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Abstract  11 

Antarctic Bottom Water  is primarily formed via overflows of dense shelf water (DSW) 12 

around the Antarctic continental margins. The dynamics of these overflows therefore 13 

influence the global abyssal stratification and circulation. Previous studies indicate that 14 

dense overflows can be  unstable, energizing Topographic Rossby Waves (TRW) over the 15 

continental slope. However, it remains unclear how the wavelength and frequency of the 16 

TRWs are related to the properties of the overflowing DSW and other environmental 17 

conditions, and how the TRW properties influence the downslope transport of DSW. This 18 

study uses idealized high-resolution numerical simulations to investigate the dynamics of 19 

overflow-forced TRWs and the associated downslope transport of DSW. It is shown that 20 

the propagation of TRWs is constrained by the geostrophic along-slope flow speed of the 21 

DSW and by the dynamics of linear plane waves, allowing the wavelength and frequency 22 

of the waves to be predicted a priori. The rate of  downslope DSW transport depends non-23 

monotonically on the slope steepness: steep slopes approximately suppress TRW formation, 24 

resulting in steady, frictionally-dominated DSW descent. For slopes of intermediate 25 

steepness, the overflow becomes unstable and generates TRWs, accompanied by interfacial 26 

form stresses that drive DSW downslope relatively rapidly. For gentle slopes, the TRWs 27 

lead to the formation of coherent eddies that inhibit downslope DSW transport. These 28 
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findings may explain the variable properties of TRWs observed in oceanic overflows, and 29 

imply that the rate at which DSW descends to the abyssal ocean depends sensitively on the 30 

manifestation of TRWs and/or nonlinear eddies over the continental slope. 31 

1. Introduction  32 

The formation of Antarctic Bottom Water (AABW) ventilates abyssal ocean and plays 33 

a key role in global overturning circulation and climate (Talley, 2013). AABW sources 34 

from the descent of dense shelf water (DSW), which forms through sea ice growth and 35 

ocean/ice-shelf interactions around Antarctic coast. Specifically, DSW primarily forms 36 

over the Weddell Sea (Foldvik et al., 2004), the Ross Sea (Gordon et al., 2009), the Adelie 37 

coast (Williams et al., 2008), and Prydz Bay (Oshima et al., 2013). With sufficient large 38 

density, DSW can overflow across the shelf break and descend down to deep ocean, which 39 

has been widely observed over the global ocean (Ivanov et al., 2004; Legg et al., 2009). 40 

The mechanism via which DSW descends the slope could additionally influence the rate 41 

at which lighter waters are entrained into the DSW, and thus the properties and flux of 42 

AABW (Legg et al. 2009).   43 

Theoretically, under the influence of the Earth’s rotation, the overflows in the 44 

southern hemisphere should turn to the left to flow approximately along isobaths over a 45 

period comparable to the inertial time scale, then descend gradually via the action of bottom 46 

Ekman transport. Killworth (2001) predicts the descent rate of DSW induced by bottom 47 

Ekman transport to be 1:400, i.e., the dense water descends 1km vertically, while 48 

advancing 400km in the along-slope direction. However, in-situ observations show that 49 

dense overflows can reach the deep ocean over much shorter along-slope distances 50 

(Gordon et al., 2009; Foldvik et al., 2004; Oshima et al., 2013). This indicates that 51 

additional dynamical mechanisms must break the geostrophic constraint to accelerate the 52 

descent of the DSW.  53 

One way in which observed outflows of dense water deviates from this theoretical 54 

conception is that they may exhibit pronounced variability associated with the genesis and 55 

propagation of Topographic Rossby Waves (TRWs; Pedlosky, 1987; Marques et al., 2014). 56 

For example, TRWs forced by dense overflows have been observed in the Weddell Sea 57 

(Jensen et al., 2013), in Prydz Bay (Nakayama et al., 2014), across the Denmark Strait 58 
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(Hopkins et al., 2019) and in the Faroe Bank Channel (Darelius et al., 2015). In contrast, 59 

the Ross Sea and Adelie coast overflows, where the continental slopes are very steep, 60 

exhibit no significant oscillations other than tides (Gordon et al., 2009; Williams et al., 61 

2010). This implies that some combination of the local environment and the dynamics of 62 

the overflow dictate the presence or absence of TRWs. Results from numerical modeling 63 

studies are consistent with this implication, and further show that the properties of the 64 

TRWs are coupled to the dense overflow (Jiang and Garwood, 1996; Han et al., 2022). 65 

However, it remains unclear what dynamics select the specific wavelength and frequency 66 

of the TRWs that manifest in a given DSW overflow. 67 

Previous studies also suggest that genesis of TRWs in DSW overflows may play a 68 

key role in facilitating the downslope flow. For example, the growth of baroclinic waves 69 

in the overflowing DSW may lead to genesis of mesoscale eddies, which have been 70 

identified as a conveyor of DSW along or down continental slopes in various modeling 71 

studies (Gawarkiewicz and Chapman, 1995; Jiang and Garwood, 1995; Tanaka and 72 

Akitomo, 2001; Matsumura and Hasumi, 2010; Nakayama et al., 2014; Stewart and 73 

Thompson, 2016). For a dynamical description of this eddy genesis, we draw on the theory 74 

of Swaters (1991), which has been widely used to interpret the dynamics of baroclinic 75 

instability in overflows (Jiang and Garwood, 1995; Tanaka and Akitomo, 2001; Guo et al., 76 

2014; Han et al., 2022). In this theory, the instability takes the form of growing TRWs in 77 

the overlying water that are geostrophically coupled via the pressure field to the DSW 78 

overflow. Whether these TRWs grow sufficiently large in amplitude to form nonlinear 79 

eddies depends on the local environmental conditions, especially the steepness of the 80 

continental slope (Jiang and Garwood 1996; Han et al. 2022). 81 

In contrast to baroclinic instability over a flat sea floor, in which available potential 82 

energy is released via slumping of isopycnals (Pedlosky, 1987), the instability of the dense 83 

overflow releases potential energy by migrating deeper down the continental slope (Reszka 84 

et al., 2002). Thus, from an energetic perspective, genesis of TRWs necessitates downslope 85 

flow of DSW because it provides the energy required for them to grow; this holds 86 

regardless of whether those TRWs grow into nonlinear eddies. However, it remains unclear 87 
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how variations in the behavior of TRWs, for example due to variations in environmental 88 

conditions, translate to changes in the downslope flow of DSW.  89 

In this paper, we use an idealized high-resolution numerical model to investigate the 90 

properties of overflow-forced TRWs and the associated downslope transport of DSW, 91 

across a range of regimes of overflow variability. In section 2, we formulate an idealized 92 

model to allow exploration of a wide range overflow dynamical regimes. In section 3, we 93 

show that the geostrophic along-slope flow speed of the DSW and the intrinsic dynamics 94 

of TRWs determine the wavelength and frequency of TRWs. In Section 4 we discuss the 95 

dynamics of TRW-mediated downslope transport of DSW, and quantify the rates of 96 

downslope DSW transport across steady, wavy and eddying overflow regimes. In Section 97 

