SAMPLING LINEAR INVERSE PROBLEMS WITH NOISE

PLAMEN STEFANOV AND SAMY TINDEL

ABSTRACT. We study the effect of additive noise to the inversion of FIOs associated to a diffeo-
morphic canonical relation. We use the microlocal defect measures to measure the power spectrum
of the noise in the phase space and analyze how that power spectrum is transformed under the
inversion. In general, white noise, for example, is mapped to noise depending on the position and
on the direction. In particular, we compute the standard deviation, locally, of the noise added to
the inversion as a function of the standard deviation of the noise added to the data. As an exam-
ple, we study the Radon transform in the plane in parallel and fan-beam coordinates, and present
numerical examples.

1. INTRODUCTION

The purpose of this work is to study how noise in discrete measurements affects the reconstruction
in linear inverse problems

(1.1) Af =y,

where A is a Fourier Integral Operator (FIO). Examples are the Radon transform and the geodesic
X-ray transforms in two dimensions, at least, thermoacoustic tomography, and the linearization of
some non-linear inverse problems like boundary and lens rigidity. We assume that A is associated
with a local diffeomorphism (which condition can be relaxed to the clean intersection condition in
principle), and elliptic. Then a parametrix exists, which we will denote by A~!, also an FIO of
the same type. One can regard the problem as mapping noise by FIOs, rather than under by their
inverses but we keep the former point of view.

We want to emphasize that we are not trying to remove noise. That would be only possible with
a priori, say statistical information about f, but this is not the goal of this work. On the other
hand, understanding well the structure of the noise under the action of the inverse would allow
for better understanding of what part of f (in phase space) is most affected by noise and would
hopefully allow for more efficient noise reduction.

We study additive noise first. Such noise is typically created by noisy detectors which add
certain constant (but usually low) noise to the signal or by background noise. In section 7 we study
examples of non-additive noise: multiplicative noise, Poisson noise as an example of modulation
noise, and noise appearing in CT scan. In case of additive noise, we are given the noisy data
g + Gnoise, Where gnoise (2 function) is the noise. Then we are trying to solve

(1'2) Af = g+ gnoise
instead. The right-hand side (r.h.s.) may not be in the range of A so a solution may not even exist.
What is often done is to apply the adjoint (assuming some Hilbert structure)

A*Af = A*g + A*gnoiseu
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which automatically cuts the part of gneise perpendicular to the range of A, and then invert A*A,
assuming that A is injective in the first place. If not, we invert A*A on the range of A*. This can
be viewed also as the least squares approximation, and it is what the Landweber iteration does, for
example. So the inversion is

(13) frecovered = (A*A)_IA*Q + (A*A)_IA*gnoise = fO + (A*A)_IA*gnoism

where fj is the so described least-squares reconstruction of f without noise. Of course, we could do
a different “inversion”. One way to do it to choose a different Hilbert structure. What is described
above is very common however and it is known as the Moore-Penrose inverse. We do not have to
assume that the inversion is the Moore-Penrose inverse; it could be any parametrix of A, and the
Moore-Penrose inverse is such a parametrix under the assumptions we made on A.

With the above considerations in mind, we can think of the added noise as

(14) fnoise = Ailgnoism

where, as above, A7 is a parametrix, and A~ gpoice is well-defined even if gnoise is Dot in the range
of A. This is also the so described solution of

Afnoise = Ynoise-

We can drop the froise and the gneise notation now and just study (1.1) with g not necessarily in
the range of A, i.e., g is the noise now.

Example 1. The example we will use in this paper is the Radon transform R in R?

(1.5) Rﬂwm%:/ f(z)de, peR, we S,

T-w=p
where d/ is the Euclidean line measure. It is written in “parallel geometry” coordinates. We study
this example in more detail in section 5; and in section 6, we will study the same problem for
the Radon transform in fan-beam coordinates. It is known that R is an FIO of order 1/2 with a
canonical relation a graph of a local diffeomorphism (1-to-2). The most popular inversion formula
is the “filtered back projection”

1
1. = —R'D =
(16) f=-RIDlg, g=RS,

where R’ is the transpose in distribution sense; and its versions with adding an additional filter.
We view (1.6) as a unfiltered inversion and that with an additional filter, see (5.10), as a filtered
one. Now, one can define a norm in the g space by H|Dp|1/QgHL2(RX51). Then R* = R'|D,| and
(1.6) takes the form f = (47)"'R*g. Formula (1.6) is used all the time with noisy data not in the
range of R. In addition, we have R*R = 4mId. Therefore, the relation f = (47)"R*g can be
recast as f = (R*R)"1R*g, which is exactly (1.3).

On the other hand, we may assume that the natural space for g is L?(R x S!). Then R*R =
47|D|Y; then the inversion is

1
f=-IDIRg, g=mRf.
T
This inversion formula is equivalent to (1.6). Note that the inverse is a version of (1.3) again.

Assume that in discrete measurements, the added noise consists of random variables with a
known autocorrelation. The simplest case is independent identically distributed (i.i.d.) random
variables at each “pixel” (white noise). The distribution could be Gaussian, uniform, etc. We
convert the discrete measurements to a function on a “continuous”, space, i.e., locally a function
on R™. Then we invert the data by applying a parametrix, as in (1.4). The discretization rate is
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assumed to be proportional to a small parameter A > 0 and we are interested in the asymptotic
properties as h — 0. Our main goal is a characterization of the induced noise fhoise after the
inversion.

The novelties of our approach are the following. First, we view discretization and the inverse
process — interpolation from a given discretization, as the step size tends to 0, in the semiclassical
setting, where the small parameter h > 0 is proportional to the step size. This point of view was
proposed in the first author’s paper [17]. This allows us to use tools from semiclassical analysis to
estimate the sharp sampling rate of Af, knowing the band limit of f, characterize aliasing artifacts
during inversion if Af is undersampled, give a sharp limit of the resolution, etc. In this paper, we
assume that we do not undersample Af.

The second novelty is moving the analysis of the spectral character of the noise to the phase space;
roughly speaking, instead of localizing in the dual variable £ only, to localize in both the spatial
one z, and £. In the applied literature, there are two main ways to characterize noise: through its
standard deviation (which assigns just one number) and through its power spectral density (or power
spectrum). The latter is |f(€)|?, where f is the noise, as a function of the frequency ¢. Knowing
that, we can recover the standard deviation as well, by Parseval’s identity. Even though not always
explicitly stated, when the noise is not expected to be homogeneous (translation invariant), one can
lgc\alize in the base variable x by taking the modulus squared of the windowed Fourier transform
|pf(£)|* with some ¢ € C§°. We propose going one step further: consider the power spectrum in
the phase space of points = and (co)directions £. With the presence of the small parameter h, the
natural framework is the semiclassical analysis again. The semiclassical version of localizing both
in space and momentum is to localize near some z in the z space with a smooth cutoff of size h'/2
and then take the Fourier transform with £ replaced by £/h, see [19] for a discussion. The natural
candidate of the power spectrum in the phase space then would be the so-called semiclassical defect
measure du(z, &) which, roughly speaking, measures the spectral content of f = f5(x) in the phase
space. We call that measure power spectrum as well.

The third novelty is looking at the noise in ergodic sense, which we also call “spatial”, i.e., the
noise in one measurement. There are two ways to look at the statistical properties of the noise.
First, one might be interested in the expected value of the noise pointwise as we keep repeating the
same experiment over and over again (in our context, if we have a series of noisy data sets and do
an inversion for each one of them). We call this “temporal” view, and the analysis of the temporal
properties is easier. In applications, we have one such experiment however. Our goal is to analyze
the statistics of the noise in the inversion for a single experiment, as the sampling rate gets smaller
and smaller, hence the term “spatial”. In statistics, an estimate with a single experiment is possible
when the variables are i.i.d., and we rely on the ergodic properties of the sequence.

We start with analysis of discrete white noise. The flatness of its spectrum in temporal sense,
see (8.6), is well-known, which justifies its name. In spatial (ergodic) sense, this is true only in
a certain averaged sense, see Theorem 8.1. For the white noise interpolated to a “continuous”
function, we show that the defect measure du is flat as well in Theorem 4.1. In Theorem 4.2 we
study the spectrum of more general, correlated noise.

Next, we study propagation of noise under FIOs A~! (or simply A) of the mentioned type.
With the semiclassical view of noise and is power spectrum, the analysis of the power spectrum
of the result A~!g is reduced to the mapping property of a (semiclassical) defect measure under
a (classical) FIO. The answer is given by the Egorov’s theorem with some extra care of the zero
section. Then the tools described above would allow us the characterize the spectrum of the resulted
noise in the reconstruction. We want to emphasize that even if we start with white noise g, which
has a flat spectrum, the noise A~!g is not homogeneous in general — its power spectrum depends
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on the position z and the codirection £. In particular, its standard deviation may change from a
neighborhood of one point to another.

As we mentioned already, our analysis is not restricted to (additive) white noise only, see also
section 7 for non-additive noise. We can have data with added non-white noise as well, as long as its
power density in the general sense we consider it, is well defined. It could be pink, blue noise, if can
be anisotropic noise, varying from point to point, or even noise corresponding to a non-absolutely
continuous defect measure. For example, we may have the Radon transform R f(p,w) with added
noise depending on one of those two variables only, then the associated measure would be singular.
Theorems 4.1 and (4.3) still apply and describe the power density of the noise in the reconstruction.

Instead of developing the general abstract theory further, we present its application to the
inversion of the Radon transform in the plane. In “parallel geometry”, we show that the spectral
density of the added noise is independent of the position x and proportional to [£ ]1/ 2 up to the
Nyquist limit (and the spectral power, which is the square of the density, is proportional to [£]).
In “fan-beam coordinates”, the noise depends on the position z, on |¢| proportional to |£|'/2 again
but depends on the direction of £ (relative to x) as well. We present many numerical simulations.

Noise is a major concern in the applied inverse problems and has been considered in the literature;
nevertheless, we are not aware of directly related works. We will mention only a few more theoretical
works about noise and inverse problems. Reconstruction of Riemannian manifolds with noisy data
has been studied in [5]. Using noise a source for a reconstruction has been studied in [1,2,7,8].

The structure of the paper is as follows. In section 2, we recall some basic facts about semiclassical
analysis, needed for our exposition. We also study the relation between classical and semiclassical
FIOs. In section 3, we summarize and develop further some of the results in [17] about sampling
in the semiclassical limit. In Theorem 4.1 in section 4, we prove that the power spectral density
of white noise is uniform, by computing its microlocal defect measure. We also show that more
general noise satisfying some assumptions, has a well defined microlocal defect measure as well.
Then we apply Egorov’s theorem to describe how that measure transforms under FIOs associated
with a canonical diffeomorphism. Sections 5 and 6 are devoted to an application of the theory
to the Radon transform on the plane in parallel and to fan-beam coordinates. We present many
numerical examples as well. Multiplicative noise and other type of noise are analyzed in section 7.
Finally, in section 8, we analyze discrete white noise without converting it to noise of a continuous
variable. We show that it has flat spectrum on average.

Acknowledgments. The authors would like to thank Kiril Datchev for his advice and Magda
Peligrad for making us aware of the reference [10].

2. PRELIMINARIES ON SEMICLASSICAL ANALYSIS

We recall some basic facts from semiclassical analysis. For more details, we refer to [3,12,19].
Before that, a few words about the notation. All norms || - || are in L? unless indicated otherwise;
also (&) := (1 + |£]?)'/2. We denote by S the Schwartz class; and £’ is the space of the compactly
supported distributions. For a linear operator A, A’ is the transpose in distribution sense, while
A* is the L?-adjoint.

2.1. Semiclassical wave front set. The semiclassical Fourier transform 3, f in R"™ of a function
depending also on h > 0 is given by

Ful(€) = / N 1) do.

Its inverse is (2wh) ™" F;. We recall the definition of the semiclassical wave front set of a tempered
h-depended distribution first. In this definition, A > 0 can be arbitrary but in semiclassical analysis,
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h € (0, ho) is a “small” parameter and we are interested in the behavior of functions and operators
as h gets smaller and smaller. Those functions are h-dependent and we use the notation f;, or fj,(z)
or just f. The Sobolev spaces are the semiclassical ones defined by the norm

11 = Gy [(©17 0O de.

Then an h-dependent family f;, € S’ is said to be h-tempered (or just tempered) if || fz|| H =
O(h™™) for some s and N. All functions in this paper are assumed tempered even if we do not

say so. The semiclassical wave front set of a tempered family f; is the complement of those
(w0, &0) € R?" for which there exists a C§° function ¢ so that ¢(zg) # 0, and

Fn(odfr) = O(h™) for £ in a neighborhood of &

in L (or in any other “reasonable” space, which does not change the notion). The semiclassical
wave front set naturally lies in T*R"™ but it is not conical as in the classical case. Elements of the
zero section can be in WF(f).

Sjostrand proposed essentially adding the classical wave front set to WF; by considering the
latter in T*R"™ U S*R", where the second space (the unit cosphere bundle) represents T*R™ as a
conic set, i.e., each (z,&) with £ unit is identified with the ray (z,s{), s > 0. Their points are
viewed as “infinite” ones describing the behavior as £ — oo along different directions. An infinite
point (x,&p) does not belong to the so extended WF,(f) if we have

(2.1) Fr(ofrn) = O(R™(§)™>°) for £ in a conical neighborhood of &y

with ¢ as above.

2.2. Semiclassical pseudo-differential operators (h-¥DOs). We define the symbol class S™*
of symbols in R™ as the smooth functions p(z, &) on R?", depending also on h, satisfying the symbol
estimates

(2.2) 820 p(,€)| < Caprch* (€)™ 17,

for x in any compact set K, see, e.g., [6]. In fact, we are going to work with symbols supported
in a fixed compact set in the £ variable, so the behavior in £ above does not matter; one may also
work with the symbol class h*S™(1), see [12,19] where S™(1) is defined as (2.2) with k = m = 0.
Given p € S™, we write P = Py = p(x, hD) with

(2.3) Pf(x) = (2nh)" /Vl“yﬁm (2.€) () dy dé,

where the integral has to be understood as an oscillatory one. This is the standard quantization;
sometimes it is convenient to work with the Weyl one p%(x,hD), where p(z,§) is replaced by
p((z + y)/2,€) in (2.3). Then real symbols correspond to symmetric operators, in particular.
Negligible operators are those with O(h®) norms in any pair of Sobolev spaces.

2.3. Semiclassically band limited functions. In [19], it is said that a tempered fj, is localized
in phase space, if there exists p € C5°(R?") so that

(Id —p(x, hD))fr = O(h™), in S(R").

