
Journal of Cosmology and
Astroparticle Physics

     

PAPER

Projected-field kinetic Sunyaev-Zel'dovich Cross-
correlations: halo model and forecasts
To cite this article: Boris Bolliet et al JCAP03(2023)039

 

View the article online for updates and enhancements.

You may also like
Prospects for kSZ2–Galaxy Cross-
correlations during Reionization
Paul La Plante, Jackson Sipple and Adam
Lidz

-

The 21 cm kSZ–kSZ Bispectrum during
the Epoch of Reionization
Paul La Plante, Adam Lidz, James Aguirre
et al.

-

A Cross-internal Linear Combination
Approach to Probe the Secondary CMB
Anisotropies: Kinematic
Sunyaev–Zel’dovich Effect and CMB
Lensing
Srinivasan Raghunathan and Yuuki Omori

-

This content was downloaded from IP address 98.50.1.221 on 31/08/2023 at 01:50

https://doi.org/10.1088/1475-7516/2023/03/039
/article/10.3847/1538-4357/ac5752
/article/10.3847/1538-4357/ac5752
/article/10.3847/1538-4357/ac5752
/article/10.3847/1538-4357/aba2ed
/article/10.3847/1538-4357/aba2ed
/article/10.3847/1538-4357/ace0c6
/article/10.3847/1538-4357/ace0c6
/article/10.3847/1538-4357/ace0c6
/article/10.3847/1538-4357/ace0c6
/article/10.3847/1538-4357/ace0c6


J
C
A
P
0
3
(
2
0
2
3
)
0
3
9

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Projected-field kinetic
Sunyaev-Zel’dovich Cross-correlations:
halo model and forecasts
Boris Bolliet,a J. Colin Hill,a,b Simone Ferraro,c,d
Aleksandra Kusiaka and Alex Krolewskie,f
aDepartment of Physics, Columbia University,
New York, NY 10027, U.S.A.
bCenter for Computational Astrophysics, Flatiron Institute,
New York, NY 10010, U.S.A.
cLawrence Berkeley National Laboratory,
One Cyclotron Road, Berkeley, CA 94720, U.S.A.
dBerkeley Center for Cosmological Physics, Department of Physics,
University of California,
Berkeley, CA 94720, U.S.A.
eAMTD Fellow, Waterloo Centre for Astrophysics, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
fPerimeter Institute for Theoretical Physics,
31 Caroline St. North, Waterloo, ON NL2 2Y5, Canada
E-mail: bb3028@columbia.edu, jch2200@columbia.edu, sferraro@lbl.gov,
akk2175@columbia.edu, krolewski@berkeley.edu

Received December 18, 2022
Accepted January 25, 2023
Published March 15, 2023

Abstract. The kinetic Sunyaev-Zel’dovich (kSZ) effect, i.e., the Doppler boost of cosmic
microwave background (CMB) photons caused by their scattering off free electrons in galaxy
clusters and groups with non-zero bulk velocity, is a powerful window on baryons in the
universe. We present the first halo-model computation of the cross-power spectrum of the
“projected-field” kSZ signal with large-scale structure (LSS) tracers. We compare and validate
our calculations against previous studies, which relied on N -body-calibrated effective formulas
rather than the halo model. We forecast results for CMB maps from the Atacama Cosmology
Telescope (AdvACT), Simons Observatory (SO), and CMB-S4, and LSS survey data from the
Dark Energy Survey, the Vera C. Rubin Observatory (VRO), and Euclid. In cross-correlation
with galaxy number density, for AdvACT × unWISE we forecast an 18σ projected-field
kSZ detection using data already in hand. Combining SO CMB maps and unWISE galaxy
catalogs, we expect a 62σ detection, yielding precise measurements of the gas density profile
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radial slopes. Additionally, we forecast first detections of the kSZ — galaxy weak lensing
cross-correlation with AdvACT × VRO/Euclid (at 6σ) and of the kSZ — CMB weak lensing
cross-correlation with SO (at 16σ). Finally, ≈ 10−20% precision measurements of the shape of
the gas density profile should be possible with CMB-S4 kSZ — CMB lensing cross-correlation
without using any external datasets.
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1 Introduction

The Sunyaev-Zel’dovich (SZ) effect is the Compton scattering of cosmic microwave back-
ground (CMB) photons off electrons during cosmological expansion. When the electron
population is thermal, the effect is proportional to the electron density-weighted temperature,
i.e., the electron pressure, projected onto the line of sight (LOS) and is called the thermal
SZ (tSZ) effect. It was first predicted by [1], shortly after the discovery of the CMB [2].
In their seminal work, Zel’dovich and Sunyaev used the tSZ effect, and observational data
available at the time, to estimate the age of the universe at recombination. In a subsequent
work [3], they showed that the tSZ effect could be used as a probe of the hot, ionized gas
around galaxy clusters and groups: the intracluster medium (ICM) and the circumgalactic
medium (CGM), filled with hot electrons at temperature kBTe ≈ 1− 10 keV. In [4, 5] they
identified the kinetic component of the effect as a probe of the peculiar velocity of galaxy
clusters and groups. The kinetic SZ (kSZ) effect is the Doppler shift of the CMB spectrum
with respect to the mean CMB temperature, proportional to the electron density-weighted
bulk velocity of the gas projected onto the LOS. At lowest order in the LOS velocity, the
kSZ effect preserves the form of the blackbody spectrum, simply producing an overall shift
up or down in the photon temperature, depending on the direction of the bulk motion with
respect to the LOS.

The tSZ effect was measured for the first time nearly four decades ago at the Owens
Valley Radio Observatory [6]. Today, it is routinely used in astrophysics to learn about the
thermodynamics of the ICM and CGM [see, e.g., 7–10, for recent analyses] and the distribution
of matter in clusters [e.g., 11–13] and filaments [e.g., 14–17]. In addition, owing to the success
of recent CMB instruments in producing wide-area and high-resolution multi-frequency CMB
maps — such as Planck [18–20], the Atacama Cosmology Telescope [ACT; 21, 22] and the
South Pole Telescope [SPT; 23, 24] — the tSZ effect is becoming a competitive low-redshift
cosmological probe, via the power spectrum and bispectrum of the Compton-y field [e.g.,
25–32], tSZ cluster abundance [e.g., 33–39], and cross-correlations with galaxy and weak
lensing surveys [e.g., 40–44].

In contrast, the kSZ effect has been much more challenging to detect. Naturally, if
a cluster has a large enough peculiar LOS velocity, the kSZ effect can be significant and
detectable by targeted observations. This was achieved for the first time by [45] with Bolocam
data collected at the Caltech Submillimeter Observatory, more recently by [46] on the same
system with NIKA observations at the IRAM telescope, and lastly by [47] for several galaxy
clusters observed with Bolocam and AzTEC/ASTE. Nonetheless, in order to understand
global properties of galaxy evolution or large-scale structure (LSS) formation, it is necessary
to measure the kSZ effect averaged over a large number of objects, or over a large fraction of
the sky. This can be done using large-area maps produced by CMB telescopes. The main
challenges are that the resolution of CMB maps has only recently allowed us to probe the
small angular scales where the kSZ effect is significant compared to the primary anisotropy of
the CMB (see figure 1), and that since the kSZ effect preserves the blackbody distribution
of CMB photons, it is impossible to separate clearly from the primary CMB anisotropy in
multi-frequency power spectrum analyses. Planck did not report a constraint on the amplitude
of the kSZ power spectrum [48]. With ACT, [49] reported an upper bound, and SPT obtained
a tentative 3σ detection [50]. Subsequently, [51] reanalyzed the SPT data, incorporating
information from Planck for constraining the parameters controlling reionization, as well as
cosmology-dependent kSZ and tSZ spectra.

– 1 –
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Figure 1. The dimensionless CMB temperature angular anisotropy power spectrum, unlensed (solid
line) and lensed (dash-dotted), with the four noise curves used in our forecast analysis (section 4) as
labeled and the expected kSZ power spectrum computed in the halo model with eq. (2.24) (note that
this approximation slightly underestimates the total kSZ power spectrum, particularly on large scales).
The CMB and kSZ power spectra assume our fiducial model (subsection 2.1) and the noise curves are
computed according to specifications given in table 1.

Several alternative techniques have been proposed in order to overcome these challenges
and obtain robust measurements of the kSZ effect. They fall into four main categories:

• The mean pairwise momentum method [52] uses the fact that the averaged momentum
of cluster pairs should be negative when clusters are separated by a distance smaller
than ≈ 25− 50 Mpc, as they tend to move towards each other due to gravity [see 53,
and references therein]. This method requires high-resolution CMB maps and galaxy
surveys with accurate redshifts in order to reconstruct the distances between clusters and
groups. [54] made the first detection of the kSZ effect, applying the pairwise momentum
method to data from ACT and the Sloan Digital Sky Survey III (SDSS-III) DR9 Baryon
Oscillation Spectroscopic Survey (BOSS) [55], followed by [56] using Planck maps
and SDSS DR7, [57] with DES-Y1 and SPT at 4.2σ (using photometric rather than
spectroscopic redshifts), [58] with ACT and SDSS DR11 at 4.1σ, and [53] reaching 5.4σ
with ACT DR5 maps and SDSS DR15 catalogs. This method can also be implemented
in Fourier space — see [59] for the formalism and [60] for a first measurement.

• The velocity-weighted stacking method relies on reconstructing the velocity field from
spectroscopic galaxy surveys before stacking cut-outs of CMB maps centered at the
locations of galaxies, each weighted by their LOS velocity. The velocity weights allow
us to extract the correlations between the kSZ effect and the galaxies, while avoiding
the velocity cancellation which would occur in a naïve approach without the weights,
since the LOS velocity is as likely to be positive or negative. See [61, 62] for early
developments of the idea and [63] for a presentation of the method in its more modern
formulation. [56] and [64] applied the method using Planck maps with SDSS DR7,
and ACT maps with CMASS galaxies, respectively, detecting the kSZ effect at 3-4σ

– 2 –



J
C
A
P
0
3
(
2
0
2
3
)
0
3
9

significance.1 Recently, [65] reported a 6.5σ detection with ACT DR5 and Planck in
combination with CMASS galaxies (z ≈ 0.55, Mvir ≈ 3× 1013M�/h), and [66] obtained
a 3.5σ detection for Planck maps and the more massive WHL clusters of the SDSS
survey (z ≈ 0.25− 0.55, M500c ≈ 1014M�/h).

