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Abstract—Identifying abnormal patterns in electroencephalog-
raphy (EEG) remains the cornerstone of diagnosing several
neurological diseases. The current clinical EEG review process
relies heavily on expert visual review, which is unscalable and
error-prone. In an effort to augment the expert review process,
there is a significant interest in mining population-level EEG
patterns using unsupervised approaches. Current approaches
rely either on two-dimensional decompositions (e.g., principal
and independent component analyses) or deep representation
learning (e.g., auto-encoders, self-supervision). However, most ap-
proaches do not leverage the natural multi-dimensional structure
of EEGs and lack interpretability. In this study, we propose
a tensor decomposition approach using the canonical polyadic
decomposition to discover a parsimonious set of population-level
EEG patterns, retaining the natural multi-dimensional structure
of EEG recordings (time×space×frequency). We then validate
their clinical value using a cohort of patients with varying stages
of cognitive impairment. Our results show that the discovered
patterns reflect physiologically meaningful features and accu-
rately classify the stages of cognitive impairment (healthy vs mild
cognitive impairment vs Alzheimer’s dementia) with substantially
fewer features compared to classical and deep learning-based
baselines. We conclude that the decomposition of population-
level EEG tensors recovers expert-interpretable EEG patterns
that can aid in studying smaller specialized clinical cohorts.

Index Terms—EEG, neurological disorders, tensor decomposi-
tion, unsupervised learning, interpretability

I. INTRODUCTION

EEG measures the electrical activity of the brain [1]. The
identification of abnormal patterns via expert visual review is
the current gold-standard test for diagnosing a wide range of
neurological, psychiatric, and sleep disorders using EEGs [2].
However, expert visual review is tedious, unscalable, error-
prone, and subject to reviewer bias [3]. The recent availability
of large population-level clinical EEG datasets, such as the
Temple University Hospital EEG corpus (TUH-EEG) [4], has
sparked interest in the data-driven discovery of EEG patterns,
to augment the expert review process.

Nonetheless, the automated discovery of interpretable EEG
patterns remains challenging. Despite the availability of large
labeled EEG datasets, the expert labels, when available, are
limited to recording-level summaries (i.e., one label per EEG
recording). Hence, the applicability of supervised learning
to discover sub-recording level (seconds to minutes) EEG
patterns is currently limited. On the other hand, traditional un-
supervised learning approaches such as principal components
analysis (PCA) and independent components analysis (ICA)
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require EEG data to be transformed into a two-dimensional
matrix despite its natural three-dimensional structure. Further-
more, deep-learning-based approaches such as auto-encoders
and self-supervision suffer from a lack of interpretability.

Unsupervised tensor decomposition (TD) is a natural choice
for analyzing multi-dimensional EEG datasets [5]. However,
most prior research has focused on analyzing task-induced or
stimulation-induced activity [6]. TD has not been widely used
for resting-state EEGs because of the lack of synchronization
between segments. In this study, we build a population EEG
tensor from large-scale resting-state clinical EEGs, transform
the segments into the frequency domain to synchronize them,
and decompose the tensor to discover meaningful patterns and
investigate their interpretation and clinical utility.

Specifically, we utilize clinical EEGs from the TUH-EEG
corpus to construct a single large EEG tensor with tempo-
ral, spatial, and spectral dimensions. This population-level
EEG tensor is then decomposed to yield expert-interpretable
patterns along those dimensions. We also conducted experi-
ments to confirm the interpretation of the patterns and assess
their ability to classify mild cognitive impairment (MCI) and
Alzheimer’s dementia (AD) against cognitively normal (CN).

Our study makes the following contributions:
• We show that much of the variability in a population EEG

dataset comprising multiple diseases can be sufficiently
explained using only three latent factors.

• Those parsimonious factors reflect clinically meaningful
patterns and associate with known EEG correlates of
cerebral function and signal artifacts.

• Despite their parsimony, TD factors perform competi-
tively in classifying stages of cognitive impairment com-
pared to classical and deep-learning-based baselines that
utilized large numbers of features (AUC = 0.92 for CN
vs. AD and AUC = 0.65 for CN vs. MCI).