All functions in this paper will be of this type.
It is convenient to introduce the notation X, (f) for the semiclassical frequency set of f.

Definition 2.1. For each tempered fy, localized in phase space, set
En(f) ={& Jx so that (x,£) € WFL(f)}.
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In other words, ¥, is the projection of WF(f) to the second variable, i.e.,

En(f) =m0 WEL(f),

where mo(z,&) = £ If WFy(f) (which is always closed) is bounded and therefore compact, then
Yr(f) is compact.
In [17], we gave the following definition.

Definition 2.2. We say that f, € C§°(R") is semiclassically band limited (in B), if (i) supp fp, is
contained in an h-independent compact set, (ii) f is tempered, and (iii) there exists a compact set
B C R", so that for every open U D B, we have

(2.4) [Fnf (O < Onh™()™" fore ¢ U
for every N > 0.

We showed in [17] that f;, is semiclassical band limited if and only if it is localized in phase space
and if and only of WF;,(f) is finite (no points of the type (2.1)) and compact.

In applications, we take B to be [—B, B]" with some B > 0 or the ball [£| < B.

An example of semiclassically band limited functions can be obtained by taking any f € &'(R")
and convolving if with ¢, = h™"¢(-/h) with b e C3°. Then ¢p, * f is semiclassically band limited
with B = supp (13

2.4. Classical YDOs as semiclassical YDOs. In the applications we have in mind, we deal with
classical YDOs and FIOs and want to treat them as semiclassical ones. The negligible operators
in the classical calculus are the smoothing ones. We showed in [17] that for every f € &'(R") and
for every smoothing K, we have WF;, (K f) C R™ x {0}. Next, every classical ¥DO of order m can
be written as an oscillatory integral of the kind (2.3) with A = 1 and a symbol a(x,&) vanishing
for |£] < 1, plus a smoothing operator. Then formally, that oscillatory integral is an A-WDO with
symbol a(x,&/h). Then we can replace (£) in (2.2) by || to obtain an equivalent estimate, and

020 a(w, £/R)| < Cogp xch™1e /B = Co g rch =gV,

On the support of the symbol, we have || > h, therefore the factor €™ /8l is not uniformly
bounded near £ = 0 when m < |3|. On the other hand, it is uniformly bounded when [£| > ¢
with € > h. This allowed us in [17], for every € > 0, to split a(x, D) into an h-¥DO with symbol
a(z,&/h)(1 — x(§/e)) with some cut-off function x € C§° plus an operator mapping semiclassically
band limited functions into functions with semiclassical wave front set in an O(e) neighborhood of
the zero section. We show below that we can do the same thing for FIOs associated with canonical
diffeomorphisms.

Let A be a properly supported FIO with a canonical relation which is a graph of a homogeneous
canonical transformation. Then up to a smoothing operator, A is of the form

(2.5) Af(x) = (2m) / / @ oz ) f () dy dn,

see [9, sec.25.3], with a a classical symbol and a phase ¢(z,7) homogeneous in 7 of odder 1,
satisfying det ¢y, # 0, ¢, # 0 for n # 0. The smoothing “error” can still be written in this form
with ¢(x,n) = z-n (a ¥DO) and an amplitude of order —oo, so the arguments below apply to it as
well. Let ¢ € C§° have support in B(0,2), ¢ =1 on B(0,1), and fix e > 0. Then A = Ay + Ry,
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where
A0 (x) = [AQd —p(hD/2)) ) 2)
26) = (o) [ [ D 1)@~ 02 )y

Rief(x) = [Ap(hD/e) ) () = (2mh) ™ / / =y b /)p(n/<) f(y) dy

Theorem 2.1. Under the assumptions above,

(a) The operator Ap . is an h-FIO with a (semiclassical) canonical relation the same as the
(classical) one of A. Moreover, for every semiclassically band limited f with WF,(f) N (R™ x
B(0,¢)) =0, we have Af = Apf + O(h*>).

(b) For every fr, € E'(R™) with support in some compact set independent of h, satisfying | Fpnfr| <
Ch= for some N, we have WFy(Ry, - f) C R™ x B(0,Ce) with some C > 0.

Proof. Since A is properly supported, and f is either O(h*°) outside some fixed compact set in
(a), or vanishes in (b), we can assume that the xz—support of a is compact and independent of h as
well. It follows from (2.2) that if a is a classical symbol of order m, then a(z,n/h) is a semiclassical
one of order (m,—m) for |n|/h > 1. Therefore our claim (a) is true for |n| > &/2 and 0 < h < ¢,
which is true on the support of the symbol a(x,n/h)(1 —(n/e)) of Ap.. Hence a is a semiclassical
symbol of order (—m,m). The second part of (a) is immediate.

To prove (b), multiply Ry f by p € C5° and apply Fp:

FupRiof(€) = (2mh) ™ / / =2 o ya (i, /B (n/2) Fif () d da

For the phase ® := ¢(x,n) —x - & we have ®, = ¢,(z,n) — . By the homogeneity of ¢, for |n| < 2¢,
and |£| > Ce, we have ®, # 0. Then a stationary phase argument implies Fj,pRp - f(§) = O(h™>)
for such £. This proves (b). O

2.5. Semiclassical defect measures. Given f;, with || f|| < C, one can show that there exists a
sequence h; — 0 so that the limit

(2.7 lim e hD) o s = [ oo €)dag (2.6
exists for every symbol p € C§°, see [12,19], and defines a Borel measure djus(z,&) > 0 called a
semiclassical defect measure associated to f. That measure may not be unique. Note that djuy
is invariantly defined on 7*R™. On the other hand, its definition (2.7) depends on the choice of
the measure (respectively the coordinates) used to define the L? space there. We can use every
quantization of p in (2.7), for example the Weyl one p%(x, hD) which guarantees that (2.7) is real
when p is real-valued.

When f is semiclassically band limited, WF,(f) is compact, hence dp s has compact support as
well, and

(2.8) 1,122 = [ dug + o(0)

This in particular implies that our assumption guarantees that || fy, |72 is asymptotically constant
as hj — 0. In fact, some authors require || fy,|| = 1, see [12].
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3. SAMPLING IN THE SEMICLASSICAL LIMIT

3.1. Sampling semiclassically band limited functions. We recall some results in [17] first.
The classical Nyquist-Shannon sampling theorem says that a function f € L?(R") with a Fourier
transform f supported in the box [—B, B]™ can be uniquely and stably recovered from its samples
f(sk), k € Z™ as long as 0 < s < w/B. More precisely, we have

(31) Fa)= 30 Flskpata), ) o= [T sine (S - sky)).
j=1

keZn

where we adopt the “engineering” definition of the sinc function

sinc(x) = sin(mz) /7.
Moreover,

2 2
IFIZ = 8™ D 1F (k)P
kezn
where || - || is the L? norm, see, e.g., [14] or [4].
The proof is based on viewing the samples f(sk) as the (inverse) Fourier coefficients of f, extended

as 2w /s-periodic function. We reproduce the proof below in the semiclassical case.

In [17], we formulated this, and related results in the semiclassical setting. One of those theorems
is the following. Recall that X5 (f) is defined in Definition 2.1.

Theorem 3.1. Let f;, be semiclassically band limited with ¥ (f) C [[(—Bj, Bj) with some B; > 0.
Let x; € L>®(R) be supported in [—m,w|, and X;(7&;/B;) =1 for & € Lp(f). If 0 < s; < w/Bj,
then

32 A= 5 Alsihbresotb) [ (= simky) )+ 0511
j J

kezm

and

(3.3) I£nl? = s1...8nB™ > |fa(s1hks, ... snhkn)|> + O(h)| £]1%.
keZn

One could think of x; as somewhat better versions of the sinc function: they decay faster if we
choose x; to be smooth. We can do this because ¥, (f) (which is compact) is assumed to be included
in the interior of the closed [[[—Bj, Bj]. In case of an equality, we must take x;(x) = sinc(z).

Assume now for simplicity that all B; and s; are equal to some B and s, respectively. We can
always choose a linear transformation y = Wz to get back to (3.2) or even more general sampling
grids, and the dual one £ = W*n for the dual variables. Set x(x) = x1(z1) - Xn(2r). Then (3.2)
and (3.3) take the form

BY B = X e+ 0stf i) = x (o b))
keZn
and
(3.5) 12 = (sh)" 3 1Fa(sb)f2 + OB 117
keZn

The proof of Theorem 3.1 is based on the following observation. Since JFjf is supported in
[1(=Bj, B;) up to an O(h*|{|~>°) error, and 7/s > Bj, we have

(3.6) (Frflext(§) = (sh)™ Y f(shk)e ¢ + Og(h™),

k
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where (Fp, f)ext(§) is the periodic extension of Fp, f(£) with period 27 /s in each 1D variable. Multiply
this by x(s) to get

Faf(€) = (sh)"X(s€) Y f(shk)e ™ + Os(h™).
k
If x is the interpolating function in (3.4), then

(3.7) Frxe(€) = (sh)"R(s€)e ¢k,

Take F, 1 to complete the proof. The full details can be found in [17]. Also, x does not need to be
of product type, as shown there.

Remark 3.1. In the limit case ¥,(f) = (=B, B)"™, which is not allowed by the theorem since
Yn(f) is compact, we have X = 1|_ x», where 1|_. » stands for the characteristic function of

)

[—7,m|™. Then x is a product of sinc functions, see (3.1). We will use the notation

(3.8) sincy(z) = ]Hl sinc (%(;ﬂj — shk)).

Then (3.7) takes the form

(3.9) Fiusincy(€) = (sh)" Ly jar /s (€)FE,

The functions sinc; form an orthogonal system, and

(3.10) dr = (sh)""?sincy,

is an orthonormal basis in the subspace 1|_r/; /S}n(hD)L2 (R™). For future reference, we want to

mention that for every m > 2 integer, if sincg:m) (£) is defined by

(311) Fhn Sinc;m) (f) - (Sh/m>n1[—m7r/s,m7r/s]” (5)6_151<1,‘f
then
(3.12) sinc,(gm) (x) = H sinc <ﬂh(x] - shk:j))

s

J
instead. Then
gb]gm) = (sh/m)~™/? sincém)

is an orthonormal system in 1{_p,z/s mr /s (hD)L?(R™) but not a basis. To make it a basis, notice
that s was replaced by s/m and k was replaced by mk there. Allowing the original k to run over
all integer points, i.e., replacing k by k/m there would complete (3.12) to a basis.

3.2. Constructing a semiclassically band limited function from a discrete sequence. The
next question is how to associate a semiclassically band limited function to a set of numbers fi,
k € Z", which we view as its samples. Without the band limited requirement, this can be done in
infinitely many ways, of course, by various ways to interpolate between the samples. On the other
hand, if we fix the band limit B, then for B < /s, such a function, if exists, would be oversampled,
and those samples can be shown to be dependent. We can only hope that this problem always has
a solution when B > m/s. The next proposition, proven in [17], shows that it can be done when
B = /s with a sinc interpolation.
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Proposition 3.1. Let Q € Q) be both open. Fix s > 0. For 0 < h < 1, let K(h) C Z"™ be the set
of those k for which shk € Q. Then for every collection of complex numbers { fy}, k € K(h) with
S| Frnl? tempered, there exists a semiclassically band limited f;, with WF(f) C Qq x[—7/s,7/s]"
so that f(shk) = fi .

One such choice is given by

(3.13) fn =0t with fu(z) = Z fien sincg(z),

keK (h)
where 1 € C§°(Q) is equal to 1 near Q. Moreover, (3.5) holds.
Proof. With fj, as above, we have f,(shk) = fn(k) and

(314) -Fhfh(é-) = 1[771'/3,#/5]“(&)(3}")” Z fk,heiis’g'év

keK (h)
compare to (3.6) and (3.9). Then WF(fy) C R" x [-7/s,7/s]". Let 1 be as in the theorem.
Then f;, = ¥ f, has the required properties. O

By Theorem 3.1, (3.13) is the only such representation when f; is restricted to €2, up to an
O(h®) error, if we want to keep the band limit B to be the sharp one B = 7/s.

The expansion (3.13) has the usual downsides associated with the presence of the sinc functions
there — they decay too slowly at infinity allowing the influence of each term to extend too far.
When B > 7/s (strictly), we can have the localized interpolation functions yj of Theorem 3.1 in
principle. The situation is different than that in Theorem 3.1 though. The functions yx; in (3.2) do
not necessarily satisfy xx, (shka) = i, k,, Where 0y, 1, stands for the Kronecker symbol. In the case
under consideration, they have to (up to an O(h™) error). Also, when B > 7/s, the corresponding
function f, would be undersampled rather than oversampled. Next, in interpolations like these,
the desire is to make it as smooth as possible.

One way to enforce fy(shk) = fp is to replace the sinc function in (3.12) with itself, multiplied
by some ¢ € S with ¢(0) = 1, b e Cg°, i.e., to put a product of sinc(z)¢(x) for each point x;.
Then F(¢sinc) = (2%)_11[_7“#] * ¢ has support larger than [—m, ] which corresponds to a band

limit greater than /s, compare with (3.14). One can also have a rapidly decreasing qg instead of a
C§° one, and the resulting error by replacing it with a suitable a C§° one can be estimated easily.

3.3. Lanczos-3 interpolation and other convolution based interpolations. One practical
and approximate realization of the idea above is the Lanczos-3 interpolation. It is part of the
family of the Lanczos-k interpolations with the number 3 below replaced by an integer k. In it, the
functions x; in (3.2) are taken to be

Lan3(x) := H(3 — |z|) sinc(x) sinc(z/3),

where H is the Heaviside function, and x stands for each coordinate function z;. Its Fourier
transform is not of compact support but decays like O(|¢|72) with a small leading term; and it
is very small outside || < 27, see Figure 1; as opposed to sinc(x) which Fourier transform is
supported on || < 7. The kernel Lan3(z) is easy to compute numerically, has a small support, and
preserves the property f(shk) = fi n because Lan3(k) = 6 for k£ an integer. So for all practical
purposes, choosing x in (3.13) to be Lan3, provides an interpolation with a band limit no greater
than B = 27 /s and even B = 1.57/s; 1.5 to 2 times that of (3.13), see Figure 1.

If the samples in (3.15) with x a Lanczos-3 kernel, are those of a function with a band limit
B = 7/s (the Nyquist limit for that step size), then the reconstruction will leave frequencies below
B/2 mostly unchanged, and will attenuate and alias those between B/2 and B as in Figure 1. The
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Figure 1. The Lanczos-3 kernel Lan3 and its Fourier transform. The sinc kernel and its
Fourier transform are shown as dashed lines.

resulting aliasing will be “small” because the amplitude is “small” away from || < B (in Figure 1,
B = 7). The created f;, will have an essential band limit larger than B, as explained above, and
this is true even if the samples are arbitrary.