5 we summarize and discuss our findings. 98 

2. Model configuration 99 

The model we use is Regional Ocean Modeling System (ROMS), which has been 100 

widely used to investigate oceanic flows over steep slopes (Shchepetkin and McWilliams, 101 

2003; Ilicak et al., 2011). A detailed description of the model setup is given by Han et al. 102 

(2022), so here we only describe salient features of the model in the interest of a self-103 

contained presentation.  104 

To investigate the dynamics across a range of different overflow regimes, we use a 105 

highly idealized bathymetric geometry, as shown in Fig. 1a. A northward-flowing intrusion 106 

of DSW with density anomaly of ∆𝜌~0.2	𝑘𝑔/𝑚! (Gordon et al., 2009)  is imposed in a 107 

trough on the continental shelf, from which it overflows and descends the continental slope. 108 

To ensure that the structure of the inflow changes as little as possible within the trough, we 109 

follow the prescription of Legg et al., (2006). The dense inflow flux is about 0.2Sv, which 110 

is relatively small compared to the estimated DSW flux ~0.8Sv in the Ross Sea (Gordon et 111 

al., 2009) and 1.6±0.5Sv in the Weddell Sea (Foldvik et al., 2004), but not unreasonable 112 

considering that the model is a highly idealized representation of dense overflows. To track 113 

the dense overflow, we inject passive tracer with initial concentration 𝜏 = 1 in the dense 114 

inflowing water. All the simulations start from rest, and there is no other forcing except the 115 

dense inflow: the eastern, western and northern boundaries all use radiation conditions. 116 
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The horizontal grid spacing ranges from 0.5km near the trough region, which is 117 

sufficient to resolve mesoscale eddies (St Laurent et al. 2013; Stewart and Thompson, 118 

2015), to ~2km at the open boundaries. There are 60 topography-following levels in the 119 

vertical direction, with finer vertical grid spacing close to the sea floor (~5m over the upper 120 

slope). The initial stratification is adapted from in situ observations in the Ross Sea (Station 121 

47, Gordon et al., 2009), as shown in Fig. 1(b-d). We use a constant Coriolis parameter 122 

𝑓 = −1.38 × 10"# (~72°S) throughout the model domain. Vertical viscosity and mixing 123 

are parameterized via the Mellor-Yamada level 2.5 turbulence closure scheme (Mellor and 124 

Yamada, 1982). The benthic stress is parameterized as a quadratic drag with constant drag 125 

coefficient of Cd=0.003. The horizontal mixing of momentum and tracers are 126 

parameterized via Laplacian operators, with the same and constant coefficients for lateral 127 

viscosity and diffusivity (5	𝑚$/𝑠).  128 

 129 

 130 
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Figure 1. (a) Schematic showing the model bathymetry, with slope steepness 𝑠 = tan	𝛼. Grey shading 131 

shows a representative snapshot of the overflow dense water thickness. (b) Initial potential density (with 132 

1000 kg/m ³  subtracted, referenced to surface) and buoyancy frequency profile. The green line 133 

approximately indicates the base of the pycnocline (~150m). (c-d) Initial potential temperature and 134 

salinity. Black contours show potential density referenced to the surface. 135 

Previous theoretical analysis (Swaters, 1991) and sensitivity experiments (Jiang and 136 

Garwood 1996; Han et al., 2022) indicate that the slope steepness strongly influences the 137 

dynamics of the overflow. Therefore, we conduct a series of experiments with different 138 

slope steepnesses to span a range of different overflow regimes. For the experiment with 139 

the steepest slope (𝑠 = 2/15), we use near-trough horizontal grid spacings of both 250m 140 

and 500m to ensure that the solution is not influenced by pressure errors associated with 141 

the terrain-following coordinates. The results are very similar, so here we present 142 

diagnostics from the simulation with a grid spacing of  250m. We summarize the key model 143 

parameters in table 1. All simulations are integrated to steady state, as indicated by steady 144 

oscillations in the model state variables, which typically occurs after ~30 days. We then 145 

analyze the last ~10 days (~5 TRW periods) of integration using hourly-averaged model 146 

output. 147 

Table 1. List of parameters used in our simulations. 148 

Parameter Description Value 

𝑠 

𝑓 

Slope steepness 

Coriolis parameter 

1/50-2/15 

−1.38 × 10!"	s!# 

𝑁 Stratification below pycnocline ~6 × 10!"	s!$ 

𝐴% 

𝐾% 

Δx, Δy 

Δz 

Horizontal viscosity 

Horizontal diffusivity 

Horizontal grid spacing 

Vertical grid spacing 

5	m$s!# 

5	m$s!# 

0.25-2 km 

4-30 m 

D 

𝐶& 

𝛥𝜌 

Maximum depth  

Bottom friction coefficient 

Density anomaly of dense inflow 

2500 m 

3 × 10!' m ∙ s!# 

0.2 𝑘𝑔	/𝑚
' 

 149 

Fig. 2 shows the phenomenology of three representative experiments with different 150 

slope steepnesses. These slopes correspond approximately to the steepnesses of the Ross 151 

Sea continental slope (𝑠 = 2/15), and of the upper continental slope (𝑠 = 1/15) and 152 

middle continental slope (𝑠 = 1/30) of the southern Weddell Sea. We will henceforth refer 153 

to these specific simulations as the “steep slope”, “moderate slope” and “small slope” cases, 154 
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respectively. Since the strength of waves vary substantially in different experiments, we 155 

take the ratio of eddy kinetic energy and mean kinetic energy in the wave region (see 156 

section 3) as a criterion to define the absence/presence of waves. If the ratio is smaller than 157 

0.1, we define it as having “no waves”. The steep slope experiment shows no waves, with 158 

the dense overflows taking the form of a steady along-slope geostrophic flow after its initial 159 

geostrophic adjustment (Fig. 2(a-b)). In contrast, there are visible TRWs in moderate slope 160 

experiment, and the dense overflows exhibits downslope transport aligned with the 161 

offshore wave circulations, as visualized by the black arrows in Fig. 2(c-d). Associated 162 

with the negative phase of these waves are patches of negative vorticity, which have been 163 

identified to be coherent eddies via the deployment of Lagrangian floats (see Han et al., 164 

2022). The formation of eddies is due to the feedback of the waves on the outflow at the 165 

trough mouth, which is why they have the same frequency as the waves (Han et al., 2022). 166 

When the slope is smaller, the phenomenology is similar to the moderate slope experiment. 167 

A distinguishing feature of this experiment is that there are isolated bottom eddies along 168 

the upper slope (Fig. 2f). In the following sections, we will separately analyze the overflow-169 

forced TRWs and the associated downslope transport of DSW. 170 

 171 
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Figure 2. Snapshot of three cases with different slope steepnesses. (a) Normalized relative vorticity 172 

(ζ/|𝑓|) at 400m depth with slope steepness 𝑠 = 2/15. (b) The corresponding bottom dense water 173 

thickness (𝜌 ≥ 1027.88	𝑘𝑔/𝑚' , referenced to surface). Arrows indicate flow velocity at 300 mab 174 

