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ABSTRACT

We focus on enabling robots to proactively assist humans in as-
sembly tasks by adapting to their preferred sequence of actions.
Much work on robot adaptation requires human demonstrations of
the task. However, human demonstrations of real-world assemblies
can be tedious and time-consuming. Thus, we propose learning
human preferences from demonstrations in a shorter, canonical task
to predict user actions in the actual assembly task. The proposed
system uses the preference model learned from the canonical task
as a prior and updates the model through interaction when predic-
tions are inaccurate. We evaluate the proposed system in simulated
assembly tasks and in a real-world human-robot assembly study
and we show that both transferring the preference model from the
canonical task, as well as updating the model online, contribute to
improved accuracy in human action prediction. This enables the
robot to proactively assist users, significantly reduce their idle time,
and improve their experience working with the robot, compared to
a reactive robot.
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1 INTRODUCTION

To effectively assist human workers in actual assembly tasks, robots
need to predict the sequence in which users will perform their

HRI °23, March 13-16, 2023, Stockholm, Sweden
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9964-7/23/03.
https://doi.org/10.1145/3568162.3576965

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Neel Dhanaraj
University of Southern California
Los Angeles, California, USA
dhanaraj@usc.edu

575

Angelos Guan
University of Southern California
Los Angeles, California, USA
angelosg@usc.edu

Stefanos Nikolaidis
University of Southern California
Los Angeles, California, USA
nikolaid@usc.edu

Canonical task

Actual task
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Figure 1: We use task-agnostic preferences in the canonical
task, such as consecutively perform all actions that use the
same part, as a prior for predicting user actions in the actual
task. A robot uses the predictions to proactively assist users,
while also updating the prior through interaction.

actions [18, 19, 22]. For example, if a robot expects that the user will
assemble a specific part at the next step, the robot can proactively
fetch that part from the storage and deliver it to the user to reduce
the time for which the user remains idle [16].

Since each user can have a different way of performing a given
assembly [40, 41], assistive robots must learn the individual pref-
erences of their users to predict their actions accurately [14, 27].
Typically, user preferences for task execution are learned in the
form of a policy [2, 35] or a reward function [32, 40, 44] given the
demonstrations of users in the task. However, demonstrating the
preferred sequence of actions can be tedious and time-consuming
for users in real-world assembly tasks.

Moreover, we consider the setting where the user executes the
actual assembly only once, as in customized assemblies (e.g., satel-
lite assembly). Our goal is to improve the team performance and
fluency in the single task execution, instead of repeated executions,
by accurately predicting user actions. Therefore, we focus on the
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Figure 2: Proposed system for transfer learning of human preferences: In the offline phase, the robot learns the preference of a
given user from their demonstrations in a canonical task. The preference is encoded as weights of task-agnostic features that
constitute the user’s reward function and is used as a prior estimate of their preference in the actual task (blue). In the online
phase, the robot predicts the user’s actions in the actual task based on its current estimate of their weights and updates them
when the prediction is inaccurate (green). If the user’s sequence is significantly different than the prediction, the robot asks
users for new features to add to the reward function used to predict their actions (red).

problem of efficiently learning user preferences without obtaining
their demonstrations in the actual task beforehand.

One approach is to learn dominant preference models by cluster-
ing demonstrations of previous users in the given task [29, 31] and
then associate the preferences of new users with the learned models.
While this removes the need for demonstrations from the new user,
it still requires previous demonstrations on the task. Alternatively,
users can observe robot actions and provide online corrections dur-
ing task execution [5, 27]; however, an inaccurate initial preference
model may result in a large number of interactions.

How can we obtain an accurate initial preference model without
explicit demonstrations in the actual task? In a previous preliminary
study [28], participants frequently explained their action selection
in an assembly task using task-agnostic features. For example, some
participants preferred leaving the actions requiring high physical
effort towards the end of the task to avoid fatigue early on. Others
preferred actions that allowed them to keep using the same part,
rather than having to switch parts, regardless of the physical effort
required for these actions. Therefore, a human preference model
can be expressed with respect to task-agnostic features and learned
from demonstrations in a much shorter, expressive task — called
a canonical task — that allows users to demonstrate their prefer-
ences. In our example, the canonical task should include actions
with varying physical efforts; it should also allow users to choose
between keeping the same part and switching parts, so that we can
learn a preference model with respect to these features.