II. RELATED WORK

The acquisition of brain-related bio-signals (functional or
structural neuroimaging, magnetoencephalography, and EEG)
produces inherently multi-dimensional datasets even in single-
subject settings. Unsurprisingly, TD, which is a tool for higher-
order data decomposition, has been extensively used to study
such datasets. Broadly, TD has been used in brain-related
research to 1) identify latent network or disease states [7],
[8], 2) extract features for discriminative analysis [7]–[9], 3)
analyze structural and functional brain connectomes [10], and
4) fuse multi-modal data such as simultaneous EEG-fMRI [9].
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In the scalp EEG literature, the majority of TD-based studies
have analyzed task-induced (also known as event-related po-
tentials or ERPs) or stimulation-induced activity [6]. A smaller
number of studies have used resting-state EEGs for disease-
specific analysis. These include frequency-dependent brain
connectivity analysis of major depressive disorder subjects
[11], decomposition of EEG oscillatory spectrum to character-
ize rehabilitation-related sensorimotor activity [12], detection
of epileptic spikes [13], and sleep staging [14]. In contrast
to such prior work that focuses on small datasets and single
disorders, we use a large population-level dataset comprising
patients with multiple disorders and focus on evaluating the
clinical value in an unseen dataset.

III. MATERIALS & METHODS

Analytic workflow: Figure 1 illustrates the overall workflow
of our study. First, we preprocess raw EEG signals to extract
spectral information and construct a population-level EEG
tensor. Then, we decompose this tensor to discover multiple
EEG patterns (Section III). Each pattern is defined by a
distinct signature in the spatial and spectral domains. Finally,
we validate the clinical value of these population data-driven
patterns using an expert-labeled unseen cohort of patients with
varying stages of cognitive impairment (Section IV).
Dataset: All data used in this study are from the TUH-EEG
database [4]. This dataset comprises ≈30,000 EEG recordings
collected at TUH starting from 2002. All EEGs were recorded
with the standard 10-20 scalp EEG spatial layout. A subset of
TUH-EEG, including 2,342 routine EEGs (also known as the
TUH abnormal corpus) was used to construct the population-
level tensor. Another non-overlapping subset of the larger
TUH-EEG corpus, including routine EEGs of 24 CN, 31
MCI, and 50 AD patients, was selected for validation. These
diagnoses were extracted from the text reports accompanying
the EEGs by a board-certified neurologist. The breakdown of
the two datasets by demographic variables is shown in Table
I. A previously published tool was used to extract age and
gender information from the text reports [15].

TABLE I: Composition of the population dataset (N = 2, 342)
and the expert-labeled validation cohort (N = 105).

Dataset Labels Gender Age
M F N/A 18-30 30-50 50-70 >70

Population - 1064 1243 35 425 839 795 283

Validation
CN 10 13 1 - - 13 11

MCI 12 18 1 - 2 21 8
AD 6 42 2 - 1 25 24

EEG processing: We processed the EEGs as follows: a) we
arranged channels of all EEGs in the same order, b) applied
a bandpass filter between 0.5Hz and 45.0Hz, c) divided the
recordings into contiguous non-overlapping epochs of 10-
seconds, d) identified and removed bad epochs when the total
power in their ‘Cz’ channel exceeded 2 standard deviations as
calculated from statistics of each recording, e) identified n eyes
closed awake epochs from each recording (n ∈ {2, . . . , 6})
[16], and finally f) obtained the Fourier transform of each
epoch between 1–45 Hz using the Welch method.

Tensor construction and decomposition: We use x ∈ RS×F

to denote the Fourier transform of a single EEG epoch with
S sensors at F frequencies. Then, a multi-subject dataset
including a total of E epochs is represented by a third-
order tensor X ∈ RE×S×F . Next, we apply the Canonical
Polyadic Decomposition (CPD) [17] with rank r to decompose
the population-level tensor X as a sum of r rank-1 tensors
Xi = ei ⊗ si ⊗ fi for i ∈ {1, . . . , r}.