(meters above bottom), and contours indicate bathymetric depths in meters; (c-d) Same as (a-b), but for 175 

the experiment with slope steepness 𝑠 = 1/15. (e-f) Same as (a-b), but for the experiment with slope 176 

steepness 𝑠 = 1/30. Note the different axis ranges for different experiments. 177 

3. Wavelength and frequency of overflow-forced topographic Rossby waves 178 

As noted in section 1, TRWs have been observed in several dense overflows in nature 179 

(Jensen et al., 2013; Nakayama et al., 2014; Hopkins et al., 2019; Darelius et al., 2015), 180 

and have been attributed to instability of the overflow in various modeling studies (Jiang 181 

and Garwood 1996; Tanaka and Akitomo, 2001; Guo et al., 2014; Han et al., 2022). Linear 182 

baroclinic instability theory  provides some insight into the genesis of these TRWs (Swaters, 183 

1991; Jungclaus et al., 2001; Guo et al., 2014): for example, the overflow is stabilized, and 184 

thus TRWs are suppressed, when the width of the continental slope falls below the 185 

minimum unstable wavelength predicted by the theory (Han et al. 2022). However, in 186 

parameter regimes in which TRWs are present, their wavelength and frequency are better 187 

predicted by linear plane TRW theory, rather than linear baroclinic instability theory 188 

(Marques et al. 2014; Han et al. 2022). Thus there is yet no explanation for the specific 189 

wavelength and frequency of the overflow-forced TRWs. In this section, we posit that the 190 

TRW wavelength and frequency is selected by a coincidence between the TRW 191 

propagation speed and the geostrophically-constrained along-slope speed of the overflow, 192 

and test this relationship using our model simulations. 193 

The theoretical ideas that underpin the propagation of the dense overflows and TRWs 194 

are summarized schematically in Fig. 3. We consider the dynamics associated with an 195 

isolated “pulse” of the dense overflow, resulting from baroclinic instability. Compression 196 

and stretching of the overlying waters induce the generation of relative vorticity (𝜁) via 197 

conservation of potential vorticity, leading to propagating of TRWs (Swaters 1991; 198 

Swaters and Flierl, 1991). The westward propagation of these TRWs is accurately captured 199 

by linear plane wave theory (Marques et al. 2014; Han et al. 2022), which predicts a along-200 

slope phase speed 𝑐%  given the TRW wavelength. This yields a first constraint on the 201 

properties of the TRWs.   202 
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A second constraint on the propagation is provided by the geostrophic dynamics of 203 

isolated dense “pulses” over sloping topography. Based solely on the assumption of 204 

geostrophy and that the dense layer incrops into the upper and lower continental slope, it 205 

may be shown that such dense pulses should translate westward at the “Nof” speed (Nof, 206 

1983), 207 

𝑈& = 𝑔'𝑠
𝑓 .										(1) 208 

Here  𝑔' = 𝑔Δ𝜌 𝜌⁄  is the reduced gravity and 𝑠 is the topographic slope steepness. Thus in 209 

order for the vorticity anomalies that comprise the TRW in the overlying water to remain 210 

collocated with the pulses of dense overflow water, the TRW propagation speed must 211 

match the Nof speed. We note that this coincidence of the TRW propagation speed and the 212 

theoretical Nof speed may only be approximate: the Nof speed assumes negligible bottom 213 

friction and zero flow in the overlying waters (Nof, 1983), so some departures of the 214 

diagnosed westward speed (𝑈()  from Eq. (1) are to be expected.  215 

 216 

 217 

Figure 3. Schematic showing the interactions between dense overflow and overlying water over sloping 218 

topography. 𝑐) and 𝑈* indicate phase speed of waves and the intrinsic Nof speed of dense overflows 219 

respectively. They propagate along-slope at the same speed, but remain out of phase, as required to 220 
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release potential energy from the dense overflows1. The heads and tails of arrows indicate upslope and 221 

downslope flow respectively, which are induced by the squeezing of overlying water as dense water 222 

pass by. 𝑇# and 𝑇$ indicate two snapshots at different times, implying a westward propagation. 223 

To test the relevance of these theories in our simulations, we compare 𝑐% with 𝑈& and 224 

𝑈( respectively, and normalize the differences by the absolute value of 𝑐%. To diagnose the 225 

properties of the simulated waves, we extract meridional velocity from an along-slope 226 

section crossing the red star in Fig. 4, where the waves have reached a relatively mature 227 

state. Then we obtain the zonal wavenumber 𝑘 by computing the time-averaged distance 228 

between the nearest wave peak and trough of the red star. This approach to calculating the  229 

wavenumber could be improved by spectral analysis (Marques et al., 2014), but has been 230 

previously shown to produce close agreement with linear TRW theory (Han et al., 2022). 231 

The frequency (ω) of waves is estimated via Fourier spectral analysis. We then compute 232 

the TRW phase speed 𝑐% = 𝜔 𝑘⁄ . To calculate the Nof speed 𝑈&, we compute Δ𝜌 as the 233 

difference between dense overflow layer (𝜌 ≥ 1027.88	𝑘𝑔/𝑚 ) vertical averaged density 234 

and the density in the 20th σ layer, which ranges from ~200mab near the shelf break to 235 

~1000mab in deep ocean. We diagnose 𝑈( as the vertically- and time- averaged zonal flow 236 

speed in dense overflow layer, i.e. the thickness-weighted average of the zonal velocity 237 

(Young 2012). Fig. 4 shows the results for our moderate slope and small slope experiments. 238 

Overall, the differences between 𝑐% and 𝑈& are relatively small if we exclude the upstream 239 

region (𝑥 ≳ 380	𝑘𝑚), where the dense overflow is still under geostrophic adjustment 240 

process (Fig. 4(a, c)). However, the differences between 𝑐% and 𝑈( are larger, especially 241 

on the upper and lower slope, with opposite sign (Fig. 4(b, d)).  242 

 
1
 There must be some misalignment between the vorticity anomalies in the overlying waters and dense water 

pulses to release potential energy of DSW, just as the classical Phillips baroclinic instability theory 

(Cushman-Roisin and Beckers, 2009). 
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 243 

Figure 4. The difference between the diagnosed phase speed of the topographic Rossby waves and the 244 

westward flow speed of the dense overflow (𝜌 ≥ 1027.88	𝑘𝑔/𝑚'), normalized by the phase speed. The 245 

black rectangles indicate the areas used to compute averages in Fig. 5. (a) The time-averaged difference 246 

between phase speed (𝑐)) and Nof speed (𝑈*) with topographic slope 𝑠 = 1/15. (b) The time averaged 247 

difference between phase speed (𝑐)) and diagnosed overflow speed (𝑈&) with topographic slope 𝑠 =248 

