
20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s 

an
d 

Au
to

m
at

io
n 

(IC
RA

) |
 9

79
-8

-3
50

3-
23

65
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
RA

48
89

1.
20

23
.1

01
60

80
6

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

Contingency-Aware Task Assignment and Scheduling
for Human-Robot Teams

Neel Dhanaraj1, Santosh V. Narayan1, Stefanos Nikolaidis1, and Satyandra K .  Gupta1

Abstract—We consider the problem of task assignment
and scheduling for human-robot teams to enable the efficient
completion of complex problems, such as satellite assembly. In
high-mix, low volume settings, we must enable the human-robot
team to handle uncertainty due to changing task requirements,
potential failures, and delays to maintain task completion
efficiency. We make two contributions: (1) we account for the
complex interaction of uncertainty that stems from the tasks
and the agents using a multi-agent concurrent MDP framework,
and (2) we use Mixed Integer Linear Programs and contingency
sampling to approximate action values for task assignment.
Our results show that our online algorithm is computationally
efficient while making optimal task assignments compared to a
value iteration baseline. We evaluate our method on a 24-task
representative assembly and a real-world 60-task satellite
assembly, and we show that we can find an assignment that
results in a near-optimal makespan.

I . INTRODUC T I ON
New advances in multi-robotic systems are helping realize
intelligent automation of very complex assembly problems,
such as a collaborative robotic cell for satellite assembly
[1] and the Boeing 777 fuselage upright autonomous build
process [2]. However, these robotic cells have not reached the
technology readiness level where all tasks can be automated;
tasks will still need a human operator in the loop [3].
Intuitively this is more than acceptable, considering that
humans and robots have complementary strengths. Robots
can accomplish supportive and repeatable tasks, while hu-
mans can execute tasks that require fine manipulation or
dexterity [4]. In high-mix, low-volume situations where the
human-robot team must react to changing task requirements,
an intelligent system needs to be able to assign tasks to
appropriate agents in the team and then schedule these tasks.

Organizing a human-robot team efficiently to accomplish
tasks for challenging applications in an uncontrolled environ-
ment is difficult because there is compounding uncertainty
in the system, tasks, and environment. Unexpected events
can cause delays or even failures in the system [5]–[8].
Contingencies, such as the robot irrecoverably failing a task,
will require the human to intervene to recover the system and
execute the task themselves. Delays in the tasks executed by
the human can decrease the teaming efficacy between the
human and the robot.

Many different approaches for task assignment and
scheduling of human-robot teams have been proposed with
different considerations. A  trending approach that is being
explored in the planning community is solving human-robot
task assignments and scheduling problems as a Mixed Integer
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Fig. 1: Real-world human-robot cell for automated satellite assem-
bly and potential contingencies that could occur during execution,
i.e., a battery module has gotten stuck, or a screwing operation has
failed.

Linear Program (MILP). It is advantageous to formulate
such problems as MILPs because there are numerous openly
available integer and constraint programming solvers that can
solve a given program and return a solution very quickly. The
quick solution return also allows the ability to quickly replan
when the system ends up in an unforeseen state. Though
there are approaches to incorporate uncertainty directly into
the MILP formulation [9], [10], such approaches take longer
to solve and can not effectively account for problem settings
with multiple sources of uncertainty. In most prior work,
contingencies are not explicitly considered. If the system
does not explicitly consider contingencies when generating a
policy, there will be bottlenecks during task execution due to
these events, leading to inefficiency.

Instead, we can formulate this problem as a Multi-Agent
Concurrent Markov Decision Process with system states and
task assignment actions and compute an optimal policy. This
allows the system to formally incorporate different sources of
uncertainty and compute possible state transitions. However,
for any meaningful-sized set of tasks, it becomes infeasible
for the system to generate a complete state transition diagram
with all possible contingencies and then use value iteration
techniques to find the optimal policy. Our key insight is
that we can quickly populate MILP solutions in the form of
state action paths and then sample contingencies that may
occur along these sequences. New state action paths can be
generated from the MILP solution for these contingencies.
Effectively, we use the strength of a MILP solver and
the CoMDP formulation to approximate the state transition
diagram efficiently. We can then perform a value backup and
generate a policy.