The property of the Lanczos-3 kernel to be almost 1 in [—7/2,7/2] can be used to practical
interpolations with an explicit kernel with small support approximating well enough x; in (3.2).
For this, it is enough to oversample twice or even 1.5 times only in each coordinate and use the
Lanczos-3 kernel. We use this technique in the numerical computations later. This way, we work
with a very well localized kernel rather than with the sinc one.

The Lanczos-3 interpolation belongs to the family of the convolution based interpolations of the

type

(315) @) = Y Fer@), @) = x( o - shh)),

sh
keK (h)

with various compactly supported kernels y. It is easy to see that this is the case when the
interpolation is translation invariant, has a finite domain of influence, and is a linear operator. The
simplest examples are the nearest neighbor (xj are characteristic functions of boxes in R™) and the
linear interpolation. Some of the higher order ones are the third order cubic Catmull-Rom spline
and a fourth order cubic spline proposed by Keyes, see [11,13]. Without going into detail, we will
mention that those two are very similar to Lanczos-2 and Lanczos-3, respectively with the Keyes
one being a bit more smoothing that Lanczos-3. The Fourier transforms x related to the cubic
interpolations and the Lanczos-3 ones decay fast enough to be well approximated with compactly
supported ones. Then we have the following.

Proposition 3.2. Let x € L Then for fr given by (3.15) we have

comp *

Ifall> < CGsh)™ > 1 fun

keK(h)

% Co= Rl

Proof. Let 1 < m € Z be such that supp x € [—mm, mn|". Let sinc,(gm) be defined by (3.12). Then

br = (sh/m)~"/? sinc,gm) form an orthonormal system, see Remark 3.1. For

(3.16) gn(z) = Z fren sincgcm) (x)
keK (h)

we have

(3.17) lgnl® = (sh/m)™ >~ |funl®

keK(h)
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Multiply (3.11) by x(s€), we get
(3.18) %(shD)sinc™ = m "%y,

where we used (3.7), valid for x; as in (3.15) with every x as in the proposition. Therefore,
fn=m"x(shD)gp. Hence it is easily seen that || f3| < m™||x||L<|lgn||, where we recall that gj is
defined by (3.16). Combining this with (3.17), we complete the proof. O

3.4. Noisy samples. Let us say we restore a semiclassically band limited function from noisy
samples. Assume oversampling, i.e., B < /s (strictly). Without noise, we would use the formula
(3.4) where f;(-) are the samples which we call here fj 5. In other words, we would take f3 as in
(3.15) with x so that

(3.19) X =1on [-sB,sB|", supp X C (—m,m)",

which we take to be in the Schwartz class; and we can do this since we can choose X to be in C§°.

If we do the same thing with the noisy samples, the added noise will be given by (3.15) again.
Then f(shk) = fi,n would be true for the noise free samples since a priori, f; has a band limit B.
This would not be true for the noisy samples, in general, because they are not necessary samples
of such a function. In fact, one of the goals of the current contribution is to tackle this issue.

As in the proof of Proposition 3.2, note that (3.15) and the sinc reconstruction (3.13) are closely
connected: one can get the former from the latter by applying the convolution operator x(shD) to
it.

3.5. Delta type of expansion. We can view the convolution based interpolation (3.15) as a
convolved delta type of expansion in which y is formally replaced by the Dirac delta. Indeed, start
with

(3.20) fa(@) = (sh)™ Y frnd(x — shk),

keK (h)

then f, = xp * f with x5(z) = (sh)""x(z/(sh)). On the Fourier side, we have (3.14) without the
cutoff function 1 there.

4. NOISE AND DEFECT MEASURES

4.1. Microlocal defect measures as a generalization of power density. We start this section
by specifying the kind of white noise considered in the sequel, see also section 6.

Hypothesis 4.1. For every h > 0, the noise is modeled by a family { fi.n; k € Z™} of independent
and identically distributed (i.i.d.) real valued random variables defined on the same probability
space (X, F,IP). The random variables fy p, have zero expected values and a common finite variance
o2, For our computations we also make the following technical assumption on the common higher
moments: there exists a constant § > 0 such that

(4.1) E (£ (0g(1 + finl)' ™) < oo.

The variables f}, ;, model the noise at each cell/pixel xj, = shk, with the relative step s > 0 fixed,
and h > 0 a small parameter. In Hypothesis 4.1 we allow f; to depend on h, but h will often be
omitted for notational sake. In the numerical examples later, we use either normally distributed
fr or uniformly distributed ones. For a fixed bounded domain 2, the number of sampling points
xp = shk in it (we called that index set K(h) in Proposition 3.1) is |Q|(sh)™™(1 + o(h)). For
each h > 0, only that many fj 5’s will be used eventually; therefore, we have a triangular array of
random variables fy, h >0, k € K(h).
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As explained in the introduction, there are two types of statistical properties we are interested
in. First, what we call “temporal” mean, variance, etc., are the moments of each fj; as a random
variable. They are determined by the process which creates them and in practical applications
correspond to repeated experiments, hence the term “temporal”’. We use the notation E(fy),
E( f,?), etc., for the expectation. The second, and the more interesting kind of properties are for a
single experiment as h — 0, i.e., when the number N ~ h™" of f; grows. The mean is just the
mean of those finitely many numbers, and the variance is the mean of their squares. We call them
empirical spatial mean and variance, using the notation VAR for the latter and STD for the spatial
standard deviation. Limit theorems for averaged random quantities with certain invariances are
called sometimes ergodic properties; we view them as “spatial” ones, interpreting fj as samples of
some function in space. By the strong law of large numbers, the mean of ~ h™" of f};’s converges
to zero almost surely, and its spatial variance converges to o2 almost surely, as N — co. Below,
we define similar quantities for continuous function-valued random variables.

Our terminology could be confusing since for random processes, that is families {f(¢)}+er of
real-valued random variables, ¢ is naturally interpreted as a time parameter. However, in our case
the parameter (denoted as z) is a spatial variable and f has to be considered as a random field.

With Hypothesis 4.1 in hand, we think of each discrete noise as identified with a function fj
as in (3.15) with some x € C§° without necessarily assuming (3.19) for now. Clearly, E(f;) = 0,
which is a temporal characteristic. We now state a lemma for the spatial mean and variance of fj.

Lemma 4.1. Let {fi5; k € Z"} be a noise satisfying Hypothesis 4.1, and define the function fj
according to (3.15). Then P-almost surely we have

1
(4.2) MEAN(f3) = |Q|/ fndx — 0, ash—0.
Q
As far as the spatial variance of fy, is concerned, we get the following P-almost sure limit,

(4.3) VARq(fn) : ]Q| / fidx — 0% ash— 0.

Proof. We will only prove (4.3), the proof of (4.2) being similar. To this aim, starting from (3.15)
and using the fact that {xx; k € K(h)} is an orthogonal system we get

(4.4) Il = > Falbal® = ex(sh)™ Y- fin
keK (h) ke K (h)
where ¢, = |x||>. Plugging (4.4) into the definition (4 3) of VARq(fh), we obtain
(4.5) VARn(fy) = o O ,m > fiw
kEK (h)

Taking limits in (4.5) now amounts to applying an almost sure limit theorem for the triangular
array {flf’h; k € K(h),h > 0}. This is ensured by the relation Card(K (h)) = |2|(sh)™"™(1 + o(h))
and classical theorems on strong law of large numbers for triangular arrays (see e.g [10, Corollary on
p. 378]), as soon as the random variables fZ, satisfy Hypothesis 4.1. The proof of our claim (4.3)
is now easily achieved. 7 O

By (4.3), f is L? bounded almost surely, therefore it almost surely has a microlocal defect
measure (possibly not unique) associated to it. In this paper, we consider every such semiclassical
defect measures duys(z,&) > 0, defined in Section 2.5, as a spectral density of f;. In Theorem 4.1
below however, we show that the limit is unique and it holds for every sequence h — 0 in the case
we consider.
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One can see that du s makes sense as the variance density in the phase space. In fact for a domain
), the quantity
1
Iy

corresponds formally to p being the characteristic function of Q, divided by ||, which would
correspond to the usual variance definition if limy_,q f; existed. We are not claiming that the latter
limit exists however but when f is white noise, the defect measure exists as a limit in mean square
sense, as we prove in Theorem 4.1 below. The superscript 0 in (4.6) is a reminder that this is a
quantity in the limit » — 0. We want to emphasize that VAR is just defined by (4.6) and (4.8)
below for any f for which dpuy exists and it is not necessarily connected to any random f. When
f is random (noise), VAR?(f) is related to it as in Theorem 4.1 below. We define the standard
deviation STD(f) as the square root of the variance VAR(f) (with or without the superscript 0).
Assume now

(4.6) VAR (f) :

(4.7) dpy =vpded
with some continuous 7 > 0. Then taking the limit as €2 converges to a point, we set
(48) VARY(S) = [ 3o, €)de.

Hence VARg( f) can be viewed as the asymptotic variance density of the noise at x.

4.2. A remark about the Wigner function. In this section, we will relate the Wigner function
to the defect measures at a heuristic level. For a noise f satisfying Hypothesis 4.1, we set

(4.9) (0" (@, hD) fi, f1) = / Pl )W, €) da de,

where Wy is the Wigner function, see [2],
W(z,€) = (2rh)™" / e =N fy (@ + 2/2) ful — 2/2) da.

Note that W}l dz d€ is h-dependent and not a measure in general since it may take negative values.
However, the existence theorem of defect measures says that there exits at least one sequence
hj — 0 for which W}‘ converges to some du. Moreover, we have

(4.10) / Wh(x, ) dé = |f ()], / Wh(x, ) da = (2nh) | Fu f(©).

In [2], de Verdiere considers random vector fields f(z), € R", and defines their auto-correlation
by

ACorf(z,y) = E(f()f(y))
Then he defines the power spectrum of f by

This lifts the notion of power spectrum to the phase space but the limit h — 0 is not taken.
Following the steps of the forthcoming Theorem 4.1 and using crucially the fact that E(fxf;) =
026;@71, we let the patient reader check that

E(p" (2, hD) fn, fr) = (sh)"o” tr(Q(h))
(4.11) s"o

- <z7r>i ( / K56 p(a ) da dE + O(n)).
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where @ is defined by (4.19). Thanks to (4.9), this leads to the expected value of the Wigner
function WJ}J up to an O(h) error in a weak sense; and eventually, it could lead to the expected
value of the defect measure, if we can take limits as A — 0 in any reasonable probabilistic sense.
There are several difficulties with this approach. We have to treat and estimate the remainder as
a measure applied to p; different subsequences h; could converge to different defect measures for
a fixed f while the expected value applies to all such sequences, etc. The latter is the important
reason we do not pursue this approach. In addition, the Wigner function method characterizes
the power spectrum of the noise after repeated experiments (in temporal sense), while we want to
study a single one (in ergodic sense).

4.3. The defect measure of white noise. Let fi, kK € Z™ have values in R. As before, 2 ¢ R"
is a bounded domain. In the theorem below, given h > 0, we associate a semiclassically band
limited function f3, to {fx} by (3.15). This uses |Q|(sh)™"(1 + o(1)) terms of the sequence fj. We
allow {fi} to depend on h. Then we get a triangular array of random variables.

The following theorem is the main technical result of this paper.

Theorem 4.1. Assume that { fin; k € Z™} is a noise satisfying Hypothesis 4.1, with L* moments
only. Namely the random variables fi, k € Z™ take values in R and are created by a white noise
process with variance o® > 0 and a bounded fourth moment.

(a) Let fg be the associated distribution given by (3.20) with some fixred s > 0. Then for every
p € Cg(T*0),

(4.12) (pW(;p, hD)f,‘f, f}f)LQ — /p(m,&) dpgs(z,§), as h — 0+ in mean square sense,

where

dz d¢
_2.n
(b) Let fp, be the associated function given by (3.15) with some fized s > 0 and with x € C§° not
necessarily satisfying (3.19). Then for every p € C§°(T*Q),

(4.14) (™ (z,hD) fn, fn) 2 — /p(a:,{) dps(z,€), as h — 04+ in mean square sense,
where

dzd
(415) dag(a.€) = o () G 5

Proof. Notice first that the Lh.s. of (4.12) is well-defined in distribution sense since the Schwartz
kernel of pV(x, hD), see (4.33), is Schwartz class. Let x € C5° be such that p(z,&)x (&) = p(z, ).
Then f,‘g can be replaced by xp * fg as in section 3.5; which is (3.15). Therefore, we need to prove
(b) only.

We start with the easier case when (3.19) is satisfied (with B < 7/s). This corresponds to the
practical situation of restoring an oversampled function with white noise added, and the theorem
studies how the noise is added to the result.

Recall that the functions sinc, were defined in (3.8) and that ¢, = (sh)~"/?sinc; form an
orthonormal basis in the space 1_r/q /S]n(hD)LQ(R”), as mentioned earlier. The interpolation
function x satisfies X 1{_y -j» = X by (3.19), therefore,

(4.16) X = X(shD)sincy, = (sh)™?%(shD)y,.
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Since 2 D supp,, p, we have

(4.17) (0" (z, hD) fn, fn) = Z fkfl (@, hD)xkoxt) = Y pufidi,
k€K (h k€K (h)?

where, as before, K(h) = {k € Z", shk € Q}, K? = K x K, and

(4.18) pri = (pV (@, hD)xk, x1) = (sh)" (Qdx, P1),

with

(4.19) Q(h) := x(shD)p" (z, hD)x(shD).

We shall prove in Lemma 4.2 that |py| < C(sh)™. Our aim in (4.29) is to prove that in the L?(X)
sense we have

(4.20) Lim (p* (2, hD) fo, fn) 2

~ @)

We now split the proof of (4.20) in several steps.

o / p(,€) dup (2, €).

Step 1: A decomposition: Split the summation in (4.17) over elements (k,[) on the diagonal A :=
{k =1} and away from it:

(4.21) (0" (z, hD) f, fr)r2 = W1 + Wa,

where

(4.22) Wi= > pwfi, W= Y pufifi
keK(h) kleK(h)2\A

Furthermore, according to (4.29) below we have

n

s
4.2 _ .
(4.23) > pi= o [ty arag
keK (h)
Thus owing to the fact that ¢ = p+ O(h), we can recast (4.21) as
STL
(424) (pW(l,’ hD)fh? fh)L2 - (271_)” 02 /p(xvg) d:uf(wa g) = Wl,O + W27

where the term Wi g is defined by
Wio= Y (ff —0°) k-

keK(h)

We are now reduced to prove that both Wy o and Wy in (4.24) converge to 0 in L*(X).