• The projected-field method measures the cross-correlation between the square of the kSZ
temperature anisotropy and a LSS tracer field, projected onto the 2D sphere. Here, the
velocity cancellation is avoided via the squaring operation. In contrast to the methods
described above, one challenge for the projected-field estimator is that the CMB maps
must be thoroughly cleaned of foregrounds, as there is no external information about
the LOS velocity field used to extract the kSZ signal from amongst the other signals in
the small-scale mm-wave sky. Although this method was introduced nearly two decades
ago [67, 68], there are only two reported detections of the kSZ effect making use of
it: [69] cross-correlated CMB maps constructed from Planck and WMAP data with
galaxies from the Wide-field Infrared Survey Explorer (WISE), and [70] used similar
CMB maps and the unWISE galaxy catalog [71], achieving a 5σ detection.

• The velocity reconstruction method measures the large-scale velocity modes via a
quadratic estimator applied on a CMB map combined with a galaxy catalog [e.g., 72–77].
(This is different from reconstructed velocities in the velocity-weighted stacking method.
Here, velocities are reconstructed from the kSZ effect, rather than just the galaxy
catalog.) There are no measurements with this method yet; however it is expected
to become a competitive cosmological probe. For instance, [73] forecast primordial
non-Gaussianity constraints with CMB-S4 and VRO that are three times more sensitive
than with VRO alone.

[78] proved that apart from the projected-field estimator, the other three methods are
mathematically equivalent, involving different ways of estimating the bispectrum 〈Tδgδg〉,
where T is the CMB temperature field and δg is the galaxy overdensity field. In contrast,
the projected-field estimator is a bispectrum of the form 〈TTδg〉. Measuring the former
bispectrum generally requires precise redshifts for the LSS tracers, while the latter requires
precise removal of foregrounds from the CMB map.

Each method has its specific areas of applications. For instance, the pairwise momentum
method is expected to become a unique probe of dark energy and modified gravity models [e.g.,
79–82]. Furthermore, with assumptions about the velocity field and in combination with tSZ
measurements, it allows us to constrain the relationship between clusters’ optical depth [83, 84]
and Compton-y parameters, probing the ICM/CGM thermodynamics, as was done for the
first time using kSZ measurements in [85]. With the velocity-weighted stacking method, one
can use aperture photometry in order to measure the shape of the gas density profile [65]
and its thermodynamics. Remarkably, [86] constrained the parameters of the Ostriker-Bode-
Babul (OBB) model [87] using the tSZ and kSZ measurements from [65], and found that
cosmological simulations, such as Illustris TNG [88, 89] and simulations by [90], underpredict
the CGM density and pressure at large radii.

In this paper we focus on the projected-field method for measuring the kSZ effect. We
extend the theoretical formalism developed in [67–70, 91] so that we can use the projected-field

1In fact, [56] does not use stacks, but rather they reconstruct a correlation function and use template
fitting for the kSZ detection, as proposed in [61]. The idea remains the same as in stacking analyses: use the
reconstructed velocity as a weight.
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power spectrum as a probe of the ionized gas density profile in and around massive halos.
We do so by developing a halo-model-based approach [see, e.g., 92, 93, for reviews of the
halo model].

For general reviews of the tSZ and kSZ effects and their applications to astrophysics
and cosmology, we refer to [94–96]. Nonetheless, these do not cover recent developments of
applications of the tSZ and kSZ effects to cosmology, such as: growth reconstruction [e.g.,
97]; velocity reconstruction (see above); reionization probes [e.g., 98–103]; or the cosmological
applications of the projected-field estimator that we discuss here.

The remainder of this paper is organized as follows. In the next subsections, we present
our fiducial model, e.g., fiducial cosmological and astrophysical parameter values, assumptions,
and the notation used throughout the paper (subsection 2.1). In subsection 2.2, we review key
aspects of kSZ temperature fluctuations. In subsection 2.3, we review the general formalism for
the projected-field estimator. In subsection 2.4, we review the effective approach for modeling
this signal [as in 67, 68, 91] and its numerical implementation class_sz. Section 3 is dedicated
to the halo model formulation and implementation. The halo model code class_sz is described
in subsection 3.1. Subsection 3.2–3.4 contain the main material needed for the halo model
calculations. The covariance matrix and lensing contribution are discussed in subsection 3.5
and 3.6, respectively. We present forecasts for several experimental configurations and cross-
correlations in section 4. Our main results and conclusions are summarized in section 5.
Finally, we report a number of useful halo model tools and comparisons in the appendix. In
appendix A we discuss different assumptions for the velocity dispersion. In appendix B we
present various halo model quantities and their class_sz implementation. In appendix C we
discuss in more detail some of the differences between previous studies and the new results
presented here: choice of Wiener filter in appendix C.1 and comparison with forecasts from [91]
in appendix C.2.

2 Background

2.1 Fiducial model, assumptions, and notations

We assume the homogeneous Λ Cold Dark Matter (CDM) cosmology, on a spatially flat
Friedmann-Lemaître-Robertson-Walker geometry with scale factor a. Our fiducial model
corresponds to the Planck 2018 cosmology [last column of table 1 in 104] with parameters:
Ωch

2 = 0.11933 and Ωbh
2 = 0.02242, the CDM and baryon density, respectively, where h

is the reduced Hubble parameter; ln(1010As) = 3.047 and ns = 0.9665, the amplitude and
spectral index of the primordial scalar perturbation power spectrum, defined at pivot scale
kpivot = 0.05 Mpc−1; and τreio = 0.0561, the reionization optical depth. In our fiducial model,
we consider one massive and two massless neutrino states, with total mass ∑mν = 0.06 eV
and an effective number of extra relativistic degrees of freedom Neff = 3.046 (in order to
obtain these Neff and ∑mν values, we set the parameters Nur = 2.0328 and Nncdm = 1 in
class_sz). As derived parameters, we have σ8 = 0.81 for the standard deviation of the
linear-theory matter density field smoothed over a sphere of 8 Mpc/h at z = 0, a matter
fraction Ωm = 0.311, and a baryon fraction Ωe = 0.0490, corresponding to a cosmological
baryon fraction fb ≡ Ωb/Ωm = 0.156. Furthermore, our fiducial model assumes a fully ionized
ICM, with the free electron fraction ffree = 1 (in reality, ffree is slightly smaller than unity
since some of the baryons are in the form of stars and neutral gas), and the primordial Helium
abundance YHe = 0.245.

– 4 –
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For the halo abundance, we use the [105] halo mass function computed for overdensity
masses m200c, i.e., the mass within the sphere enclosing 200 times the critical density at the
halo redshift (see appendix B.1 for details on the halo mass function). When needed, we convert
between mass definitions and compute halo concentrations using the [106] concentration-mass
relation (see appendix B.7 for details on the mass conversion). This is also our choice for
calculating the halo concentration entering the NFW profile.

The goal of this paper is to apply the halo model formalism to the projected-field kSZ
power spectrum. This involves computing cross-correlations between the kSZ effect and LSS
tracers. In this work, we shall focus on cross-correlations with three different LSS tracers:
the galaxy overdensity, δg; galaxy weak lensing convergence, κg; and CMB weak lensing
convergence, κcmb.

Each tracer depends on a specific physical property of halos. The galaxy overdensity
is based on a galaxy Halo Occupation Distribution (HOD), galaxy weak lensing and CMB
weak lensing are based on the halo mass profiles, which we parameterize with the Navarro-
Frenk-White density profile [107], while the kSZ effect is based on the electron density profile
(see appendix B.9.2). In general, a physical property of a tracer X can be written as a mass-
independent redshift-dependent kernel, which we denote WX , and a radial profile denoted
uX that depends on the halo mass. For the Fourier transform of the profile, we use the
notation ûXk .

The building blocks of halo model power spectra and bispectra are ensemble averages of
Fourier transforms of the tracers’ physical properties. To simplify our expressions, we write
the ensemble average over halo masses (at fixed redshift) of the Fourier transforms of the
tracers’ radial profiles with the equivalent notations

〈X〉n = 〈ûXk 〉n =
∫
ûXk dn =

∫ mmax

mmin
ûXk

dn
dmdm =

∫ lnmmax

lnmmin
ûXk

dn
d lnmd lnm, (2.1)

where dn/dm represents the comoving differential number density of halos per unit mass. In
class_sz, we evaluate mass integrals on a logarithmic grid, as indicated in the right hand
side (r.h.s.) of the equation. Throughout the paper, we set the mass integral bounds to
mmin = 1010M�/h and mmax = 3.5× 1015M�/h.

We write the differential number density of halos as dn/dm = d2N/(dmdv) where N is
the number of halos of mass m in comoving volume per steradian dv. The comoving volume
per steradian is related to the comoving distance χ via dv = χ2dχ, with dχ = (c/H(z))dz
where c is the speed of light, H(z) is the Hubble parameter, and z denotes redshift.

The integrals over comoving volume, i.e., the redshift integrals, are also carried out on a
logarithmic grid. In the paper, we shall use the following equivalent notations:∫

[· · ·]dv =
∫

[· · ·]χ2dχ =
∫ ln(1+zmax)

ln(1+zmin)
[· · ·]cχ

2

H
(1 + z)d ln(1 + z). (2.2)

For the redshift bounds we set zmin = 0.005 and zmax = 3. The lower bound is chosen to avoid
spurious numerical divergence at z = 0. We checked that as long as the value is small enough,
our predictions are unchanged by different zmin. The upper bound is chosen so that we do
not need to extrapolate the redshift dependence of quantities calibrated on simulations (e.g.,
the halo mass function, gas density profiles, etc.). For kSZ2 — CMB lensing cross-correlation,
although the lensing kernel peaks at z ∼ 2, we note that we are missing some contribution
from z > 3. We leave a detailed study of the high redshift contribution to future works, as it
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implies using a suited optical depth evolution and halo mass function which are outside the
scope of this paper.