In summary, our contributions are: (1) A Multi-Agent Con-
current MDP Framework with durative tasks that accounts
for task failure and stochastic durations. (2) A MDP to MILP
formulation that takes in an MDP model and state and gives
state action paths. (3) online Action Selection that integrates
the benefits of the MDP state transition computation and
the MILP solution return to evaluate contingencies and
approximate a policy. (4) Evaluation on a real assembly that
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shows how this method would be implemented on a real-
world satellite assembly robotic cell.

I I . R E L AT E D  WO R K S

There is extensive literature for planning, task assignment,
and scheduling for human-robot teams [11]–[20]. These
approaches have used hybrid MILP, constraint programming,
multi-level optimization, and auction-based methods. Re-
cently, prior work has shown that formulating the problem
as a Mixed Integer Linear Program is a promising approach
for solving schedules with complex constraints such as tem-
poral and spatial constraints [21]–[23] and hierarchical task
network ordering and precedence constraints [10], [24]–[27].
The strength of using a MILP formulation is the availability
to use many powerful open source solvers that can solve the
problem and return the solution quickly [9].

Though most methods use deterministic assumptions, re-
search has shown that uncertainty originating from task
failures and human task execution can be directly incor-
porated into the MILP formulation using 2-stage stochastic
programming and chance constraints [28], [29]. Cheng et al.
[9] account for stochastic task durations for human actions
using a chance-constrained MILP formulation. By explicitly
accounting for the human uncertainty, the author’s results
show a more robust task assignment for different agents
and an improved makespan. In contrast, considering more
complex uncertainty interaction is very difficult for MILP,
which requires more specialized solutions.

Researchers have explored generalized probabilistic plan-
ning approaches [30] for complex stochastic domains using
Concurrent, and Multi-agent MDP formulations [31], [32].
These approaches formally capture the uncertainty dynamics
in multi-agent teams; however, finding a policy for these
MDPs is generally intractable. Therefore multiple approaches
have been proposed to approximate the policies. Weld et al.
[33], [34] proposes a concurrent MDP (CoMDP) formula-
tion for task planning that captures concurrency in action
execution, probabilistic task success outcomes, and stochastic
durations. They show that a system can approximate a policy
using real-time dynamic programming (RTDP) approaches.
Other approaches such as multi-agent reinforcement learning
and online planning have also shown that they can be used to
solve sequential decision-making for multi-agent teams
[35]–[38].

I I I . P RO B L E M FO R M U L AT I O N

We focus on the planning problem for task sets consisting of
a set of atomic tasks completed using a multi-human-multi-
robot team. Robots are agents that have different task
specializations. We model robots as agents that complete a
task in a deterministic nominal time. However, we must also
consider the probability that the robot may irrecoverably fail a
task at some time step between the start and end times. The
human must recover the failed task in such states.

The human is an agent who can complete all tasks in the
task set; however, there is more variability in task durations
due to correcting mistakes and fatigue [10], [39]. We model
the delays that may occur in humans using a stochastic

durative model. We consider the stochastic nature inherent in
the multi-human-multi-robot team planning problem by
accounting for task failures and stochastic durations.
Task Set State x =  [x1,x2, ...xn]: The state of the task set is
defined by the completion status of each atomic task xi. The
state variable of an atomic task can either be notAttempted,
currentlyAttempting, succeeded or failed. The state space
with n tasks is therefore represented using factored state
space representation, i.e. X =  (dom(X1) × ... × dom(Xn)).
Hierarchical Task Network (HTN): As formulated in
[24], we represent a task set with atomic tasks using a
sequential/parallel HTN. The root node represents the set of
tasks, and the leaf nodes represent the tasks. All other nodes
represent sub-tasks. Each sub-task node can be categorized
into three types: Sequential, Parallel, and Independent. The
type indicates the relationship between the sub-task and the
child nodes.

