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ABSTRACT 
We focus on enabling robots to proactively assist humans in as-
sembly tasks by adapting to their preferred sequence of actions. 
Much work on robot adaptation requires human demonstrations of 
the task. However, human demonstrations of real-world assemblies 
can be tedious and time-consuming. Thus, we propose learning 
human preferences from demonstrations in a shorter, canonical task 
to predict user actions in the actual assembly task. The proposed 
system uses the preference model learned from the canonical task 
as a prior and updates the model through interaction when predic-
tions are inaccurate. We evaluate the proposed system in simulated 
assembly tasks and in a real-world human-robot assembly study 
and we show that both transferring the preference model from the 
canonical task, as well as updating the model online, contribute to 
improved accuracy in human action prediction. This enables the 
robot to proactively assist users, signifcantly reduce their idle time, 
and improve their experience working with the robot, compared to 
a reactive robot. 
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1 INTRODUCTION 
To efectively assist human workers in actual assembly tasks, robots 
need to predict the sequence in which users will perform their 
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Figure 1: We use task-agnostic preferences in the canonical 
task, such as consecutively perform all actions that use the 
same part, as a prior for predicting user actions in the actual 
task. A robot uses the predictions to proactively assist users, 
while also updating the prior through interaction. 

actions [18, 19, 22]. For example, if a robot expects that the user will 
assemble a specifc part at the next step, the robot can proactively 
fetch that part from the storage and deliver it to the user to reduce 
the time for which the user remains idle [16]. 

Since each user can have a diferent way of performing a given 
assembly [40, 41], assistive robots must learn the individual pref-
erences of their users to predict their actions accurately [14, 27]. 
Typically, user preferences for task execution are learned in the 
form of a policy [2, 35] or a reward function [32, 40, 44] given the 
demonstrations of users in the task. However, demonstrating the 
preferred sequence of actions can be tedious and time-consuming 
for users in real-world assembly tasks. 

Moreover, we consider the setting where the user executes the 
actual assembly only once, as in customized assemblies (e.g., satel-
lite assembly). Our goal is to improve the team performance and 
fuency in the single task execution, instead of repeated executions, 
by accurately predicting user actions. Therefore, we focus on the 
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Figure 2: Proposed system for transfer learning of human preferences: In the ofline phase, the robot learns the preference of a 
given user from their demonstrations in a canonical task. The preference is encoded as weights of task-agnostic features that 
constitute the user’s reward function and is used as a prior estimate of their preference in the actual task (blue). In the online 
phase, the robot predicts the user’s actions in the actual task based on its current estimate of their weights and updates them 
when the prediction is inaccurate (green). If the user’s sequence is signifcantly diferent than the prediction, the robot asks 
users for new features to add to the reward function used to predict their actions (red). 

problem of efciently learning user preferences without obtaining 
their demonstrations in the actual task beforehand. 

One approach is to learn dominant preference models by cluster-
ing demonstrations of previous users in the given task [29, 31] and 
then associate the preferences of new users with the learned models. 
While this removes the need for demonstrations from the new user, 
it still requires previous demonstrations on the task. Alternatively, 
users can observe robot actions and provide online corrections dur-
ing task execution [5, 27]; however, an inaccurate initial preference 
model may result in a large number of interactions. 

How can we obtain an accurate initial preference model without 
explicit demonstrations in the actual task? In a previous preliminary 
study [28], participants frequently explained their action selection 
in an assembly task using task-agnostic features. For example, some 
participants preferred leaving the actions requiring high physical 
efort towards the end of the task to avoid fatigue early on. Others 
preferred actions that allowed them to keep using the same part, 
rather than having to switch parts, regardless of the physical efort 
required for these actions. Therefore, a human preference model 
can be expressed with respect to task-agnostic features and learned 
from demonstrations in a much shorter, expressive task – called 
a canonical task – that allows users to demonstrate their prefer-
ences. In our example, the canonical task should include actions 
with varying physical eforts; it should also allow users to choose 
between keeping the same part and switching parts, so that we can 
learn a preference model with respect to these features. 

However, transferring this model to the actual task is insufcient 
for making very accurate predictions. Human preferences often 
change between tasks because of human physical and mental states, 
such as fatigue and cognitive load [10]. Furthermore, users may 
consider new features that were not present in the canonical task, 
such as the space occupied by each part. 