To go from 3D spectra (power spectra or bispectra) to 2D angular spectra, i.e., by
projecting along the LOS, we work within the Limber approximation on the flat sky [108],
such that 3D wavenumber k is mapped to 2D angular multipole ` via

k = (`+ 1/2)/χ. (2.3)

Thus, in the paper, we often use k and ` interchangeably. We refer the reader to appendix A
of [109] for a detailed discussion on the Limber/flat-sky approximation in this context.

2.2 Kinetic SZ anisotropy

The CMB temperature fluctuation due to the kSZ effect, ΘkSZ = ∆T/T̄ where T̄ is the mean
CMB temperature, is sourced by the visibility-weighted electron velocity field projected along
the LOS. In a direction n, it can be written as

ΘkSZ(n) = −1
c

∫
dχ g(x)n · ve(x), (2.4)

where ve is the electron velocity at x = (χ,n) and g is the visibility function, i.e., the
probability of scattering within dχ, given by

g = dτ
dχe

−τ with dτ
dχ = τ̇

c
= aσTne (2.5)

where the overdot represents a derivative with respect to conformal time η =
∫

dt/a, and
where σT = 6.985 × 10−74 Mpc2 is the Thomson scattering cross-section.2 We express the
electron number density along the LOS as

ne = ρgas,free
muµe

with ρgas,free = ffreeρgas := ρe (2.6)

where mu is the atomic mass unit and µe = (1 − YHe/2)−1 ' 1.14 is the mean molecular
weight per electron.3 We emphasize that in this expression, the free electron fraction ffree
represents the fraction of the gas that is fully ionized — for instance, this excludes stars. For
galaxy clusters, we assume τ � 1 [e.g., 83, 84] and e−τ ≈ 1 throughout the paper. In eq. (2.6)
the homogeneous part of electron density is given by (assuming ρ̄gas = ρ̄b)

ρ̄e = ffreeρ̄b = ffreeΩbρcrit,0(1 + z)3 = ffreefbρm,0(1 + z)3 (2.7)

where fb = Ωb/Ωm is the baryon fraction.
Since the visibility function is proportional to the baryon density, inhomogeneities of the

baryon density field are associated with inhomogeneities of the visibility function. At leading
order, we have

g = ḡ + δg with δg = ḡ

fbffree
δe and δe = δρe

ρm
, (2.8)

2In terms of coordinate (or cosmological) time t, the optical depth definition is simply dτ = cσTnedt.
3This expression is valid at z . 3, when the gas is fully ionized, that is when Helium is doubly ionized [see 110,

and references therein]. For a gas of Hydrogen and Helium, the general expression is µ−1
e = (yH

1
1XH +yHe

2
4YHe),

with yH and yHe the ionization fraction of Hydrogen and Helium, and XH = 1 − YHe the Hydrogen mass
fraction. Assuming fully ionized gas, we then set yH = yHe = 1.

– 6 –
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where ḡ is the homogeneous part of the visibility function computed with eq. (2.5) using ρ̄e in
eq. (2.6), and δg is the fluctuation caused by inhomogeneities of the electron density. Note
the here, we do not consider fluctuations caused by patchy reionization, as we focus on the
LSS formation era at lower redshift.

In eq. (2.8) we wrote our definition of the electron density perturbation with respect to
the mean matter density. With this convention, the power spectrum Pδeδe vanishes for ρe → 0.
Moreover, with ρe = fbffreeρm, we have Pδeδe ∼ (fbffree)2PL (on large scales).

Plugging eq. (2.8) into eq. (2.4), we can rewrite the temperature fluctuation as

ΘkSZ(n) = −1
c

∫
dχ ḡ(χ)n · ṽe(x) with ṽe(x) = ve(x) + 1

fbffree
δe(x)ve(x). (2.9)

In Fourier space, the velocity field ṽe is

ˆ̃ve(k) = v̂e(k) + 1
fbffree

∫ d3k′

(2π)3 δ̂e(|k − k′|)v̂e(k′). (2.10)

The second term on the r.h.s. is the velocity field modulated by the density perturbation.
Note that since ve is a first-order quantity, this term is second order in perturbations. Let us
introduce the longitudinal and transverse components of the velocity field in Fourier space,
with respect to the mode k = kk:

ˆ̃ve = ˆ̃v||e + ˆ̃v⊥e with ˆ̃v||e = (ˆ̃ve · k)k and ˆ̃v⊥e = ˆ̃ve − (ˆ̃ve · k)k (2.11)

We note that in standard cosmological perturbation theory, the vortical components of the
matter velocity field can be neglected, hence we can assume that ve is longitudinal, i.e.,
v̂e(k) = v̂e(k)k [this is valid to all orders in perturbation, see, e.g., 111]. Then the longitudinal
component is

ˆ̃v||e (k) = v̂e(k) + 1
fbffree

∫ d3k′

(2π)3 δ̂e(|k − k′|)v̂e(k′)µ, with µ = k′ · k. (2.12)

For the transverse component, we get

ˆ̃v⊥e = 1
fbffree

∫ d3k′

(2π)3 δ̂e(|k − k′|)v̂e(k′)(k′ − µk). (2.13)

Thus, at leading order, the total velocity field is purely longitudinal, with amplitude (in linear
theory):

v̂e(k) = −iaHfδ̂m(k)/k with f = d lnD
d ln a (2.14)

the growth rate and where D is the growth factor [e.g., 111].
Next, there is a second-order contribution of the form δv (the last term in eq. (2.12)).

The transverse component ˆ̃v⊥e is purely of the form δv, i.e., a second-order quantity. The
longitudinal component ˆ̃v||e cannot contribute to the kSZ anisotropy at small scales, because of
the cancellation of crests and troughs when projected along the line of sight [e.g., 112].4 There-
fore, at leading order in perturbations, the kSZ effect vanishes for small inhomogenieties [114].

4At large angular scales, the cancellation is not complete and both the linear Doppler term ∝ ve (leading
order) and the density-weighted term ∝ δeve (next order) of ˆ̃v||e contribute to the temperature anisotropy. We
refer to [113] for a derivation of the large-scale anisotropy from longitudinal modes during reionization.
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Hence, the kSZ anisotropy, on small scales, is generated by the transverse, second-order term,
ˆ̃v⊥e . (Schematically, n · ˆ̃ve ≈ n · ˆ̃v⊥e for small inhomogeneities.) Then, when δe is in the
linear regime, the kSZ anisotropy is called the Ostriker-Vishniac (OV) effect [115, 116]. The
large-scale kSZ anisotropy from the linear Doppler effect and the OV effect are important
during reionization. They are not of direct interest here, since we focus on the anisotropy
generated in collapsed regions of the density field (halos) where δe is non-linear, i.e., the
kSZ effect from large-scale structure. Nonetheless, to understand how different terms and
scales play out, even in the non-linear regime, it is instructive to review the main aspects of
the OV power spectrum calculation — see [117, 118], and [119] or appendix B of [113] for a
thorough derivation.

The key quantity to evaluate is the 3D power spectrum of the transverse component
(i.e., the curl) of the density-modulated velocity field, P⊥, defined via

〈ˆ̃v⊥e (k)ˆ̃v⊥e (k′)∗〉 = (2π)3P⊥(k, χ)δD(k′ − k) (2.15)

where δD is the Dirac delta function. Once this is known, the angular anisotropy power
spectrum of the kSZ effect can be written as

CkSZ
` = 1

2c2

∫
dχ ḡ

2

χ2P⊥(k, χ) with k = (`+ 1/2)/χ, (2.16)

where the pre-factor 1/2 comes from the projection along the LOS [see, e.g., 112, 119, for the
derivation of the pre-factor]. Schematically, P⊥ has three terms since

〈δvδv〉 ∼ 〈δδ〉〈vv〉+ 〈δv〉〈δv〉+ 〈δvδv〉c. (2.17)

The last term is the connected term, expected to be subdominant [see 118, 120, 121], and is
neglected hereafter. The first and second terms can be evaluated straightforwardly, yielding

P⊥(k, χ) = 1
(2πfbffree)2

∫
dk′k′2

∫
dµ(1− µ2)

×
[
Pδeδe(|k − k′|)Pveve(k′)−

k′

|k − k′|
Pδeve(|k − k′|)Pδeve(k′)

]
(2.18)

where we used the definitions

〈δ̂e(k)δ̂e(k′)〉 = (2π)3PδeδeδD(k + k′) and 〈δ̂e(k)v̂e(k′)〉 = (2π)3PδeveδD(k + k′). (2.19)

With the velocity from linear perturbation theory (eq. (2.14)), we can further simplify
eq. (2.18), since

Pveve(k) = (aHf/k)2Pδmδm(k) and Pδeve(k) = (aHf/k)Pδeδm(k) . (2.20)

The final expression reads

POV
⊥ (k, χ) = (aHf)2

(2πfbffree)2

∫
dk′

∫
dµ(1−µ2)Pδeδe(|k−k′|)Pδeδe(k′)

k(k − 2k′µ)
k2 + k′2 − 2kk′µ , (2.21)

which is the well-known OV approximation of eq. (2.18).
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Let us now turn to the non-linear regime. First, we define the volume-averaged velocity
dispersion

σ2
v(χ) ≡ v2

rms(χ)
3c2 with v2

rms(χ) = 1
2π2

∫
dk k2Pveve (k, χ) . (2.22)

In the high-k (non-linear) regime, we can drop terms of O(k′/k) in eq. (2.18), including
Pδeve [e.g., 117, 118, 120]. Hence, Pδeδe(|k − k′|) ≈ Pδeδe(k) and the integral over µ can be
carried out (yielding a factor 4/3). One finds

P high−k
⊥ (k, χ) = 2

3
(vrms/c)2

(fbffree)2Pδeδe(k, χ) = 2σ2
v

(fbffree)2Pδeδe(k, χ) (2.23)

so that in this regime, the angular anisotropy power spectrum reads

CkSZ, high−k
` =

∫
dvW kSZ(χ)2Pδeδe (k, χ) with W kSZ(χ) = aσTρ̄mσv

mµµeχ2 . (2.24)

In the equation above, the (fbffree)2 factor of eq. (2.23) is canceled by the same factor that
appears in ḡ. In order to evaluate the velocity dispersion σv, we can use the linear theory
ansatz for Pveve (see eq. (2.20)) and assume Pδeδe ≈ (fbffree)2Pδmδm , where Pδmδm is the
matter power spectrum. Here, the matter power spectrum can either be the linear matter
power spectrum PL or the non-linear matter power spectrum PNL from halofit [122, 123] or
hmcode [124, 125]. See appendix A and figure 15 for a comparison of these different choices.
Meanwhile, the electron power spectrum Pδeδe that appears explicitly in eq. (2.24) is computed
using the halo model (see appendix B.9.2).