Tasks that are children to a sequential sub-task node must
be individually executed, from left to right, and this node
type captures ordering constraints found in assemblies. For
independent sub-tasks, tasks must be individually executed;
however, there is no ordering constraint. Lastly, tasks of
a parallel sub-task can be executed at the same time by
different agents.
Duration Model: In this work, we approximate discrete
distributions from continuous distributions to model the
temporal duration of a task. All tasks have an associated
nominal time and max completion time that a task will
succeed by. We define a max completion time for each task
in order to put an upper bound on the distribution. Also,
tasks will have probability distributions for what time steps
the agent may fail the task.

This work simplifies the human duration model because
we assume humans can not fail a task. The stochastic
duration of human task execution is modeled using a lognor-
mal distribution Lognormal(µ,σ 2), where µ is the nominal
completion time and σ accounts for the delay that can occur.
This model is justified in [25].

For the robot duration model, the max time is equal to the
nominal time if the robot succeeds in task completion. For a
robot failing a task, we used a skewed normal distribution
Skew(µ,σ ,α ) to describe when the task may fail.
Multi-Agent Concurrent MDP (N, S, A, T,C, γ ) : The prob-
lem of finding the best task assignment can be modeled as a
Multi-Agent CoMDP where N is a set of available agents Ai ,
S is the state space of the entire system, A(s) is the joint task
assignment combination space of a particular state, T (s, a, s′)
: is the transition function, C  : is the cost of taking an action at
a state and γ is the discount factor.
State s =  (x, y, z), s � S: The state of the entire system is
described by three variables:

1) Task Set State x =  [x1,x2, ...xn]
2) A  set of tuples consisting of the current tasks be

executed and the current time-step δx     in the action
duration i.e. y =  {(xi , δx )..(xn,δx ) }

3) A  set of tuples consisting of current agent assignments
z =  {(Ai , x j )..(Am , xn )}
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All  states between the start and goal state are decision epochs
where there are available tasks and unassigned agents, and
an agent assignment decision can be made.
Action a � A: An agent-task assignment at a state is a task
assignment decision taken at a decision epoch, i.e.,
(Ai , x j ). There can be multiple task assignments that can
be simultaneously taken. We refer to the set of task-agent
assignments taken in a state as an action a. The set of all
possible task-agent assignment combinations is a function of
the HTN model as well as the agent’s specialization model.
State Transition T (s, a, s′): When the system takes an action
at an initial state, the state transitions to the next decision
epoch, where the earliest terminating task has finished, an
agent is available, and the system has the opportunity to make
a new decision. Specifically, the MDP transition captures the
effect of two discrete transitions s →−  sI −→  s′ . First, given
an action and an initial state, the system assigns agents to
available tasks. The initial state’s current task and agent state
get updated with the new assignment, and s transitions to an
intermediary state sI . Next, an environment transitions T
transitions the state to s′     where the task that would have
finished earliest gets completed, and an agent becomes
available with the possibility to be assigned to another task.
Cost model C(s, a) ≡  δnext : The cost of taking an action is
the duration δnext that it takes to transition from the current
state to the next decision epoch.

Overview of Approach: Given an HTN, task failure,
and duration model, the goal is to compute a policy that
minimizes the action value function Q�. Such a policy would
find task-agent assignments while also accounting for any
contingencies to minimize the discounted expected makespan
of the task. Our approach is an online method for estimating a
value function for all possible actions at a state and returning
the lowest cost action. We intelligently sample from states
where a task fails, which we refer to as contingencies. The
method to compute these possible next states is presented in
Section IV. For contingencies that have a higher probability
of occurring, we use a MILP solver to return an optimal task
assignment schedule while assuming deterministic outcomes
and durations, which we present in Section V. Lastly, we
evaluate the optimal action to take by building a state
transition diagram of state-action sequences; this algorithm
is presented Section VI.