1/15. (c-d) As panels (a-b), but with topographic slope 𝑠 = 1/30. The red stars indicate the location 249 

used to diagnose the waves’ length, frequency and phase speed. 250 

In Fig. 5 we provide a spatially- and temporally-averaged quantification of the 251 

agreement between 𝑐% , 𝑈&  and 𝑈( . We perform the spatial average over the regions in 252 

which the waves are most active, indicated by the black rectangles in Fig. 4. Because the 253 

amplitude of the TRWs diminishes with distance downstream (Fig. 2), the zonal length of 254 

the wave regions ranges from 1 to 3 wavelengths. However, our results are not sensitive to 255 

the definition of spatial range of the wave region, due to the generally small difference 256 

between the flow speed and wave phase speed (Fig. 4).  In Fig. 5a, we show the results of 257 

all our experiments with varying slope steepnesses: in each simulation we diagnose the 258 

wave properties in the center of the corresponding analysis box. Overall, the diagnosed 𝑐%, 259 

𝑈&  and 𝑈(  are very close to each other, especially for the experiments with smaller 260 

topographic slopes (𝑠 ≤ 0.08). However, for experiments with steeper slopes (𝑠 > 0.08), 261 
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𝑐%  diverges somewhat from 𝑈&  and 𝑈( . We can interpret this trend with the aid of the 262 

interaction parameter (𝜇), defined by Swaters (1991) as 263 

𝜇 = ℎ
𝑠𝑅,									(2) 264 

where ℎ , 𝑠  and 𝑅  represent the dense overflow thickness, slope steepness and Rossby 265 

deformation radius, respectively. This parameter expresses the interaction strength 266 

between the dense overflow and the overlying water, with larger value representing 267 

stronger interaction. Under the conditions of constant dense inflow flux and overlying 268 

stratifications in our simulations, the interaction parameter decreases as the slope  steepness 269 

increases, leading to weaker interactions. Fig. 5b shows the dependence of 𝑐%, 𝑈& and 𝑈( 270 

on the interaction parameter: this plot shows that the divergence of 𝑐% from 𝑈&  and 𝑈( 271 

occurs for smaller values of the interaction parameter (𝜇 ≤ 0.15), suggesting that the 272 

coupling between the dense “pulses’’ of overflow waters and the overlying TRWs breaks 273 

down in this parameter regime. The larger departures between wave phase speed and 274 

overflow speed for steep slopes may be due to constraint that baroclinic waves are inhibited 275 

from growing when their wavelength is smaller than the width of the continental slope  276 

(Han et al., 2022); this is supported by diagnosed wavelength being smaller than the 277 

theoretically-predicted wavelength in the steep slope experiment (𝑠 = 2/15) (Fig. 6). 278 

 279 
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Figure 5. Spatially and temporally averaged 𝑐), 𝑈* and 𝑈& in the regions of elevated wave activity, 280 

which are identified by the black rectangles in Fig. 4. (a) Dependence on slope steepness (s). (b) 281 

Dependence on interaction parameter (𝜇). 282 

The above analysis indicates that the propagation speed of the dense overflow (i.e. 283 

approximately the Nof speed) sets the phase speed of overlying TRWs. We can therefore 284 

predict the wavelength and frequency by considering the dynamics of linear plane waves 285 

(Marques et al. 2014; Han et al. 2022). For simplicity, we assume a constant stratification 286 

N0 (6 × 10"#	𝑠"$), and treat the pycnocline (z ~ -150m) as a rigid lid. Then the dispersion 287 

relationship for linear plane TRWs (Pedlosky, 1987) can be expressed as 288 

ω = 𝑁)𝑠𝑘
𝐾tanh O𝑁)𝐾𝑓) 𝐻Q,																(3) 289 

where 𝐻  is the water column thickness (below 150m depth) and 𝐾 = √𝑘$ + 𝑙$  is the 290 

absolute wavenumber. The along-slope phase speed can be expressed as  291 

𝑐% = ω
𝑘 =

𝑁)𝑠
𝐾tanh O𝑁)𝐾𝑓) 𝐻Q,														(4) 292 

Although TRW can propagate their phase across topography (Rhines, 1970), which  is 293 

supported in observations both in the deep ocean at mid-latitudes (Pickart and Watts, 1990) 294 

and dynamically wide channels at polar latitudes (Muenchow et al., 2020), the phase 295 

propagation of TRW in our idealized experiments is almost along-slope (see Appendix). 296 

Henceforth we assume that the waves are directed westward, i.e. 𝑙 = 0 and 𝐾 = 𝑘. Fig. 6 297 

shows the dispersive curves of 6 experiments with varying slope steepnesses, with the 298 

colored diamonds representing the diagnosed phase speed and frequency for different 299 

experiments. We can see that the diagnosed wave properties in each experiment are very 300 

close to the corresponding dispersion curve for linear TRWs, which indicates that the 301 

shallow-water waves in our simulations are TRWs. 302 
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 303 

Figure 6. Dispersive curves of linear plane TRWs with varying slope steepness. The diamonds with the 304 

same color as the dispersive curves indicate properties diagnosed from the corresponding model 305 

simulations, while dots indicate the results predicted by assuming that the wave phase speed matches 306 

the Nof speed (Equation (5)). (a) Phase speed of TRWs versus zonal wavenumber. (b) Frequency of 307 

TRWs versus zonal wavenumber.  308 

We now predict the wavelength and frequency of the TRWs by equating the 309 

theoretical phase speed with the Nof speed, i.e. 310 

𝑐% = 𝑁)𝑠
𝐾tanh O𝑁)𝐾𝑓) 𝐻Q ≈

𝑔'𝑠
𝑓 .										(5) 311 

Note that because the phase speed of the TRWs is related to the wavelength via Eq. (4), we 312 

can use Eq. (5) to predict the TRW wavelength, and then use Eq. (3) to predict the 313 

frequency. The colored dots in Fig. 6a show the wavelength estimated by Eq. (5) for 314 

different experiments, and the corresponding frequencies are shown in Fig. 6b. The results 315 

show that the overflow-derived (dots) and the diagnosed (diamonds) wave properties are 316 

very close to each other, which supports our hypothesis that the wavelength and frequency 317 

of the TRWs are determined by the Nof speed of the dense overflow and the intrinsic 318 

dynamics of TRWs.  319 
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This method can be extrapolated to estimate the properties of overflow-forced TRWs 320 

in nature. The oceanic overflow speeds (𝑈&) observed over continental slope are typically 321 

around 0.5m/s, because stronger flows tend to develop shear instabilities that entrain 322 

overlying waters  (Legg et al., 2009). We assume that the wavelength cannot be smaller 323 

than 10km for our assumption of geostrophy to apply (Swaters, 1991; Han et al., 2022). 324 

Given these limitations, the estimated wavelength is 10-100km and the period is in the 325 

range of 1 to 10 days over the range of topographic slopes found in oceanic overflows 326 

(1/50 ≤ s ≤ 2/15). This range is consistent with the baroclinic instability theory (Swaters, 327 

1991), other numerical experiments (Marques et al., 2014; Nakayama et al., 2014) and 328 

observations (Ohshima et al., 2013; Darelius et al., 2009; Jensen et al., 2013).  329 

As shown in Equation (3) and (5), in addition to the overflow speed and slope 330 

steepness, the overflow-derived wavelength and frequency of TRWs also depend on the 331 

density stratification (𝑁), the Coriolis parameter (𝑓) and the water column thickness. 332 