2.3 Projected-field kSZ estimator

Consider a large-scale structure tracer X that does not depend linearly on the velocity field.
For instance, in this paper, we shall work with the galaxy number density X = δg, galaxy
weak lensing convergence X = κg, and CMB lensing convergence X = κcmb. Since the kSZ
anisotropy is proportional to the bulk velocity of the electrons, the cross-correlation 〈XΘkSZ〉
vanishes (at first order) simply due to sign cancellation because of the isotropy of the velocity
field: collapsed regions are as likely to be in a “positive” or “negative” bulk motion with
respect to the LOS.

To probe such correlations, we can resort to higher-order statistics [e.g., 126]. [67]
proposed to work with a three-point statistic: two kSZ points, so that the statistic is even in
the velocity, and one point in X. They introduced a collapsed three-point function, that is,
the cross-correlation between the squared kSZ field and X. This condenses the information of
the full bispectrum into an angular power spectrum that is arguably more easily measurable,
the so-called projected-field kSZ power spectrum denoted CkSZ2X

` .
In practice, the projected-field kSZ power spectrum is measured by squaring a CMB

temperature map in real space before cross-correlating it with a map of tracer X in harmonic
space. Furthermore, in order to maximize the contribution from arcminute scales where
the kSZ effect is more significant, the temperature map is Wiener-filtered in harmonic
space beforehand:

Θf (`) ≡ Θ(`) with w(`) = b(`)F (`) where F (`) ≡

√
CkSZ
` /Ctot

`

max
(√

CkSZ
` /Ctot

`

) (2.25)
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Figure 2. (Left:) The Wiener filter of eq. (2.25). (Right:) The product of the filter and beam (see
eq. (2.27)). We use the specifications of table 1 (see also section 4) and our fiducial model to compute
these filters. Except for Planck that has `max = 3000, we use `max = 8000 for all other filters. (See
footnote 5 for the high-` taper.)

is our ansatz for the optimal filter.5 This filter choice differs from previous works [e.g.
69, 70, 91] which did not use a square root — we explain this difference in appendix C.1,
justifying why it is more optimal. In eq. (2.25), Θf is the temperature anisotropy of the
filtered CMB map, Θ is the temperature anisotropy of the unfiltered CMB map, CkSZ

` is
the power spectrum of the kSZ effect which we compute according to eq. (2.24) within our
fiducial model, and Ctot

` is the angular power spectrum of the map, which in principle contains
contributions from the lensed primary CMB, ISW, the kSZ anisotropy (from both reionization
and galaxy clusters), as well as all residual foregrounds (e.g., tSZ and CIB), and instrumental
and atmospheric noise. In this paper, we compute Ctot

` as a sum of the lensed CMB power
spectrum from class/class_sz (with our fiducial parameters), the kSZ power spectrum, and
the noise curves for a given CMB experiment, e.g., Planck, AdvACT, SO, or CMB-S4, namely:

Ctot
` = CΘΘ,lensed

` + CkSZ
` +NΘΘ

` . (2.26)

In filtering operation, to mitigate divergences due to large noise at small scales, we also
include a Gaussian beam window function:

b(`) = exp
{
−1

2`(`+ 1)θ
2
FWHM
8 ln 2

}
(2.27)

where θFWHM is the full width at half maximum (FWHM) of the telescope’s beam in radians
(in terms of the analysis, it is equivalent to leaving the beam in the observed CMB temperature
map when computing the power spectra). The experimental configurations considered in this
analysis are specified in table 1.

Then, in harmonic space (where the real space product becomes a convolution) the
projected-field power spectrum estimator dubbed C̄kSZ2X

` is defined via

〈Θ2
f (`′)X(`)〉 =

∫ d2`′′

(2π)2 〈Θf (`′′)Θf (`′ − `′′)X(`)〉 = (2π)2δD(` + `′)C̄kSZ2X
` . (2.28)

5Note that in practice we also use a taper in the filter definition, i.e., we multiply by T (`, `max,∆`) =
1
2

[
1− tanh

(
`−`max

∆`

)]
to regularize the transition to zero (we use ∆` = 50 throughout, see table 1 for the `max

values used in the filters).
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Let us now make the connection between the projected-field kSZ power spectrum and
the kSZ anisotropy. As we saw in the previous subsection, the kSZ anisotropy is sourced
by the velocity field ve projected along the LOS. Moreover, we saw that only transverse
modes contribute to the kSZ effect in the high-k regime. Thus, it is natural to introduce the
three-point function

〈ˆ̃v⊥e (k)ˆ̃v⊥e (k′)X̂(k′′)〉 = (2π)3δD(k + k′ + k′′)Cv2
eX

(k,k′,k′′), (2.29)

where Cv2
eX

is the analogue of P⊥ (see eq. (2.15)). Since ˆ̃v⊥e ∼ δv, it is a contraction of the
five-point function that can be schematically written as

〈δvδvδX〉 ∼ 〈δδ〉〈vvδX〉+ 〈δv〉〈δvδX〉+ 〈vv〉〈δδδX〉+ · · ·+ 〈δvδvδX〉c, (2.30)

where the last term is the connected term and where δX denotes the perturbation for the
tracer X. [67] only took into account the third term in this expansion. [68] studied the relative
importance of each of these terms (see their figure 1), following a similar approach as [118]
did for the power spectrum, and concluded that the [67] approach was a good approximation.
Its validity was further confirmed by comparison to numerical simulations in [69] and [91].
Here, we shall work with the same approximation, namely, Cv2

eX
≈ 〈vv〉〈δδδX〉, so that (as in

eq. (2.23)):

Cv2
eX
≈ 2σ2

v

(fbffree)2BδeδeX (2.31)

where σ2
v is the velocity dispersion defined in eq. (2.22) and BδeδeX is the hybrid bispectrum

of baryon density perturbations and X [67]. Assuming temporarily Θ = ΘkSZ and combining
eqs. (2.31), (2.29), and (2.28), we can write the projected-field kSZ power spectrum as

CkSZ2X
` =

∫
dvW kSZ(χ)2WX(χ)T (`, χ) with T (`, χ)

=
∫ d2`′

(2π)2w(`′)w(
∣∣` + `′

∣∣)BδeδeX(k1,k2,k3) (2.32)

with wavenumbers k1χ = `′, k2χ = −(` + `′), k3χ = ` such that k1 + k2 + k3 = ~0, where
WX(χ) is the projection kernel of the tracer X, and W kSZ(χ) is the projection kernel of the
kSZ effect defined in eq. (2.24). Here, T (`, χ) is the so-called triangle power spectrum: it is a
sum over all triangle configurations with sides (`, `′,−`− `′) in planes perpendicular to the
LOS, at constant redshift [67].

The remaining task is to find an expression for the hybrid bispectrum. With this aim, in
the next subsection we revisit the approach that was adopted in previous works [67–70, 91],
and in section 3 we present our newly developed halo model.

2.4 Effective approach

The task of finding an expression for the hybrid bispectrum BδeδeX can be simplified signifi-
cantly under some assumptions. First, if the baryons are assumed to perfectly trace the dark
matter density field, we can write δe = fbffreeδm. Second, if the tracer X is also a tracer of
the density field, we have δX = bXδm, where bX is the bias of X. For instance, for the galaxy
density field bX is the galaxy bias, while for CMB or galaxy weak lensing bX = 1. With these
two assumptions, the hybrid bispectrum reduces to BδeδeX = bX(fbffree)2Bm, where Bm is
the matter bispectrum.
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ΘFWHM ∆T

(arcmin) (µK-arcmin) `max fsky
Planck 5 47 3000 0.6
AdvACT 1.5 20 8000 0.3

SO and CMB-S4 1.4 ILC 8000 0.4

Table 1. Specifications of the CMB experiments (Planck, AdvACT, SO, and CMB-S4) used in the
forecast analysis. ΘFWHM denotes the full width at half maximum (FWHM) of the telescope beam,
`max is the multipole that determines the transition to zero of the Wiener filter (see eq. (2.25)), and
fsky denotes the sky fraction after relevant masks have been applied to the surveyed CMB sky area.
See section 4 for further details.

In analogy with the calculation of the kSZ power spectrum in the high-k regime, where
the baryon density power spectrum can by approximated with the non-linear matter power
spectrum calibrated on N -body simulations, [67] and [68] used a non-linear matter bispectrum
fitting formula from [127]. Similarly, [69, 70, 91] used the fit from [128], which improves
upon [127] while keeping the same functional form. These bispectrum fitting functions are
based on the expression of the tree-level matter bispectrum in Eulerian perturbation theory,
for an Einstein de-Sitter Universe [129]

BTL(k1, k2, k3) = 2F2(k1, k2, k3)PL(k1)PL(k2) + 2 cyc. (2.33)

where we did not write explicitly the permutations between modes and where the F2 kernel is
given by [129, 130]6

F2(k1, k2, k3) = F2(k1,k2) = 5
7 + 1

2 cos θ12

(
k1
k2

+ k2
k1

)
+ 2

7(cos θ12)2

with cos θ12 = k1 · k2
k1k2

= k2
3 − k2

2 − k2
1

2k1k2
. (2.34)

(This is the expression as implemented in class_sz, which takes the three wavenumber moduli
as an input.) The [128] bispectrum fitting formula has the same form as eq. (2.33), except
that the linear matter power spectrum is replaced by its non-linear counterpart and that it
includes extra scale- and redshift-dependent coefficients in front of the terms in the expression
of the F2 kernel. There are nine parameters that control the scale and redshift dependence of
those coefficients, whose values are found by fitting the data from N -body simulations. Thus,
the non-linear matter bispectrum is written as

BNL
eff (k1, k2, k3) = 2F eff

2 (k1, k2, k3)PNL(k1)PNL(k2) + 2 cyc. (2.35)

See eqs. 2.6-2.12 of [128] for the expression of the effective kernel F eff
2 , as well as the values of

the fitting parameters.
The non-linear matter bispectrum computed with the [128] and [127] fitting formulas

are plotted in the top panels of figure 3. The main difference between these formulas is
that the [128] formula corrects the unphysical oscillations associated with the BAOs in the
power spectrum which are visible in the [127] prediction [see, e.g., 128, for details]. On
large scales, both formulas match with the tree-level bispectrum of eq. (2.33). Note that

6See chapter 12 of [111] for a presentation of second-order cosmological perturbation theory and [131] for
further details.
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the [128] formula is calibrated on a fairly restricted k- and z-range compared to what may be
needed for kSZ applications, namely: 0.03h/Mpc ≤ k ≤ 0.4h/Mpc, and 0 ≤ z ≤ 1.5. Recent
matter bispectrum fitting formulas have been derived by [132] on a broader k- and z-range
(k . 3h/Mpc and z < 3) but we do not discuss them here as they have not been used in the
context of the kSZ effect.