I V. COMPUTING T H E C A N D I DAT E S TAT E  T R A N S I T I O N S
In order to explain how to find candidate state transitions
after the system takes an action, we first explain the candidate
state transition computation by assuming a system whose
tasks either succeed or fail after a deterministic duration. Let
us consider a state where the system executes a set of tasks y.
In order to find the next decision epoch, we find the earliest
time step that a subset of tasks in y will terminate, causing the
state to change. The candidate state transitions then become
the set of all possible combinations of success or failure of
the tasks. Lastly, for the tasks that did not terminate, the
current time step in the action duration variable increases
by the elapsed duration. A  four-state system is illustrated in

Fig. 2: Consider an example state where four tasks are currently
being executed. The earliest next decision epoch will be when x
and x terminate. At this decision epoch, we find there are four
candidate state transitions variations that could occur. The tasks
that do not terminate in the decision epoch have their current time-
step updated by the elapsed time δ (cA is currently attempting, T
is succeeded, and F  is failed).

Figure 2.
So far, we have assumed deterministic durations, which

do not reflect real-world scenarios where task durations are
more variable. When considering stochastic durations, whose
distributions depend on the success or failure of the task, the
transition state computation becomes complex. We need to
consider all time steps and all possible variations of decision
epochs that could occur. By explicitly considering stochastic
durations coupled with the task outcome distributions, the
system can take advantage of transition states where a task
could have failed prematurely or taken longer than the
nominal time when computing the value function.

Algorithm 1 Expected Value Candidate Transitions

1: s: Initial state
2: a: Applied action at state
3: pt =  P(x′|Xsubt, t) : prob that Xsubt terminates after t

resulting in x′

4: 
5: function COMPUTE-TRANSIT ION-FUNC(S=(x,y,z),a)
6: yI ← y�{(xi, 0)|�xi � a}
7: zI ← z�a
8:            mintime ← min           I {min remaining times for xi }
9:            maxtime ← min           I {max remaining times for xi }

10:            X ← Set of tasks that could terminate in between
mintime and maxtime at state s

11: for non-empty subsets Xsubt � X do
12: W ← {(x ′ , px)|x′ is the task set state; px is the

probability that Xsubt terminates yielding x ′ }
13: for (x′, px) � W do
14: pint =  ∑ t�[mint ime,maxtime] pt

15: texp =  ∑ t�[mintime,maxtime](pt �t )/pint

16: y ← {(xi , δ + texp)|(xi,δ ) � y , xi � Xsubt }
17: z′ ← {(A, xi )|(A, xi ) � zI , xi � Xsubt }
18: ps ← pt � px

19: insert ((x′, y′ , z′), ps) in out put
20: return out put
21: 

Finally, we adapt our algorithm for candidate state tran-
sition computation from [33], which presents a method for
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single-agent CoMDPs with stochastic durations. Algorithm 1
describes the computation. For a state and an active input,
the algorithm updates the state’s current task and agent
assignments; we call this updated state an intermediary state
(Line 6,7). We next determine the earliest time that a task
could end (mintime) and the earliest time a task will
definitely end (maxtime), and then compute the set of tasks
that could terminate in between the mintime and maxtime
(Line 8,9,10). The algorithm has to consider all possible
subset combinations of tasks Xsubt     that may terminate
within the considered time interval, the resulting next states,
and the associated transition probabilities. Given our state
space representation, the exact computation of the transition
function would generate all possible state outcomes for each
time step in the considered time interval. For an intermediary
state where e actions could terminate in an interval with o
time-steps, the resulting number of transitions could easily
reach the upper limit of 2e �o − 1 states leading to a huge
branching factor. Instead, we compute the expected value of
the task duration for each state transition when computing
how much forward to move in time for the next transition.

The algorithm first calculates the probability that Xsubt

completes at time-step t resulting in the next state x′ for each
time-step integer. The algorithm then sums the probabilities,
giving the probability pint that Xsubt will terminate at some
time step resulting in x′ within the entire interval (Line 14).
Lastly, we calculate the expected duration value for that tran-
sition and update the elapsed time for the intermediary state.
The algorithm returns a list of the possible successor states
and corresponding probabilities that the state will transition
to x′ at some time-step within the interval. The computed
output captures the effect of stochastic durations and task
failure probabilities without considering every possible state
transition for every time step.