Our key insight is that we can initialize the robot’s preference 
model with demonstrations in a canonical task and then update the 
model through interaction in the actual task (Fig. 2). Specifcally, we 
model the user as maximizing a reward function represented by a 

weighted combination of task-agnostic features. Our system learns 
the feature weights from user demonstrations in the canonical task 
and uses them to predict user actions in the actual task. When the 
model predictions are inaccurate, we refne the preference model 
by (1) updating the weights to match the actual human actions or 
by (2) adding new features to the reward function after querying 
the user. 

In summary, our main contribution is a novel system for predict-
ing user actions in actual assembly tasks that combines transferring 
an initial preference model from a canonical task and updating the 
model online through interactions. We evaluate the proposed sys-
tem in a user study, where participants demonstrate their preference 
in a canonical task and then perform a real-world model airplane 
assembly with a proactive robot. We show that our system results 
in accurate predictions, a signifcant reduction in human idle time, 
and an improvement in user experience, compared to a reactive 
robot. Our ablation studies show that both transferring the prefer-
ence model from the canonical task and updating the model online 
are critical for accurate predictions. Finally, in a follow-up study, 
we show the beneft of adding new features when their preference 
cannot be accurately predicted with the existing set of features. 

2 RELATED WORK 
Learning user preferences ofline. While user preferences can 
be modeled as constraints in the task scheduling problem [12], 
defning such constraints can be challenging for end users. Hence, 
preferences are often learned implicitly from demonstrations of the 
user’s preferred behaviour [34, 43]. To efciently infer user pref-
erences, demonstrations of several users can be clustered to learn 
dominant preference models via inverse reinforcement learning 
(IRL) [1, 40], such that the preference of a new user can be quickly 
inferred by matching their actions to a dominant model [29, 31]. 

Since user demonstrations can be expensive to obtain in advance, 
an alternative is to obtain the user’s preferred choice from a set of 
uniformly sampled [39] or actively generated trajectories [5]. While 
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trajectory comparisons help to fne-tune the estimated user prefer-
ence, demonstrations ofer a high-level initialization of the human’s 
overall objective. Recent work has shown that initializing the belief 
over user preferences with just a solitary user demonstration can 
reduce the number of queries required to converge to the user’s 
preference [5]. However, this would require the demonstrations to 
be obtained in the actual task prior to task execution. 

To reduce the burden of obtaining demonstrations, previous work 
has explored transferring human strategies in simulated search-
and-rescue tasks from simple to more complex environments [15]. 
Similarly, our preliminary work [28] has shown that in a user study 
without a robotic assistant, user preferences learned in a canonical 
task are useful for predicting human actions in an actual real-world 
assembly. The work assumes that user preferences do not change 
from the canonical to the actual task and that both the tasks share 
identical feature spaces. However, we show that the robot cannot 
solely rely on a transferred estimate of user preference, e.g., because 
of a change in preference or features that are not present in the 
canonical task. Hence, in this work, we propose a system that uses 
the preference model learned from the canonical task as a prior and 
updates it online through interaction. 
Adapting to user preferences online. In the absence of pre-
collected user demonstrations, robots can adapt to the changing 
user preferences by obtaining the user’s feedback, e.g., the correct 
action to take in the current state, while executing the actual task. 
The dataset of user-approved state-action pairs can be used to learn 
a shaping function using regression trees that is added to the robot’s 
existing quality function [27]. Alternatively, the dataset can be used 
to learn a feedback policy based on the number of right and wrong 
labels for each state-action pair and integrated with the robot’s 
existing task policy [13]. Similarly, human interventions can also 
be used to directly update the parameters of the quality function 
via behaviour cloning [26]. 

To adapt the preference model while executing the frst instance 
of the task, user feedback can also be recorded as physical cor-
rections to the trajectories demonstrated by the robot [3, 21, 23]. 
The robot is initialized with a reward function that is a weighted 
combination of task features, where the weights are updated based 
on the diference in feature counts of demonstrated (by robot) and 
corrected trajectories (by human). User corrections can also be as-
sociated with a reward and used to update the robot’s Q-function 
online [38]. Similarly, user feedback for right or wrong actions can 
be used as a reward signal for Q-learning [20, 24, 25]. 

Overall, when learning from human feedback, if the robot’s 
initial estimate of user preference is inaccurate, the user will need 
to provide several corrections. Thus, the proposed system initializes 
the preference model with a prior learned from a canonical task to 
efciently adapt to the user during the actual task execution. 