However, transferring this model to the actual task is insufficient
for making very accurate predictions. Human preferences often
change between tasks because of human physical and mental states,
such as fatigue and cognitive load [10]. Furthermore, users may
consider new features that were not present in the canonical task,
such as the space occupied by each part.

Our key insight is that we can initialize the robot’s preference
model with demonstrations in a canonical task and then update the
model through interaction in the actual task (Fig. 2). Specifically, we
model the user as maximizing a reward function represented by a
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weighted combination of task-agnostic features. Our system learns
the feature weights from user demonstrations in the canonical task
and uses them to predict user actions in the actual task. When the
model predictions are inaccurate, we refine the preference model
by (1) updating the weights to match the actual human actions or
by (2) adding new features to the reward function after querying
the user.

In summary, our main contribution is a novel system for predict-
ing user actions in actual assembly tasks that combines transferring
an initial preference model from a canonical task and updating the
model online through interactions. We evaluate the proposed sys-
tem in a user study, where participants demonstrate their preference
in a canonical task and then perform a real-world model airplane
assembly with a proactive robot. We show that our system results
in accurate predictions, a significant reduction in human idle time,
and an improvement in user experience, compared to a reactive
robot. Our ablation studies show that both transferring the prefer-
ence model from the canonical task and updating the model online
are critical for accurate predictions. Finally, in a follow-up study,
we show the benefit of adding new features when their preference
cannot be accurately predicted with the existing set of features.

2 RELATED WORK

Learning user preferences offline. While user preferences can
be modeled as constraints in the task scheduling problem [12],
defining such constraints can be challenging for end users. Hence,
preferences are often learned implicitly from demonstrations of the
user’s preferred behaviour [34, 43]. To efficiently infer user pref-
erences, demonstrations of several users can be clustered to learn
dominant preference models via inverse reinforcement learning
(IRL) [1, 40], such that the preference of a new user can be quickly
inferred by matching their actions to a dominant model [29, 31].
Since user demonstrations can be expensive to obtain in advance,
an alternative is to obtain the user’s preferred choice from a set of
uniformly sampled [39] or actively generated trajectories [5]. While
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trajectory comparisons help to fine-tune the estimated user prefer-
ence, demonstrations offer a high-level initialization of the human’s
overall objective. Recent work has shown that initializing the belief
over user preferences with just a solitary user demonstration can
reduce the number of queries required to converge to the user’s
preference [5]. However, this would require the demonstrations to
be obtained in the actual task prior to task execution.

To reduce the burden of obtaining demonstrations, previous work

has explored transferring human strategies in simulated search-
and-rescue tasks from simple to more complex environments [15].
Similarly, our preliminary work [28] has shown that in a user study
without a robotic assistant, user preferences learned in a canonical
task are useful for predicting human actions in an actual real-world
assembly. The work assumes that user preferences do not change
from the canonical to the actual task and that both the tasks share
identical feature spaces. However, we show that the robot cannot
solely rely on a transferred estimate of user preference, e.g., because
of a change in preference or features that are not present in the
canonical task. Hence, in this work, we propose a system that uses
the preference model learned from the canonical task as a prior and
updates it online through interaction.
Adapting to user preferences online. In the absence of pre-
collected user demonstrations, robots can adapt to the changing
user preferences by obtaining the user’s feedback, e.g., the correct
action to take in the current state, while executing the actual task.
The dataset of user-approved state-action pairs can be used to learn
a shaping function using regression trees that is added to the robot’s
existing quality function [27]. Alternatively, the dataset can be used
to learn a feedback policy based on the number of right and wrong
labels for each state-action pair and integrated with the robot’s
existing task policy [13]. Similarly, human interventions can also
be used to directly update the parameters of the quality function
via behaviour cloning [26].

To adapt the preference model while executing the first instance
of the task, user feedback can also be recorded as physical cor-
rections to the trajectories demonstrated by the robot [3, 21, 23].
The robot is initialized with a reward function that is a weighted
combination of task features, where the weights are updated based
on the difference in feature counts of demonstrated (by robot) and
corrected trajectories (by human). User corrections can also be as-
sociated with a reward and used to update the robot’s Q-function
online [38]. Similarly, user feedback for right or wrong actions can
be used as a reward signal for Q-learning [20, 24, 25].

Overall, when learning from human feedback, if the robot’s
initial estimate of user preference is inaccurate, the user will need
to provide several corrections. Thus, the proposed system initializes
the preference model with a prior learned from a canonical task to
efficiently adapt to the user during the actual task execution.

