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ABSTRACT
The thermal and compositional structure of arcs influence magmatic differentiation and 

lower-crustal foundering, two key processes impacting the evolution of the continental crust. 
Although many studies have proposed time scales of lithospheric recycling based on convective 
downwelling calculations, these models depend on the composition, density (ρ), and thermal 
structure of the lower crust and mantle, which are difficult to quantify in active continental 
arcs. Here, we constrained these properties for the Andean Northern Volcanic Zone using 
direct petrologic observations from a unique suite of lower-crust and mantle xenoliths from 
Mercaderes, Colombia. Chemical abrasion–isotope dilution–thermal ionization mass spec-
trometry (CA-ID-TIMS) U-Pb dates for zircons within the host tuff indicate the xenoliths 
erupted no earlier than 238 (±19) ka and thus capture a recent snapshot of the arc and subarc 
mantle. Equilibrium pressure-temperature (P-T) estimates for 81 xenoliths define three distinct 
thermal domains, interpreted as (1) a steep conductive geothermal gradient in the lower arc 
crust; (2) a convecting mantle wedge; and (3) cooled mantle in proximity to the subducting 
slab. Our results indicate the presence of an ∼10–14-km-thick, high-density lithospheric root 
that is ∼0.1 g/cm3 denser than the underlying mantle. Unlike records from exhumed paleo-
arcs, Rayleigh-Taylor instability calculations using our P-T-ρ constraints are unrealistically 
short for the northern Andes. We suggest the presence of partial melts in this hot arc root as 
a potential source of buoyancy preventing or significantly slowing down foundering.

INTRODUCTION
The thermal structure of active continental 

margins controls fundamental arc processes such 
as magma generation (e.g., Davies and Steven-
son, 1992), volatile recycling (e.g., Grove et al., 
2012), deformation and seismicity (Syracuse 
et al., 2010), and foundering (aka, “delamina-
tion”) of density-unstable lower arc crust (e.g., 
Behn and Kelemen, 2006). The pressure (P), 
temperature (T), and composition of deep crustal 
material govern its mineralogy, density (ρ), and 
viscosity, and thus the likelihood and time scales 
over which lower crust might become unstable 
(Jull and Kelemen, 2001). Many studies have 
hypothesized that the lower crust in thickened 

continental arcs, where P-T conditions can sta-
bilize garnet clinopyroxenite, or “arclogite,” 
becomes denser than its underlying mantle 
and founders via Rayleigh-Taylor instabilities 
(RTIs). Consequently, inferences about the time 
scales of lower-crustal recycling and its effects 
on uplift, magmatism, and crustal deformation 
are often based on this mechanism of removal 
(Behn et al., 2007; DeCelles et al., 2009; Jag-
outz and Behn, 2013; Jull and Kelemen, 2001; 
Molnar and Garzione, 2007).

Despite the strong dependence of crustal recy-
cling and arc dynamics on arc thermal structure, 
petrologic information from the roots of modern 
continental arcs remains scarce. Currently, mod-
ern subduction zone thermal regimes are inferred 
predominantly from geophysical observations 
and numerical models that consider subducting 
slab speed, age, geometry, and/or surface heat 

flow (e.g., Syracuse et al., 2010). Petrologic con-
straints on the thermal conditions characterizing 
lower arc crust are limited to ancient arcs and 
include thermobarometry of xenoliths from the 
Mesozoic Sierra Nevada arc (Chin et al., 2015; 
Ducea and Saleeby, 1996; Lee et al., 2006; Rau-
tela et al., 2020) and exhumed paleo-arc sections 
such as those in Kohistan (Burg et al., 2002; Jag-
outz and Schmidt, 2013; Ringuette et al., 1999), 
Talkeetna (Behn and Kelemen, 2006; Hacker 
et al., 2008), and Cabo Ortegal (Tilhac et al., 
2016). Although these localities have been fun-
damental for shaping our understanding of lower 
arc crust petrology, extinct arcs lack important 
geologic context and coupled in situ geophysical 
observations of their tectonic setting and physical 
properties (e.g., crustal thickness, gravity data, 
seismic velocities, and topography).