3 SYSTEM FOR TRANSFER LEARNING OF 
HUMAN PREFERENCES 

We model a task as a Markov Decision Process (MDP) defned by 
the tuple � = (�, �H,� , �), where � is a fnite set of states in the 
assembly, �H is a fnite set of discrete assembly actions that the 
user must perform to complete the assembly, � (��+1 |�� , �� H) is the 
probability of transitioning from state �� to �� +1 by taking action 

Algorithm 1 Online Update of Transferred Preference 
Require: Transferred weights �� , task-agnostic features � , �� 
1: ��,�=1 = �� 
2: ��=1 = � 
3: ��,� =1 = ��,� =1 · �� =1 
4: ��=1 = ��������������(�� ,� =1, �� )
5: while �� not a terminal state do 
6: Observe �� 
7: �̂H = �� (�� )� 
8: Observe �H 

� 
9: if �H ≠ �̂H then� � 
10: if Δ� ≤ Δ���� then 
11: ������ = ��,� 
12: else 

′ 13: � ← ��������� (�� )
14: �� +1 = (�� , � ′)
15: ������ ∼ � (0, 1)
16: Approximate Ξ̂ 1:� 
17: = �������������(Ξ̂ 1:� , ������ , ��+1)��,�+1 
18: ��,� +1 = ��,� +1 · ��+1 
19: ��+1 = ��������������(��,� +1, �� ) 

�� 
H, and �(�� +1) is the reward received by the user in �� +1. We 
assume that �, �H,� are known, while � captures the (unknown) 
user preference. We also assume that the user maximizes their long-
term expected reward on the task. Thus, given �, we can perform 
value iteration [4] to compute the user’s policy � (�� ) that maps �� 
to a human action �H. The robot can use � (�� ) to predict the next � 
human action and proactively assist the user for that action, e.g., 
by fetching the required part (section 5). 

Our system consists of two phases: (i) an ofine phase where the 
robot learns a user preference in the canonical task represented by 
an MDP, �� , and transfers it as a prior to the actual task represented 
by a diferent MDP, �� , and (ii) an online phase where the robot 
predicts user actions at each step of �� and updates the prior 
through interaction (Algorithm 1). 

3.1 Learning canonical task preferences 
To enable the transfer of human preferences, we assume access to 
a task-agnostic feature function � (�) ∈ R� that maps each state � 
in both the canonical and actual assembly tasks to a �-dimensional 
feature vector, and model the reward function in both tasks as a 
linear combination of the features, so that: 

�� (�) = �� � (�) ∀� ∈ �� , �� (�) = �� � (�) ∀� ∈ �� (1)� � 

The weights in the �-dimensional weight vector � represent how 
users value the features � . 

Given a set of demonstrated action sequences in the canonical 
task �� , we use maximum-entropy IRL [40, 44] to learn the weights 
�� . In our implementation, we iteratively update a weight initial-
ized from a uniform distribution to minimize the diference between 
the expected feature count of the user’s preferred sequence and the 
policy estimated based on the learned weights. ∑ ∑ ∑ 1 ∇L(�� ) = � (�) − �� (�)� (�) (2)|Ξ� | 

�� ∈Ξ� � ∈�� � ∈�� 
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Here, �� (�) is the state visitation frequency for the policy � , com-
puted using the weights �� , and Ξ� is the set of user demonstra-
tions �� = [(�1, �1), . . . , (�� , �� ), . . .] in the canonical task. 

We then transfer the learned preferences by initializing the user’s 
reward function ��,� =1 in the actual task with the weights ��,� =1 = 
�� learned in the canonical task. We provide a simple example of 
our approach for transferring user preferences from canonical to 
actual tasks in the supplementary material. 

3.2 Updating feature weights 
To account for the changing user preferences from the canonical to 
the actual task, we update the transferred weights based on user 
corrections in the actual task. 

At a time step � , we observe the current state �� and predict 
the next human action �̂H based on the user policy �� (�� ), com-� 
puted with rewards ��,� parameterized by the current estimate 
��,� (step 7 in Alg. 1). If the action performed by the user �H does � 
not match our prediction �̂H, we update the weights as follows. � 

At the time step � of the actual task, we have only observed the 
user’s action sequence �1:� up to that time step. Computing the 
weights based solely on �1:� may be insufcient for inferring the 
user preference for the rest of the task. To account for the current 
prior �� ,� , we update the weights by synthesizing a distribution 
of action sequences Ξ̂ 1:� that assumes that the user will execute 
the previously computed policy �� for the remainder of the task. 
We approximate the distribution by sampling trajectories �̂1:� = 
(�1:� , �̂� +1:� ). Here, �1:� is the observed sequence, �̂� +1:� is a sampled 
sequence computed by executing �� from the next state ��+1, and � 
is the total number of time steps until a fnal state is reached. Similar 
to the ofine setting, we use maximum-entropy IRL [44] to learn 
the new weights ��,� +1 for Ξ̂ 1:� . We iteratively update the weights 
estimate instead of maintaining a distribution over all weights to 
enable real-time adaptation during task execution [3, 36]. 