X ≈
r∑

i=1

Xi =

r∑
i=1

ei ⊗ si ⊗ fi (1)

The vectors ei, si, and fi represent the population-level
patterns in the E, S, and F dimensions, respectively. Although
the choice of rank r is recognized to be an NP-hard problem,
heuristic approaches based on empirical reconstruction errors
exist. In this work, we use DIFFIT [18] to determine the
decomposition rank. Given a tensor, DIFFIT sweeps over a
range of different rank values and uses a ratio of the explained
sum of squares to determine the ideal rank for decomposition.
The optimization of the CPD for a given rank r was performed
using the Gauss-Newton approach [19].
Extracting features for new data: Here we aim to represent
new data in the space of these population-level spatiospectral
patterns discovered using CPD, i.e., with respect to si and
fi. This is done in two steps. First, we form a basis matrix
B ∈ RS·F×r for the space spanned by all s’s and f ’s. Here,
the columns of B are vectorized versions of (si ⊗ fi), i ∈
{1, . . . , r}. Then, for a given epoch xnew ∈ RS×F , we obtain
the coordinates w ∈ Rr in the above space as w = B+ ×
vec(xnew), where vec(xnew) represents vectorized xnew and
B+ is the pseudo-inverse of B. Using this procedure, data
from the validation cohort is projected onto the spatiospectral
basis B recovered from CPD.
Predictive modeling: In the final step, we use the weight
vector w returned by projection as features to classify the
validation cohort. We adopted a 15-fold cross-validation ap-
proach where the folds are made with disjoint sets of subjects.
Although model training is done at the epoch level, the
epoch-level predictions are averaged to obtain subject-level
predictions. These subject-level predictions are then used to
compute the area under the receiver operating characteristic
curve (AUC) that summarizes model performance.

IV. EXPERIMENTS & RESULTS

We conduct experiments to interpret the factors and validate
their utility in a clinical application. Our results are summa-
rized in Figures 2 and 3, and Table II.
Parsimonious EEG patterns: We obtained the optimal DIF-
FIT score for r = 3, which results in a stable decomposition
across multiple initializations, shown in Figure 2. In Figure
2b, which shows the number of times each rank was selected
as optimal by DIFFIT, we see a sharp decrease in the counts
after r = 3. In the following, we report results using r = 3.
This result suggests that despite the complexity of scalp EEG,
a large portion of the variability in population-level EEG can
be explained by as few as three latent patterns.
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Fig. 1: Our overall analytic workflow. We construct a 3-D tensor using the power spectral densities of a population sample of eyes-closed
awake EEG epochs and perform a tensor decomposition. Then, we obtain the weights for the EEG epochs of a validation cohort with respect
to the discovered spatiospectral patterns using a projection algorithm and perform classification using those weights as features.

Relations with brain physiology: Figure 2a visualizes the
rank-1 tensors representing the three factors along the epoch,
space, and frequency dimensions. The rank-1 tensors in the
epoch (∈ RE), spatial (∈ RS), and frequency (∈ RF )
dimensions are plotted as a probability density, a topographical
map, and a power spectral density, respectively. The epoch
dimension represents the weights of each EEG epoch for the
corresponding spatiospectral pattern; i.e., it reflects how much
of that pattern is present in a particular epoch. Although the
scales of the individual patterns are not meaningful, recon-
struction (Eq. 1) will yield an approximation of the original
tensor. Figure 3 shows the distribution of these epoch-level
‘weights’ across multiple age groups, normal/abnormal expert
labels, and various stages of cognitive impairment. We find
that factors 2 and 3 show marked differences based on aging,
abnormal grade, and degree of cognitive impairment. Below,
we interpret the factors based on the spatiospectral patterns.
Factor 1: We observe a bilateral frontotemporal activation
with high power in the higher frequencies (>25 Hz). This fac-
tor most likely indicates muscle artifacts involving the frontalis
(eye) and/or temporalis (facial/jaw) muscles, respectively.
Factor 2: We observe a component with higher activation
in the lower frequency range (<10 Hz) and diffuse scalp
distribution. Moreover, the presence of this factor is increased
in abnormal EEGs (Figure 3c). Thus, this factor most likely
indicates generalized slowing related to pathologies.
Factor 3: We observe central-to-posterior activation with
peaks in the alpha (8-12Hz) and beta (13-25Hz) ranges. This
factor shows a decreasing trend with age and is increased in
normal EEGs (Figure 3b,d). We surmise that this factor rep-
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Fig. 2: (a) The features extracted from our population-level tensor.
(b) Histogram of suggested rank over 30 runs of DIFFIT.

resents combined posterior alpha and central beta oscillations.
Classification results: Next, we investigate the utility of
these factors in classifying CN vs. MCI and CN vs. AD.
We computed the weights for the validation data using the
projection algorithm (Section III). Those weights serve as
features in classification. We compared the performance of
those features against two other unsupervised features: 1)
classical expert features of power in frequency bands (PIB),
and 2) embeddings from a self-supervised feature encoder
(SSL) [20]. We also evaluated three classifiers, Gaussian
Naive Bayes, a support vector machine, and a shallow neural
network, for each feature. The results are shown in Table II.