Step 2: Analysis of Wi 9: Observe that the random variables f,? — 02 are independent, have zero

expectation and a finite variance 6% = E( f]f) — ¢ under our fourth moment assumptions. Then
E(W1,0) = 0. Moreover, invoking the forthcoming inequality (4.28) and the fact that Card(K(h)) <
c|Q|(sh)™™, we get

(4.25) E(Wo) = Y &°p < (sh)*"6%|Q(sh) ™" < Ch™
kEK (h)
Therefore, W1 o converges to 0 as h — 0, in the L?(X) sense.

Step 3: Analysis of Wo: The random variables fi f;, k # [, have expected values zero and variance

o*. Next, fpfi and fi fr are not independent unless neither k' nor I’ are equal to k or [ but

they are uncorrelated. Indeed, we only need to check that when, say & = k' and even then,
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E((fxf)(fufr)) = E(fAE(f)E(fr) = 0 because all f have expectation zero. Therefore some
elementary L?(X) considerations, together with (4.28), reveal that

(4.26) EW3) =o' Y py<Ch.
kleK(h)2\A

Therefore, Wy — 0 in mean square sense.
Summarizing our considerations so far, the proof of the case when (3.19) holds is easily achieved
by plugging (4.25) and (4.26) into (4.24).

Step 4: Dropping the assumption (3.19). Let m be such that supp x C (—mm, mm). Let sincém) be
as in (3.12). Then (4.16) takes the form, see also (3.18),

(4.27) Xk = m"x(shD) Sinc;m) = m"(sh/m)"/Q)Z(shD)qﬁl(cm) = (shm)™?y (shD)qb( ™),

The necessary modifications of the proof above in this case are as follows. For the deterministic
term featuring in (4.22) we have the same formula but now,

pit = (0" (2, hD) i, 1) = (shm)™(Qa{™, 6{™).

The set {¢l(€m)} is an orthonormal system in 1j_,,z/smar /S]n(hD)LQ(R") but not a basis, see Re-
mark 3.1. The missing elements are those with fractional indices in Z™/m. Then there are many
“gaps” in the sum Wy o compared to the one with a basis, giving us a trace as in Lemma 4.2. On the
other hand, the extra factor m™ in (4.27) allow us to think of each term m"py as an approximation
of all m™ terms in a box around k of size one, which would add the missing terms. The error is
O(R™1) (multiplied by the constant m™), by (4.31). Since K (h)/m has O((m/h)~™) points, this

introduces an O(h) error, thus (4.14) is preserved. O
The following lemma was used in the proof above. Below, || -|/gs stands for the Hilbert-Schmidt
norm.

Lemma 4.2. For py; defined by (4.18), we have

(4.28) Iprt| < C(sh)™,
(4.29) Zpkk =(sh)"tr@Q = (2ir)” /q(x,f) dx d¢,
2 2n 2nhn 2
(4.30) S puf? = (k)| Qs = / la(, )2 da dé,
k,l

where q is the complete symbol of the h-¥ DO Q in (4.19). Next,
pri = (p"(x, hD) Xk,Xz)

(4.31) onm
= s"h // —(@+y+Ek+1), (a;—y—i—k—l))x(x)x(y)dxdy,
where p is the inverse Fourier transform of p w.r.t. £

Proof. Inequality (4.28) follows directly from the fact that || P(h)|| is bounded uniformly in h, see,
e.g., [19, Theorem 4.21]. If we add the basis elements of (Id —1[_, s z/s» (hD))L*(R™) to the ¢y,
terms in (4.18), we will get zero contribution, so we consider it done. Then the first equality in
(4.29) follows by the definition of a trace. The second part follows from [3, Ch. 9].
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To prove (4.30), write
(4.32) IQlfs = tr(Q*Q) Z Qe =D (Qéw, ¢1)I> = (sh)™>" > |pwal?,
k.l kel

see also the proof of [16, Theorem VI.23]. This proves the first part of (4.30). For the second part,
notice that by [3, Ch. 9] again, the Hilbert-Schmidt norm of a classical ¥DO R := r(z, D) is given
by

1
IRlfs = Gy [ 1@ O dede,
We can turn R into a classical ¥DO by setting formally r(x, &) = q(x, h§) to get

Qs = g [ oo ) de e

Combining this with (4.32), we complete the proof of (4.30) as well.
Finally, the Schwartz kernel of p¥(x, hD) is given by

(4.33) h="p((x +y)/2, (x —y)/h),

and p is in the Schwartz class. Then
w e [[ 2ty L Lo
(p"(x, hD) Xk, x1) = h //p )x = (z — shk) ) (sh(y shl)) dz dy.
Make the change of variables & = (z — shk)/(sh), g = (z — shl)/(sh); then z = sh(Z + k),
y = sh(g +1) to get (4.31). O

Remark 4.1.

(a) The presence of the parameter s in (4.15) is to be expected. The random sequence fj is not
related to any distance scale, while sh is the distance between two adjacent points on the sampling
grid after we associate fi to fr. Then s reflects the choice of that scale.

(b) For every x, we have, see (4.6),

2

(4.34) VARZ(f) = /’Yf(l‘af) d¢ = (%)HHXHQ = o?|IxII?,

in mean square sense, see also (4.10). In particular, if x is a product of sinc functions, we get o2,
i.e., fr has the same variance as that of fy, in a limit. If y = LAN3, then ||x||?> ~ 0.888 in one
dimension. In dimension n, we have a product of such x(z;)’s, then the factor would be |x|*"
instead, therefore, STD(f) ~ 0.94"¢. Note that there is no dependence on s here. For the linear
interpolation, ||x||? = 2/3, therefore, STDO(f) = (2/3)*/20 ~ 0.816™¢. All those equalities are
mean square limits in the sense of the theorem.

(c) If we are interested in the expected value of the variance in repeated experiments, the equiv-
alent of (4.34) is easy to get. We can think of f;, as a linear operator, say ¥, applied to f = {fx},
i.e., fnp=VYf. Then

E(|[fal*) = E(W*UF, f) = o tr(¥*0) = 0| V||,
where the latter norm is the Hilbert-Schmidt one. Then the equivalent of (4.34) can be derived
from this formula. That requires repeated experiments however.

(d) The variance (4.6) is like the Lh.s. of (4.14) with p being the characteristic function of Q
divided by its volume. The theorem requires p to be smooth though, so we may think of (4.6) as

an approximation of (pfn, frn) with p € C§°(£2) (independent of §) approximating that normalized
characteristic function.
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(¢) Theorem 4.1 says that the noisy |f»|? in (3.15) converges in weak sense to s(;:r};: a?|x(s€)|%.

(f) We can assume that the noise is not homogeneous, for example that fjj are replaced by
¢(shk) fi,n with some smooth (. This case can be handled as explained in section 7.1, where g = (
and the problem with Vg described there does not exist in this case. This would introduce the
extra factor |((x)|? in (4.15). In principle, one can consider noise inhomogeneous in phase space,

i.e., ¢ being a suitably sampled YDO or an h-¥DO.

In Figure 2, we present an one dimensional numerical example. In sections 5 and 6 we show
two-dimensional ones. We take a discrete f with N = 100 components, upsize it to a 200 point grid
with the Lanczos3 algorithm, and plot | f |, where the hat stands for the Discrete Fourier Transform,
then the same quantity computed as a square root of | f 2 averaged over 102 and 10° experiments,
for frequencies in [0,100]. This illustrates (4.11). The limiting profile looks very close to the profile
in Figure 1, right, as expected from our Remark (e) above. At the right hand side of the plot, it is
not as close to zero as the profile in Figure 3 because of the O(1/N) error in (4.11); here N = 100
only. The plot on the right is essentially the expected value of the Wigner function W}‘

u 1 1

0.5 0.5

-

0.

%]

0 0 0
0 50 100 0 50 100 0 50 100

Figure 2. Plot of |f\ for N = 100, with |f|2 averaged over 1,102, and 10° experiments.
In Figure 3, the setup is as above but we show the smoothing effect of averaging the power
spectrum within a single experiment, illustrating relation (4.14). To this aim we consider f with
N = 10?, 10%, and 10% components. The frequency interval is divided into 25 subintervals and

averaged there, similarly to Figure 16. The plot on the left is very close to the plot of the modulus
of the Fourier transform of the Lanczos3 filter in Figure 1.

7 1 1
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Figure 3. Plot of |f| with a single experiment, for N = 102,10, 10%, with averaging over
25 subintervals.

4.4. Microlocal defect measure of more general noise. We consider more general noise now.
First, we assume that the random variables f.; might be correlated with the neighboring ones;
and second, we assume that this correlation might be position dependent. Since the position of
fr.n would be at x, = shk, this more general noise would be assumed to satisfy the following.
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Hypothesis 4.2. For every h > 0, the noise is modeled by a family { fin; k € Z™} of real valued
random variables defined on the same probability space (X, F,P) with zero expected values. They
are all assumed to satisfy (4.1) with a uniform bound. For the autocorrelation ACor(fi.n, Fitm.h)
we assume

(4.35) ACor(fx.n, frtmn) = B(skh,m),

where B(z, k), x € R™, k € Z"™, is smooth in x, and supported in a bounded set w.r.t. both variables.

Note that we are no longer requiring, in particular, fj; to have the same variance. They are
not identically distributed, in general.
Let

(4.36) B, &) = €™ B(x,m)

be the inverse Fourier series of 8 with respect to the m variable. This is essentially the Wigner dis-
tribution related to the auto-correlation, in the limit h — 0. Since B(s(k +m)h, —m) = B(skh,m),
we must have 5(z, m) = (x, —m) for all (z, m). Then (4.36) is just a cosine series, and in particular
real. The theorem above shows that it is in fact non-negative.

The generalization of Theorem 4.1 to this case is the following.

Theorem 4.2. Assume that {fin; k € Z™} is a noise satisfying Hypothesis 4.2, with L* moments
only. Let fy, be the associated function given by (3.15) with some fized s > 0 and with x € C§° not
necessarily satisfying (3.19). Then (4.14) remains true with

Sn
(2m)"
Proof. We follow the proof of Theorem 4.1. We replace the diagonal A in it by A = {(k,1); |[k—1] <
M}, where M is so that 8(-,m) = 0 for [m| > M. The off-A terms do not contribute to the limit

(4.14) as above. For the rest, we estimate their contribution for every fixed m, and then sum up
the results. The analog of W1 now, depending on m, is

(438) Wl = Z Pk k+mfk.fk+m = Z B(Skham)pkk—&-m + Wl,Oa
keK(h) keK(h)

(4.37) dpg(z,€) = Bz, s€)|x(s&)[* dw d¢.

where

Wio = Z (fiFrrm — B(skh,m)) Pk ktm-
keK (h)
The analysis of W1 ¢ is similar: the random variables fi fiym — B(skh, m) have zero expectation,
thus E(W79) = 0. They have a uniformly bounded variance. To estimate E(Wfo), notice that only
O(m?h™") terms in the expansion would have a non-zero expectation; and by (4.28), E(W¢,) =
O(h™) again. It remains to compute the 3 term in (4.38).

Recall the definition (4.18) of pg;. With [ = k + m there, an easy calculation shows that
Qbkim = Gm(z,hD)dy, for any h-UDO Q = q(x, hD), with g, (z,£) = e*™4q(x + shm, £) (which
is a symbol as well, notice that there is no h in the phase). The principal symbol of that is just
e Eq(z,€). Then the 3 term in (4.38) takes the form

(sh)™ Y~ (B(skh,m)$p, gm(x, hD)dy).

keK(h)
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By the properties of ¢y, recall (3.8) and (3.9), replacing (skh, m) above with 3(x, m) would result
in an O(sh) error in each term, and a total error O(h). Considering this done, and moving the g
factor to the right, we get a quadratic form with ¢ multiplied by 8(z, m):

(sh)" )" (6ns Gm(x, hD)p),

keK (h)

where g (x,€) = €7 B(z, m)q(, ).
So far, m was fixed. Summing over m (the number of those terms is 2M + 1), we get to the
situation of the proof of Theorem 4.1 with ¢ replaced by

> B (@, m)g(x, €) = Bz, s8)q(x,€).

The theorem then follows as in the proof of Theorem 4.1. O

4.5. Spectral density under an FIO. We want to find out how a spectral density transforms
under an action of a classical FIO of order m. It is easier to answer this question for semiclassical
FIOs since the defect measures are a semiclassical object, and we will reduce the classical case to
the semiclassical one.

Theorem 4.3. Let A be a classical FIO of order m on R™ with a homogeneous principal symbol
associated with a canonical relation which is a graph of a local diffeomorphism k (called the canonical
transformation of A). Let f = f, be semiclassically band limited and uniformly bounded in L>.
Then for every defect measure dpy given as the limit (2.7) for some h = h; — 0, the defect
measure dupm Ay associated to the same sequence hj exists as well and it satisfies

dppmar = Hil*(bduf) on T*"R™\ 0,
where b is the (classical) principal symbol of A*A.
Proof. By (2.7),

[ ol dpunag = tim (ol kDI Afy 7 A,
-

= lim (hmA*p(x, hD)hmAfha fh)L2 .

h=h;—0

(4.39)

Since we need to find dupms¢ away from the zero section, it is enough to assume that p = 0 near
£=0.

If for a moment we ignore the need to cut near £ = 0, then we can think of A as in (2.5) as
an h-FIO with symbol a(z,&/h) = h™""a(z,£) for |£| > 1. Then by the semiclassical Egorov’s
theorem [12, Theorem 5.5.5], which an analog of the classical one, (Theorem 25.3.5 in [9]), we
would get

(4.40) (W™ A%p(x, RD)W™ Afp; )z = (Qfns fn) 2

where @ is an h-UDO with a principal symbol b(p o k), with b the (classical) principal symbol of
A*A and k is the canonical transformation of A. Note that the canonical relations of A and its
semiclassical version after the change £ — &/h are the same.