3.3 Adding new features 
In addition to updating the weights of the user’s reward function, we 
consider the case where user preferences in the actual task depend 
on new features that were not modeled in the canonical task. For 
example, user preferences in a welding task may depend on the 
temperature of the assembly. However, if the feature function used 
in the canonical task does not include a feature for temperature, 
weights learned over other features will likely not be sufcient for 
accurately predicting the user’s sequence in the actual task. 

We assume that in addition to the common set of features � 
shared between the canonical and actual task, there is a known set 
of � ′ diferent candidate features in the actual task �� (�) ∈ R� ′ . We 
wish to identify which of the candidate features afect user action 
selection and ask the user to select a feature from the set [7]. We 
wish to only add features that are relevant to the user preference, 
since previous work has shown that adding irrelevant features 
negatively afects performance [11]. 

To avoid burdening the user, we query them only if there is a big 
diference between the predicted and the actual user preference. We 
approximate this diference using as a simple heuristic the number 
of time steps between the performed action �H and the expected � 
time step that the system predicted the user to perform the same 

Table 1: Components included in the proposed system (on-
line_add) and in each baseline. 

approach transferred 
weights 

updated 
weights 

feature 
addition 

prior 
rand_online 
online 
add_always 
online_add 

X 

X 
X 
X 

X 
X 
X 
X 

X 
X 

action. We only query users if this diference Δ� is above a pre-
defned threshold Δ���� (step 10 in Alg. 1). 

If the user selects a candidate feature � ′ (step 13), we incorporate 
it into our feature function with a randomly initialized weight 
(step 15) and learn the weights for the augmented set of features as 
in section 3.2. We also remove that feature from the set of candidate 
features �� . Otherwise, we update the weights using the existing 
feature set. Fig. 10 shows an example of the query used in our study. 

4 SIMULATION EXPERIMENTS 
We frst evaluate our proposed system with a simulated canonical 
and actual task to show that - (i) initializing the robot with weights 
transferred from a canonical task, (ii) updating the weights online, 
and (iii) incorporating new features that afect user preferences in 
the actual task contribute to the prediction accuracy. 

We design the simulated canonical task (�� ) with |�H | = 6
� 

actions and |�� | = 27 states and the actual task (�� ) with |�H | = 
� 

10 actions, and |�� | = 243 states. We assume a 3-dimensional 
feature space Φ to model the reward function. We manually design 
20 simulated users with substantially diferent preferences (i.e., 
weights � ), since we found that sampling weights uniformly at 
random resulted in a small number of distinct preferences. 
Beneft of transferred weights. We frst compare predicting 
user actions with online update of the transferred weights (online) 
and randomly initialized weights (rand_online). Table 1 shows the 
diferences in each approach. 

We consider two scenarios - (1) same: Users have the same pref-
erence in both the canonical and actual tasks. We use the same 
weights � to compute the user policy in both tasks. (2) opposite: 
Users have a very diferent preference in the actual task, compared 
to the canonical task. We compute the policy in the actual task 

′using diferent weights � = 1 − � . 
In both scenarios, we simulate the users in the canonical task, 

learn a prior estimate of the users’ weights, and calculate the pre-
diction accuracy by comparing the predicted actions �̂H to the � 
simulated actions �H in the actual task. The accuracy is 1 when� 
�H = �̂� 

H, and 0 otherwise. For each user, we compute the mean � 
accuracy by averaging over all time steps, 25 random seeds and 
30 actual task iterations. We use the random seeds to initialize the 
maximum-entropy learning of the weights �� in prior and online, 
and to uniformly sample the weights ��,� =1 in rand_online. 

Fig. 3 shows that when users have identical preferences in the 
canonical and actual tasks (same), the transferred weights lead to 
higher accuracy than the random weights. For same, a two-tailed 
paired t-test shows a statistically signifcant diference (� (19) = 3.39, 
� = 0.003) in the accuracy of ������ (� = 0.73, �� = 0.012) and 
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Figure 3: Mean accuracy of predicting user actions in the 
actual task. The error bars indicate the standard error. 

Figure 4: Mean accuracy of predicting user actions using our 
proposed approach with feature addition for Δ���� = 3. 