Here, we investigated the thermal and com-
positional structure of the Andean Northern Vol-
canic Zone (NVZ), a thickened active continen-
tal arc, using direct petrologic evidence from 
lower-crust and mantle xenoliths hosted in a 
Quaternary eruption. We obtained equilibrium 
P-T-ρ constraints for 62 new xenoliths, which 
we then used to directly inform RTI growth cal-
culations. Our data allowed us to test existing 
models for lower-crustal foundering via convec-
tive instability and offer key insights on possible 
sources of buoyancy that may help to stabilize 
arclogite roots in continental arcs.

GEOLOGIC BACKGROUND
The NVZ is the northernmost active vol-

canic segment of the Andes, the world’s larg-
est continental subduction system. The NVZ 
extends from 1°S in Ecuador to 5°N in Colom-
bia (Fig. 1). At 1.5°N, a xenolith locality known 
as Mercaderes preserves an unparalleled record *lzieman@arizona​.edu

Lisa Zieman  https://orcid.org/0000-0002​
-0065-2565

Published online 19 April 2023

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/51/6/586/5856311/g50973.1.pdf
by University of Arizona user
on 30 June 2023

http://www.geosociety.org
https://pubs.geoscienceworld.org/geology
http://www.geosociety.org
mailto:lzieman@arizona​.edu
https://orcid.org/0000-0002-0065-2565
https://orcid.org/0000-0002-0065-2565


Geological Society of America  |  GEOLOGY  |  Volume 51  |  Number 6  |  www.gsapubs.org	 587

of mafic-ultramafic fragments exhumed by the 
Granatifera Tuff (GT), a mafic ignimbrite-dom-
inated succession of variably welded lithic-rich 
tuff breccias and lapilli tuffs deposited from 
high-concentration pyroclastic density currents.

The Mercaderes xenoliths, described by 
Weber et al. (2002), Rodriguez-Vargas et al. 
(2005), and Bloch et al. (2017), include garnet-
rich gabbro, hornblendite, pyroxenite, and peri-
dotite fragments. Regional stratigraphic relation-
ships indicate the GT is Quaternary in age, and 
three garnet clinopyroxenite fragments dated 

using Lu-Hf have yielded isochrons between 
0 and 5.2 Ma (Bloch et al., 2017); however, no 
previous work has directly dated its eruption.

Based on petrologic, topographic, receiver 
function, and geoid anomaly observations, 
Bloch et al. (2017) suggested that a dense arclog-
ite root, sampled by the Mercaderes xenoliths, 
remains attached to the base of the NVZ crust. 
Recent seismic data along the Colombian Cen-
tral Cordillera supports this conclusion; Avella-
neda-Jiménez and Monsalve (2022) interpreted 
a section of lower crust with high shear-wave 
(Vs) velocity to represent an 8.5–14-km-thick 
arclogite root at the base of the NVZ.

METHODS AND RESULTS
We obtained zircon U-Pb geochronologic 

data from two finely laminated ash bed hori-
zons within the mafic GT and an unrelated felsic 
ignimbrite that unconformably overlies the GT. 
Zircon grains from the GT (n = 16) were dated 
by chemical abrasion–isotope dilution–thermal 
ionization mass spectrometry (CA-ID-TIMS) at 
Princeton University using methods described 

in the Supplemental Material.1 Zircon grains 
from the felsic ignimbrite (n = 19) were dated 
by laser ablation–inductively coupled plasma–
mass spectrometry (LA-ICP-MS) at the Arizona 
LaserChron Center following the methods of 
Pullen et al. (2018). All U-Pb results are sum-
marized in Tables S1 and S2.

Equilibrium P-T-ρ estimates for 62 gar-
net-bearing gabbro, pyroxenite, hornblendite, 
websterite, and peridotite fragments (Fig. 2) 
were determined using equilibrium thermo-
barometry between rock-forming phases using 
multiple calibrations described in detail in the 
Supplemental Material. Mineral compositions 
and modal abundances used for these calcula-
tions are reported in Table S3, and all thermo-
barometry results and associated uncertainties 
are included in Table S4.