3 SYSTEM FOR TRANSFER LEARNING OF
HUMAN PREFERENCES

We model a task as a Markov Decision Process (MDP) defined by

the tuple M = (S, AP T, R), where S is a finite set of states in the

assembly, AH is a finite set of discrete assembly actions that the

user must perform to complete the assembly, T (s¢41]s¢, a?) is the

probability of transitioning from state s; to s;+1 by taking action
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Algorithm 1 Online Update of Transferred Preference

Require: Transferred weights wc, task-agnostic features ¢, ¢x
I Wx =1 = WC

2 =1 =9

3 Rx =1 = Wx 1=1 " $1=1

4: mp=1 = valuelteration(Rx ;=1, Mx)
5. while s; not a terminal state do
6: Observe s;

7: dlt{ = ﬂt(st)

8: Observe aIt'I

9: if alt{ * &It{ then

10: if Ap < Apmax then

11: Wprior = WXt

12: else

13: ¢’ — queryUser(dx)
14: br+1 = (d1,9")

15: Wprior ~ U(0,1)

16: Approximate Z1.7

—
=

wx,t+1 = maxEntropyIRL(Z1.T, Wprior, Pr+1)

Rx 41 = Wx 141 Pra1
7t+1 = valuelteration(Rx 141, Mx)

_ =
© ®

aI;I, and R(s;4+1) is the reward received by the user in s;41. We
assume that S, A, T are known, while R captures the (unknown)
user preference. We also assume that the user maximizes their long-
term expected reward on the task. Thus, given R, we can perform
value iteration [4] to compute the user’s policy 7(s;) that maps s;
to a human action all. The robot can use 7(s;) to predict the next
human action and proactively assist the user for that action, e.g.,
by fetching the required part (section 5).

Our system consists of two phases: (i) an offline phase where the
robot learns a user preference in the canonical task represented by
an MDP, M¢, and transfers it as a prior to the actual task represented
by a different MDP, My, and (ii) an online phase where the robot
predicts user actions at each step of Mx and updates the prior
through interaction (Algorithm 1).

3.1 Learning canonical task preferences

To enable the transfer of human preferences, we assume access to
a task-agnostic feature function ¢(s) € R9 that maps each state s
in both the canonical and actual assembly tasks to a d-dimensional
feature vector, and model the reward function in both tasks as a
linear combination of the features, so that:

Re(s) = wlg(s) Vs € S, Rx(s) = who(s) Vse Sx (1)

The weights in the d-dimensional weight vector w represent how
users value the features ¢.

Given a set of demonstrated action sequences in the canonical
task Mc, we use maximum-entropy IRL [40, 44] to learn the weights
wc. In our implementation, we iteratively update a weight initial-
ized from a uniform distribution to minimize the difference between
the expected feature count of the user’s preferred sequence and the
policy estimated based on the learned weights.

VLo = g D) D9 ) Da(9h(s)

EceEc seée seSc

@)
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Here, D, (s) is the state visitation frequency for the policy 7, com-
puted using the weights wc, and E¢ is the set of user demonstra-
tions &c = [(s1,a1), - -, (s, ar), .. .] in the canonical task.

We then transfer the learned preferences by initializing the user’s
reward function Ry ;=1 in the actual task with the weights wx ;-1 =
wc learned in the canonical task. We provide a simple example of
our approach for transferring user preferences from canonical to
actual tasks in the supplementary material.

3.2 Updating feature weights

To account for the changing user preferences from the canonical to
the actual task, we update the transferred weights based on user
corrections in the actual task.

At a time step t, we observe the current state s; and predict
the next human action !l based on the user policy 7;(s;), com-
puted with rewards Ry ; parameterized by the current estimate
wx s (step 7 in Alg. 1). If the action performed by the user a? does
not match our prediction dI[I, we update the weights as follows.

At the time step t of the actual task, we have only observed the
user’s action sequence ;. up to that time step. Computing the
weights based solely on &1.; may be insufficient for inferring the
user preference for the rest of the task. To account for the current
prior wyx s, we update the weights by synthesizing a distribution
of action sequences =1.7 that assumes that the user will execute
the previously computed policy 7; for the remainder of the task.
We approximate the distribution by sampling trajectories fl:T =
(&1, éet+1:T)~ Here, &4 is the observed sequence, le;T is a sampled
sequence computed by executing 7; from the next state s;41, and T
is the total number of time steps until a final state is reached. Similar
to the offline setting, we use maximum-entropy IRL [44] to learn
the new weights wyx s for E1.7. We iteratively update the weights
estimate instead of maintaining a distribution over all weights to
enable real-time adaptation during task execution [3, 36].