����_������ (� = 0.69, �� = 0.012). On the other hand, we do not 
see a signifcant diference for users in the opposite scenario. 
Beneft of updating feature weights. We compare using the 
transferred weights with (online) and without online updates (prior). 
For users that changed their preference (opposite), a two-tailed 
paired t-test shows a statistically signifcant diference (� (19) = 5.17, 
� < 0.001) between the accuracy of online (� = 0.69, �� = 0.017) 
and prior (� = 0.62, �� = 0.023). 

Overall, these results show that when users retain their preference, 
leveraging the weights learned from the canonical task signifcantly 
improves performance, compared to a random prior. If users change 
their preference, performance is signifcantly improved by updating 
the feature weights in the actual task and is comparable to online 
learning with a uniformly random prior. 
Beneft of adding new features. We now consider the case where 
the preference model learned in the canonical task does not include 
a feature present in the actual task. We simulate users in the same 
scenario, but when computing their preference in the canonical 
task, we exclude the frst feature �1 and learn the weights based on 
the remaining two features (add-phi1). We similarly consider two 
more cases excluding �2 (add-phi2) and �3 (add-phi3). 

We compare the proposed approach that uses transferred weights, 
updates the weights online and adds new features (online_add), with 
using the transferred weights and updating online without adding 
new features (online). We simplify the simulation by adding the 
excluded feature when Δ� > Δ���� , without any user selection. 
In the actual system, the user chooses a relevant feature from a set 
of candidate features and has the option to not add any feature. 

Fig. 4 shows that adding new features (������_���) leads to a 
higher accuracy of action prediction in the actual task than just 

Figure 5: Mean accuracy of predicting user actions using our 
proposed approach with feature addition based on Δ���� . 

updating the weights for existing features (������). For example, 
in add-phi2, a two-tailed paired t-test shows a statistically signif-
cant diference (� (19) = 4.42, � < 0.001) in the mean accuracy of 
������_��� (� = 0.66, �� = 0.02) and ������ (� = 0.54, �� = 0.02). 
Beneft of selective queries. Finally, we show the importance of 
adding new features only when Δ� > Δ���� , by comparing our 
proposed system (online_add) with an identical system that always 
adds new features, i.e., Δ���� = 0, (add_always). 

We consider the case where the preference of the simulated users 
in both canonical and actual tasks depends on only two features, 
�2 and �3, while �1 is in the candidate feature set (ex-phi1). The 
system add_always adds �1 to the feature set and learns �1, �2 and 
�3, while online_add only considers �2 and �3. We do the same 
for �2 (ex-phi2) and �3 (ex-phi3). Fig. 5 shows that add_always 
performs worse than online_add, showing the importance of con-
sidering prediction error before adding new features. 

Overall, these results show that adding new features based on pre-
diction error improves performance when the features are relevant to 
the users’ preference in the actual task. On the contrary, performance 
decreases if features are added without considering prediction error. 

5 HUMAN-ROBOT ASSEMBLY STUDY 
The simulation experiments show the importance of each compo-
nent of our system. We follow the experiments with a user study, 
where participants perform an actual assembly task in collaboration 
with an assistive robot. 

The focus of our study is to evaluate the beneft of proactively 
assisting users using our proposed system. Specifcally, we want 
to show that by anticipating user actions, the robot can reduce the 
amount of time required to complete the assembly task, improve the 
team fuency, and afect positively the subjective user experience. 

5.1 Study setup 
We set up the human-robot assembly task so that at each step of 
the assembly, the robot fetches the parts required for the next user 
action from a storage area, and the user performs their preferred 
assembly action on the workbench (see accompanying video). 

We program the robot to ask-before-acting [27], where the user 
confrms the robot’s action so that the robot does not incorrectly 
deliver the wrong part. We use AprilTags [33] to detect the parts 
and tools present in the workbench and we recognize user actions 
using a manually specifed dictionary that maps specifc part con-
fgurations to assembly operations (see supplementary material). 
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Actual and canonical assembly tasks. We use the same actual 
and canonical tasks as in our previous work [28]. The actual task is 
a model-airplane assembly with |�H | = 8 actions and |�� | = 3324

� 
states, while the canonical task consists of only |�H | = 6 actions

� 
and |�� | = 175 states and takes signifcantly less time for users to 
complete. We assume deterministic transitions �� ,�� in both tasks 
and we set Δ���� = 3 (step 10 in Alg. 1). We provide additional 
details of both the tasks in the supplementary material. 

Feature space. We specify for the canonical task 6 task-agnostic 
features from our previous work [28] that capture user preferences 
for selecting actions based on ‘physical efort’, ‘mental efort’, ‘keep-
ing the same tool’ and ‘keeping the same part’. Based on a pilot 
study, we include the ‘space required’ for actions in the list of candi-
date features �� , which captures that in the actual task some users 
selected actions based on the size of their parts. 