Although the dispersive curve will shift according to local environmental conditions, this 333 

method provides a straightforward and general estimate of wavelength and frequency of 334 

overflow-forced TRWs. For example, based on this method, stronger overlying 335 

stratification produces a shorter TRW wavelength for a constant overflow speed (not 336 

shown), which is consistent with linear baroclinic instability theory that incorporates a 337 

continuously stratified upper layer (Reszka et al., 2002). 338 

4. TRW-mediated downslope transport of dense overflows 339 

As noted in section 1, the variability of the overflow varies substantially with the 340 

steepness of the continental slope, or equivalently with the magnitude of the interaction 341 

parameter. Steep slopes entirely suppress TRWs, while gentler slopes permit more 342 

energetic TRWs that may form coherent eddies (Fig. 2). In this section, we will investigate 343 

the mechanisms via which dense water is driven to descend the continental slope across 344 

these steady, wavy and eddying regimes, and the resulting variations in the descent rate.  345 

4.1 Drivers of down-slope flow  346 

To quantify the mechanisms responsible for driving the down-slope flow, we use the 347 

depth-integrated isopycnal momentum budget, which has been widely used to interpret 348 
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drivers of meridional transport across the Southern Ocean (Mazloff et al., 2013; Howard 349 

et al., 2015; Masich et al., 2018). The momentum equation per unit volume in zonal 350 

direction is  351 

𝜕𝑢
𝜕𝑡 + 𝒖 ⋅ ∇𝑢 − 𝑓𝑣 = − 1

𝜌)
𝜕𝑝
𝜕𝑥 +

1
𝜌)
𝜕𝜏*
𝜕𝑧 ,								(6) 352 

where 𝒖 = (𝑢, 𝑣, 𝑤), 𝑝 is pressure and 𝜏*  is zonal friction. Then we integrate vertically 353 

from sea floor to the upper interface of the dense water layer, which remains to be defined. 354 

In the initially-imposed model stratification, the maximum potential density (referenced to 355 

the surface) is slightly larger than 1027.87 kg/m³ (Fig. 1(c-d)). We therefore take 𝜌( =356 

1027.88	𝑘𝑔/𝑚!  as the upper interface, 𝑧 = 𝜂(𝑥, 𝑦, 𝑡 ), of the dense water layer. To 357 

examine the drivers of the cross-slope transport, we write the downslope transport term (i.e. 358 

the Coriolis force) on the left-hand side, and consider all other (right-hand-side) terms to 359 

be drivers, 360 
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.						(7) 361 

Averaged over several TRWs cycles, the acceleration term is relatively small in our model 362 

results, so we omit this term. Neglecting this term and averaging Eq. (7) in time yields 363 
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,						(8) 364 

where the overbar indicates time average over ~5 TRW periods. To describe the 365 

distribution of dense water on the continental slope more conveniently, we define the 366 

region shallower than 1300m isobath as the upper slope, and the depth range 1300m-1900m 367 

as the mid-slope, and deeper than 1900m as the lower slope.  368 

4.1.1 Downslope Ekman transport in steady overflows 369 

We first discuss the zonal momentum balance for our steep slope case, which is 370 

plotted in Fig. 7. The dense overflow exits the trough and descends the continental slope 371 

relatively rapidly, reaching the ~1900m isobath by 𝑥~380	𝑘𝑚. During this phase of the 372 
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descent, the flow undergoes a geostrophic adjustment process, with both friction and 373 

advection supporting the down-slope transport. The pressure gradient force (Fig. 7b) plays 374 

a secondary role. After geostrophic adjustment, the dense water flows approximately along 375 

isobaths, with a relatively gradual descent down the slope (Fig. 2b). During this phase of 376 

the descent, the advection term becomes negative, partially opposing the tendency of the 377 

bottom friction to drive the downslope transport. Time series of the zonally-integrated 378 

(along the blue dashed line in Fig. 7(a-d)) downslope transport show that periodic 379 

fluctuations due to TRWs still exist in this simulation, with a period of ~21h (Fig. 7e). 380 

However, this signal is weak compared with the time-mean, and thus does not contribute 381 

to the transport significantly. Thus in this parameter regime the dense overflow moves 382 

westward along isobaths approximately at the Nof speed (𝑈&), and is pushed down-slope 383 

by the frictional bottom Ekman transport. The frictional down-slope transport is partially 384 

offset by advection, i.e. the relative vorticity is negative (Fig. 2(a, b)), which increases the 385 

magnitude of the absolute vorticity, and thus decreases the generalized Ekman transport 386 

(Wenegrat et al. 2017).  387 

 388 
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 389 

Figure 7. Dense overflow layer momentum budget in the steep slope case. (a-d) Time averaged and 390 

vertical integrated downslope transport, and the pressure gradient, friction and advection terms defined 391 

in Equation (8), respectively. Contours indicate bathymetry, and the dashed blue line is the section 392 

(10km wide) used to diagnose the time series of zonally-integrated downslope transport. (e) Time series 393 

of the zonally and vertically integrated momentum balance. Note, in panel (e) we include the 394 

acceleration term to show the complete momentum balance.  395 
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 396 

 397 

Figure 8. (a) Snapshot of bottom tracer concentration with bottom friction coefficient of Cd=0.003. 398 

Contours (dashed line) indicate along-slope velocity, and the solid line (2490) indicates the bottom of 399 

the continental slope. (b) Bottom tracer concentration with zero bottom friction. Other symbols are the 400 

same as in panel (a). (c) Vertical structure of the horizontal velocity and the eddy viscosity coefficient 401 

at the location shown by blue star in panel (a). The black dashed line indicates the vertical level at which 402 

we obtain 𝑢+, 𝑣+. 403 

To isolate the effect of bottom friction experimentally, we conduct a comparative 404 

experiment with zero bottom friction (Cd=0) for the steep slope. In this comparative 405 

experiment, we also use a passive tracer to track the dense overflow. The results show that 406 

the dense overflow exhibits approximately no descent if the bottom friction is zero (Fig. 407 

8b). We further analyze the vertical structure of horizontal velocity to check whether it is 408 

structured as a bottom Ekman spiral. The theoretical bottom Ekman spiral (Vallis, 2019) 409 

can be expressed as  410 

u(z) = 𝑢: + 𝐴)𝑒"<( cos s𝑧𝑑t − 𝐵)𝑒"
<
( sin s𝑧𝑑t,								(9) 411 

v(z) = 𝑣: + 𝐵)𝑒"<( cos s𝑧𝑑t + 𝐴)𝑒"
<
( sin s𝑧𝑑t,								(10) 412 



20 

 

where 𝐴) = y𝑢= − 𝑢:z, 𝐵) = y𝑣= − 𝑣:z, 𝑑 = {$>

;
, 𝑢= and 𝑣= are the components of the 413 

bottom velocity, 𝑢: and 𝑣: are the components of the interior geostrophic velocity,  𝐴< is 414 

the vertical viscosity, and 𝑧 is the height above bottom. To construct the theoretical Ekman 415 

spiral, we take the bottom boundary velocity components 𝑢=  and 𝑣=  directly from the 416 

model output, and the interior geostrophic velocity components 𝑢: and 𝑣: are taken from 417 

the seventh grid level (~80mab), below which the eddy viscosity increases substantially 418 