To deal with the fact that we have a classical FIO and a semiclassical ¥DO, we apply Theo-
rem 2.1. Let A = A+ Rp. be as in (2.6). For ¢ < 1, the remainder Ry, . would contribute an
O(h®>) error to (4.39) if we replace A there by A, . because p = 0 near £ = 0. Therefore, we can con-
sider this done. Then Ay, . is an h-FIO, see (2.6) with symbol a := a(z,n/h)(1 —(n/c)) € h~™S°
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supported where n > €. On the support, |n|/h > €/h, and there, a(z,n/h) is homogeneous for
h < 1; therefore a = h™™a(x,n)(1 — ¥ (n/e))

Then we can apply the semiclassical version of Egorov’s theorem [12, Theorem 5.5.5]. For that,
we need to compare the principal symbol of the A-UDO A;:’EA;Z’e to that of the classical ¥DO A*A
and see how the cutoff (1 —v(n/e)) near the zero section affects that.

The principal symbol of A;‘L’sAhﬁ is given by

c(z, & h) = |a(m o K(z,€)),& h)[* I (@, €),

where m; is the projection on the fist variable, and J > 0 is a smooth Jacobian, homogeneous of
order zero w.r.t. £, depending on the phase function only. For [{| > 2¢ we have a = h™™a(x,n);
therefore

cw,&,h) = K=" |a(m o w(2,£)), ) I (2,€), [€] > 2.
This is the principal symbol of A*A as a classical DO as well without the factor h=2"™. Therefore,
the limit of (4.40), as h = h; — 0, would be

/ b(p o 1) (. €) dpig

as long as p = 0 for |[£| < 2e. Make the change of variables x(x,§) = (y,7n), and using the fact that
K is symplectic, in particular an isometry, we would get

/ p(2,€) dupmay = / P, €5 (bipyg),

when p = 0 for |¢| < 2¢, where ™" is the pull-back under x~!. Since € > 0 is arbitrary, this holds
when 0 & suppg p. Then

(4.41) dppmay = k7 (bdpy).

So far A was microlocalized near pair of points, where « is a (global) diffeomorphism. Since it is
only a local one, we can do the same for each branch, and add the results. Then b would be the
principal symbol of A* A with all branches combined, as stated. O

Note that in particular, if (4.7) holds, then ﬁfl*(vf dz d€) = v, 0kt dydn.
Remark 4.2. The proof also implies that if @ = ¢(x,hD) and R = r(z, hD) are h-UDOs, then
(4.42) dppmgarys = |gl* &~ (blr>dpy)  on T*R™\ 0,
where b still denotes the principal symbol of A*A.
Example 2. Take R = r(x) (i.e., a multiplication) with r smooth. Then, up to O(h), equality
(3.15) for rf; takes a similar form but now fyj are replaced by r(shk)fi . This is an example

of non-homogeneous noise, depending on the position, for which Theorem 4.1 applies but then the
measure is as in (4.42).

Example 3. Let R be a convolution with h™"(z/h) with some ¢ € C5°. This is an h-¥DO
with symbol ¥(€), therefore we get the factor |r|? = |¢)(€)|? in (4.42). An elementary computation
shows that, up to O(h), Rfj, is obtained from fyj, = >, ¥(s(k —m))fmn. Those are correlated
(in general) random variables. They model sensors with cross-talk. Then Theorem 4.1 applies with
the measure is as in (4.42).

Both examples are covered by Theorem 4.2 as well if you think of Rf as f but generated by
correlated noise fy p.
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4.6. Back to the inverse problem. We return to the inverse problem (1.1) now. Let A be an
FIO as in Theorem 4.3, and elliptic. More precisely, let Q@ C R™ be a bounded domain, and let €’
be another such domain so that the canonical transformation x of A maps T*Q) into T*Q'. By a
compactness argument, if A is defined first as A : £'(Q2) — £'(R™), then the range of x projected to
its base variable is a bounded set, thus such an €’ exists. Outside ', the image of A is smooth. The
measurement g, supposedly equal to Af for some f € '(Q) but corrupted by noise, is a function
defined in €. Then (1.1) is microlocally solvable: f = A~!g (we do not have problems with g not
being in the range because A~! is a parametrix) and we are in the situation above with A replaced
by A~!. The added noise is given by (1.4). Dropping the subscript “noise” as we already did, we
assume that ¢ is given first as discrete noise {gx} and then converted to a semiclassically band
limited function g as in (3.15). Then

Alg= > gd
shkey

We have not defined what noise is but we can think of this as noise because it is a linear combination
of {A71xx} with random coefficients. It has zero mean in the sense of (4.2). Then

(4.43) dpp-ma-1, = £*(b"'dpg) on T*R™\ 0,

where k is the canonical transformation of A and b is the principal symbol of AA*. By Egorov’s
theorem again applied to the operator A*(AA*)A = (A*A)?2, the principal symbol of it is that of
A* A multiplied by b o k. Therefore, b o k is the principal symbol of A*A.

The defect measure (4.43) then describes the power spectrum of the noise in the reconstruction
away from the zero section & = 0. We cannot expect to get an estimate near the zero section in this
case since A may not be even injective. For example, the interior region of interest problem for the
Radon transform in the plane has no unique solution and the practical solution is a parametrix.
Then every element in the kernel would be smooth and could be considered as noise with zero
frequency.

Next theorem is a direct consequence of (4.43). The operator @ is needed to cut the zero section,
and R is a filter which we may want to apply to the data, see also next section. Below, 0,(Q)
stands for the principal symbol of Q.

Theorem 4.4. Let A be as above, and elliptic, and let g = g5, be semiclassically band limited with
WF(g) € T*Y, uniformly bounded in L*(Q). If R = r(x,hD) is any h-WDO in ' with an h-
independent symbol, and if Q = q(x, hD) is a similar h-W DO in  with ¢ = 0 near the zero section,
then

—m p— 1 * -1, %
VARG (Qh A7 Ry) = o [ a4 ) (1P )

1
Q[ Jr-or

for every g (called there f) as in Theorem 4.3.
Proof. By Remark 4.2 about Theorem 4.3 and (4.6),

g 1 .
VARG (Qh™ ™A' Rg) = !QI/T*QW” (0~ r|Pduy) -

(4.44)
g0 5™ Pop(AA™) " Hr|* dug

Make the change of variables (y,n) = k(x, &), where (y,n) are the variables in the phase space of
g, using the fact that  is symplectic, and therefore an isometry, to get the second equality of the
theorem. 0
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A typical use of this theorem is to take ¢ to cut off smoothly a small neighborhood of the zero
section. Then, for g being white noise, for example, the effect of that on the r.h.s. would be small.
Then if we formally take ¢ = 1, hence Q) = Id, we get a good approximation of the variance of the
noise in the reconstruction away from the zero frequency noise, by Theorem 4.1. The operator R
plays a role of a filter before the inversion.

We want to emphasize that g in Theorem 4.4 does not need to be white noise; we just need a
well-defined djg, which is the case for noise satisfying Hypothesis 4.2, by Theorem 4.2.

Remark 4.3. In some situations, like in the next two sections, the requirement ¢ = 0 near the zero
section can be removed, and the whole operator @) can be removed (replaced by Id). Assume that
the filter r is compactly supported in the dual variable. Since we deal with semiclassically band
limited g, we can always assume that. Assume that o,(A*A)~1k*du, is absolutely continuous near
the zero section. In the case of the Radon transform in parallel geometry in the next section, for
example, with g being white noise, that measure is C|{|dx d€, so this assumption is satisfied. Then
the first integral in (4.44) has a limit when ¢ (a priori vanishing near £ = 0) tends to 1, and that
limit is given by the same formula with ¢ = 1. Then the 1.h.s. has the same limit, too,, because we
just defined it by that equality, see (4.6). A similar remark applies to the second integral.

5. THE RADON TRANSFORM IN “PARALLEL GEOMETRY”

We apply the theory to the Radon transform now. We study the parallel geometry parameteri-
zation first, where each (directed) line is parameterized by its signed distance p to the origin, and
its normal w, see (1.5). For

(5.1) w(p) = (cos p,siny),

we choose the natural measures dip; and the standard measure dp for p. Based on that, we a
define the microlocal defect measure dyug(@,p, ¢,p) of g = gn(p,p). If we restrict p to [p| < R,
corresponding to Radon transforms of functions supported in B(0, R), since ¢ naturally belongs to
lp| < 7 (modulo 27) (call that ), then

(52 VARB(0) = 17 | [ dslim )

The Radon transform is an FIO of order —1/2 with a canonical relation given by the union of
canonical relations corresponding to the canonical transformations

Rt t ('Z'?g) — <a‘rg(i§)7 +z - 5/’5‘7 —Z- €L7 i‘§| ) :
—— ——— —— —~
¥ P @ P
The ranges of k1 intersect in the zero section only, and in particular, £ > 0 on the range of x.
Next, each branch is a local diffeomorphism. Indeed, (z,£) = k3! (¢, p, ¢, D) is given by

z = pw(p) — (@/D)w(v), &= pw(p).

It is well defined for p # 0 but if we want z in the image to be in |z| < R, we need to require
p?+(¢/p)? < R?; therefore /@1 are well defined away from the zero section. Then R~ is associated
with x~!, which is a local diffeomorphism as well. What prevents it from being global is that it is
2-to-1, i.e., and in particular, it is not injective.
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5.1. The unfiltered inversion. The symbol of RR* is b = 4x|p|~!, where p is the dual of p.
Applying the canonical transformation, we get b o x = 47/|¢|. We could have obtained this as the
principal (and full) symbol 47/|¢| of R*R. Therefore, by (4.43),

i

(53) dﬂh1/2R—1g(l', f) = Eﬁl*dﬂg on T*R2 \ 0

The fact that s is 1-to-2 presents some subtlety here, already accounted for in the proof of The-
orem 4.3. Microlocally, one can express R as R = R4+ + R_; then each R. has normal operator
R% R+ with principal symbols one half of that R*R; then we apply (4.43), and the combined result
would be still the principal symbol of R*R.

Let us say that we have f supported in B(0, R) with a certain semiclassical band limit B > |].
We take its Radon transform R f. Here, f is not discretized, we can think of Rf as the physical
X-ray transform. The assumption on the band limit will be satisfied if the X-rays are not really
ideal lines but have some thickness. Then we sample R f densely enough to satisfy the Nyquist
requirements and add noise to it. The noise will have higher frequencies than those coming from f
if Rf is oversampled. When we invert R f, we will get higher frequencies for f as well that do not
originally belong to the set where the frequency set of f lies. We can apply a filter, cutting them
to |¢| < B. Note that this is a filter not affecting f, that is why we think of those as a unfiltered
inversion. One way to do this is to restrict p to |p| < B before applying R’ in (1.6).

More precisely, let supp f C B(0, R) and

(5.4) WEF(f) C {(,8); |z| < R, [¢] < B}.

Then the range of the frequency sets 3(R f) of all such f’s (the projection of the semiclassical wave
front set on the fiber variable) of R f is the double cone

(5.5) {(.0): 4] < RIpl, 1ol < BY,

included in the box B := {|¢| < RB, |p| < B}, see Figure 4 and [17] for more details. The set (5.5)
is the “worst scenario case” over all points (¢, p). For |p| > 0, the opening of the cone is much
smaller: |¢| < [p|\/R? — p?. We refer to [17] and Figure 3 there. This describes the range of k.
Therefore, some portion of the noise will not propagate back to the reconstructed f.

We assume that we sample g = Rf at a rate smaller than the Nyquist requirement for the box
B. Moreover, we assume an interpolation kernel y in (3.15) (with f replaced by g) is chosen so
that ¥ = 1 in a neighborhood of B. As we explained in the introduction, we assume that the data
is (white) noise, since the problem is linear. Then the power spectrum of the noise (more precisely,
the Wigner function) converges in mean sense to a defect measure dyu4 that is absolutely continuous
by Theorem 4.1, i.e., it has the form dpug = 74 dxz d§ of the kind (4.7) on B, with v, as in (4.15).
Then on B, we have v, = s"0%/(2m)" =: 7, and

(5.6) Tram1g(.6) = Syt for [ < B,

This is “blue noise”. Here and below, all equalities about the statistics of f are in the limit sense
of Theorem 4.1, see (4.6) and (4.8). An important observation is that there is no x dependence
in this case. The dependence on £ is rotationally invariant. This is not the case with the Radon
transform in fan-bean coordinates as we will see below.

By (5.2),

VAR?)(Q) = VAR;;OW(Q) - 4B@Bpfyﬁ7 V((p,p) € Sl X [_R7 R]

The two variances are equal because vz -1, is independent of the position.
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Figure 4. The frequency set of Rf.

Assume that the sampling rates of g are based on B, and B), which take their sharp values not
to allow undersampling: B, = B, B, = RB, where B is the band limit of f as in (5.4). Then
0 _ 24
VAR, ,(g9) = 4RB"".

Note that this is actually the sharp lower bound of the variation when the oversampling becomes
asymptotically sharp sampling but it is not achievable in our theory; this would require a sinc
interpolation while we need a rapidly decreasing kernel.

For the variance of f = R~ !g, we have, see Theorem 4.4 and Remark 4.3,

VAR%h”%v*mza/ 1y, €) dE
|€|<B

1 1 B
(5.7) = 'yﬁ/ €] d¢ = 7ﬁ27r/ p*dp
47T |§‘<B 47'[' 0
B37ﬁ
i

We get the following theorem.

Theorem 5.1 (unfiltered inversion). Under the assumptions above, in particular assuming that g
18 white noise, and no undersampling, we have

B3/2

/24B,B,h

(5.8) STDY(R'g) = STD(g).

If g =Rf is sampled sharply, then

B

(5.9) STDY(R™1g) = (24Rh

1/2
) STD(g).

Recall that we defined VARY, see (4.6), and similarly, STD, as integral of the defect measure.
The implication of this theorem is that when we have g created by a white noise process, then for
every Q = q(hD) with ¢ = 0 near the origin, STDO(h1/2QR_1g) converges in mean square sense to
a quantity (see (5.13)), which itself converges to the r.h.s. of (5.8), respectively (5.9), when ¢ — 1.
In other words, the cutoff near £ = 0 is removable at the expense of taking a double limit: first
h — 0, then ¢ — 1 (in L! sense).

5.2. The filtered inversion. The Radon transform is inverted often with a low-pass filter before
applying R’ in (1.6), i.e.,

1
(5.10) f = Rv(Dy)ID,lg,
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where v is an even function decaying away from the origin. Assuming a band limit B, for the p
variable, determined by the sampling rate s,, for example, one popular filter is the Hann filter:

o1 5 ™o
(5.11) VHann (D) = 3 (1 + cos Bp> = cos? E7 1p| < By,

and Viann (p) = 0 otherwise. Another commonly used filter is the cosine one
R D R
Vcosine(p) = COs Eu |p‘ < Bp’
They are plotted in Figure 5.