5.2 Independent variables 
We compare a proactive (� ) robot using the proposed system with 
a reactive (�) robot. 

When working with a reactive robot �, the user selects the parts 
required for their next action through a graphical user interface 
(GUI) and commands the robot to deliver the selected parts. The 
reactive robot remains stationary in its starting position while the 
user is performing the assembly and starts moving towards the 
requested parts only after it receives a command from the user. 

In contrast, a proactive robot � uses the proposed system to 
predict their next action (step 7 in Alg. 1) and proactively reaches 
to the parts required for that action. We assume a dictionary that 
associates assembly actions with required parts. In addition to 
proactively reaching to the required parts, the system displays 
the predicted action and pre-selects the required parts on the user 
interface (Fig. 6). If the predicted action is correct, the user can 
simply confrm the delivery of the pre-selected parts. By reaching 
to the required parts in advance, � will require less time to deliver 
the parts to the user. However, if our prediction is inaccurate, the 
user selects the parts required for their preferred action through 
the interface. The robot then returns to its starting position before 
reaching to the correct part, thus requiring more time. 

5.3 User study protocol 
We recruited 18 (� = 13, � = 5) participants from the graduate 
student population of our university, using a sign-up form sent out 
through the university mailing lists. Participants were compensated 
with 20 USD. The study protocol was approved by the Institutional 
Review Board (IRB) at our university. 

Participants frst provide one demonstration on the canonical 
task, where they command a reactive robot to deliver desired parts 
through the GUI. After they complete the canonical task, we com-
pute the preference model for the proactive robot based on the 
executed action sequence. Participants then execute the actual task 
with a proactive robot � and a reactive robot �. We counterbalance 
the order of the � and � conditions to avoid any ordering efects. 

We divide both the canonical and actual tasks into a training and 
an execution phase. In the training phase, participants learn how to 
perform the task by executing each action in a randomized order. We 
then ask participants to plan their preferred sequence so that they 

Figure 6: Graphical user interface for interacting with the 
robot in the actual assembly task. The predicted action and 
required parts are highlighted in green. 

complete the task in minimum amount of time. We additionally 
ask them to rate their perceived physical and mental efort for 
each assembly operation and use their responses to compute the 
corresponding feature values. In the execution phase, we ask users 
to perform the actual task according to their planned sequence. 
After each actual assembly, participants answer a post-execution 
questionnaire (Table 2) and answer open-ended questions about 
their subjective experience with the robot. 

5.4 Hypotheses 
We hypothesize that participants will require less time to complete 
the assembly when working with the proactive robot � , than with 
the reactive robot � (H1). In addition to task efciency, we expect 
that proactively assisting users will improve the human-robot team 
fuency (H2), using human idle time as a team fuency metric. We 
base this on previous work [18, 31] that showed that anticipating 
user actions signifcantly improved team fuency. 

Next, to show that a proactive robot will have a positive impact 
on the subjective user experience, we consider the following per-
ceived attributes - team fuency, relative contribution of the robot, 
user trust in the robot, and robot intelligence. We adopt the scales 
for fuency, relative contribution, and trust from previous work [17] 
and we design the remaining questions following recommended 
practices [37]. We make the following hypotheses: Participants will 
agree more strongly to statements regarding their perceived fuency 
(H3), relative contribution (H4), trust (H5), and robot intelligence 
(H6) in the � than the � condition. 

5.5 Analysis 
Task execution time. We measure the total duration of the task. 
A two-tailed paired t-test did not show a signifcant diference in 
task efciency between the � (� = 587.52, �� = 24.37) and � 
(� = 593.16, �� = 28.116) conditions, which does not support H1. 
We attribute this result to the large variation in execution times 
of assembly operations, given that participants were not skilled 
assembly workers. 
Team fuency. We use as team fuency metric the human idle time, 
which is the time the user spends waiting for the robot to fetch 
parts. A two-tailed paired t-test showed a statistically signifcant 
diference (� (17) = 5.20, � < 0.001) in the user idle time when 
working with � (� = 183.63, �� = 2.96) as compared to � (� = 
174.26, �� = 2.98). In the proactive condition, when the robot 
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Figure 7: Mean user idle time in the actual task. The error 
bars indicate the standard error. 

Table 2: Post-execution questionnaire (Likert scales with 7-
option response format) 

Fluency (� = 0.94): 
Q1. The robot and I worked fuently together (as a team). 
Q2. The robot contributed to the fuency of the interaction. 