(Fig. 8c). The eddy viscosity 𝐴< is estimated by averaging over the bottom seven levels. 419 

The predicted Ekman spiral is very close to the velocities diagnosed from the model output, 420 

as shown in Fig. 8c. This supports the conclusion that the downslope flow can be 421 

understood as a bottom Ekman transport. 422 

4.1.2 TRWs accelerate the descent of dense water 423 

When the slopes are moderate or small (𝑠 ≲ 0.1), TRWs occur and produce cross-424 

slope velocities that are comparable to the along-slope velocity (Fig. 2(d, f)). This cross-425 

slope velocity is able to bring dense water down the slope efficiently, suggesting that may 426 

play an important role in the descent of dense water.  427 
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 428 

Figure 9. Dense overflow layer momentum budget for the moderate slope case. (a-d) Time-averaged 429 

and vertically-integrated downslope transport, and pressure gradient, friction and advection terms 430 

defined in Equation (8), respectively. Contours indicate bathymetry, and the dashed blue line is the 431 

section (15km wide) used to diagnose the time series of the zonally-integrated downslope transport. (e) 432 

Time series of the zonally and vertically integrated momentum balance.  433 

We first examine the dense overflow momentum budget for the moderate slope 434 

experiment (Fig. 9). The results show that the pressure gradient force (Fig. 9b), friction 435 

(Fig. 9c) and advection (Fig. 9d) terms all make significant contributions to the downslope 436 

transport. During geostrophic adjustment (i.e. upper slope), advection and friction terms 437 

dominate the zonal momentum balance, but these contributions are negligible by the time 438 

the overflow reaches the 1300m isobath. Beyond this, the transport is dominated by the 439 

pressure gradient force (Fig. 9b). Fig. 9e shows that the downslope transport induced by 440 

the pressure gradient exhibits significant temporal fluctuations, with a periodicity that is 441 

consistent with TRWs (~38h). This indicates that the down-slope transport occurs due to 442 
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the rectified effect of zonal pressure gradient forces imparted by passing TRWs, and 443 

supports our energetics-based argument (see section 1) that the genesis of TRWs transports 444 

dense water down-slope. 445 

The force exerted by the horizontal pressure gradient on an abyssal isopycnal layer 446 

can be rewritten in terms of the interfacial form stress (IFS) across the isopycnal interface, 447 

which has been identified as the agent of eddy-induced down-slope flows in previous 448 

studies (Stewart and Thompson 2016; Morrison et al. 2020). To connect our findings with 449 

previous studies, we note that the vertical integrated pressure gradient force can be 450 

rewritten as  451 

1
𝑓𝜌) 〈e

𝜕𝑝
𝜕𝑥 𝑑𝑧

+

",

〉 = − 1
𝑓𝜌) 〈𝑝+

𝜕𝜂
𝜕𝑥〉ghihj

?@A

+ 1
𝑓𝜌) �e 𝑝	𝑑𝑧+

",

� ,							(11) 452 

where 𝑧 = 𝜂 is the elevation of the isopycnal interface, 𝑝+  denotes the pressure on the 453 

isopycnal interface, the angle brackets indicate a zonal integral , and the square brackets 454 

denote the difference between the end-points of the zonal integral. The first term on the 455 

right-hand side of (11) is proportional to the IFS (see e.g. Vallis (2019)); the second term 456 

vanishes when the integral is taken over a zonal range that entirely spans the dense water 457 

layer, i.e. when 𝜂 = −𝐻 at the end-points of the zonal integration. Thus the down-slope 458 

transport can approximately be understood as the result of transient IFS that transfers zonal 459 

momentum downward into the DSW layer. This mechanism is a consequence of the 460 

formation of TRWs, whether or not the growth of these TRWs leads to the formation of 461 

nonlinear eddies. 462 

The dynamics of down-slope transport in the small slope (𝑠 = 1/30) experiment are 463 

similar to those of the moderate slope experiment. As shown in Fig. 10, the downslope 464 

transport is again dominated by horizontal pressure gradient term (Fig. 10b) and varies at 465 

the frequency of the TRWs (Fig. 10e), while the roles of bottom Ekman transport (Fig. 10c) 466 

and advection (Fig. 10d) are secondary. 467 
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 468 

Figure 10. Dense overflow layer momentum budget in our small slope case. (a-d) Time-averaged and 469 

vertically-integrated downslope transport, and pressure gradient, friction and advection terms in 470 

Equation (8), respectively. Contours indicate bathymetry, and the dashed blue line is the section (20km 471 

wide) used to diagnose time series of the zonally-integrated downslope transport; (e) Time series of the 472 

zonally and vertically integrated momentum balance.  473 
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 474 

Figure 11. Time averaged (over 5 TRW periods) dense overflow layer thickness. The arrows indicate 475 

time- and vertically averaged flow in the dense overflow layer. Contours indicate bathymetry, and the 476 

black rectangles represent the area used in Fig. 12. (a) Moderate slope experiment (𝑠 = 1/15); (b) Small 477 

slope experiment (𝑠 = 1/30). 478 

4.2 Descent rate over different overflow regimes 479 

Although the mechanism underlying the down-slope transport is similar in the 480 

moderate slope and small slope cases, the time-averaged dense water distribution (Fig. 11) 481 

shows that the efficiency with which  DSW descends the slope is quite different. As shown 482 

in Fig. 11a, the dense overflow descends relatively quickly in the moderate slope case, 483 

reaching the bottom of the slope at about 50km downstream of the trough. However, in the 484 

small slope case, most of the dense water is confined to the upper slope, and the overflow 485 

is spread along the slope over a distance of hundreds of km (Fig. 11b). This suggests that 486 

the formation of isolated bottom eddies suppresses the descent of DSW for small slopes.  487 
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We now quantify how the descent of DSW is influenced by the steepness of the 488 

continental slope, and thus by the mechanism of down-slope transport. We define a descent 489 

angle (𝛽) as the angle between the pathway of dense water and the isobaths, which is 490 

equivalent to the ratio between down-slope and along-slope tracer transport  491 

𝑡𝑎𝑛𝛽 = ∯∫ 𝑣( ∙ 𝜏𝑑𝑧𝑑𝑦𝑑𝑥+

",

lllllllllllllllllllllllll	
∯∫ 𝑢( ∙ 𝜏𝑑𝑧𝑑𝑦𝑑𝑥+

",

lllllllllllllllllllllllll	 .								(12) 492 

Here 𝑢(  and 𝑣(  are diagnosed components of the velocity, averaged vertically over the 493 

dense overflow layer, and the area integral ∯(∙)𝑑𝑥𝑑𝑦 is taken over the region of most rapid 494 

descent (340𝑘𝑚 ≤ 𝑥 ≤ 380𝑘𝑚), as indicated by the black rectangles in Fig. 11. Note, the 495 

selected regions are downstream of 𝑥 = 380𝑘𝑚  to avoid the influence of the initial 496 

geostrophic adjustment. The results are shown in Fig. 12, which shows that the diagnosed 497 