A A
-1 0 1 -1 0 1

Figure 5. The Hann and the cosine filters with B = 1.

There are many other filters (windows) used in signal processing and imaging. We assume that

v is continuous and supported in |p| < B,. If the shape of the filter is fixed, say Hann, then

v(t) = vy(t/B,) with some fixed vy supported in [0, 1], see, e.g., (5.11). Then (5.3) takes the form
_ lelvg €1/ By)

(512) ﬁ)/hl/?R;lg(x’ é—) - TFYQ o /€($, 5)7

where R, 1 = Rv(D,) is the filtered inversion, defined as the operator applied to g in (5.10). Then
the equivalent to (5.6) is

_ lelAe/By)

'Yh1/27a;19($75) = e

Taking B, = B as before, similarly to (5.7) we get the following analog of (5.7)

VARYWR, o) = [ 0,6

lel<B
(5.13) L) 2 Ut [T 20
- = o [ enRael/Bras = var [ 0(o/B)dp
T Jlgl<B 4 0
1
= 6337%,,,
where
1
(5.14) ¢y = 3/ p*vi (p) dp.
0

We proved the following.

Theorem 5.2 (filtered inversion). Under the assumptions above, in particular assuming white
noise and no undersampling, with a filter vo(|D,|/B), we have

33/2 5
(5.15) STDY(R'g) = BTVe STD(g).

/24B,B,h
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If Rf is sampled sharply, then

Be,
24Rh

0 -1\ _ 12 0
STD"(R™'g) = STD"(g).

If there is no filter (vp = 1), we have ¢, = 1, which explains the appearance of the factor 1/3 in
the definition of ¢,. For the Hann filter, ¢, = 3/8 — 45/(1672) ~ 0.0900, then /¢, ~ 0.3000. For
the cosine filter, \/c, ~ 0.4427. In (5.19) below, the constant would be approximately 0.07676 for
the Hann filter and 0.11327 for the cosine one.

5.3. Numerical experiments. We use MATLAB and the built in radon and iradon routines
to compute and invert numerically the Radon transform in the plane. The default angular step
is one degree but it can be changed. Assume that f is given on an N x N lattice. Then by
default, radon computes R f(p,p) on a 360 x N V2 lattice, with N+/2 rounded; the actual formula
is 2 ceil (V2(N — floor((N —1)/2) — 1)) +3. Then iradon inverts the data to the original grid (with
N replaced by N 4+ 1 or N + 2 which does not matter in view of our asymptotic setup).

As we showed in [17], this choice of the discretization of R f is suboptimal for N > 1; we need
to compute Rf on an N, x N, lattice with N, = 2N, N, = 27N at least, and some oversampling
would be beneficial, see Figure 6. With most test images, the (dominating) frequencies are well
below the Nyquist limit, that is why most of the time the inversion is satisfactory. When we add,
say white noise, the Nyquist limit is reached, and the inversion with iradon will alias some of those
frequencies.

5.4. Discretization.

Let us say we have f on an M x N grid. We think of that as discrete samples of f originally
defined on, say, [—a,a] x [—b,b]. This we have the steps s, = 2a/M, sz, = 2b/N. Assume for a
moment that we apply the classical sampling theory (no small parameter h) in a formal way at this
point. Then those steps have to be m/By,, respectively 7/B,, at most, where B, are the band
limits in the z; variable. Then we get B, = M7 /(2a), By, = N7/(2b) as the least upper bounds

of the band limits of f. For the band limit of ||, we have B = (B2 + B2)) 1/2, and the maximum is
achieved at the vertices of the box [—Bjy,, By, X [=Ba,, Bs,|. Note that the disk |£| < B contains
more frequencies than can be properly sampled on the M x N grid; the extra ones lie outside that
inscribed box.

We can connect the classical sampling theory to the semiclassical one as follows. Denote for a
moment the semiclassical quantities with tildes over them. Let M = M /h, N = N /h, with M,
N fixed. The steps s (sz,, etc.) are equal to the semiclassical relative steps § but since in our
sampling theorems the absolute steps are sh, this means that the absolute steps are multiplied by
h. Then our analysis holds as h — 0, i.e., as M — oo, N — oo (keeping the ratio constant) and
the steps going to zero at a rate ~ h. This is the usual setup in numerical analysis where 5 = 1,
i.e., the step is h.

For each such f we define the L? norm as

71— S
MN EA

i=1 j=1
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This is consistent with formula (16) in [17] and approximates the L? norm of a continuous function
on that box with samples f;;. Then

STD(f (MN ZZV” >% - 2|ﬂ

=1 j=1

is the standard deviation STD(f) of f when the mean of f is zero.

We will apply this to both f defined on [—a, a]? for some a > 0, and to Rf on [—7, 7] x [~ R, R].

Assume that ¢ is a discrete representation of a function on [—m, 7] X [-R, R| sampled on an
N, x N, lattice. Assume g is obtained by a white noise process (with zero mean) and variance .
Then a slight extension of Lemma 4.1 shows that VAR(g) — o2 almost surely.

The sampling steps are s, = 2m/N,, s, = 2R/N,; hence to avoid aliasing, we need B, < N, /2,
B, <7N,/(2R).

Let f, to which R will be applied, represent a discretization of a function on [—a, a]?, and assume
that it is sampled on an N x N lattice. Then, similarly, the sharp band limit in each variable is
B, = By, = ©N/(2a).

As we showed in [17], and it follows easily from (5.5), to avoid aliasing, we need

(5.16) N, > 2N, N, >2xN.

This inequality, as well as the inequalities and the equalities below are meant in asymptotic sense,
i.e., one should multiply, say the r.h.s. in this case by (14+0(1)), as N — co. Note that (5.16) follows
from viewing f as supported in B(0,+/2a), i.e., R = v/2R, with frequency set in |£| < B := v/2B,,.
As we mentioned above, that ball contains more frequencies than those in its inscribed square. For
every ¢ = Rf in the range of R with f as above, after an inversion we get f, of course, and then
the frequencies will fall inside the inscribed square [—B,,, B, ]?. If we take g to be “noise”, not in
the range of R, then by the mapping property of k=1, see [17], formula (51), the frequency set of
R~1g will generically fill the disk |¢| < B = B,,V/2. If we want to avoid aliasing (without applying
a filter), we would need to reconstruct f = R~'g on an Nv/2 x Nv/2 grid or better. On the other
hand, for all practical purposes, we would want to apply a filter.

- — = R fR’fl - =<

) \\ /——> )
L A \
l/ . f IN ! a\/i
l ""’""’""' o I Rf 2N
\ : : : !
[ R B
DN N 271N
—a ~ 7 Q —T Vs

Figure 6. The sampling sets of f, Rf and the reconstructed f with sharp sampling re-
quirements.

Therefore, the discrete version of (5.15), including a filter now, is
T2 N3¢

VAR( ),

where the formula has the same asymptotic and probablhstic meaning as explained after Theo-
rem 5.1.
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Assume now that we sample sharply, i.e., we have equalities in (5.16). Then N, = 2N, N, = 2r N
and we get

1y wNc,
(5.18) VAR(R, g) = 1502 VAR(g).
Therefore,
(5.19) STD(R, 'g) ~ 0.2558\@‘/(1]v STD(g).

We can make the following conclusions from (5.17), (5.18) and (5.19).

e With a sharp sampling rate, the noise ratio, measured as its standard deviation relative
to that of g, increases as v/N. This is understandable since we are allowing for higher
frequencies, and R~! is of order 1/2. At the same time, we can handle f with higher
frequencies because N is proportional to the Nyquist bound.

e The noise ratio, for a fixed N, is minimized when we sample sharply.

e In many applications, increasing Ny and N, decreases the size of the detectors, and then
the discrete samples g;; are scaled down by constants times Ny and N,,. If the added noise
is expressed in units relative to that, then the quotient in (5.17) would be proportional to
]\73]\7%,Np7 i.e., the noise ratio increases with N4 and N,. This is known in engineering.

Default iradon inversion. First we present an inversion with the default one degree angular
step. We choose N = 601, N, = 360 by default and N, = 853 is chosen by radon as an approxima-
tion to 601v/2. We choose g to be normally distributed (Gaussian) noise with standard deviation
one. Then we invert it with iradon. A plot of the modulus | f | of the Fourier transform f of the
inversion f is shown in Figure 7. We chose to plot here and below | f | rather than | f 2 for clarity.

Figure 7. Left: |f| where f = R™!g and g is white noise. Right: radial profile of | f|? from
the center to one of the sides (but not all the way along the diagonal to a vertex).

With an exact inversion, as N — oo, we should be seeing a density plot of square root of (5.6),
i.e., c|¢|'/?, filling the whole square. We see is that the density increases in the radial variable |¢|
from the center but at some point starts to decease until it visibly becomes zero when |¢] is slightly
larger than a half of the side, and it is radially symmetric. This behavior can be explained by the
following. The default choice N, = Nv/2 (rounded) of N, actually lowers the Nyquist limit of the
reconstructed f to 1/4/2 of its original value. Without that, the boundary of the disk in Figure 7
would be the circumscribed circle of that square but with that choice, it is the inscribed one. The
gradual decrease close the border can be explained by an effectively low pass filter when inverting
R. Our numerical experiments below at much higher resolutions for R f confirm that.
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A similar experiment with a uniformly distributed noise ¢ in a symmetric interval around the
origin produces virtually the same plot of | f |, not shown. In both cases, the values of f look
normally distributed.

High precision inversion. We present numerical inversions with a proper discretization. We
want to model adding noise to discrete measurements of the “continuous” R f; inverted with high
precision; i.e., by upsampling first the discrete data several times to mimic inversion in the “con-
tinuous domain”. We do the following.

(i) The function f is assumed to be defined on [—1,1]? and sampled on an N x N lattice.
(ii) We compute a high accuracy Rf on a N, x N, lattice, where N, > 27N, N, > 2N. To do
that, we perform the computations on a finer grid.
(iii) We add noise to the so-computed Rf.
(iv) We invert the noisy data by upsampling it first. The reconstructed fnoisy is either left
sampled on a finer grid or downsampled to the original N x N one.

We give more details below. To do (ii), we upsample f on an mN x mN lattice with Lanczos-3
with some m > 1. Typical m’s we use are m = 2 and m = 3. Then we compute R f(p, p) with radon
on a 2rmN x 2mN lattice which we view as Rf(p,p) on [—m, 7] x [—v/2, v/2] sampled uniformly
in each variable. The parameter m represents the degree of oversampling: m = 1 corresponds to
the sharp lower bound for proper sampling. Since computing R f involves interpolation of f for
computing the line integrals (we use the option ’spline’ in radon), such an oversampling allows us
to reduce the errors in such interpolation compared to the sinc inversion. Then we downsample
the computed R f to a lower resolution N, x N, (without interpolation; we take every m-th value
in each row and column). This simulates a high precision R f computed on the N, x N, grid. To
do (iii), we add noise.

In (iv), we invert R on that lattice. We could resize to a different (but high enough resolution)
before that but the results do not look much different. The resulting f = R~!g is computed on an
mN x mN lattice, which is viewed as f on [~1,1]? sampled uniformly. If needed, that f could be
resampled to an N x N lattice but since it does not contain frequencies higher than the Nyquist
limit B = N /2 corresponding to N, this is not needed for computing the standard deviation, for
example.

We want to emphasize that it is possible to do (close to) ideal upsampling, say from N, x N,
to N, x Ny with N, > N, and Ny > N, which preserves the band limits B,, = N,m/2 and
B, = Nym/2 by using the Fourier transform. On the other hand, this is not what is usually done.
When we use Lanczos-3, for example, the interpolation kernel is the inverse Fourier transform of
a smoothened version of v|_y 1}, see Figure 1, which is close to be equal to one in [—0.5,0.5] at least
as explained in section 3.3. On the other hand, Theorem 3.1 in [17] requires some oversampling,
and an interpolation kernel to be the Fourier transform of a function similar to that in Figure 1,
equal to one on the (smaller) frequency band. Therefore if we choose m > 2 we are in this regime.

To do experiments with noise only, we take f = 0 in (1.2). Then steps (i) and (ii) are trivial,
since Rf = 0. So our starting point is (iii), where we take g to be generated by either a normally
or a uniformly distributed noise, on an N, x NN, grid. We upsample by a factor of m, i.e., to an
mN, x mN, grid an do the inversion there. We take m = 2,3,4,5 in our experiments.

Non-filtered inversion. We test (5.8) now. To this end, we take g to be either Gaussian or
uniformly distributed noise with zero mean on an N, x N, grid as in (ii), with equalities there,
ie, N, = 2nN, N, = 2N. Then we cut the Fourier transform of the result sharply to 1/m-th
of the frequency box corresponding to the original resolution N, x N,, m = 2,3,...; denote this
by Vi (D)gm, and apply R™! to it without changing the grid size. This procedure provides more
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precise computation than just inverting the noise because it avoids the smoothing which happens
in the part we cut off. If we had Rf of a non-zero f polluted with noise, we would have upsized
the data m times in each dimension first, and then would have performed that procedure.

(a) |gm| with m = 2: white (b) reconstruction
noise

(d) reconstruction

(¢) |gm| with m = 2 cut to a half in each dimension

Figure 8. Top: We choose g,,, m = 2 to be white noise; then |R~1g,,| looks like in
Figure (7). Bottom: vy, dm and R™2Vy,Gmm, i-e., the Fourier transform of the reconstruction
after the frequency cut-off of the noise.

Since we effectively multiply both N, and N, by m, by (5.17), we see that (5.19) can be written
in terms of the noise ratio as

(5.20) Noise ratio := m STD(R /— STD(g) ~ 0.2558.

We take g first to be a Gaussian noise with several choices of N and m; doing five experiments
for each choice. The results are in Table 1 below and in Figure 8, we illustrate the inversion with
m = 2. Similar experiments with a uniformly distributed noise with mean zero generate similar

Noise ratio with Gaussian noise. Theoretical ratio: 0.2558
N =100 N =200 N =300

0.2224 £0.61% | 0.2223 £ 0.32% | 0.2226 + 0.16%
0.2552 £0.38% | 0.2572 £ 0.25% | 0.2578 £ 0.17%
0.2569 £ 0.70% | 0.2584 +0.41% | 0.2591 + 0.07%

SEE
L LI

Table 1. Noise experiments

numbers, not shown.
Filtered inversion. We perform similar experiments with the Hann and the cosine filter. Since
the Hann filter is very small near the band limit B, see Figure!5, the smoothing effect of the
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interpolation used by iradon, see Figure 7, plays a negligible role. Modeling that smoothening by
the Lanczos-3 profile, for example, see Figure 1, by introducing an extra factor in (5.14) shows an
error of less than 1% in ,/c,. Then even with m = 1, we get a result close to the theoretical one,
which is approximately 0.07676 for the Hann filter and 0.11327 for the cosine one, as we computed
above. For N = 300, for example, we get 0.0767 & 0.11% for Hann and 0.1105 4 0.21% for cosine,
where the smoothing effect of iradon is a bit less compensated for. The numbers for normally and
uniformly distributed noise are very close.