In what we shall refer to as the effective approach projected-field kSZ power spectrum
hereafter, the hybrid bispectrum in eq. (2.32) is approximated by bXf2

bf
2
freeB

NL
eff of eq. (2.35).

While the numerical evaluation of eq. (2.35) is fast and straightforward, the computation of
CkSZ2X
` is more involved and takes several minutes on a laptop. In class_sz, the computation

is parallelized with respect to multipoles `. Then, at each ` we tabulate the redshift integrals

I`(`′, θ) =
∫

dvW kSZ(χ)2WX(χ)bXf2
bf

2
freeB

NL
eff (`′/χ,

∣∣` + `′
∣∣ /χ, `/χ) (2.36)

on a 2D grid spanned by ln `′ and the polar angle θ = ( ˆ`, `′). Note that the dependence
on θ arises from the modulus |` + `′| that appears in the bispectrum (since |` + `′|2 =
`2 + `′2 + 2``′ cos θ). Then we integrate over ln `′ at fixed θ, and eventually over θ, i.e.,

CkSZ2X
` = 1

2π2

∫ π

0
dθ
∫

d ln `′`′2w(`′)w(
∣∣` + `′

∣∣)I`(`′, θ), (2.37)

where we used the fact that I`(`′, θ) = I`(`′,−θ) to integrate only over half the polar plane.
Note that in principle, the computation could be made faster using Fast Fourier Transform
methods as in section 3. See also subsection 3.3 of [67] for an approximation that requires only
the radial integration, similar to the high-k approximation of the kSZ auto power spectrum
(see below eq. (2.22)).

We validate the class_sz implementation of the effective approach against the code
used in [69, 70, 91] by comparing the predictions of both codes, in two cases. For both cases
(Planck × WISE and AdvACT × WISE), the codes agree within ≈ 10% (see appendix C.2
and figure 21). For the experimental configurations and cross-correlations of interest here, we
show the effective approach projected-field kSZ power spectrum in figures 5, 6, and 7 as the
thick dashed lines.

The main limitations of the effective approach are its range of validity and its range of
applications. It is well established that the gas in the ICM and CGM does not follow the
underlying dark matter density profile [e.g., 65], because of energetic feedback mechanisms or
clusters’ formation history. Therefore, the assumption δe = fbffreeδm is not a valid assumption
in the high-k regime, within halos. In addition, due to that same assumption, the effective
approach does not enable us to probe the scale dependence of the gas density profile. By
relaxing this assumption and using physical models for the gas distribution, the halo model
allows us to overcome these limitations.

3 Halo model

In this section we describe the halo model approach. In subsection 3.2 we use the halo
model [e.g., 92, 93, 133–135] to estimate the hybrid bispectrum BδeδeX (eq. (2.32)) and
describe our two gas density profile parameterization choices. In subsection 3.4 we explain how
to compute the projected-field kSZ power spectrum with the halo model hybrid bispectrum.
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Figure 3. Matter bispectrum (top row) and hybrid bispectrum (cross-correlation with galaxy number
density, bottom three rows) for Equilateral (λ = λ′ = 1), Squeezed (λ = 1, λ′ = 0.1) and Flattened
(λ = λ′ = 0.5) configurations, from left to right, at z = 1. The halo model contributions are shown
as the thin solid (1h), dashed (2h), and dotted (3h) lines, and their sum is shown as the red, thick
line. We use our fiducial halo model and cosmology settings (see subsection 2.1). The fitting formula
predictions for the matter bispectrum [128] and the corresponding effective approach hybrid bispectrum
predictions are the thick grey lines. The second and third rows show the hybrid bispectrum when
the gas follows the NFW or the AGN Feedback model, respectively. The fourth row is with the AGN
Feedback model, where the second order bias is artificially set to zero. The galaxy HOD parameters
are given below eq. (B.28).
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Figure 4. Left: The mass of the gas (baryons) enclosed within a radius r = xr200c for three different
profile shapes. NFW is the standard NFW formula, while Adiabatic and AGN are the models of
table 2. The halo has a mass m200c = 3.3× 1013 M� and is at z = 0.55. The vertical lines indicate
the truncation radius for the Adiabatic and AGN profiles. They are such that the enclosed mass is
m200c. The horizontal line indicates the gas mass of the halo, namely fb × 3.3M� ' 3.5× 1012 M�/h.
Right: Same as left but showing the scaled gas density. The critical density of the denominator of the
y-axis label is evaluated at redshift z. The shaded area under the curves indicate the region below the
truncation radius (vertical lines in the left plot). Other cosmological and halo model settings are set
to our fiducial model (see section 2.1).

3.1 The halo model code: class_sz

Along with this paper, we release version v1 of the halo model code class_sz.7 The code is
written in C and was originally developed by [30], specifically for the calculation of the thermal
SZ power spectrum within the halo model and based on the Fortran code szfastdks [136, 137].
We have extended it to enable the calculation of power spectra and bispectra of most LSS
tracers, including galaxy number density, galaxy weak lensing, CMB weak lensing, the cosmic
infrared background (CIB), and the kSZ effect.

Version v1 of class_sz is built onto version v2.9.4 of the class code8 [138, 139].
This approach has two main advantages. First, with class_sz, one can compute all the
quantities available in class such as the CMB temperature and polarization anisotropy power
spectra or the matter power spectrum. Second, this makes most of the halo model quantities
in class_sz computable within all the cosmological models implemented in class. The
class_sz code performs fast and accurate evaluations of the redshift and mass integrals (see
eq. (2.1) and (2.2) hereafter) in the halo model using an adaptive Patterson scheme [140]
imported from CosmoTherm [141]. Where possible, the code’s outputs have been checked with
other halo-model codes, including ccl [142], yxg [8], hmvec [78], and HaloGen [143]. Compared
to other halo model codes, class_sz has the unique property of full integration with class
and follows the same computational strategy as class for the halo model quantities.

The class_sz code computes power spectra P (k), bispectra B(k, k′, k′′), and angular
power spectra C` within the Limber approximation (see eq. (2.3)) on the flat sky. These
calculations are parallelized in a similar way as the transfer function calculations in the
original class code. In particular, each k- or `-mode of a given power spectrum or bispectrum,
which requires its own redshift and mass integral, is computed by a single thread. Hence,
the evaluation time of a typical calculation will generally benefit from setting the OpenMP

7https://github.com/borisbolliet/class_sz/releases/tag/v1.0.0.
8https://github.com/lesgourg/class_public/releases/tag/v2.9.4.
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environment variable OMP_NUM_THREADS to the highest possible value given the computing
platform architecture.9 Quantities that are common to most k- and `-mode integrands, and
which are computationally expensive, are pre-tabulated outside of the main parallel block.
The tabulations themselves are parallelized, e.g., over a redshift and mass grid, when possible.

The code borrows special functions and an integrator for oscillatory functions from
gsl [144], interpolation and root finding routines from J. Burkardt’s scientific library,10

and the FFTLog algorithm [145] as implemented by A. Slosar.11 Hence, in addition to the
dependencies of the class code, class_sz requires gsl and FFTW3 [146], properly installed
and linked.

The python wrapper classy_sz can be called within any Python code. In particular,
classy_sz is easily interfaced with Markov Chain Monte Carlo (MCMC) samplers such as
MontePython [147, 148] and Cobaya [149] for Bayesian inference, as well as machine learning
packages such as CosmoPower [150].

3.2 Halo model for the hybrid bispectrum

The hybrid bispectrum, introduced in eq. (2.31)–(2.32), is defined by

〈δe(k1)δe(k2)X(k3)〉 = (2π)3δD(k1 + k2 + k3)BδeδeX(k1, k2, k3), (3.1)

where δe is the electron density perturbation and X is to be understood as the perturbation
in the tracer field. In the halo model, the hybrid bispectrum is the sum of three terms

BδeδeX = B1h
δeδeX +B2h

δeδeX +B3h
δeδeX , (3.2)

where the one-halo (1h) term corresponds to three points within the same halo, the two-halo
term (2h) to three points within two halos, and the three-halo term (3h) to three points in
three distinct halos (see, e.g., [135, 151–154] for further details on halo model bispectra and
specifically [155] for CMB secondary anisotropy bispectra). Then, each term is expressed in
terms of ensemble averages over halos as (at a given redshift/comoving distance):

B1h
δeδeX =

∫
dn1û

e
k1(m1)ûe

k2(m1)ûXk3(m1) (3.3)

B2h
δeδeX =

∫
dn1b

(1)(m1)ûe
k1(m1)ûe

k2(m1)
∫

dn2b
(1)(m2)ûXk3(m2)PL(k3) + perms (3.4)

B3h
δeδeX = 2

∫
dn1b

(1)(m1)ûe
k1(m1)PL(k1)

∫
dn2b

(1)(m2)ûe
k2(m2)PL(k2)

×
∫

dn3b
(1)(m3)ûXk3(m3)F2(k1, k2, k3)

+
∫

dn1b
(1)(m1)ûe

k1(m1)PL(k1)
∫

dn2b
(1)(m2)ûe

k2(m2)PL(k2)

×
∫

dn3b
(2)(m3)ûXk3(m3) + perms (3.5)

where we did not write explicitly the permutations (see appendix B.4 for details) and where
F2 is the kernel defined in eq. (2.34) for the tree-level bispectrum. Here, ûe

k(m) is the Fourier
9On an 8-core MacBook Pro, this value would be 16 since there are two computing threads available per core.