3.3 Adding new features

In addition to updating the weights of the user’s reward function, we
consider the case where user preferences in the actual task depend
on new features that were not modeled in the canonical task. For
example, user preferences in a welding task may depend on the
temperature of the assembly. However, if the feature function used
in the canonical task does not include a feature for temperature,
weights learned over other features will likely not be sufficient for
accurately predicting the user’s sequence in the actual task.

We assume that in addition to the common set of features ¢
shared between the canonical and actual task, there is a known set
of d’ different candidate features in the actual task ¢x (s) € R We
wish to identify which of the candidate features affect user action
selection and ask the user to select a feature from the set [7]. We
wish to only add features that are relevant to the user preference,
since previous work has shown that adding irrelevant features
negatively affects performance [11].

To avoid burdening the user, we query them only if there is a big
difference between the predicted and the actual user preference. We
approximate this difference using as a simple heuristic the number
of time steps between the performed action a? and the expected
time step that the system predicted the user to perform the same
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Table 1: Components included in the proposed system (on-
line_add) and in each baseline.

transferred | updated | feature
approach weights weights | addition
prior X
rand_online X
online X X
add_always X X X
online_add X X X

action. We only query users if this difference Ap is above a pre-
defined threshold Appax (step 10 in Alg. 1).

If the user selects a candidate feature ¢’ (step 13), we incorporate
it into our feature function with a randomly initialized weight
(step 15) and learn the weights for the augmented set of features as
in section 3.2. We also remove that feature from the set of candidate
features ¢x. Otherwise, we update the weights using the existing
feature set. Fig. 10 shows an example of the query used in our study.

4 SIMULATION EXPERIMENTS

We first evaluate our proposed system with a simulated canonical
and actual task to show that - (i) initializing the robot with weights
transferred from a canonical task, (ii) updating the weights online,
and (iii) incorporating new features that affect user preferences in
the actual task contribute to the prediction accuracy.

We design the simulated canonical task (M¢) with |AIg| =6
actions and |S¢| = 27 states and the actual task (My) with |A§I(| =
10 actions, and |Sx| = 243 states. We assume a 3-dimensional
feature space ® to model the reward function. We manually design
20 simulated users with substantially different preferences (i.e.,
weights w), since we found that sampling weights uniformly at
random resulted in a small number of distinct preferences.
Benefit of transferred weights. We first compare predicting
user actions with online update of the transferred weights (online)
and randomly initialized weights (rand_online). Table 1 shows the
differences in each approach.

We consider two scenarios - (1) same: Users have the same pref-
erence in both the canonical and actual tasks. We use the same
weights w to compute the user policy in both tasks. (2) opposite:
Users have a very different preference in the actual task, compared
to the canonical task. We compute the policy in the actual task
using different weights w’ = 1 — w.

In both scenarios, we simulate the users in the canonical task,
learn a prior estimate of the users’ weights, and calculate the pre-
diction accuracy by comparing the predicted actions d? to the
simulated actions aI;I in the actual task. The accuracy is 1 when
a? = élt{, and 0 otherwise. For each user, we compute the mean
accuracy by averaging over all time steps, 25 random seeds and
30 actual task iterations. We use the random seeds to initialize the
maximum-entropy learning of the weights w¢ in prior and online,
and to uniformly sample the weights wx ;=1 in rand_online.

Fig. 3 shows that when users have identical preferences in the
canonical and actual tasks (same), the transferred weights lead to
higher accuracy than the random weights. For same, a two-tailed
paired t-test shows a statistically significant difference (£(19) = 3.39,
p = 0.003) in the accuracy of online (M = 0.73, SE = 0.012) and
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Figure 4: Mean accuracy of predicting user actions using our
proposed approach with feature addition for App,ax = 3.

rand_online (M = 0.69, SE = 0.012). On the other hand, we do not
see a significant difference for users in the opposite scenario.
Benefit of updating feature weights. We compare using the
transferred weights with (online) and without online updates (prior).
For users that changed their preference (opposite), a two-tailed
paired t-test shows a statistically significant difference (¢(19) = 5.17,
p < 0.001) between the accuracy of online (M = 0.69, SE = 0.017)
and prior (M = 0.62, SE = 0.023).