For the cosine filter, we plot | f | (instead of | f |2 for clarity), the computed radial profile of | f 12,
and its theoretical one pv2 ;. (p) = pcos?(mp/2) in Figure 9 below. The radial profile is computed
as | f |2 averaged over 25 concentric rings. In this case, | f (¢)|? is proportional to the microlocal
defect measure of f at any fixed z (it does not depend on x). The Hann filter behaves similarly,

03

0.21

0.11

0

0.5 1

Figure 9. Cosine filter. Left: |f| where f = R 'Weosineg and ¢ is white noise. Center: The
computed radial profile of |f|? from the center to one of the sides. Right: The theoretical
prOﬁle pygosine(p) = pCOS2 (7Tp/2)

with the computed radial profile of |f|? very close to its theoretical one pcos(mp/2).

5.5. Percentage of added noise. In many numerical simulations, we add noise to the data,
as a percentage of a certain norm of the data, and measure the percentage of the noise in the
reconstruction. This is especially interesting in (mildly or not) ill-posed problems.

There is a lot of flexibility in choosing those norms. Let us say that we choose the L%(B(0, R))
norm for f and the L?(S! x (=R, R)) norm for R. Then the left inverse R~! is not bounded in
those spaces but on semiclassically bounded functions (which are smooth), it is; we refer to [17] for
semiclassical estimates.

Let gnoise be the noise added to g = Rf, see (1.2). Its percentage is given my || gnoisel|/||Rf|]
(converted to percentage). We are interested in || fooisel|/|| f]l, Where faoise = R gnoise is the noise
in the reconstruction. We have

(5'21) anOiSGH _ KHgnoiseH’ K = anoise” ) HRfH
1£1l IR £l lgnoisell [ £

The coefficient K is the multiplier which relates the two percentages. Its first factor is proportional
to the noise ratio we studied earlier since the L? norms are proportional to the standard deviations.
The second one depends on f. To analyze it, write

IRA? — / vy dpdpdpdp,
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where the convergence is in the sense of Theorem (4.1). Then we integrate over the semiclassical
wave front. By (4.41),

2 -1 - vpor~!
IRAIT — [ (byp) o™ dedpdpdp = dm T
::4w]f”7ﬁ;5)dxdg::4wnzn—kﬂfn?
We used again the fact that x is an isometry. This works for general operators but for R we
actually know that 47| f||> = |||Dp|'/?Rf||?>. We can write f = |D|"/2f, intertwine |D|"/? with
\Dp\l/ 2 to get the formula above as an exact one, not just a limit. Therefore, (5.21) yields

5) i _ Vil 40121
HgnoiseH Hf”

Since the noise ratio is independent of f, we see that K would be large if, roughly speaking, f
is low frequency. Most conventional images (with f > 0) have a very large zero frequency f (0)
relative to the rest of the spectrum and the second quotient in (5.22) does not vary much. When
[ f(z)dz = 0, we have £(0) = 0 and the variation of this quotient is higher. Then we do not need
to isolate the zero section.

In Figure 10 we demonstrate this effect. We choose IV = 300 and the dimensions of the grid for
Rf is chosen with equalities in (5.16), see also Figure 6. We add the same amount of normally
distributed noise, 20% of ||Rf||, to Rf. We measure different percentages of added noise to the
reconstructed f depending on the frequency distribution of f, i.e., on the ratio in (5.22). Images
with mostly lower frequencies suffer from noise more. On the other hand, given the a priori
knowledge of their frequency band, that noise can be filtered out, unless we are looking for small
high frequency detail in an overly lower frequency image. We chose non-negative f’s in that figure
only. Numerical experiments with f of mean value zero show lower added noise on a few examples.
If in Figure 10(c) we allow random positive and negative amplitudes as well, for example (not
shown), the added noise in (g) drops to 41%. It is worth mentioning that with many conventional
images, the values we are getting are close. In fact, statistically, such images share similar power
spectra distributions [18].

Therefore, measuring the sensitivity of a particular inversion to noise this way can be quite
misleading. The added noise to the image depends on the noise ratio (5.20) which in turn depends
on the grid chosen to discretize R f; and also depends on the choice of the test image.

dedpdpdp

6. THE RADON TRANSFORM R IN THE PLANE IN FAN-BEAM COORDINATES

6.1. R in fan-beam coordinates. We parametrize R by the so-called fan-beam coordinates.
Recall (5.1). Each line is represented by an initial point Rw(«) on the boundary of B(0, R), where
f is supported, and by an initial direction making angle § with the radial line through the same
point, see Figure 11. It is straightforward to see that this direction is given by w(« + ). Then the
lines through B(0, R) are given by

(6.1) r-wla+p—7/2)=Rsinf, «ac|[-mmn|, ec[-n/2,7/2)].
The canonical relation is the union of the graphs of x4, see [17], given by
8= isin-“;,'g, a=arg— B a=a-¢ F=l VR - (@ ¢/lE)? +a
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(a) f1 (b) f2 (d) fa

(e) 25%, 0.66 (£) 39.8%, 1.08 (g) 74.4%,2.06 (h) 79.8%, 2.18

Figure 10. Top: Four different choices of f > 0, N = 300. Bottom: f reconstructed with
20% noise added to Rf. The numbers show the added noise to f, and ||Rf|/|f]]-

Figure 11. The fan-beam coordinates.

Then k4 are isomorphic under the symmetry mentioned above lifted to the tangent bundle

~

(aaﬁvdw@) — (a+2ﬁ—7r,—ﬁ,d,2(i—,3).

The inverses K:T:l are given by

(6.2) z = Rsinfw(a+—7/2) - Bf&RCOSBw(a—'—B)’ &= ffcj)sd

wla+p —m/2).

In particular, we recover the well known fact that x is 1-to-2, as in the previous case.
Set (,p) = ®(a, B), where

p=a+p—7/2, p=Rsinf.
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We have det d® = Rcos 3. Then Ryg = R o . To compute RigRrp, write

(RigReaf.f) = [ Renf(,8) dads = [ IRf(op) g de

Since sin 8 = p/R, we have cos 8 = /1 — p?/R?. Therefore,
RigRep = R*(1 — p?/R?)/2R.

The factor in the middle of the r.h.s. is a multiplication operator, and applying Egorov’s theorem
(one can actually do it even directly and without a remainder), one gets for the principal symbols,

at least,
2y —1/2 A o 12
wiRinfen) = (1= ) o ® R =G TgE)

The equivalent to (5.3) then is

63 VARG 0

( . ) ’yhl/QREég(x’é) = E R2|£|2 Vg © KFB(J:>§)’ g 7é .

Therefore, the noise spectral distribution depends on x now, and it depends on the direction of &
relative to x. For x, |£| fixed, it is maximized when { | z, and minimized when & || .

6.2. Sampling. As above, if supp f C [~1,1]? is sampled on an N x N grid, we have B,, =
B,, = N7m/2. As before, set B = v/2B,, = Nm/v/2. Then we consider f having WF(f) in
B(0, R) x B(0,+/2B) with R = v/2. The image of this product under the canonical map, projected
to the dual variable (&, 3) has the following smallest box containing it: [-RB, RB] x [-2RB, 2RB],
see [17]. The means taking at least 2RB x2RB, i.e., 2N 7 x 2N 7 samples over the intervals indicated
n (6.1). Compared to (5.16), this requires 7 times the number of samples, which makes it a less
efficient sampling geometry, as shown in [17].

In Figure 12, we present a numerical experiment to validate (6.3). We take g to be Gaussian
noise and invert it with Rpg. Then we crop a small rectangle in the top left corner and take the
modulus of its Fourier Transform. Then z is close to 9 = 0.8(—1, 1) and the small black elongated
oval in the center has a major axis along the same vector, formula (6.3) predicts.

Figure 12. Spectral density of the noise in f with the Hann filter. Left: measured in the
top left corner. Right: theoretical profile (6.3) at that corner.
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6.3. Noise Ratio. We study the noise ratio with a filtered inversion. In ifanbeam in MATLAB,
for example, Rpp f is converted to parallel coordinates and the filter is applied after that. By (6.2),
the filter v(p), with v even, takes the form F' := u(|B —@&|/(RBcos ), where B is the band limit of
|¢]. The inversion operator then is Ry , = Ry F which equals (REB,VRFB7V)71V(|DDREB modulo
lower order operators by Egorov’s theorem. We get, similarly to (5.12) that (6.3) modifies as

oo\ 12
lfﬁ'( (_;32‘22) 5 (|€]/B)vg o krp(2,€), & #0.

Assume that g is oversampled (related to B, see [17] for the sampling requirements), and it is
white noise. Then the variance at a point, see (2.8) is given by

-2\ /2
VAR, (h/2f) = ~F /§ ‘“(1—( 5)) v (1€]/Bp) d¢,

Tni2RZL g (z,8) =

|<B 4w R2|¢[2

tg3 rom 2 1/2
7 / /<1—HCOSH) p*va(p)dpdd

ﬁB3 27 | |2 1/2
Y Cy
=% or <1 2 cos 0) de,

compare with (5.13). The integral is of elliptic type and varies between 27, when |z| = 0, and
4 when |z| = R. To connect this to (5.13), the integrand in (5.13) there corresponds to |z| = 0
formally; and then we get (5.13). Taking a square root, we see that the standard deviation would be
higher in the center, the same as in the parallel geometry case, and will decrease slightly to about
80% at |z| = R, which corresponds to the four corners of the square in our numerical simulations.
Similarly to (5.7) and (5.13), we integrate over z in the inscribed disk |z| < 1 in [~1,1]? and
divide by its area 7 to get the variation in that disk. Then R = /2 and
tp3 1B3
VAR p(0.1)(f) ~ 2%765 e, ~ 0.9328 2 f
This is within 6-7% of the parallel geometry variance, and about 3% difference for the standard
deviation.

7. NON-ADDITIVE NOISE

In this section we discuss some types of non-additive noise. The exposition here will be more
sketchy, we will point out how to fit those cases into the general framework we developed but will
not go into detail.

7.1. Multiplicative noise. Assume the data g = Af is subject to a multiplicative noise. This can
happen if the detectors are not perfectly calibrated and each one reports a signal somewhat larger
or smaller than it should be (non-uniform response). In imaging systems, photo response non-
uniformity (PRNU) is an example of such noise. A generic way to model the kind of multiplicative
noise we have in mind is the following: consider a sequence of discrete noise samples {wyp; b >
0,k € K(h)}, where

(7.1) Wy p = 1+ fk,hu or wyp = exp (fk,h) ,

and {fxn; h > 0,k € K(h)} is the white noise considered in Hypothesis 4.1. Then we set
1

(72) gnoise(x) = Z wk,hg(Shk)Xk(x)v Xk(:l:) = X(E(‘r - Shk)>7

kEK(h)



38 P. STEFANOV AND S. TINDEL

where wy, j, are the discrete noise samples, playing the role of wyise above, and g is the noise-free
continuous signal. We will compare the noise gj(x) defined by (7.2), i.e., by the first formula in
(7.1) (the second one can be treated similarly and one has to take into account that wyj is not
necessarily centered), to a noise of the form

(7'3) gnoise Z Wi hg Xk Z Wi th:

keK(h keK(h

We have
Gnoise(T) = gnoise () = Y Wi (g(x) — g(shk)) xu().
keK (h)
Since
l9(z) — g(shk)| < Cl — shh,
with C < Cy||Vyg| L, we get
|(9(2) — g(shk)) xx(2)| < Cshmax(|z||x(z)]) < C'h.

That factor h allows us to estimate, using Proposition 3.2, the error when replacing g(shk) in (7.2)
by g(x). We would get an O(h) error. The problem here is that we want to apply this to g = Af,
all dependent on h, and in general, VAf grows like h='|Af|. This cancels the decay above. If
we oversample a lot, the error will be “small”. Also, in regions with WFj (Af) far away from the
Nyquist limit, that term will be small. If we ignore it for a moment, the noise added to Af is g
given by (7.3). It is white noise as above but multiplied by ¢ = Af. The defect measure of the
noise added to the data then is like in (4.15) with the additional factor |Af(z)|?.

One important case which allows to overcome the difficulty above is when g = ¥y, * gg, where
Yp(x) = h™"Y(z/h) with [ = 1 (a Friedrichs mollifier) with ) e C§°. This corresponds to
averaged measurements of an h-independent function gg. We refer to [17] for the sampling theory
for such measurements. Then Vg = v, * Vgo, and assuming gg € C! (either h-independent or
uniformly bounded there in h), we have [Vg| < C' (rather than C/h), which is the estimate we
needed in the previous paragraph. Then the machinery we developed works and we need to multiply
the noise measure by the additional factor |go(z)[? in (4.15), i.e., we get there

i (0:6) = Gy lan() PR () dal

under the assumption g = ¢y, * go in (7.2). Then (5.13) takes the form

VARL(W/R, i) = 1t [ (R (/16 axs(©) Plellnollel/ B P e
l¢l<B

(7.4) [ .
= L / / RS (2 0,0) 0?1 (p8) > (p/ B) dp do.
0 0

This shows that the standard deviation of the noise at x depends in particular on the line integrals
of f along lines thorough x. Line integrals with large values would create stronger noise at x.

7.2. Modeling noise in CT scan. In CT scan tomography, what is measured is the attenuation
along each ray. If Ij is the initial intensity, and I is the one after the ray crosses the object, then
the measurement is I = exp(—R f)Ip, by the Beer-Lambert law. Assuming an additive noise gnoise,
we measure Inoisy = €xXp(—Rf)Io + gnoise- If we invert this the same way as if there were no noise
(which may not be the best strategy), we would get

fnoisy =-R! log(Inoisy/IO) =-R! log(exp(—Rf) + gnoise/IO)'
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Obviously, increasing Iy will decrease the effect of the added noise but in many applications this
is not desirable and/or the noise level may depend on Iy. We take Iy = 1, i.e., gnoise is the added
noise relative to Ip. Then

— log(exp(—Rf) + gnoise) = - IOg (eXp(—Rf)(l + eXp(Rf)gnoise))
=Rf —log (1 + eXp(Rf)gnoise) .