On the Haswell nodes on NERSC, the value would be 64 since each node has 32 cores with two threads each.
10https://people.math.sc.edu/Burkardt/index.html.
11https://github.com/slosar/FFTLog.
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AGN feedback Adiabatic
p A0 Am Az A0 Am Az

C 4× 103 0.29 −0.66 1.9× 104 0.09 −0.95
α 0.88 −0.03 0.19 0.70 −0.017 0.27
β 3.83 0.04 −0.025 4.43 0.005 0.037

Table 2. Best-fit values of the parameters of the generalized NFW gas density profile formula
fit to simulations from [83]. Adiabatic corresponds to simulations whose sub-grid model has only
gravitational heating. AGN feedback corresponds to a sub-grid model with radiative cooling, star
formation, supernova feedback, cosmic rays, and AGN feedback. The gas density profile is computed
using these parameters in eq. (3.7). [See 83, for details.].

transform of the gas density profile (divided by ρm,0, see below) and ûXk (m) is the Fourier
transform of the radial profile of X, e.g., the mass profile for weak lensing fields, or the galaxy
HOD for galaxy density.

With δe = X = δm, this formula reduces to the halo model matter bispectrum [see, e.g.,
section IV.A of 154], which we plot in figure 3 (top row). We refer to [156] and [157] for a
discussion on the accuracy of the halo model expressions and possible extensions.

3.3 Gas density profile

For the gas density profile, ρgas,free, we consider two parameterizations. First, the NFW
formula [107] rescaled by the baryon fraction fb, i.e.,

ρgas,free(r) = fbffreeρNFW(r) (3.6)

where ρNFW(r) is the usual NFW profile (see appendix B.9 for details). Second, a generalized
NFW (gNFW) formula, following [83]:

ρgas,free(r) = fbffreeρcrit(z)C
(

r

xcr200c

)γ [
1 +

(
r

xcr200c

)α]−β+γ
α

, (3.7)

where r200c is the characteristic radius associated with the overdensity mass m200c (see
eq. (B.22)), with xc = 0.5 and γ = −0.2 kept fixed throughout the paper and with mass and
redshift dependent parameters C,α, β, γ, such that

p = A0

(
m200c

1014M�

)Am
(1 + z)Az for p ∈ {C,α, β, γ}. (3.8)

For A0, Am, Az we use the best-fit values from [83] reported in table 2, corresponding to either
the AGN feedback model (that is our fiducial assumption) or the Adiabatic model. Note that
the NFW profile is a subcase of the gNFW formula, when parameters are set to xc = 1/c200c,
γ = −1, α = 1, β = 3, and C = ρs/ρcrit(z), where c200c is the concentration computed with
the [106] relation and ρs is the normalization of the NFW profile defined in eq. (B.23). With
this, we compute the Fourier transforms entering eqs. (3.3)–(3.5) as

ûe
k = 4π

∫ ∞
0

drr2j0(kr)H(rcut − r)ue(r) with j0(x) = sin(x)
x

and ue(r) = ρgas,free(r)
ρm,0

,

(3.9)
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where H is the Heaviside step function (which truncates the profile at rcut) and where we
used the fact that the profiles are radially symmetric to write the Fourier transform as a
Hankel transform. In general, it is necessary to truncate the density profiles because their
volume integrals do not converge or may have support at unphysically large radii. For the
NFW profile, we set the truncation radius to rcut = r200c. For the gNFW profile we require
rcut to be such that the enclosed gas mass is the same as in the NFW case, i.e., fbm200c. We
then find rcut numerically with Brent’s method [158], solving

F (rout;m200c, z) = 0 with F (rout;m200c, z) = 4π
∫ rcut

0
drr2ρgas(r;m200c, z)− fbm200c,

(3.10)
where we wrote the mass and redshift dependence explicitly to emphasize the fact that this
operation is done at each mass and redshift. The left panel of figure 4 illustrates the method.
It shows the enclosed gas mass as a function of radius (in units of r200c). The horizontal line
indicates the gas mass of the halo, namely fb × 3.3M�. By definition, it intersects the NFW
curve at r200c, i.e., x = 1. The blue and red vertical lines represent the truncation radii as
obtained by solving eq. (3.10), and consistently intersect the Adiabiatic and AGN curves at
fb × 3.3M�. The right panel of figure 4 compares the NFW, Adiabatic and AGN profiles
(rescaled by x2/fbρcrit). The area below each curve (which is proportional to the mass) is
colored for x corresponding to r < rcut.

We note that halo models based on the [83] gas density profile parameterization have
been used in multiple previous analyses [e.g., 73, 76, 78, 159], which computed Fourier and
harmonic space two-point functions. In principle, our results could be checked against these
studies. One notable difference is that previous works often truncate the gas density profile
at r200c, and rescale its amplitude by a factor such that the enclosed mass is m200c. We argue
that our truncation method is more consistent, as it preserves the total gas mass but does
not alter the density as a function of radius.

In figure 3, we show the matter hybrid bispectrum for kSZ2 × δg cross-correlation at
z = 1 computed according to the different approaches discussed above. We show three different
triangle configurations, parameterized via (k, k′, k′′) = (k, λk, λ′k), with λ = λ′ = 1 for the
Equilateral configuration, λ = 1, λ′ = 0.1 for the Squeezed configuration and λ = 0.5, λ′ = 0.5
for the Flattened configuration. For the hybrid bispectrum, we show the dimensionless
combinations bg(z)W kSZ(χ)2f2

bf
2
freeBTL for the Tree-Level line, bg(z)W kSZ(χ)2f2

bf
2
freeB

NL
eff for

the effective approach lines (where bg(z) is given in eq. (B.29)), and W kSZ(χ)2Bih
δeδeδg

with
i = 1, 2, 3 for the halo-model lines (see eq. (3.3)–(3.5)).

3.4 The projected-field kSZ power spectrum and its numerical implementation

To compute the projected-field kSZ power spectrum with the halo model, we use eq. (2.32)
where we replace BδeδeX by the halo model hybrid bispectrum discussed in the previous
section. The three terms of the halo model hybrid bispectrum (see eq. (3.3)–(3.5)) yield three
terms for the projected-field kSZ power spectrum, which we can write as

CkSZ2X
` = CkSZ2X,1h

` + CkSZ2X,2h
` + CkSZ2X,3h

` . (3.11)

At this point, we know how to compute the halo model projected-field kSZ power spectrum.
The challenge is to find an efficient numerical implementation. The most straightforward
option is to carry out the multiple integrals one after the other, as we described for the
effective approach implementation (see subsection 2.4). The difference is that the halo model
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Figure 5. (Galaxy density) Projected-field kSZ power spectrum in cross-correlation with galaxies,
assuming our fiducial model (see section 2.1). The halo model predictions (section 3) are the thick
red lines and thin dashed and dotted lines. The top row shows the three different profiles, i.e., NFW,
Adiabatic, and AGN Feedback (see table 2 and eq. (3.7)) assuming a Planck CMB map and the bottom
row shows the same but assuming an AdvACT CMB map (see table 1). The effective approach
predictions (subsection 2.4) are the grey dashed lines — they do not change from column to column.
Furthermore, they are multiplied by the redshift dependent bias bg(z) of eq. (B.29). The galaxy HOD
parameters are for an unWISE-like catalogue and are given below eq. (B.29). The overall signal is
much larger in the bottom row because the AdvACT filter preserves much more of the small-scale kSZ
signal than that of Planck (see figure 2).

hybrid bispectrum requires integration over halo mass. Hence for the one-halo term, we need
to compute a four-dimensional integral (over redshift, ln `′, θ and m1), for the two-halo term
a five-dimensional integral (same as one-halo, plus m2 integral) and for the three-halo term a
six-dimensional integral (same as for the two-halo term, plus m3 integral). This is numerically
tractable, however the computation is time-consuming, taking ∼ O(103s) on a laptop.

Fortunately, there exists a way to accelerate the computation because the halo model
enables us to take a shortcut when evaluating the 2D integral over `′ in eq. (2.32). It relies
on the fact that the halo model hybrid bispectrum terms are all separable with respect to
scale/wavenumber. Hence, the triangle power spectrum (eq. (2.32)) is a 2D convolution which
can be evaluated rapidly using the FFTLog algorithm [145]. Let us describe the procedure in
more detail. Starting from eq. (2.32), we first split the triangle power spectrum into the three
halo-model terms and treat them separately: T (`, χ) = T 1h(`, χ)+T 2h(`, χ)+T 3h(`, χ). Using
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Figure 6. (Galaxy lensing) Projected-field kSZ power spectrum in cross-correlation with galaxy
lensing, assuming our fiducial model (see section 2.1). The effective approach prediction (see subsec-
tion 2.4) is the thick dashed line and is the same in each panel. The halo model predictions (section 3)
are the thick red lines and thin dashed and dotted lines. Each panel shows a different profile, i.e.,
NFW, Adiabatic, and AGN Feedback (from left to right — see table 2 and eq. (3.7)), and they all
assume an AdvACT CMB map (see table 1). For galaxy weak lensing we assume a DES-like survey
(see table 3).
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Figure 7. (CMB lensing) Projected-field kSZ power spectrum in cross-correlation with CMB lensing,
assuming our fiducial model (see section 2.1). The effective approach prediction (see subsection 2.4)
is the thick dashed line and is the same in each panel. The halo model predictions (section 3) are
the thick red lines and thin dashed and dotted lines. Each panel shows a different profile, i.e., NFW,
Adiabatic, and AGN Feedback (from left to right — see table 2 and eq. (3.7)), and they all assume an
SO CMB map (see table 1). For CMB weak lensing we assume an SO map as well (see table 3).