Overall, these results show that when users retain their preference,

leveraging the weights learned from the canonical task significantly
improves performance, compared to a random prior. If users change
their preference, performance is significantly improved by updating
the feature weights in the actual task and is comparable to online
learning with a uniformly random prior.
Benefit of adding new features. We now consider the case where
the preference model learned in the canonical task does not include
a feature present in the actual task. We simulate users in the same
scenario, but when computing their preference in the canonical
task, we exclude the first feature ¢; and learn the weights based on
the remaining two features (add-phi1). We similarly consider two
more cases excluding ¢, (add-phi2) and ¢3 (add-phi3).

We compare the proposed approach that uses transferred weights,
updates the weights online and adds new features (online_add), with
using the transferred weights and updating online without adding
new features (online). We simplify the simulation by adding the
excluded feature when Ap > Appmax, without any user selection.
In the actual system, the user chooses a relevant feature from a set
of candidate features and has the option to not add any feature.

Fig. 4 shows that adding new features (online_add) leads to a
higher accuracy of action prediction in the actual task than just

579

HRI 23, March 13-16, 2023, Stockholm, Sweden

B online_add add_always
0.9 p<0.001
. p<0.001 p<0.001 ,_L_‘
.08
g I
3 I
Q
2 0.7 -
0.6
05
ex-phi1 ex-phi2 ex-phi3

Figure 5: Mean accuracy of predicting user actions using our
proposed approach with feature addition based on Appx.

updating the weights for existing features (online). For example,
in add-phi2, a two-tailed paired t-test shows a statistically signifi-
cant difference (¢(19) = 4.42, p < 0.001) in the mean accuracy of
online_add (M = 0.66, SE = 0.02) and online (M = 0.54, SE = 0.02).
Benefit of selective queries. Finally, we show the importance of
adding new features only when Ap > Appmax, by comparing our
proposed system (online_add) with an identical system that always
adds new features, i.e., Apmax = 0, (add_always).

We consider the case where the preference of the simulated users
in both canonical and actual tasks depends on only two features,
¢2 and @3, while ¢y is in the candidate feature set (ex-phi1). The
system add_always adds ¢ to the feature set and learns wy, wy and
w3, while online_add only considers wy and ws. We do the same
for ¢ (ex-phi2) and ¢3 (ex-phi3). Fig. 5 shows that add_always
performs worse than online_add, showing the importance of con-
sidering prediction error before adding new features.

Overall, these results show that adding new features based on pre-
diction error improves performance when the features are relevant to
the users’ preference in the actual task. On the contrary, performance
decreases if features are added without considering prediction error.

5 HUMAN-ROBOT ASSEMBLY STUDY

The simulation experiments show the importance of each compo-
nent of our system. We follow the experiments with a user study,
where participants perform an actual assembly task in collaboration
with an assistive robot.

The focus of our study is to evaluate the benefit of proactively
assisting users using our proposed system. Specifically, we want
to show that by anticipating user actions, the robot can reduce the
amount of time required to complete the assembly task, improve the
team fluency, and affect positively the subjective user experience.

5.1 Study setup

We set up the human-robot assembly task so that at each step of
the assembly, the robot fetches the parts required for the next user
action from a storage area, and the user performs their preferred
assembly action on the workbench (see accompanying video).

We program the robot to ask-before-acting [27], where the user
confirms the robot’s action so that the robot does not incorrectly
deliver the wrong part. We use AprilTags [33] to detect the parts
and tools present in the workbench and we recognize user actions
using a manually specified dictionary that maps specific part con-
figurations to assembly operations (see supplementary material).
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Actual and canonical assembly tasks. We use the same actual
and canonical tasks as in our previous work [28]. The actual task is
a model-airplane assembly with |A§I(| = 8 actions and |Sx| = 3324

states, while the canonical task consists of only |Alg| = 6 actions
and |Sc| = 175 states and takes significantly less time for users to
complete. We assume deterministic transitions T¢, Ty in both tasks
and we set Apmax = 3 (step 10 in Alg. 1). We provide additional
details of both the tasks in the supplementary material.