ERUPTION AGE OF THE 
GRANATIFERA TUFF

Zircon from the GT dated via CA-ID-TIMS 
yielded variable U-Pb dates, ranging from 
0.238 ± 0.019 Ma to 65.761 ± 0.054 Ma (Table 
S1). The youngest zircon provided a maximum 
eruption age of 238 ± 19 ka. Moderate-precision 
U-Pb dates from the felsic ignimbrite obtained 
by LA-ICP-MS also revealed a complex distri-
bution, with dates from 0.282 ± 0.060 Ma to 
1.79 ± 0.16 Ma. Because three of the young-
est zircon grains from the felsic ignimbrite are 
within uncertainty of the youngest CA-ID-

1Supplemental Material. Analytical methods, ther-
mobarometry and geochronology results, summary of 
microprobe analyses, and description of instability 
time scale calculations. Please visit https://doi​.org​/10​
.1130​/GEOL.S.22306123 to access the supplemental 
material, and contact editing@geosociety​.org with 
any questions.

Figure 1.  Digital elevation model of the 
Northern Volcanic Zone (NVZ) in South Amer-
ica and location of Mercaderes, Colombia.

A B C

Figure 2.  Pressure vs. (A) temperature, (B) density, and (C) shear wave velocity (Vs) for Mercaderes xenoliths. Seismically determined Moho 
(SDM; pink line) is from Poveda et al. (2015), and Wadati-Benioff zone (dashed black lines) is from Syracuse et al. (2016), using pressure to 
depth conversion of 35 km/GPa. Solidi are plotted for dry peridotite (gray field; Pertermann and Hirschmann, 2003), hydrous peridotite (dashed 
gray lines; Katz et al., 2003), and mid-ocean-ridge basalt (MORB)–like garnet clinopyroxenite (green line). Pyroxenite (pyx) dry solidus, liq-
uidus, and melt fraction isopleths (F) are after Pertermann and Hirschmann (2003). Spinel- to garnet-peridotite transition (solid black line) 
is from Green (1973). Melt-free density (panel B) and Vs (panel C) values for individual xenoliths are compared to upper mantle (pyrolite at 
2 GPa, 1250 °C), calculated using methods of Abers and Hacker (2016). Seismic velocity model (AJM22; blue line) is from the proximal Sotará 
volcano after Avellaneda-Jiménez and Monsalve (2022), as well as their inferred Vs range for arclogite root (blue field). Bivariate probability 
density contours (light to dark gray shading) were calculated using 2 SD uncertainties of applied thermobarometers (error bars labeled BKN 
and BG; see Supplemental Material [see text footnote 1] for details) and our estimated modal abundances. Plag—plagioclase; grt—garnet; 
cpx—clinopyroxene; amph—amphibole; opx—orthopyroxene.
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TIMS date from the GT, we consider the latter 
as the best age estimate for the GT eruption. 
Our U-Pb results demonstrate that the GT is no 
older than the mid-Pleistocene, implying that 
the xenoliths within this tuff capture a geologi-
cally recent “snapshot” of the petrologic nature 
of the NVZ arc.

THERMAL AND PETROLOGIC 
STRUCTURE OF THE NORTH ANDEAN 
ARC

The equilibrium P-T conditions of Merca-
deres xenoliths from this study (n = 62) and 
from previous work (n = 19; Bloch et al., 2017; 
Weber et al., 2002) are shown in Figure 2A. 
Garnet-bearing gabbro, hornblendite, and clino-
pyroxenite fragments dominantly equilibrated at 
1.2–2.2 GPa and 920–1280 °C, and they define a 
steep, conductive-like thermal profile interpreted 
to represent the lower lithosphere. Density and 
Vs estimates for these lower lithospheric samples, 
calculated using the methods of Abers and Hacker 
(2016), suggest this layer is on average denser 
and seismically faster than the underlying mantle 
(Figs. 2B–2C). Our new estimates are consistent 
with recent seismic data (Avellaneda-Jiménez and 
Monsalve, 2022), which indicate the presence of 
a > 10-km-thick, high-velocity arclogite root at 
depths up to 73 km in our study area.