TABLE II: Cognitive impairment classification with different
features (TD - tensor decomposition, PIB - power in bands,
SSL - self-supervised) and classifiers (GNB - Gaussian Naive
Bayes, SVM - support vector machine, NN - neural network).
Mean AUC and standard deviation across subjects are re-
ported. Bold values indicate the best performance per task.

Feature-Classifier Feature Size Classification Result (AUC)
MCI vs CN AD vs CN

TD-GNB 3 0.65± 0.33 0.89± 0.16

TD-SVM 3 0.46± 0.32 0.92 ± 0.15

TD-NN 3 0.61± 0.31 0.62± 0.35

PIB-GNB 95 0.49± 0.38 0.92 ± 0.15

PIB-SVM 95 0.65± 0.35 0.86± 0.18

PIB-NN 95 0.45± 0.37 0.76± 0.30

SSL-GNB 128 0.45± 0.40 0.69± 0.33

SSL-SVM 128 0.52± 0.35 0.66± 0.28

SSL-NN 128 0.69 ± 0.30 0.68± 0.29

We observe that most combinations of features and models
perform poorly in classifying MCI vs. CN. Self-supervised
features perform the best (AUC: 0.69). Interestingly, TD
features, although much fewer in number, turn out to be a close
second (AUC: 0.65). In AD vs. CN, we find that TD-SVM and
PIB-GNB both perform the best (AUC: 0.92), followed closely
by TD-GNB (AUC: 0.89) and PIB-SVM (AUC: 0.86).

V. DISCUSSION & FUTURE WORK

This study demonstrates the use of unsupervised tensor
decomposition to recover interpretable EEG patterns from
population-level clinical EEGs in a purely data-driven manner.
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Fig. 3: (a-d) Boxplots of weights of factors 2 and 3 across multiple age groups and normal/abnormal EEG labels. (e) Kernel density plot
of cognitive impairment groups over the weights of factors 2 and 3. Stars denote statistically significant differences with p-values 0.05 (*),
0.01 (**), 0.001 (***), and 0.0001 (****), and ns denotes not significant (all based on t-tests).

Furthermore, we show their clinical value by classifying a
cohort of patients with various stages of cognitive impairment.
Significance: The increasing availability of large EEG datasets
and the laborious and error-prone nature of expert EEG
annotations have created a need for unsupervised or weakly
supervised approaches that can extract clinically interpretable
features from large amounts of unlabeled data. This paper
addresses this need by highlighting the utility of tensor decom-
position to recover population-level EEG patterns in a data-
driven manner. Our results suggest that these EEG patterns
correspond to known brain pathophysiology and are useful in
disease diagnosis tasks involving cognitive impairment.
Limitations and future directions: Here we used an algo-
rithmic approach to determine the rank (i.e., # features) in
TD. A more principled approach guided by domain knowledge
can recover more subtle EEG patterns specific to diseases.
Next, additional out-of-sample evaluations using data from
various disease groups, such as epilepsy, stroke, and psychi-
atric disorders, can further validate the usefulness of TD and
the identified factors. Finally, the same analytic workflow can
be applied to functional/spectral connectivity data to recover
whole-brain network motifs and aid in discovering network-
based patterns at the population level.

VI. CONCLUSION

We proposed a tensor decomposition-based approach to
extract meaningful features from population-level EEG data.
We performed experiments using the large-scale TUH-EEG
dataset and an expert-labeled cohort of patients including
varying degrees of cognitive impairment. Our approach dis-
covered a parsimonious set of EEG patterns (r = 3) from
large population-level data (N = 2, 342 EEGs). Our results
suggest that these EEG patterns correspond to known brain
physiology and are useful in classifying different stages of
cognitive impairment. Future studies are needed to evaluate the
proposed approach in diagnosing other neurological diseases.
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