Feature space. We specify for the canonical task 6 task-agnostic
features from our previous work [28] that capture user preferences
for selecting actions based on ‘physical effort’, ‘mental effort’, ‘keep-
ing the same tool’ and ‘keeping the same part’. Based on a pilot
study, we include the ‘space required’ for actions in the list of candi-
date features ¢x, which captures that in the actual task some users
selected actions based on the size of their parts.

5.2 Independent variables

We compare a proactive (P) robot using the proposed system with
a reactive (R) robot.

When working with a reactive robot R, the user selects the parts
required for their next action through a graphical user interface
(GUI) and commands the robot to deliver the selected parts. The
reactive robot remains stationary in its starting position while the
user is performing the assembly and starts moving towards the
requested parts only after it receives a command from the user.

In contrast, a proactive robot P uses the proposed system to
predict their next action (step 7 in Alg. 1) and proactively reaches
to the parts required for that action. We assume a dictionary that
associates assembly actions with required parts. In addition to
proactively reaching to the required parts, the system displays
the predicted action and pre-selects the required parts on the user
interface (Fig. 6). If the predicted action is correct, the user can
simply confirm the delivery of the pre-selected parts. By reaching
to the required parts in advance, P will require less time to deliver
the parts to the user. However, if our prediction is inaccurate, the
user selects the parts required for their preferred action through
the interface. The robot then returns to its starting position before
reaching to the correct part, thus requiring more time.

5.3 User study protocol

We recruited 18 (M = 13, F = 5) participants from the graduate
student population of our university, using a sign-up form sent out
through the university mailing lists. Participants were compensated
with 20 USD. The study protocol was approved by the Institutional
Review Board (IRB) at our university.

Participants first provide one demonstration on the canonical
task, where they command a reactive robot to deliver desired parts
through the GUI. After they complete the canonical task, we com-
pute the preference model for the proactive robot based on the
executed action sequence. Participants then execute the actual task
with a proactive robot P and a reactive robot R. We counterbalance
the order of the P and R conditions to avoid any ordering effects.

We divide both the canonical and actual tasks into a training and
an execution phase. In the training phase, participants learn how to
perform the task by executing each action in a randomized order. We
then ask participants to plan their preferred sequence so that they
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Figure 6: Graphical user interface for interacting with the
robot in the actual assembly task. The predicted action and
required parts are highlighted in green.

complete the task in minimum amount of time. We additionally
ask them to rate their perceived physical and mental effort for
each assembly operation and use their responses to compute the
corresponding feature values. In the execution phase, we ask users
to perform the actual task according to their planned sequence.
After each actual assembly, participants answer a post-execution
questionnaire (Table 2) and answer open-ended questions about
their subjective experience with the robot.

5.4 Hypotheses

We hypothesize that participants will require less time to complete
the assembly when working with the proactive robot P, than with
the reactive robot R (H1). In addition to task efficiency, we expect
that proactively assisting users will improve the human-robot team
fluency (H2), using human idle time as a team fluency metric. We
base this on previous work [18, 31] that showed that anticipating
user actions significantly improved team fluency.

Next, to show that a proactive robot will have a positive impact
on the subjective user experience, we consider the following per-
ceived attributes - team fluency, relative contribution of the robot,
user trust in the robot, and robot intelligence. We adopt the scales
for fluency, relative contribution, and trust from previous work [17]
and we design the remaining questions following recommended
practices [37]. We make the following hypotheses: Participants will
agree more strongly to statements regarding their perceived fluency
(H3), relative contribution (H4), trust (H5), and robot intelligence
(H6) in the P than the R condition.

5.5 Analysis

Task execution time. We measure the total duration of the task.
A two-tailed paired t-test did not show a significant difference in
task efficiency between the P (M = 587.52, SE = 24.37) and R
(M =593.16, SE = 28.116) conditions, which does not support H1.
We attribute this result to the large variation in execution times
of assembly operations, given that participants were not skilled
assembly workers.

Team fluency. We use as team fluency metric the human idle time,
which is the time the user spends waiting for the robot to fetch
parts. A two-tailed paired t-test showed a statistically significant
difference (¢(17) = 5.20, p < 0.001) in the user idle time when
working with R (M = 183.63, SE = 2.96) as compared to P (M =
174.26, SE = 2.98). In the proactive condition, when the robot
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Table 2: Post-execution questionnaire (Likert scales with 7-
option response format)

Fluency (« = 0.94):
Q1. The robot and I worked fluently together (as a team).
Q2. The robot contributed to the fluency of the interaction.