Compared to the global record of arclogite 
xenoliths and exhumed sections (Ducea et al., 
2021), the NVZ arclogites studied here repre-
sent a hot end member. The temperatures we 
obtained are consistent with those expected for 
deep crustal hot zones (1100–1240 °C; Annen 
et al., 2006), and many lie above the pyroxenite 
solidus, suggesting the arclogite root is in a par-
tially molten state. Thus, the hot arc root tem-
peratures in the NVZ and consequential pyrox-
enite partial melts may influence arc magma 
geochemistry as well as the style and time scale 
of lower-crustal foundering (discussed below).

Most mantle-derived garnet peridotite xeno-
liths (n = 10) equilibrated at 2.9–3.2 GPa within 
a narrow temperature range (1260–1290 °C). 
This temperature coincides with the hottest 
arclogites at the base of the lithosphere, thus 
defining an adiabatic-like thermal profile inter-
preted as representing the convective thermal 
regime in the mantle wedge. Another subset of 
strongly deformed garnet peridotites (n = 8) and 
garnet websterites (n = 7) records ∼50–100 °C 
lower temperatures (1140–1230 °C) at higher 
pressures (3.5–4.1 GPa). The calculated depth of 
the latter closely approaches, or overlaps within 
uncertainty, the Wadati-Benioff zone of the sub-
ducted Nazca oceanic plate at ∼130–150 km 
beneath Mercaderes (Syracuse et al., 2016), and 
so this subset is interpreted to reflect cooling of 
the mantle in proximity to the subducting slab 
as predicted by thermal models (e.g., Syracuse 
et al., 2010). All our >3.5 GPa peridotite and 
websterite fragments showed textural evidence 

for strong deformation, including undulating 
extinction in pyroxene and olivine as well as 
pyroxene porphyroclasts in fine-grained oliv-
ine matrices, potentially preserving evidence 
for strong shearing deformation of the mantle 
at near-slab depths.

IMPLICATIONS FOR ARCLOGITE 
FOUNDERING

Studies on lithospheric foundering typically 
model detachment as RTI, or as viscous down-
welling of a negatively buoyant lower-crust 
layer into the underlying mantle (Behn et al., 
2007; Jagoutz and Behn, 2013; Jull and Kele-
men, 2001; Molnar and Garzione, 2007). The 
most important factors controlling the growth 
rate of a RTI are density and viscosity, which 
depend on the P-T conditions and composition/
mineralogy of the crust and mantle. Whereas 
these parameters have to be either assumed or 
inferred through geophysics in most cases, our 
xenolith results directly constrain these param-
eters for the NVZ, so RTI calculations specific 
to this region can be performed.

Using density calculations for our samples 
(Fig. 2B), the bulk density contrast (Δρ) of a 
melt-free NVZ crustal root relative to perido-
tite at similar P-T conditions is ∼0.1 g/cm3, 
confirming that solids in the NVZ arc root are 
negatively buoyant with respect to the underly-
ing mantle. Instability time scales for the NVZ 
were calculated after Jull and Kelemen (2001) 
and Behn et al. (2007) and were compared to 
published RTI time scales for the Kohistan and 
Talkeetna arcs (Fig. 3A). To allow comparison 
with the Kohistan and Talkeetna models, our 
calculations used the same RTI model param-

eters described for these paleo-arcs by Jagoutz 
and Behn (2013), with the exception of T and 
Δρ, because these parameters were directly 
constrained by our data. The NVZ arc root is 
predicted to founder via RTI on exceedingly 
short time scales given the hotter tempera-
ture at the base of the NVZ lithosphere. Our 
modeling indicates the NVZ instability growth 
time is far shorter than the time required for 
the arc root to grow, given reasonable magma 
supply rates, and the root thickness should not 
exceed ∼1 km before detaching. However, an 
∼10–14-km-thick arclogite root is clearly pres-
ent, as evidenced by our xenoliths and seismic 
data (Avellaneda-Jiménez and Monsalve, 2022).