Therefore,

(7.5) froisy = f — R log (1 + exp(R f) gnoise)
If the noise is small enough, we can pass to a linearization to get
(7.6) Juoisy = f— R (exp(Rf) gnoise) -

This is the multiplicative noise model above with gwpeise replaced by e9wygise. In (7.4), for example,
the factor |Rf|> would be replaced by exp(2Rf).

7.3. Modeling Poisson noise. In SPECT, we measure the attenuated X-ray transform but the
particle count at each detector is low. In this case, the predominant noise is of Poisson type: the
number of particles at each detector is randomized by a Poisson distribution with probability of
taking value k being P(k,\) = ek )k /k!, where A > 0 is the expected value at that detector,
see [15, sec. 4.5]. Both the expected value and the variance of P equals A. Then the particle count
at each detector equals A\ + wv/\, where w is a random variable with zero expected value and
variance 1. Note that the probability distribution of w depends on A and approximates a Gaussian
one when A > 1 and they are independent. Assuming locally averaged measurements, as above,
we would get added noise wy p|tp * Rf I'/2 when the units for Rf are the number of particles;
and o times that in general with some o > 0. Note that wy,j, are not identically distributed (but
Theorem 4.1 still applies) and are well approximated by Gaussian distributions when R f is not very
small. The microlocal measure then would have the factor aRf (we assume f > 0, thus Rf > 0).
This is similar to multiplicative noise, where the factor was proportional to |Rf|?.

7.4. Numerical examples. We present numerical simulations with the three types of non-additive
noise in Figures 13 and 14. The phantoms are the Shepp-Logan one and three disks of different
size and intensity, not shown there, both phantoms having ranges between 0 and 1. They are both
rendered on a 300 x 300 grid discretizing the square [—1, 1]2. Their Radon transforms are computed
with 1,884 angular steps and 600 steps in the p variable covering the diagonal of the square. To
simulate multiplicative noise, we choose the variance of w in (7.2) to be 0.2. To simulate CT noise,
we use the non-linear model (7.5) (rather than the linearization (7.6)) with VAR(gnoise) = 0.03.
In the Poisson noise case, each value of Rf is randomized as follows: poissrnd(80 x R f)/80; it is
worth noticing that R f ranges from 0 to 0.51 in the Shepp-Logan case and to 0.56 in the disks
case. We chose the noise parameters so that the noise would be of similar strength, visibly, in all
three cases, and the distribution is Gaussian. Hann filter is applied to the inversion.

Note that the noise has different character compared to Figure 10(h), for example, and one can
see individual lines (more precisely, line segments) in it. The multiplicative and the Poisson noise
characters are somewhat similar; while the CT noise in the middle looks different. Our analysis
shows that in the latter case, the standard deviation of the added noise in the linearization regime
has range from ¢’ = 1 to about %% a~ 1.65 times STD(gnoise), see (7.6), while in the other two
cases, the range is from 0 to a certain positive constant, which allows for almost zero noise locally
before inversion. For this reason, individual lines are harder to distinguish in the CT case.
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i

Figure 13. Shepp-Logan with the Hann filter and with (a) multiplicative noise; (b) CT
type of noise; (c) Poisson noise

Figure 14. Three disks with the Hann filter and with (a) multiplicative noise; (b) CT type
of noise; (c) Poisson noise

8. DISCRETE NOISE AND ITS POWER SPECTRUM

In this section, we analyze discrete white noise directly, without converting it to a continuous
function. Here, f(k) is a random vector on an N x --- x N grid which we denoted by fj, before.
We will denote by (k) the discrete delta function on Z". In section 8.1, we follow mainly [15,
Chapter 12], where f is a random variable depending on a (continuous) variable ¢; but most of it
adapts to the discrete setting easily. We do a temporal analysis of the power spectrum for each fixed
(discrete) frequency, with N fixed. We show that the spectrum of white noise is flat in the sense
of expected value over repeated experiments, and we consider more general noise. On the other
hand, for each experiment, the spectrum is quite, well, noisy and does not appear to smoothen as
N — oo numerically. In the second part, we study the ergodic properties of the power spectrum,
with a single experiment, as N — oo. We show in Theorem 8.1 that the power spectrum is flat on
average. That theorem is an analog of Theorem 4.1.

We want to emphasize that f = {f(k)} depends on N, so we have a “triangular” array of random
variables depending on the random outcome and increasing their size with V.

8.1. Temporal analysis. The discrete analog of the Fourier transform is the Discrete Fourier
Transform (DFT) described below. It lives naturally on the discrete torus TR, = Z"/NZ" with
period N. This shows that any time the DFT is used for spectral analysis, the original f is
actually regarded as the restriction of a periodic function on a fundamental domain. We consider
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f:T% — C, and we denote f = {f(k)}; with each element f(k), k = (ki1,...,k,) € T a random
variable in the same probability space. First, N will be fixed but eventually, we will take N > 1.
We denote by fg the vector defined by (fg)(k) = f(k)g(k), i.e., this is the multiplication of the
functions of a discrete argument. Similarly, |f| is the vector with components |f(k)|, while || f|| is
the norm of f.

We define the (unitary) Discrete Fourier Transform (DFT) f = Ff by

~ 1 1Lk
f) = s D FR)e>™ N e TR
kET?Y,
Its inverse is the adjoint one

F(k) = —

= o 2L TSN e Ty,

k*eT™,
Parseval’s equality takes the form
f9=171-9
for complex-valued f and g, where the dot-product is the natural one in CV. In particular, F is
unitary. There is a natural (circular) convolution f x g defined, and we have

F(fxg)=N"%fg, F(fg)=N"T"2fxg.

Next, we have

(8.1) F6=N""2_ F(1)=N"2.
For each f with random entries, as above, define the auto-correlation
(8.2) ACor(m, k) = E{f(m) F(k)}.

The auto-covariance is defined as the auto-correlation of the centered f, i.e., of f —E(f), and it is
easy to see that

ACovy(m, k) = ACor(m, k) — E{f(m)}E{f(k)}.
The process f is called stationary,' if ACor¢(m, k) is a function of m — k only:
(8.3) ACor¢(m, k) = ACor¢(m — k),

where, with some abuse of notation, we used the same notation ACor on the right. A process f is
called white noise if

(8.4) ACor¢(m,k) =0 for m # k.
Then we must have
(8.5) ACor(m, k) = o*(m)d(m — k)

with o2(m) = VAR(f(m)) > 0. We always assume that white noise has a zero mean. The process
is wide-sense stationary (WSS) if it is stationary and its mean is constant. Then white noise is
WSS if o is constant. Note that WSS does not mean that f(m) are independent from each other
but if they are independent, they are uncorrelated, i.e., (8.4) holds.

Let I'(m*, k*) be the DFT of the auto-correlation of f, see (8.2), with respect to (m, k):

I'(m*, k*) = F(ACory)(m™, k*).

Lthis terms comes from 1D processes, where z is the time
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Then
]E{f fk?* } E Zf —27r1 (mm*—k-k*)/N _ F(m*,—k‘*)

In case of white noise satisfying (8.5), we have I'(m*, k*) = N‘”/Qﬁ(m* + k*), thus we recover
Theorem 11.2 in [15]:

E{f(m* + k) f(m*)} = N""/262(k*),  Vm*.

This shows that even when f is not stationary, f is stationary with auto-correlation o2. If 0 =

const., then each f(m) has standard deviation o, and N—"252 = 52§ i.e.,

(8.6) E{f(k*)f(m*)} = 0?6(k* —m*).

In particular, E{|f(m*)[2} = o2 for all m, which shows a flat (expectation of a) spectrum. By
Theorem 11.3 in [15], if f is real and Gaussian, then the covariance of | f(m*)|? and | f(k*)|? equals
N_"(EE)Q(m* + k%) + N_”(/E)2(m* — k*), as we also show below. In particular, if ¢ = const. in
(8.5), we get covariance 04(5 (m*+k*)+6(m* — k*)). Therefore, they are correlated when k* = m*

and k* = —m* (because fis even) with standard deviation o* for each Fourier coefficient except
for the zeroth one when it is 26%. In fact, we do not need f to be Gaussian to have the same
conclusion on asymptotic sense. We assume f real from now on.

Proposition 8.1. Let f be real valued white noise with a finite fourth moment called 4. Then

FOLANI2 | £l *) |2 4 * * 4 * * Ha — 30t
(8.7) ACov{|f(k )2, | (m*)] } = o3k = m*) + ook ) + H
Proof. We have

ACov {If k)2, 1 f ")}
= ﬁ Z E{f (k1) f (ko) f(my1) f (mg) ye~ 2mi(ki=ke) k™4 (mi=ma) m™)/N _ ;4

m1,mae,k1,k2

The only non-zero expectation terms are those with two (equal or not) pairs of equal indices.
Assume first that ky = ko, 1 = mso. Then we have two cases for the expectation term above:

(1) If mq # ma, the expectation term equals o?.
(2) Whenever k; = ko = mj = mg, this expectation term is the fourth moment .

The latter number of terms is N™, while the former is N?® — N™. Therefore, this set of indices
contributes
1 1
<1 — m) o+ W/M
to the sum.
Consider the terms with k1 = mq, ke = mg but with & # ko to exclude the previous case. Then

the corresponding sum is

4 4 4
g Z o 2mi(k1—ka)-(k*+m*) /N _ g 2672wik-(k*+m*)/N G
N2n T N2n N»

k1=m17#ka=mo k,m

= ol5(k* +m*) — ot /N™.

We performed the change k = k1 — ko, m = ko above, used (8.1) and compensated for the added
terms corresponding to k = 0 in the second sum which are missing from the first one.
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Finally, when k1 = ma, ks = my but k1 # mg, the dot product in the phase function becomes
(k1 —mq) - (K* —m*) and the same argument gives us

! 4
% $ ezl (e om)/N % 3 o)/
FiFm kA0 m
= o*0(k* —m*) — o /N".
The analysis of those three cases completes the proof. -

Corollary 8.1. If f in Proposition 8.1 is normal, then the last term in (8.7) vanishes.
The proof follows from the well know fact that p4 = 30 for normal distributions.

Remark 8.1. The results in Proposition 8.1 can be interpreted as follows. Up to an error O(N "),
we get auto-covariance o? if k* = m* # 0 and when k* = —m* # 0 (symmetry, because f is real),
and 204 if k* = m* = 0. If we stay in a fundamental domain of the type k; € {0,1,...,N — 1}
then the symmetry becomes |f(k*)|> = | /(N — kf,... N — ky)|2.

8.2. Ergodic analysis. Flatness of the power spectrum on average. Let a be a locally
Riemann integrable function on R", periodic of period 1 in each variable. Assume that f is real
valued. We are interested in the following linear functional

i) = 3 a(k/N)|F(E)P.

= N’,’L
k*€TY,

This is a discrete analog of (4.14) with p there depending on the dual variable only. It is a weighted
(not normalized) average of the power spectrum. What we do there is effectively rescale the
spectrum from the integer points in [0, N — 1]" (and then extended by periodicity) to the ones with
fractional components of the kind k*/N, forming a dense set in [0, 1]™ asymptotically. In statistics,
this is done routinely in the study of peridograms, and k*/N is replaced by a continuous variable.

Assume a white noise process (8.5) with o = const. Then E(un(a)) = 02 [ a(£) d¢, as N — oo
by (8.6), where the integration is taken over the continuous torus in R™ with period one.

The random variables | f (k*)|? — 02 have zero expectation, correlation given by Proposition 8.1,
and variance o*. Write

1 N 1 £ x
pv(e) = 0?5 D alk /) + 5 0 alkt/N) (1P = o?).
k*€T k*€TY,
The first term is a Riemannian sum. The second term has zero expectation and variance

4 C

TS (ol /NP e Nk /N) + (L) <
k€T,

The error terms come from the cross terms which are products of o* and O(N~"), by Proposi-
tion 8.1. There are N?" of them. Therefore, we proved the following.

Theorem 8.1. Let f(k) be a white noise process on T% (depending on N ), with variance o and
a finite fourth momentum. Then for every Riemann integrable function o on T}, we have

(8.8) pn (o) — o? /a(g) d¢§ in mean square sense,

where the integral is taken over the torus in R™ with period one.
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Therefore, the measure N " ZT% | f(m*)|26(6—m* /N) converges weakly to o2 d¢ in mean square
sense. In particular, if we take a to be the characteristic function of, say a box U in T%;, then the
average of the power spectrum on U tends to o2 in mean square sense.

8.3. More general noise. We assume now that the random variables f,(k) depend on h, have
zero mean and have uniformly bounded fourth momenta but are not necessarily independent or
equally distributed. If we assume (4.35), then the power spectrum is expressed in Theorem 4.2.
One special but important case is when the auto-correlation is space independent (stationary, see
(8.3)), then 3 in (4.35) is independent of x and we have

(8.9) ACor(fn(k), fu(k +m)) = B(m)
with some S(m). Then (8.8) takes the form

un (o) — /B(f)a(ﬁ) d¢ in mean square sense,

where £ is as in (4.36). In other words, the limit measure is 5(€) d€.

8.4. Numerical examples. We illustrate the temporal behavior of the spectrum first. In Fig-
ure 15, we take a random normally distributed vector f with N = 200 and variance o2 = 1. The
power spectrum is plotted next to it. As we can see, it looks flat on average with mean value close
to one but the variation is substantial. On the right we plot the histogram of the (spatial) standard
deviation STD(|f|?) over 1,000 experiments; it appears to have mean 1. We recall that STD(|f|?)
is the square root of

. 1 . 2
VAR (If2) = o 2 (If)1 =)
k*eTy,
We have not proved a limit for it though. That would require estimating the auto-correlation of
the summands above similarly to Proposition 8.1.
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Figure 15. Left: a random normally distributed vector, N = 200, 02 = 1. Center: plot
of |f|? for indices from 0 to 100 (|f]? is an even function with period 200). Right: the
histogram of STD(|f|?) over 100,000 experiments; it appears centered around 1.

Next, we illustrate the spatial (ergodic) behavior of the power spectrum. The averaged power
spectrum for a normally distributed vector is shown in Figure 16. We divide the interval [0, N/2]
into 25 subintervals and average in each one of them. We take N = 10%,103,10%* and N = 10°. As
we can see, the averaged spectrum gets flatter and flatter. This illustrates Theorem 8.1.

If we keep N fixed but average over many experiments, the spectrum gets flatter as well numer-
ically, as (8.6) suggests.
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Figure 16. Plot of the averaged |f|? for N = 102,10%,10* and N = 10°.
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