Relative contribution (« = 0.83):

Q3.1 had to carry the weight to make the human-robot team better.
Q4. The robot contributed equally to the team performance.

Q5. I was the most important team member on the team.

Q6. The robot was the most important team member on the team.

Trust (a = 0.84):
Q7. I trusted the robot to do the right thing at the right time.
Q8. The robot was trustworthy.

Robot intelligence (« = 0.90):

Q9. The robot was intelligent.

Q10. The robot does not understand my preferred sequence.
Q11. The robot accurately anticipated my actions.

correctly predicted the participant’s next action, idle time decreased
because the robot would reach to the required part in advance.
On the other hand, if the robot made an inaccurate prediction, it
returned to the starting position and the participate had to explicitly
annotate the desired parts, resulting in a substantial increase in
idle time. Because of the overall high accuracy in the proactive
condition (see section 6), the total idle time was decreased. This
supports our hypothesis H2.

Subjective user experience. We compare the subjective ratings
provided by users for the reactive and proactive robots for each
scale in the post-execution questionnaire. We measure the internal
consistency of each scale by computing the Cronbach’s alpha [9]
and report it in the questionnaire in Table 2. We treat the combined
ratings of all items in each scale as interval data and perform two-
tailed paired t-tests [37].

Fluency. We first review the effect of proactive robot assistance
on the perceived fluency of the human-robot team using Q1 and Q2.
While users gave a higher mean score for P (M = 5.72, SE = 0.33)
than R (M = 4.97, SE = 0.38), the test did not show a statistically
significant difference (p = 0.053). Evaluating Q2 only, a Wilcoxon
signed-rank test shows a statistically significant difference (Z =
2.46, p = 0.014) between P (Mdn = 6.0) and R (Mdn = 5.0). Thus,
users recognized that the proactive robot contributed to the team
fluency more than the reactive robot. This partially supports H3.
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Figure 8: Mean accuracy of predicting user actions in the
actual task. The error bars indicate the standard error.

Relative contribution. We measure the impact of proactive as-
sistance on the perceived contribution of the robot by combining
the scores for Q3 — Q6. The test showed a significant difference
(p(17) = 2.52, p = 0.021) in the combined scores for P (M = 4.2,
SE = 0.24) and R (M = 3.33, SE = 0.32), which supports H4.

Trust. A two-tailed paired t-test did not show a significant dif-
ference in the user’s trust (Q7 — Q8) between P and R, which does
not support H5. We attribute this to the fact that the ask-before-act
framework guaranteed that the robot always delivered the correct
part in both conditions, thus there were no critical failures that
could significantly affect trust in the system [8].

Intelligence. A two-tailed paired t-test showed a statistically sig-
nificant difference (¢(17) = 4.07, p = 0.001) in the combined scores
of 09-Q11 for P (M = 5.4, SE = 0.32) and R (M = 3.42, SE = 0.42).
Thus, H6 was supported.

User Preference. Overall, 14 out of 18 users reported in open-
ended responses that they preferred to work with the proactive
robot. They stated that the robot “predicted what I wanted and moved
there”, that the predictions highlighted in the interface required
them to perform “less actions [clicks] for selecting the parts” and
“reduced their mental load in remembering the next task [action]”.

6 ABLATION STUDIES

We use the data recorded in the assembly study of section 5 to
explore how each component of the proposed system contributes
to prediction accuracy. We define prior, rand_online and online as
specified in Table 1 and evaluate the benefit of initializing the robot
with the transferred weights, of updating the weights online, and
of adding new features. For each participant of the assembly study,
we compute the mean accuracy by averaging over all time steps, 20
random seeds and 5 actual task iterations. We use as ground truth
the performed action sequences by that participant.

We first compare the accuracy of initializing our proposed ap-
proach with the transferred weights (online) to initializing with
randomly sampled weights (rand_online). A two-tailed paired t-
test showed a statistically significant difference (¢(17) = 2.129,
p = 0.048) between the accuracy of the online (M = 0.818, SE =
0.024) and the rand_online conditions (M = 0.792, SE = 0.019). We
then compare the accuracy of predicting actions with (online) and
without online updates (prior). A two-tailed paired t-test showed
a statistically significant difference (t(17) = 2.707, p = 0.015) in
the accuracy between the online (M = 0.818, SE = 0.024) and prior
conditions (M = 0.769, SE = 0.030). Thus, we see that both trans-
ferring the preference model from a canonical task and updating the
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Figure 9: Mean accuracy of predicting user actions using our
proposed approach with feature addition (online_add) and
without (online). The error bars are standard errors.

model online are critical for accurately predicting the actions of real
users in the actual assembly task.