Relative contribution (� = 0.83): 
Q3. I had to carry the weight to make the human-robot team better. 
Q4. The robot contributed equally to the team performance. 
Q5. I was the most important team member on the team. 
Q6. The robot was the most important team member on the team. 

Trust (� = 0.84): 
Q7. I trusted the robot to do the right thing at the right time. 
Q8. The robot was trustworthy. 

Robot intelligence (� = 0.90): 
Q9. The robot was intelligent. 
Q10. The robot does not understand my preferred sequence. 
Q11. The robot accurately anticipated my actions. 

correctly predicted the participant’s next action, idle time decreased 
because the robot would reach to the required part in advance. 
On the other hand, if the robot made an inaccurate prediction, it 
returned to the starting position and the participate had to explicitly 
annotate the desired parts, resulting in a substantial increase in 
idle time. Because of the overall high accuracy in the proactive 
condition (see section 6), the total idle time was decreased. This 
supports our hypothesis H2. 
Subjective user experience. We compare the subjective ratings 
provided by users for the reactive and proactive robots for each 
scale in the post-execution questionnaire. We measure the internal 
consistency of each scale by computing the Cronbach’s alpha [9] 
and report it in the questionnaire in Table 2. We treat the combined 
ratings of all items in each scale as interval data and perform two-
tailed paired t-tests [37]. 

Fluency. We frst review the efect of proactive robot assistance 
on the perceived fuency of the human-robot team using �1 and �2. 
While users gave a higher mean score for � (� = 5.72, �� = 0.33) 
than � (� = 4.97, �� = 0.38), the test did not show a statistically 
signifcant diference (� = 0.053). Evaluating �2 only, a Wilcoxon 
signed-rank test shows a statistically signifcant diference (� = 
2.46, � = 0.014) between � (��� = 6.0) and � (��� = 5.0). Thus, 
users recognized that the proactive robot contributed to the team 
fuency more than the reactive robot. This partially supports H3. 

Figure 8: Mean accuracy of predicting user actions in the 
actual task. The error bars indicate the standard error. 

Relative contribution. We measure the impact of proactive as-
sistance on the perceived contribution of the robot by combining 
the scores for �3 − �6. The test showed a signifcant diference 
(� (17) = 2.52, � = 0.021) in the combined scores for � (� = 4.2, 
�� = 0.24) and � (� = 3.33, �� = 0.32), which supports H4. 

Trust. A two-tailed paired t-test did not show a signifcant dif-
ference in the user’s trust (�7 − �8) between � and �, which does 
not support H5. We attribute this to the fact that the ask-before-act 
framework guaranteed that the robot always delivered the correct 
part in both conditions, thus there were no critical failures that 
could signifcantly afect trust in the system [8]. 

Intelligence. A two-tailed paired t-test showed a statistically sig-
nifcant diference (� (17) = 4.07, � = 0.001) in the combined scores 
of �9-�11 for � (� = 5.44, �� = 0.32) and � (� = 3.42, �� = 0.42). 
Thus, H6 was supported. 

User Preference. Overall, 14 out of 18 users reported in open-
ended responses that they preferred to work with the proactive 
robot. They stated that the robot “predicted what I wanted and moved 
there”, that the predictions highlighted in the interface required 
them to perform “less actions [clicks] for selecting the parts” and 
“reduced their mental load in remembering the next task [action]”. 

6 ABLATION STUDIES 
We use the data recorded in the assembly study of section 5 to 
explore how each component of the proposed system contributes 
to prediction accuracy. We defne prior, rand_online and online as 
specifed in Table 1 and evaluate the beneft of initializing the robot 
with the transferred weights, of updating the weights online, and 
of adding new features. For each participant of the assembly study, 
we compute the mean accuracy by averaging over all time steps, 20 
random seeds and 5 actual task iterations. We use as ground truth 
the performed action sequences by that participant. 

We frst compare the accuracy of initializing our proposed ap-
proach with the transferred weights (������) to initializing with 
randomly sampled weights (����_������). A two-tailed paired t-
test showed a statistically signifcant diference (� (17) = 2.129, 
� = 0.048) between the accuracy of the ������ (� = 0.818, �� = 
0.024) and the ����_������ conditions (� = 0.792, �� = 0.019). We 
then compare the accuracy of predicting actions with (online) and 
without online updates (prior). A two-tailed paired t-test showed 
a statistically signifcant diference (� (17) = 2.707, � = 0.015) in 
the accuracy between the ������ (� = 0.818, �� = 0.024) and ����� 
conditions (� = 0.769, �� = 0.030). Thus, we see that both trans-
ferring the preference model from a canonical task and updating the 
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Figure 9: Mean accuracy of predicting user actions using our 
proposed approach with feature addition (������_���) and 
without (������). The error bars are standard errors. 

model online are critical for accurately predicting the actions of real 
users in the actual assembly task. 