V. USING A  M I LP TO I N S E RT PAT H S IN S TAT E
T R A N S I T I O N DI AG R A M S

We use a MILP to generate optimal plans while assuming
deterministic outcomes and expected durations. This paper
adapts the MILP from a standard time-index model. The
exact formulation is given in [40]. The goal of the MILP
is to find the best agent-task assignments x A  , j for i agents
and j tasks, as well as task start times tstart, j in order to
minimize the makespan variable t. Furthermore, we want
to reduce unnecessary idle time and make decisions at the
earliest opportunity, so we also must minimize the start time
variables. Therefore, we define our cost function in Equation 1
as the weighted sum of the makespan value t and the
summation of start times s. Lastly, the solution will be subject
to ordering and precedence constraints for the tasks that are
derived from the HTN.

We must now modify the initial formulation to consider
in-between states where some tasks are completed, or agents
may currently be executing a task. The constraints in Equa-
tion 2 capture information from the set of currently executing
tasks y by assigning the corresponding agent-task decision
variable to be 1. The task tstart variable is set to be zero,

and the tnom,A     duration is set to equal the original task
nominal duration subtracted by the current time-step in the
task duration. Lastly, if the task is completed (xi � Xcomplete),
then the tnom,A     duration value is set to zero, effectively
removing the task decision variable from the computation of
the objective.

min At + Bs (1)

(xA i , j  = 1,  tstart, j = 0,  tnom,Ai , j = t original 
j −δx j  ) : xAi , j  �y 

(2)tnom,Ai , j =  0 : xi � Xcomplete (3)

V I . C O N T I N G E N C Y-AWA R E AC T I O N S E L E C T I O N
The key idea for evaluating contingency states is to con-

sider the probability that a state sequence, whose leaf node is
the contingency state, occurs given the current state. This
probability is the compound probability pc that the group of
states in the sequence occurs. We show an example state
transition diagram in Figure 3 where each node is a state, and
each edge is an action and possible transition edge. The green
nodes are states where tasks are successfully completed,
while the red nodes are contingency states where the task
failed. The nodes highlighted in yellow are states where the
MILP solver evaluated and generated a new sequence that
was connected to the goal state.

Let us first conceptually explain the method for evaluating
contingencies through an example shown in Figure 3. Con-
sider that in this system, when an action is taken at each
state, there is a 0.9 probability that a task will successfully
complete and a 0.1 probability that it will fail, resulting in a
contingency state. First, given that the system takes a1 at
the start state, we find the resulting transition states and
corresponding compound probability and then add the tuple
(pc, s′) to a queue. We then pop the next state with the
highest pc from the queue. In this example, the next state
is state 1, and pc =  0.9, and we then run our MILP solver
to generate a state sequence from state 1. This sequence
is then connected from state 1 to the goal state. Lastly,
we traverse the state-actions in the sequence and find new
contingency states and associated pc values, which we then
add to the queue. The method continuously keeps evaluating
contingency states until the queue is empty. In our example,
the next contingency state that would be evaluated in state 2
with pc =  0.1, and a new state sequence would be generated
and connected between state 2 and the goal state.

Without a bound on which contingency states should be
evaluated, our method would build a complete state
transition diagram and generate a complete solution at the
cost of computation time. Instead, we introduce a parameter
pc , which defines the smallest compound probability for a
state that should be evaluated. Intuitively, this parameter
dictates that the algorithm evaluate contingency states that
are likelier to occur than pc . In the previous example, the
pc          =  .05; therefore, contingency states with a compound
probability above .05 are evaluated by the MILP solver. Once
all qualifying states are evaluated, and the state transition
diagram is constructed, we perform a value backup, and the
algorithm returns the state action pair with the lowest cost.
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Algorithm 2 Policy Approximation algorithm
1: s: Current State
2: LowestActionQVal: Ordered list actions to be evaluated
3: QTable: Q Table for all encountered state action pairs
4: function PLAN(s)
5: A ← get-all-actions(s)
6: for a � A do
7: (Qest .Tra j) ← MILP-ES T I M AT E(s,a)
8: Insert (Qest , s, a) in LowestActionQVal
9: while Not Interrupted do

