,”(1 = _d Z nm f( U 7 )) 'l/}nz

i€[n]d

I

+n Mt > (@nWaig — a,37) D(0ng — v0i) s

i,j€[n]?

I

=I5 + 1+ I,

where || -||2, is the discrete L*-norm (cf. (8.12)).
Using Lipschitz continuity of f in u, we have

(8.15) 1] < Lil[nll3 pa-

Using Lipschitz continuity of D and the triangle inequality, we have

I3] < Lpn =, > a5 (19nl + 1¢03]) ¥l

1,j€[n]d
(8.16)
3
—2d —1 2
< Lpn an 9 Z an %]wn i + 9 Z Un,ij¥n,j
i,j€[n]d ,jE[n]

Using Lemma 8.3 and (8.4), we obtain

(8.17)
Qn 2 Z Qn 75 m—”_dz _dz ( "U +Wn5§>w2
i,j€[n]¢ i€[n] j€m)
ST Y (KA W) Yh 5 = (K + W) [l -
i€[n]d
Similarly,
(8.18) n~aq; Z an,ﬁe[n]dwi,j < (K +Wa) ||,(/)n||§nd
i,j€[n]?
By plugging (8.17) and (8.18) into (8.16), we have
3 = 1 = 2
(8.19) [s] < Lp (2K + 5Wi+ 5Wo | [l 2.

It remains to bound Is:

(8:20)  [Io| = |n"%ayt Z Znitonil <27 a2 Z0ll3 e + 27 W03 00
i€[n]d
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The combination of (8.14), (8.15), (8.19), and (8.20) yields
d 2 2 1 2
(8:21) e lonlzn < Liva@ll2n + 5 120020,

where L = Ly + Lp (2K + 3Wy + $Wa) + 3.
Using the Gronwall’s inequality and Lemma 8.4, we have

sup ,(/J'n, N < a—2 LT/ e—Ls Zn S) 2n ds
(8.22) e [ (O3 0 ; 1Zn ()12,

< a2l T (nday,) 1.

Proof of Lemma 8.3. Let

(8.23) n,ij =

— 2Wn,?§ (1 — Oann@) , ;J S [n]d

Note that for fixed 7 € [n]%, {£,77,j € [n]*} are mean zero independent random
variables. Further, using the definition of , 75, it is straightforward to bound

(8.24) n 7l < ant +2W, 55 < 3a,t = M,
(8.25) E& 5 <20, W, 55 4 2W7 = + 4oy, W o5 + 4o, W) 2.

From (8.25), we have

—1 2 2 3

j€n]? j€m]?
<o, ' W + 0 (o).

Using Bernstein’s inequality and the union bound, we have

(8.27) max Y &5 > (K —2W)n

i€[n]d _
e

d { S (K —2W7y) }
< n%exp _
S5 EE2 -+ (1/3)M (K — 2W7) nd
i(K—QWl)QnQd }

<nd _ 2 _
=" Cxp{ozfllnd (W1 + O(ozn)) +an? (K — 2W1) nd

=1 (f _ ot )2 d
SNeXp{Q(K 2W1) ann}.

Wy + O(an) + K
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Finally, the combination of (8.23) and (8.27) yields

i€n]?

2
<P max an;32 K_EZW"@ nd

J€n)? J€n)?

<P max Z 57”]_ —2W1)nd
j€[n)?

;1 _ o) and
§ndexp{ 2_( 2W1) an }

Wl + O(an) + K

This proves (8.6). By the Borel-Cantelli lemma, (8.7) follows. |
Proof of Lemma 8.4. Recall (8.8)-(8.10) and rewrite

(3.25) | P2 B s =Y i
0 Tk le[n)d
where
629 = [ b halds and el <17 =i
By (8.1), one can choose a sequence d,, \, 0 such that
(8.30) ns, > oy’

Specifically, let

(8.31) PR

vinn

and define events

7,

(832) TL an E Cn ikl ik In,il > 5nnd ’
k,l€[n
[n]

(8.33) ;= Inij _ W, > Kn? b, and A, = | ] A,z
al On i€[n]?
Clearly,
(8.34) P(Q) < P(Q 1 AS) + P(An).