descent angle is small for the steep slope case (𝑠 ≥ 0.1), and increases quickly for moderate 498 

slopes (0.05 < 𝑠 < 0.1), but suddenly drops for smaller slopes (𝑠 ≤ 0.05). Based on the 499 

transition of diagnosed descent angle, we roughly divide them into steady, wavy and 500 

eddying regimes as shown in Fig. 12.  501 

 502 

  503 
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Figure 12. Diagnosed (green diamonds) and predicted (red dots, Equation (16)) descent angle of the 504 

tracers on the continental slope and in the zonal range of 340𝑘𝑚 ≤ 𝑥 ≤ 380𝑘𝑚, as shown by the black 505 

rectangles in Fig. 11. The black, red and blue rectangles delineate eddying, wavy and steady overflow 506 

regimes, respectively. 507 

To explain this, we formulate a simplified theoretical predication based on potential 508 

vorticity (PV) conservation. As noted above, the TRWs are induced by the squeezing of 509 

overlying water. The isopycnal PV may be written as 510 

PV = 𝑓 + 𝜁
𝐻 ,														(13) 511 

here 𝐻 is the thickness of the overlying water. The change of relative vorticity depends on 512 

the compression as pulses of dense water pass by, and can be expressed as 513 

ζ = − ℎ
𝐻 𝑓,												(14) 514 

where ℎ is the thickness of dense overflow (see Fig. 3). The magnitude of circulation 515 

velocity (𝑣4) can then be scaled as 516 

𝑣4 = 𝑓ℎ𝐿
𝐻 = 𝑓ℎ𝜆

4𝐻 .											(15) 517 

Here, we use a quarter of predicted wavelength (𝜆, Fig. 6) by Equation (5) as the spatial 518 

scale 𝐿, see Swaters and Flierl (1991) for details. As noted above, the dense water and 519 

TRWs move westward together (Fig. 5), which means the dense water will be carried 520 

downslope continuously by the offshore circulation of TRWs as it flows westward (Fig. 2d 521 

and Fig. 3). Assuming that  the dense overflow is advected down-slope by the circulation 522 

velocity 𝑣4, we predict a descent angle that is appropriate for the wavy regime, 523 

𝑡𝑎𝑛𝛽 = 𝑣4𝑈& =
𝑓$ℎ𝜆
4𝐻𝑔'𝑠 .									(16) 524 

However, the dynamics actually transit through steady, wavy and eddying regimes as the 525 

topographic slope varies (Figs. 2 and 12). Therefore, while Equation (16) should be 526 

appropriate for wavy regime, we anticipate it over-estimating the descent angle in the  527 

steady and eddying regimes, in which we expect the descent of DSW to be suppressed. In 528 
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addition, Equation (16) is a very rough estimate: it depends on the choice of isopycnal to 529 

define dense water (thus ℎ), and the circulation velocity is derived from isopycnal PV 530 

conservation (Equation (13)), while the TRWs are bottom intensified in stratified 531 

environments (Pedlosky, 1987). Therefore, as shown in Fig. 12, Eq. (16) does not 532 

quantitatively agree with the diagnosed descent angle, but does capture the trend 533 

qualitatively. The physical explanation for this trend is that as the slope steepness decrease, 534 

the Nof speed decreases nearly linearly (Fig. 5a), while the strength of TRWs does not 535 

change significantly, thus the descent angle increases. 536 

 537 

 538 

Figure 13. (a) Pathway of the cross-slope tracer centroid for varying slope steepnesses. (b) As (a), but 539 

using isobaths as the meridional coordinate. The inset shows the continental slope width with varying 540 

slope steepness. The magenta dashed line approximately indicates the location where the dense 541 

overflows complete the initial geostrophic adjustment. The black dashed line indicates the descent angle 542 

in the x-z plane predicted by Equation (19). 543 

As noted above, both steep slopes and small slopes lead to suppression of down-slope 544 

transport, via formation of a steady, frictional-geostrophic flow and via formation of 545 

coherent eddies over the upper slope, respectively. This suggests that moderate slopes 546 

should lead to the most efficient export of DSW. To test this, we use the time-averaged 547 

center of mass of the of passive tracer field to identify the pathway of the dense water 548 

overflow: 549 
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In absolute terms, the tracer centroid exhibits a monotonic increase in the rate at which it 551 

descends the continental slope, as shown in Fig. 13a. However, switching to isobaths as a 552 

meridional coordinate (Fig. 13b) reveals that the rate at which the tracer reaches the deep 553 

ocean varies non-monotonically with the slope steepness. Despite the increasing 554 

continental slope width (see inset in Fig. 13b) as the slope steepness decreases, the tracer 555 

pathways in different experiments intersect due to the transition between different overflow 556 

regimes. For example, the tracers initially descend quickly in the steep slope experiments 557 

(𝑠 ≥ 0.1) during geostrophic adjustment process, but after that the descent rate becomes 558 

much slower, and is subsequently overtaken by the moderate slope experiments (0.05 <559 

𝑠 < 0.1).  560 

Building on Equation (16), we can obtain a relationship between the rate at which the 561 

dense water traverses isobaths versus along-slope distance. The speed at which the dense 562 

water traverses isobaths can be directly related to the cross-slope flow via  563 

𝑣< = 𝑣4 ∙ 𝑠.										(18) 564 

Then we estimate the descent angle in the x-z plane, 𝛾, as  565 

𝛾 = 𝑣<𝑈& =
𝑓$ℎ𝜆
4𝐻𝑔' .											(19) 566 

This descent angle no longer depends on the slope steepness if other parameters are fixed, 567 

which may explain why the centroids follow very similar pathways in the wavy regime 568 

(Fig. 13b, black and yellow lines). The black dashed line in Fig. 13b show the predicted 569 

decent angle for 𝑠 = 1/15, which is close to the diagnosed pathway. 570 

5 Summary and Discussion 571 

Dense overflows are intrinsically unstable on sloping topography, forcing coupled 572 

TRWs which oscillate throughout the water column (Swaters, 1991; Reszka et al., 2002; 573 

Guo et al., 2014; Han et al., 2022). It follows from conservation of energy that the dense 574 

overflow must descend the slope to release potential energy to energize the oscillations. 575 
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However, what determines the properties (e.g. wavelength and frequency) of the overflow-576 

forced TRWs and how these are related with the descent of DSW are still not clear. In this 577 

study, we use a series of idealized numerical model experiments (see Section 2) to 578 

investigate the properties of overflow-forced TRWs and the associated downslope 579 

transport of DSW over varying slope steepness, which approximate different overflow 580 

regimes around Antarctic coast.  581 

In Section 3 we showed that motions of DSW pulses and the overlying TRWs are 582 

jointly constrained by the dynamics of linear plane TRW theory and by the Nof (1983) 583 

geostrophic propagation speed of dense anomalies over a sloping bottom. Specifically, the 584 