10: for (Qest , s, a) in LowestActionQVal do
11:                            if BestQ <  Qest      then
12: Remove s,a from LowestActionQVal
13: QVals ← EVA L-CO N T I N G E N C I E S (s,pc )
14: Value Backup of Q(s, a) with QVals
15: if BestQ >  Q(s, a) then
16:                                    BestQ =  Q(s, a)
17: BestAction =  a
18:

return 
Incrementally reduce pc

min

We now formally describe our policy generation method
shown in Algorithm 2. The algorithm first gets all possible
actions that can be taken at the current state (Line 4). For
each action and resulting intermediary state, we run the
MILP-Estimate, which returns a state sequence and estimated
Q value. This output is then stored in an ordered action list
(Line 7,8). The algorithm first evaluates contingencies for
potentially good actions by ordering their estimated Q value.
The algorithm can then prune out bad actions whose
optimistic estimate is worse than the best-expected Q value
seen so far (Line 11,12).

The algorithm then gets the state-action pair with the
lowest initial estimated Q value and evaluates all encountered
contingencies whose compound probability is above pc .
This returns all estimated Q values for the encountered state-
action pairs in the evaluated contingency trajectories. The
algorithm then performs a value backup of the Q table from
the estimated Q values (Line 13,14). Lastly, the algorithm
records the action with the lowest Q value. It is important to
note that we do not set a static pc value. Instead, we
incrementally reduce pc and loop through possible actions
and evaluate any new contingencies whose pc is higher than
the current pc . Inherently, we are iteratively expanding
the state transition diagram for each possible action and
performing value backups at each iteration so that the best
action will always be returned when output is needed.

V I I .  R E S U LT S
We evaluate our approach in simulation for 2 assemblies
(1) a 24-task assembly generated to represent an assembly
process with three subassembly groups and (2) a 60-task
assembly that reflects the assembly of a mock CubeSat. Both
assemblies are executed using a 1-human-5-robot team. We
use the 24-task assembly to show how different aspects of the
problem and algorithm parameters affect the online policy
generation process. Our objective for experiments conducted
with the 60 task assembly experiments is to use a real

Fig. 3: A  approximation of state trajectories for a single state action
pair root node

robot assembly cell to justify the decisions we make for
the problem formulation and demonstrate our approach to a
realistic assembly process.

In our implementation, we solved our MILP using Google
OR-Tools CP-SAT solver [41]. For a 24-task and 60-task
problem, the solver, on average, returned a solution in 30ms
and 90ms, respectively. We create a lognormal distribution
for both task problems to model the delay that may occur
when the human executes a task. For the distribution, the
mean delay is 25 percent of the total task duration, and the
standard deviation is set so that there is a 95% probability
that the human will finish the task by 1.5 times the nominal
duration. For all tasks, we model that the robot is 80% faster
in completing tasks than a human.

For the 24-task problem, we randomly selected half the
tasks to fail prematurely when being executed by the robot.
We create a skew-normal distribution such that the mean is
1/2 the nominal duration, and we arbitrarily set the standard
deviation so that there is a realistic variance.

A. Examining the compound probability pc parameter
For our approach, the pc          parameter drives the sampling

intensity; therefore, it is important to examine how this
parameter affects the search depth and the efficacy of our
methods. It is important to note that the smaller the pc value,
the more sampling that is being done from the state transition
diagram. We are also interested in how these results change
for different levels of stochasticity in the problem domain.
We, therefore, test against multiple stochastic variations of
the 24 tasks assembly. Specifically, we vary the probability
P(x) that each task will succeed, e.g. by setting P(x) = .7, we
are setting all tasks to have a 70% probability of succeeding.

Figure 4a shows the relationship between the pc parameter
and the number of contingencies sampled for different task
success probabilities. The number of explored contingencies
directly affects our method’s computational speed, as shown
in Table I. Though for an extremely small value of pc =
.001 we find a difference in the number of contingencies
explored for a task with P(x) = .9 vs P(x) = .6, in general, the
number of contingencies explored by our approach increases
exponentially at the same rate, regardless for how stochastic
the problem setting is, as we decrease the pc parameter.
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Fig. 4: The effect of setting the pc parameter on the number of
evaluated contingencies and the probability P(x) the system returns
the optimal action