Lastly, we wish to evaluate the beneft of adding new features. 
However, in our study only 7 out of 18 participants stated that 
they considered the additional feature of ‘space required’ in decid-
ing their preferred sequence of actions and for only 4 out of the 7 
participants the feature signifcantly afected their demonstrated 
sequence, triggering the condition Δ� > Δ���� in line 10, Alg. 1. 
Because the preferences of most users did not depend on the addi-
tional feature in the current setup, we perform a follow-up study 
to evaluate the beneft of feature addition, as described in section 7. 

7 FOLLOW-UP STUDY 
To evaluate the accuracy of anticipating user actions using our 
proposed system with feature addition (������_���), we conduct a 
follow-up study, where we accentuate the importance of a candidate 
feature that does not appear in the initial preference model. We 
change our setup of section 5 as follows: (1) We exclude from the 
feature set � the feature ‘keeping the same part’ and add it to the list 
of candidate features �� . (2) In the study of section 5, participants 
had to return the current tool to the robot unless their next action 
required the same tool. Since keeping the same tool often required 
participants to switch parts, they had to choose between ‘keeping 
the same tool’ and ‘keeping the same part’. In the follow-up study, 
we allow participants to retain any used tools, which leads more 
participants to consider the ‘keeping the same part’ feature. 

We recruited 10 (�=5, � =5) new participants from the graduate 
student population at our university. For each participant, we fol-
lowed the same protocol as in section 5, but instead of a reactive 
robot as baseline, we had a proactive robot that anticipates user 
actions using our proposed system without feature addition (on-
line). A two-tailed paired t-test showed a statistically signifcant 
diference (� (9) = 3.53, � = 0.006) in the accuracy of online_add 
(� = 0.84, �� = 0.012) and online (� = 0.71, �� = 0.04). Thus, we 
see that when user preferences in the actual task depend on features 
not present in the canonical task, adding the features through user 
interaction is important for accurate action prediction. 

Fig. 10 shows one of the users in the follow-up study that pre-
ferred to ‘keep the same part’ when sequencing their actions in 
the actual task. The user starts executing the actual task by con-
secutively performing actions on the same part, i.e., the airplane 
propellers. Since the prior transferred from the canonical task does 
not consider the new feature, the robot incorrectly predicts their 
action at the second time step. As opposed to the baseline, our 

Figure 10: The participant selects the feature for ‘keeping 
same part’, when the robot incorrectly predicts their action. 
By incorporating the selected feature, the robot can later 
correctly predict the user’s action, when the user keeps using 
the main wing of the airplane. However, if the robot does 
not add the new feature, the updated weights for the existing 
features cannot accurately capture the user’s preference. 

proposed system queries the user with the set of candidate features 
and the user selects ‘keeping the same part’. By incorporating the 
selected feature and updating the weights, online_add is able to 
accurately predict their action at a future time step 7, where the 
user prefers to consecutively use the main wing of the airplane. 

8 DISCUSSION 
Limitations. While we evaluate the proposed system on a single 
assembly task, future work will test the transfer from canonical to 
actual tasks in multiple assemblies. Designing the canonical task for 
a diferent assembly would require knowledge of the relevant task-
agnostic features. For example, in an assembly involving welding 
operations, we may need to add a feature for ‘temperature of parts’ 
and design a canonical task with varying part temperatures. 

Furthermore, in addition to asking users to select relevant candi-
date features with pre-computed feature values, we could ask users 
to directly assign [7] or teach [6] the values for these features. More-
over, rather than supporting the user in a leader-follower model, 
the robot could instead reason as an equal partner over the efects 
of its own actions on the human preference, as part of a mutual 
adaptation formalism [30]. Finally, while the ask-before-acting ap-
proach prevents failures, we expect improvement in team fuency if 
the robot directly delivers a part when it has high confdence in its 
prediction, computed with soft-maximum predictive models [45]. 
Implications. We show the beneft of initializing a preference 
model with a transferred prior from a canonical task and updating 
the prior online, to enable robot adaptation to the user preferences 
in a sequential assembly task. While there has been signifcant work 
on preference learning from human inputs directly in the actual 
task [42], learning from a shorter, expressive task can signifcantly 
reduce the burden of time-consuming demonstrations, and we are 
excited about future work that leverages these advances to learn 
rich human preference models from canonical tasks as well. 
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