The discrepancy between the RTI model and 
observed arc root thickness in the NVZ could be 
reconciled if an additional source of buoyancy 
could keep the root stabilized over time scales 
exceeding those expected from these calcula-
tions. The density estimates for our samples 
using the methods of Abers and Hacker (2016) 
assume a melt-free root (Fig. 2B); however, 
many garnet pyroxenite fragments equilibrated 
at conditions above the pyroxenite solidus 
(Fig. 2A), implying partial melts are expected 
to be present in this deep crustal hot zone. 
Bowman et al. (2021) demonstrated that low 
quantities of trapped melt in an arclogite root 
can decrease viscosity and cause rapid foun-
dering, but greater melt fractions can have the 
opposite effect, increasing the overall buoyancy 
of the root and stabilizing it over longer time 
scales. Given that the NVZ arclogites are a hot 
end member of global arclogites (Ducea et al., 
2021), our study area provides an ideal locality 
in which to evaluate the hypothesis that melt-

A B

Figure 3.  Rayleigh-Taylor instability time vs. density-unstable layer thickness calculated after 
Jull and Kelemen (2001) and Behn et al. (2007). (A) Instability time curves for density con-
trasts (Δρ) of 0.05 and 0.1 g/cm3 and layer temperatures for Kohistan (750 °C; Ringuette et al., 
1999), Talkeetna (950 °C; Hacker et al., 2008), and Mercaderes (1100 °C; midlayer temperature 
in Fig. 2A). Thickness of the Northern Volcanic Zone (NVZ) root (10–14 km) is constrained 
by thermobarometry and geophysics. Cumulate layer thickness growth rates (dashed lines) 
assume 70% crystallization from typical arc magma fluxes to form cumulate layer (Jagoutz 
and Schmidt, 2013). (B) Density vs. trapped melt within arc root showing effects on bulk root 
density caused by adding variable amounts of anhydrous (ρ = 2.65 g/cm3) and hydrous (5 and 
10 wt% H2O; ρ = 2.5 g/cm3 and 2.4 g/cm3, respectively) intermediate melt, using melt densities 
from Malfait et al. (2014) at 2 GPa and 1100 °C.
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assisted buoyancy can stabilize high-density 
roots beyond the temporal bounds imposed by 
melt-free RTI calculations.

In Figure 3B, the bulk density of the NVZ arc 
root was calculated as a function of melt fraction 
present. The decrease in bulk root density caused 
by the addition of an ∼10% fraction of hydrous 
(10 wt% H2O) partial melt is sufficient to com-
pletely stabilize it (i.e., make the root density 
equal to that of peridotite; Fig. 3B). Although 
estimates for melt segregation and percolation 
in partially molten arclogites are lacking, stud-
ies in granitic systems suggest that melt frac-
tions between 8% and 20% will allow melt to 
connect locally (over centimeters to decimeters) 
but not allow it to escape over larger distances 
(Vigneresse et al., 1996). Therefore, ∼10% is 
a reasonable partial melt fraction that will suf-
ficiently decrease bulk density but only locally 
interconnect within the arc root and not be 
extracted. Furthermore, the melt-free Vs esti-
mates we calculated for the arclogite samples 
(Fig. 2C) are broadly consistent with the veloc-
ity structure observed by Avellaneda-Jiménez 
and Monsalve (2022), while the uncertainty on 
the absolute velocity of their seismic model may 
allow for the presence of melt. We propose that 
the hot thermal regime of the NVZ arc enables 
the presence of sufficient buoyant partial melts 
to prevent the arc root from rapidly foundering 
as a melt-free RTI, contrasting with observations 
from “cooler” arc settings, including the Central 
Andes, the Sierra Nevada, and the Talkeetna and 
Kohistan paleo-arcs.
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