Nof speed closely predicts the phase speed of the TRWs, which in turn predicts the 585 

wavelength and frequency of the TRWs via linear plane wave dynamics (Fig. 6). Although 586 

the results are largely based on the assumptions of linear TRW theory and no across-slope 587 

phase propagation, these assumptions have been verified through TRW dispersion 588 

relationship (Fig. 6) and the orientation of ocean current oscillations (Fig. A1) respectively. 589 

These findings build a dynamical connection between dense overflow and the properties 590 

of TRWs, and provides a general theoretical prediction of the wavelengths and frequencies 591 

of TRWs that should occur in different overflows in nature.  592 

In section 4 we investigated how the dynamics and rate of the DSW descending vary across 593 

a range of slope steepnesses, over which the overflow dynamics transit between “steady”, 594 

“wavy” and “eddying” regimes (see Fig. 12 and Han et al. (2022)). In the steady regime 595 

(𝑠 ≥ 0.1), the TRWs are suppressed and the descent of DSW is approximately driven by a 596 

bottom Ekman transport that is slightly modified by the time-mean relative vorticity (Fig. 597 

7). In the wavy regime (0.05 < s < 0.1), DSW descends the slope via advection by TRWs, 598 

supported by transient interfacial form stress across the top of the DSW layer (Fig. 9). 599 

When the slope steepness is relatively small (s ≤ 0.05), these TRWs generate coherent 600 

cyclonic eddies that is consist of overlying water column and bottom dense water, and 601 

translate along-isobath (Mory et al., 1987; Han et al., 2022). The cyclonic eddies tend to 602 

drift upslope under the influence of their own vorticity advection (Mory et al., 1987; 603 

Carnevale et al., 1991), hence the tendency for the coherent eddies is to be confined at the 604 

top of the slope. The coherent eddies have weak interactions with surrounding ocean and 605 
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can be idealized to be isolated systems with no momentum transfer to surrounding fluid 606 

(Mory et al., 1987), thus the dense water does not descend downslope from the perspective 607 

of energy conservation. 608 

The transitions between different overflow regimes lead to a non-monotonic 609 

dependence of the rate at which DSW crosses isobaths, i.e. of the angle of the DSW’s 610 

descent in the along-slope/depth plane, on the slope steepness (Fig. 13b). In the wavy 611 

regime this descent angle can be accurately predicted by assuming that the DSW translates 612 

along-slope at the Nof speed, and is advected steadily downslope by the cross-slope 613 

velocity anomalies associated with the TRWs, which in turn are predicted by linear plane 614 

TRW theory (Figs. 12 and 13b).  615 

The formation of isolated bottom eddies may be linked to the larger interaction 616 

parameter (𝜇) for smaller slope steepness (Fig. 5b). As has been discussed above, larger 𝜇 617 

indicates stronger interactions between the dense overflow and the overlying water, which 618 

may be strong enough to form the coherent eddies (Mory, 1985; Mory et al., 1987). In 619 

contrast, there are also strong nonlinear eddies in the overlying water in moderate slope 620 

case (Fig. 2c, Han et al., 2022), while the interaction parameter is smaller due to its larger 621 

slope steepness (Fig. 5b), that is probably why there is no isolated bottom eddies formation. 622 

We note that our simulations are rather idealized to simplify the dynamical analysis. 623 

For example, some previous studies have identified both topographic steering (Jiang and 624 

Garwood, 1998; Darelius and Wahlin, 2007; Matsumura and Hasumi, 2010; Wang et al., 625 

2009) and tidal advection (Whitworth and Orsi, 2006; Padman et al., 2009; Wang et al., 626 

2010; Bowen et al., 2021) as potentially important contributors to the descent of DSW. 627 

Further work is required to establish how the presence of tides or asymmetries in the 628 

structure of the continental slope might alter the formation of TRWs and the different 629 

overflow regimes explored in this study. 630 

We also note some limitations to our methodology: the prescribed dense inflow flux 631 

(~0.2Sv)  in our simulations is relatively small compared to the rate of DSW export in the 632 

Ross Sea (~0.8Sv, Gordon et al., 2009) and the Weddell Sea (~1.6±0.5Sv, Foldvik et al., 633 

2004). Therefore, caution is required in directly comparing the production of AABW with 634 
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in situ observations; here instead we focus on the different dynamical regimes that occur 635 

in the overflow as the slope steepness varies. More realistic (e.g. regional) model 636 

configurations would be required to assess the similarity between the overflow regimes 637 

found in nature with those represented by our model. Additionally, we note that our 638 

vertically-integrated momentum budget analysis (see Section 4) uses a relatively large 639 

reference density 𝜌( = 1027.88	𝑘𝑔/𝑚! to define the upper boundary of the DSW layer, 640 

in order to ensure that the diagnostics exclude the overlying waters. This choice tends to 641 

amplify the contribution of bottom Ekman transport to the down-slope flow, because the 642 

bottom boundary layer occupies a larger fraction of the DSW layer under this definition. 643 

However, the Ekman transport contribution remains relatively small in the wavy and 644 

eddying regimes, which underscores the importance of TRW-induced interfacial form 645 

stresses in these regimes. 646 

In summary, the two key outcomes of this study are: (i) identification of the dynamics 647 

underlying the selection of TRW wavelengths and frequencies in dense overflows over 648 

continental slopes;  and (ii) demonstrating that the transition between frictionally-649 

dominated, TRW-dominated and eddy-dominated downslope flows leads to a non-650 

monotonic dependence of the DSW descent on the slope steepness. These findings offer a 651 

potential explanation for the varying frequencies (or absence) of TRWs that have been 652 

observed in different oceanic overflows, and for the presence/absence of TRWs or 653 

nonlinear eddies arising in these overflows (Jensen et al., 2013; Nakayama et al., 2014; 654 

Hopkins et al., 2019; Darelius et al., 2015; Gordon et al., 2009; Williams et al., 2010). 655 

Future work will be required to connect the idealized theories for TRW characteristics and 656 

DSW descent presented here with in situ observations, potentially with the aid of more 657 

comprehensive model configurations that incorporate complexities such as tidal flows and 658 

bathymetric ridges. 659 
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Appendix 668 

The orientation of TRW phase propagation can be indicated by the ocean current 669 

ellipse (Muenchow et al., 2020). Here we connect the tail of ocean current vector over 5 670 

TRW periods to show local rotations of wave circulation. As shown in Fig. A1, the 671 

principal axis of current oscillations is almost across-slope, which indicates that the phase 672 

velocity vector is almost along-slope (Muenchow et al., 2020). Here, we only show the 673 

case with 𝑠 = 1/15,  but other experiments with varying slope steepnesses have similar 674 

results. 675 

 676 

Figure A1. Selected 8 sites (black and red stars) showing ocean current rotations in the 30th σ layer 677 

(note that there are 60 layers in total), which is around 880m and 600m above seafloor for the black and 678 

red stars, respectively. We connect the tail of flow vector over 5 TRW periods in each site to 679 

approximate ocean current ellipse. The flow vector 𝒗 = (𝑢,, 𝑣,), where 𝑢, = 𝑢 − 𝑢W, 𝑣, = 𝑣 − 𝑣̅, and 680 

the overbar indicate time average over 5 TRW periods. Note the flow vector has been scaled. 681 

  682 
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