the expression of the one-halo term of the hybrid bispectrum (eq. (3.3)) and re-arranging, we
can write the one-halo term of the triangle power spectrum as

T 1h(`, χ) = 1
(2π)2

∫
dnûX`

∫
d2`′

[
w(`′)ûe

`′
] [
w(
∣∣` + `′

∣∣)ûe
|`+`′|

]
. (3.12)

From the convolution theorem, we can replace the integral over d2`′ by Fourier transform
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operations as

T 1h(`, χ) = 1
(2π)2 〈û

X
` ϕ(`)〉n, with ϕ1h ≡ F−1 {F {wûe} · F {wûe}} , (3.13)

where F is the Fourier transform (from harmonic space to angular space), and F−1 is its
inverse. Note that here, the Fourier transform operations are performed inside the mass
integral (the integral over dn, denoted 〈· · · 〉n). Eventually, we integrate over redshift to
get CkSZ2X,1h

` .
For the two-halo term, there are two mass integrals. Moreover, due to the cyclic

permutation we have three terms to deal with. For one of these terms, which we denote T 2h
tog.,

we have two ûe’s within the same mass integral. For the other two terms, each ûe is in a
separate mass integral, and we denote their sum T 2h

sep.. In fact, both terms in T 2h
sep. contribute

equally, because of the invariance of the expression under the transformation `↔ |` + `′|.
Using the expression of the two-halo term of the hybrid bispectrum (eq. (3.4)), and

re-arranging, we get

T 2h
tog.(`, χ) = 1

(2π)2 〈b
(1)ϕ2h

tog.(`)〉n〈b(1)ûX` 〉nPL, with ϕ2h
tog. ≡ F−1 {F {wûe} · F {wûe}} ,

(3.14)

T 2h
sep.(`, χ) = 1

2π2ϕ
2h
sep.(`), with ϕ2h

sep. ≡ F−1{F{w〈b(1)ûe〉nPL} · F{w〈b(1)ûeûX` 〉n}},
(3.15)

where PL in eq. (3.14) is evaluated at k = (`+ 1/2)/χ. Note that, as for the one-halo term,
the Fourier transform operations in eq. (3.14) are carried out inside the mass integral, while
in eq. (3.15) the Fourier transform operations are carried out after the mass integrals. Then
we have T 2h = T 2h

tog. + T 2h
sep., which we can integrate over redshift according to eq. (2.32) to

get CkSZ2X,2h
` .
For the three-halo term, let us first notice that the hybrid bispectrum splits into terms

proportional to the second order bias b(2) and terms proportional to the F2-kernel (see
eq. (3.5)). Hence, for the triangle power spectrum we have T 3h = T 3h

b(2) + T 3h
F2

. Accounting for
permutations, there are three terms proportional to b(2) in the hybrid bispectrum, but two of
them contribute equally to T 3h

b(2) due to the symmetry `↔ |` + `′|. After re-arranging we get

T 3h
b(2)(`, χ) = 1

(2π)2ϕ
3h,1
b(2) 〈b(2)ûX` 〉n + 1

2π2ϕ
3h,2
b(2) 〈b(1)ûX` 〉nPL, (3.16)

where here PL is evaluated at k = (`+ 1/2)/χ and where we introduced the definitions

ϕ3h,1
b(2) ≡ F−1{F{w〈b(1)ûe〉nPL} · F{w〈b(1)ûe〉nPL}}

and ϕ3h,2
b(2) ≡ F−1{F{w〈b(1)ûe〉n} · F{w〈b(2)ûe〉nPL}}. (3.17)

Note that here, the Fourier transform operations are carried out after the mass integrals.
To compute T 3h

F2
, we start by expanding F2 as

F2(k1, k2, k3) = 5
14 + 3

28x
2
31 + 3

28x
2
32 −

5
28x

2
12 −

5
28x

2
21 + 1

14x
2
31x

2
32

with xij ≡ ki/kj , i, j ∈ {1, 2, 3} (3.18)
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Since this form of F2 has six terms and accounting for the cyclic permutation, we can write
the hybrid bispectrum terms proportional to F2 as a sum of eighteen terms, namely

B3h
F2 =

18∑
i=1

ωi
[
〈b(1)ûe

k1〉nPL(k1)skp1
] [
〈b(1)ûe

k2〉nPL(k2)tkq2
] [
〈b(1)ûXk3〉nPL(k3)ukr3

]
(3.19)

where ωi are rational prefactors determined by the prefactors in eq. (3.18), where p, q, r ∈
{0, 2,−2, 4} such that p + q + r = 0 and where s, t, u ∈ {0, 1} such that s + t + u = 2.
(The combination of indices p, q, r, s, t, u is different for each of the 18 terms.) Here we used
wavenumbers rather than multipoles — we assume the same correspondence as in eq. (2.32).
Due to the symmetry `↔ |`+`′|, these eighteen terms yield ten different terms in T 3h

F2
(twelve

of the eighteen terms contribute equally). After re-arranging, we get

T 3h
F2 (`, χ) = 1

(2π)2

10∑
i=1

ciF−1
{
F{w〈b(1)ûe〉nPL(k)skp} · F{w〈b(1)ûe〉nPL(k)tkq}

}
×
[
〈b(1)ûXk3〉nPL(k3)ukr3

]
(3.20)

where k3 = (` + 1/2)/χ and where ci are numerical constants, c1 = c5 = 5/7, c2 = 2c8 =
2c9 = −5/7, c3 = 2c6 = 2c7 = 3/7, c4 = c10 = 1/7, with (u, s, t) = (0, 1, 1) for 1 ≤ i ≤ 4 and
(u, s, t) = (1, 1, 0) for 5 ≤ i ≤ 10. Eventually, we obtain CkSZ2X,3h

` by summing eqs. (3.16)
and (3.20), and integrating over redshift according to eq. (2.32).

The halo model prediction is shown in detail in figures 5, 6 and 7, where we plot it
against the effective approach prediction. Naively, one would expect that on large scales the
projected-field power spectrum should always hold to the same limit, irrespective of gas profile
assumptions (determined by the fact that the enclosed mass is always the same). However, in
our case it is not true because of the convolution which mixes contributions from all scales at
each ` (see eq. (2.28)). One way to recover the intuitive large-scale behavior is to artificially
filter out the small scales.

In figure 8, we show the halo model kSZ2-galaxy projected-field power spectrum computed
without contributions from small scales. We remove the small-scale contributions by defining
a filter in harmonic space which vanishes for ` > `max, using the taper function of footnote 5.
The filters (multiplied by the beam) are shown on the same plot in the bottom panel. The
top panels are the resulting power spectra for four different values of `max between 400 and
8000. We see that for `max = 8000 and 4000, the different density profile assumptions (NFW,
Adiabatic, and AGN) are easily distinguishable since the amplitudes of the power spectra
significantly differ. However, for `max = 1600 the difference is smaller and for `max = 400
the three profile assumptions yield nearly the same projected-field power spectrum. The fact
that the power spectra converge to the same amplitude is a good sanity check. It shows
that our implementation is consistent with the fact that on large scales the projected-field
power spectrum is sensitive to the overall gas mass rather than the details of the shape of
the profiles. Although this figure shows results only for the kSZ2-galaxy cross-correlation, we
expect the same results for other LSS tracers.

The halo-model implementation allows us to study the projected-field power spectrum
for arbitrary shapes of the gas density profile beyond the AGN, Adiabatic, and NFW models.
In this paper we implement the gNFW formula from [83]. (Of course, one could easily extend
our implementation to other gas models.) Thus, we can study the projected-field power
spectrum predictions for different values of the parameters entering the gNFW formula. In
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the top row of figure 9, we consider the same dark matter halo as in figure 4, i.e., with a
mass of 3.3× 1013M� at z = 0.55, and show the scaled density profile for different values of
the slope parameters α and β around the fiducial AGN model (red line). In the formalism
of [83] these slope parameters have a mass and redshift dependence. Here, for simplicity,
we keep the mass and redshift dependence fixed to the fiducial AGN feedback values, and
only change the overall amplitude determined by Aα0 and Aβ0 . On the left plot, we see that
α mainly determines the gas density in the inner part of the halo — α is referred to as the
inner slope. On the right plot we see that β mainly determines the gas density in the outer
part of the profile — β is referred to as the outer slope. In the bottom rows of figure 9,
we show the projected-field power spectrum predictions associated with these different gas
density profiles determined by the specific values of Aα0 and Aβ0 . The fiducial AGN feedback
predictions are shown in red and each row corresponds to a different LSS tracer: galaxies
(second row), galaxy lensing (third row), and CMB weak lensing (fourth row). The same
conclusion holds in all cases: changing the gas profile shape appears to amount to an overall
shift of the projected-field power spectrum. This behavior differs from what is obtained for
the kSZ power spectrum, where different gas density profiles yield the same large-scale power
(see figure 18). Again, it is due to the fact that in the projected-field estimator, small scales
(sensitive to the gas profile shape rather than the integrated mass) contribute at all multipoles
including the low-` part, because of the convolution of the profiles in harmonic space (see
eq. (2.28)). This is entirely due to the “squaring operation” on the CMB map, irrespective of
the LSS tracer, as illustrated in the figure.