We want to show that P (€, infinitely often) = 0. By the Borel-Cantelli lemma, it is
sufficient to show that

> P(Q) < o0
n>1

From Lemma 8.3, we know that > o P(A4,) < oo for K > 2Wj. In the remainder of
the proof, we show that >, -, P(2, N AS) is convergent.
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Applying the exponential Markov inequality to P(Q,, |AS), from P(Q, N AS) <
P(Q, |AS) and (8.32), we have

(8.35)

n

P(Q, NAS) < expl —n?6, + InE |14c exp ¢ (nay,) 2 Z Cry iRl ik T 7T

i,k,le[n]d

Using the independence of 7,, 73 with respect to i, we have

(8.36) E |1agexpg (n%an)™ > ¢y it it
i,k,le[n]d

H E ]-ASL exp (ndan Z Cn ikl ik TIn il
i€[n]d k,l€[n]d

Using

e® <1+ zlel”l, zeR,

and the Cauchy—Schwarz inequality, we bound the right-hand side of (8.36) as follows:

(8.37) E |1acexpq (n%0n)™ D ¢y ipilnintni
k,len]?

<1+E |:1A% (ndan Z Cn ikl ik In,il
k,le[n]d

d _
X exp (n an Z CniklMn ik n il
k,le[n]d ;
o\ 1/2

d —
<1+ [EQ (n%an)™ Y o iiitniithni
k,en]d

1/2

x | E ]-Ar exp 2(” an Z Cr ikl ikTn il
k,lg[n]d

From (8.10), (8.29), and under A¢ (cf. (8.33)), we have
(8.38) 1a:2(n o)™ Z Cp ik ik it | < 2Ke.
le[n

k,
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Further,
2
(8.39) Eq (na,)™? Cpp Tl T 7T
k,lg[n]?
< (ndan) Z E (77n i3, ikIn,il"n 1p) n,13Ppn, ikl
j.k.lpeln]d
2
< @ S Eniz+6( > Eng
- (ndOln)4 nn " n;j
jE€[n]d j€ln)d

Using (8.10), we estimate the sum of the fourth moments of 7, ;,

Z En% = Z {aan@ (1 — aanygj) + « Wﬁ?ﬁ (1 — aanﬂ)}

jE€[n]d j€n)d

8.40
(8.40) <nlon [NTH YT Wz +ain™ Y Wi
J€n) j€[n)?

< na, (W1 + afLV_V4) = O(annd),
where we also use (8.4). Similarly,

Z En% = Z {aan@ (1 — aanV;]) + « Wﬁ i (1 — aanﬂ)}

JE€[n]d j€n)d

<nozn N~ ZWn”JranndZ n”

J€[n]d j€[n])d

< na, (Wl + OénV_Vg) = O(ay,N).

(8.41)

By combining (8.39)—(8.41), we obtain

2

(8.42) E n ap)” Z ik ik it ¢ = O ((ndan)_Q) .
k,l€[n

By plugging (8.38) and (8.42) into (8.37), we obtain

n
_ (&5
(843)  E |Llagexpl (n%an)™ D i i <1+nda .
k,le[n]d "

Using this bound on the right-hand side of (8.36), we further obtain

n

—1
(8-44) E [1agexpq (nfom) ™ D cppmnintigr o | <€
i hle(n)?

Using (8.44), from (8.35) we obtain

(8.45) P(Q, NAS) < exp {—n6,4 + C30;,'} =0, n — o0.
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Furthermore, using (8.31) it is straightforward to check that

o0

D PR, N A5 < oo

n=1

The statement of the lemma then follows from (8.32)—(8.34) via the Borel-Cantelli

lemma. 0
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