# Nodes 2848 1233 915 748 397 270
Planning (s) 116.8 40.3 29.7 24.7 14.0 9.7

TA B L E  I: Number of nodes evaluated vs planning time required
before best action was returned (P(x) = .9)

Figure 4b shows how the pc parameter affects the prob-
ability that our approach returned the optimal action. We
see that for task problems with low stochasticity, we have
to evaluate fewer contingencies (by setting a larger pc

parameter), and the algorithm will still always return the
optimal solution. We see that our method needs to sample a
much larger number of contingencies when the task success
probability is significantly lower. We use this result to set the
lower bound for our examination of task success probability
to be P(x) =  .7 and above.

B. 24 Task Simulation Results
We test our approach compared to other planning ap-

proaches on different variations of task success probabilities
for the 24-task problem. Specifically, we test against three
approaches: classical MILP scheduling, real-time dynamic
programming, and value iteration. For the classical schedul-
ing approach, we use our MILP formulation from Section V  to
generate an optimal task assignment and simulate the solu-
tion. If an unforeseen event occurs, we rerun the MILP solver
and execute the new solution. We also implement a real-
time dynamic programming approach (RTDP) as proposed in
[33]. The authors developed a heuristic probabilistic planning
approach to solve single-agent CoMDPs with stochastic
durations. Lastly, we use a value iteration approach to get
the exact optimal solution for the 24-task problem. We first
used random action-taking to generate the reachable state
space. Then we ran value iteration for a substantial amount
of time until it converged to an optimal policy.

Our generated results are shown in Figure 5. We find that
our approach can generate solutions that lead to the same
makespan as value iteration. This result indicates that for
the 24-task problem, our approach does yield the optimal
policy. Our approach also outperforms classical scheduling
and RTDP, especially in situations with higher uncertainty in
the task. It is also interesting to note that our approach has a
lower variance in resulting makespans compared to RTDP
and MILP, which is another strength of the approach.

C. Implementation on a robotic cell
We also implemented our approach on a 1-human-5-robot

cell that is designed to assemble a CubeSat. The entire
assembly requires 150 operations, which we simplify into

Fig. 5: Graph shows average makespan for our approach, RTDP,
optimistic MILP, and value iteration

a 60-task HTN. We aim to convey the implementation of
our online action selection formulation on this system and
present results that motivated our initial decisions when we
formulated the problem.

We first examined how certain tasks failed so that we could
create a task failure model. Based on qualitative discussions
with the assembly team and experimentation, we showcase
two types of tasks: heavy part insertion and screw driving
task, shown in Figure 1 that had a non-negligible probability
of failing, requiring the human to intervene. Further exper-
imentation showed an average of 71% success rate for the
part insertion and 83% success rate for the screwing tasks.

We also found from experimentation that screwing tasks
either failed early in the task duration or succeeded by the
nominal duration. We conducted screwing for a specific part
of the CubeSat and found that it reliably failed within 30% of
the task time; else, the task finished successfully by the
nominal duration for the rest of the time. We found that slight
misalignment for two parts can cause the system to fail, and
the human operator had to remove the screw, realign the part,
and fasten the screw. This result motivates our decision to
formulate the general problem as having different duration
distributions for whether the task succeeds or fails.

We ran our approach on the system in simulation, and we
report a makespan of 683 seconds and a standard deviation of
52 seconds. An interesting observation is that the algorithm
did not assign the human to other concurrently available
tasks during the screw-driving tasks showing our system took
advantage of the stochastic duration model. Lastly, we found
that the human was always assigned to the battery insertion
task due to the lower probability of success.

V I I I .  CO N C L U S I O N S
This paper presents a task assignment and scheduling frame-
work for a human-robot team to complete complex tasks
efficiently. Our approach illustrates the value of the following
two ideas: (1) we can capture and account for the complex
interaction of uncertainty that stems from the task and agents
using a multi-agent concurrent MDP framework, and (2) we
can use Mixed Integer Linear Programs and contingency
sampling to approximate action values in a computationally
efficient manner. Simulation and real-world implementations
demonstrate that our approach can successfully return task
assignments that minimize the task completion makespan.
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