Lastly, we wish to evaluate the benefit of adding new features.
However, in our study only 7 out of 18 participants stated that
they considered the additional feature of ‘space required’ in decid-
ing their preferred sequence of actions and for only 4 out of the 7
participants the feature significantly affected their demonstrated
sequence, triggering the condition Ap > Appmayx in line 10, Alg. 1.
Because the preferences of most users did not depend on the addi-
tional feature in the current setup, we perform a follow-up study
to evaluate the benefit of feature addition, as described in section 7.

7 FOLLOW-UP STUDY

To evaluate the accuracy of anticipating user actions using our
proposed system with feature addition (online_add), we conduct a
follow-up study, where we accentuate the importance of a candidate
feature that does not appear in the initial preference model. We
change our setup of section 5 as follows: (1) We exclude from the
feature set ¢ the feature ‘keeping the same part’ and add it to the list
of candidate features @x. (2) In the study of section 5, participants
had to return the current tool to the robot unless their next action
required the same tool. Since keeping the same tool often required
participants to switch parts, they had to choose between ‘keeping
the same tool” and ‘keeping the same part’. In the follow-up study,
we allow participants to retain any used tools, which leads more
participants to consider the ‘keeping the same part’ feature.

We recruited 10 (M=5, F=5) new participants from the graduate
student population at our university. For each participant, we fol-
lowed the same protocol as in section 5, but instead of a reactive
robot as baseline, we had a proactive robot that anticipates user
actions using our proposed system without feature addition (on-
line). A two-tailed paired t-test showed a statistically significant
difference (¢(9) = 3.53, p = 0.006) in the accuracy of online_add
(M = 0.84, SE = 0.012) and online (M = 0.71, SE = 0.04). Thus, we
see that when user preferences in the actual task depend on features
not present in the canonical task, adding the features through user
interaction is important for accurate action prediction.

Fig. 10 shows one of the users in the follow-up study that pre-
ferred to ‘keep the same part’ when sequencing their actions in
the actual task. The user starts executing the actual task by con-
secutively performing actions on the same part, i.e., the airplane
propellers. Since the prior transferred from the canonical task does
not consider the new feature, the robot incorrectly predicts their
action at the second time step. As opposed to the baseline, our
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Figure 10: The participant selects the feature for ‘keeping
same part’, when the robot incorrectly predicts their action.
By incorporating the selected feature, the robot can later
correctly predict the user’s action, when the user keeps using
the main wing of the airplane. However, if the robot does
not add the new feature, the updated weights for the existing
features cannot accurately capture the user’s preference.

proposed system queries the user with the set of candidate features
and the user selects ‘keeping the same part’. By incorporating the
selected feature and updating the weights, online_add is able to
accurately predict their action at a future time step 7, where the
user prefers to consecutively use the main wing of the airplane.

8 DISCUSSION

Limitations. While we evaluate the proposed system on a single
assembly task, future work will test the transfer from canonical to
actual tasks in multiple assemblies. Designing the canonical task for
a different assembly would require knowledge of the relevant task-
agnostic features. For example, in an assembly involving welding
operations, we may need to add a feature for ‘temperature of parts’
and design a canonical task with varying part temperatures.

Furthermore, in addition to asking users to select relevant candi-
date features with pre-computed feature values, we could ask users
to directly assign [7] or teach [6] the values for these features. More-
over, rather than supporting the user in a leader-follower model,
the robot could instead reason as an equal partner over the effects
of its own actions on the human preference, as part of a mutual
adaptation formalism [30]. Finally, while the ask-before-acting ap-
proach prevents failures, we expect improvement in team fluency if
the robot directly delivers a part when it has high confidence in its
prediction, computed with soft-maximum predictive models [45].
Implications. We show the benefit of initializing a preference
model with a transferred prior from a canonical task and updating
the prior online, to enable robot adaptation to the user preferences
in a sequential assembly task. While there has been significant work
on preference learning from human inputs directly in the actual
task [42], learning from a shorter, expressive task can significantly
reduce the burden of time-consuming demonstrations, and we are
excited about future work that leverages these advances to learn
rich human preference models from canonical tasks as well.
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