3.5 Analytical covariance matrix

In order to forecast results for upcoming CMB observations and LSS survey data, we need an
estimate of the covariance matrix associated with a measurement of the projected-field kSZ
power spectrum. We follow [67] and [91], assuming that the Gaussian contribution dominates
so that the covariance matrix reads:

M``′ = 1
(2`+ 1)fsky

{C
Θ2
fΘ2

f

` (CXX` +NXX
` ) + (CkSZ2X

` )2}δ``′ , (3.21)

where fsky is the sky fraction spanned by the overlap between the CMB map and the LSS
survey, δ``′ is the identity matrix, CkSZ2X

` is the projected-field kSZ power spectrum of
eq. (2.32), and where

C
Θ2
fΘ2

f

` = 1
2π2

∫
d2`′C

ΘfΘf
`′ C

ΘfΘf
|`−`′| with C

ΘfΘf
` = w(`)2{CΘΘ,lensed

` + CkSZ
` +NΘΘ

` }.
(3.22)

Here CΘΘ,lensed
` is the lensed primary CMB anisotropy power spectrum, which we compute

with class/class_sz in the fiducial model; CkSZ
` is the kSZ anisotropy power spectrum

which we compute according to eq. (2.24) in the fiducial model;12 and NΘΘ
` is the noise power

spectrum of the CMB map. It can be computed from the pixel noise level and beam as
NΘΘ
` = ∆2

T b(`)−2 with b(`) from eq. (2.27) for the case where other foregrounds are neglected,
or extracted from Internal Linear Combination analyses (ILC) which includes the contribution
from all other foregrounds. We consider several configurations summarized in table 1. (See
also figure 1 for the CMB noise curves.) Note that in class_sz we use Fourier transform

12Note that this is an underestimate of the total kSZ power, since that approximation is only accurate at
high-` (see subsection 2.2).
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Figure 8. Projected-field kSZ power spectrum in cross-correlation with galaxy number density
(assuming the case of unWISE galaxies, see table 3). Here, we assume an SO-like CMB map (see
table 1). The bottom panel shows four filter choices with different `max (multiplied by the beam — see
eq. (2.27)). The top panels show the corresponding predictions for the projected-field power spectrum.
Each of the top panels shows the three different gas profile assumptions: NFW, Adiabatic, and AGN
Feedback (see table 2 and eq. (3.7)). This figure illustrates that when small scales are removed (case
`max = 400), the three different profile assumptions become almost indistinguishable.

methods, i.e., the convolution theorem, to evaluate eq. (3.22) efficiently. The remaining
terms in eq. (3.21) are the two-point contributions from tracer X: the noise NXX

` and the
auto-power spectrum CXX` . They take on different expressions depending on the tracer. For
galaxy number density, NXX

` is the shot noise, i.e., N δgδg
` = 1/n̄ where n̄ is the galaxy density

per steradian; for galaxy weak lensing NXX
` is the shape noise, i.e., Nκgκg

` = σ2
γ/ns where

ns is the source galaxy number density, and σ2
γ is the intrinsic ellipticity dispersion (per
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Figure 9. Radial gas density profile (top row) for the same dark matter halo as in figure 4 and
projected-field kSZ power spectrum predictions for different values of the inner slope parameter α (left)
and outer slope parameter β (right). See eq. (3.7) for the parameter definitions. When one parameter
is varied, the others are kept fixed to their fiducial values, i.e., AGN Feedback. The second, third, and
fourth rows respectively assume an SO CMB map (see table 1) cross-correlated with galaxy number
density (assuming unWISE), galaxy weak lensing (assuming a VRO/Euclid-like survey), and CMB
weak lensing (assuming SO). See table 3 for the LSS survey specifications. In all panels, our fiducial
prediction (AGN feedback) is in red.
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shear component); for CMB lensing we use lensing noise estimates plotted in figure 19 and
computed with the usual minimum-variance quadratic estimator [see, e.g., 160]. In all cases,
the power spectra CXX` are computed within the halo model with class_sz (see appendix B.9
for details). The specifications of the LSS surveys are summarized in table 3.

The covariance matrix is binned with the same binning scheme as the one adopted for
the measurement of CkSZ2X

` . Since it is diagonal, and we assume it is slowly varying in each
bin, we have Maa ≈M`a`a/na where the effective multipole `a is at the center of the bin and
na is the number of multipoles in the bin.

In the right panels of figure 10, we show the different contributions to the covariance
matrix for the three types of cross-correlations. In all cases, the high-` regime is dominated
by noise from the LSS tracer. This suggests that future surveys, beyond the ones considered
here, will improve the sensitivity.

3.6 CMB lensing contribution

The procedure to measure the projected-field kSZ power spectrum relies on squaring the CMB
temperature map. Inevitably, this implies that the measurement picks up correlations from
the lensing field whose leading-order contribution is of the form 〈ψX〉〈ΘuΘu〉 where Θu is
the unlensed CMB temperature field and ψ is the CMB lensing potential. This simply arises
from the fact that the lensed CMB temperature field is Θ = Θu +∇ψ · ∇Θu + · · · . Hence,
the leading-order lensing contribution to C̄kSZ2X

` is [see 91, for details]:

C
Θ2
uψX

` = −2` C
ψX
`

(2π)2

∫
d`′`′w(`′)CΘuΘu

`′ w(|`′ + `|) cos θ, (3.23)

where θ = ˆ(`, `′), CΘuΘu
` is the unlensed primary CMB power spectrum, and CψX` is the

cross-power spectrum between the lensing potential and tracer X, which we write in terms of
the CMB lensing convergence as CψX` = [2/`(`+ 1)]CXκCMB

` . We compute CXκCMB
` within

the halo model (see appendix B.9.4). Note also that since the cosine can be expanded as
cos θ = (|`′ + `|2 − `2 − `′2)/2``′, we can compute eq. (3.23) efficiently with FFT methods.

The lensing contribution is shown as the thick grey line in the left panels of figure 10.
At low-` this contribution is negative and generally larger than the kSZ term. At larger ` the
lensing contribution remains smaller than the kSZ contribution for all the cases shown here.
In the Planck-based analyses of [69] and [70] the lensing contribution dominated over most of
the `-range. The difference is that here we are showing predictions for SO and CMB-S4 CMB
maps, which probe scales beyond ` ∼ 3000 where the kSZ effect dominates the anisotropy
(see figure 1), unlike Planck, for which the lensed CMB dominates over the kSZ signal on the
relevant scales.
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Experiment Tracer Specifications

unWISE δg fsky = 0.6; blue HOD from [161]; N δgδg
` = 8.94× 10−8 (n̄ = 3409 deg−2)

DES-like κg fsky = 0.12; ns = 8 arcmin−2, σ2
γ = 0.3; n(z)= sources bin 3 [162]

VRO/Euclid-like κg fsky = fCMB
sky ; ns = 40 arcmin−2, σ2

γ = 0.3; n(z)= sources bin 3 [162]
SO CMB Lensing κcmb truncation at `max = 5000; noise curve from online repository (see footnote 15).

CMB-S4 CMB Lensing κcmb truncation at `max = 5000; noise curve from online repository (see footnote 16).

Table 3. Specifications for the LSS survey experiments considered in our forecast analysis. For
VRO/Euclid, fsky = fCMB

sky assumes that the sky area is limited by the sky coverage and mask of the
CMB map (see table 1 for the fCMB

sky values).
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Figure 10. Contributions to the projected-field kSZ power spectrum measurements (left column)
and covariance matrix (right column) in cross-correlation with galaxy number density (top, assuming
unWISE), galaxy weak lensing (middle, assuming a VRO/Euclid-like survey), and CMB weak lensing
(bottom, assuming CMB-S4 CMB lensing). For the CMB map specifications see table 1, and for the
LSS survey specifications see table 3. In the left plots, the lensing contribution of eq. (3.23) is the
thick grey line; the shaded areas show the statistical uncertainty computed with the covariance matrix
of eq. (3.21). In the right panels, the thin lines show the contributions without the CMB temperature
map noise. In the left panels, the orange area indicates the size of the error bars assuming no CMB
temperature map noise, i.e., the cosmic-variance-limited CMB measurement. The CMB noise levels
are shown in figure 1. Note that for this spectra we used a linear binning with ∆` = 100.
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Figure 11. Projected-field kSZ power spectrum in cross-correlation with galaxy number density (top,
assuming unWISE), galaxy weak lensing (middle, assuming a DES-like and a VRO/Euclid-like survey),
and CMB weak lensing (bottom, assuming SO and CMB-S4). For the CMB map specifications see
table 1 and for the LSS survey specifications see table 3. Each color corresponds to a different gas
profile assumption: NFW, Adiabatic, or AGN Feedback (see table 2 and eq. (3.7)). The shaded areas
(or error bars) represent the statistical uncertainty computed with the covariance matrix of eq. (3.21).
The spectra in this figure are computed with a bin size of ∆` = 264.
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4 Forecasts

In this section we forecast the detection signal-to-noise for the projected-field kSZ power
spectrum signal and for some of the gas profile parameters, including its normalization
(determined by fbffree), the inner slope α, and the outer slope β (see subsection 3.2). Our
forecasts are obtained with the Fisher matrix formalism [e.g., 163]. The results depend on the
characteristics of the CMB and LSS tracer maps which enter the covariance matrix calculation
(resolution, noise, sky coverage and overlap, etc). We consider four CMB maps:

• Planck [104], as in [69] and [70]. In our fiducial calculations we compute the noise with
∆T = 47µK-arcmin, matching that in the LGMCA CMB map [164], and use fsky = 0.6.
For the beam we use ΘFWHM = 5 arcmin. In the Wiener filter we set `max = 3000.

• AdvACT [165] for upcoming maps from ACT [e.g., 21]. We use ∆T = 20µK-arcmin and
fsky = 0.3 for the noise and covariance matrix, with ΘFWHM = 1.5 arcmin and `max =
8000 for the beam and Wiener filter. The noise level here has been inflated over the
raw temperature map noise in order to account for the effects of component separation,
using the same ILC methodology as applied in the SO and CMB-S4 calculations below.

• Simons Observatory [SO; 166], for next-generation CMB maps. We use fsky = 0.4
in the covariance matrix, with ΘFWHM = 1.4 arcmin and `max = 8000 for the beam and
Wiener filter. For the noise, we use the post-ILC component-separated noise curves
constructed in [166] (see section 2.4-2.5 of that work), which are available online.13 These
noise curves are constructed using a harmonic ILC method applied to simulated sky
maps containing all relevant Galactic and extragalactic foregrounds. For simplicity, we
use the standard minimum-variance ILC noise curves here, although in an actual analysis
it may be necessary to apply constrained ILC methods to deproject contamination
arising from the thermal SZ effect or the cosmic infrared background.

• CMB-Stage 4 [CMB-S4; 167], with the same assumptions as SO, but different post-
ILC component-separated noise curves. The CMB-S4 noise curves are also publicly
available online14 and were computed with the same methodology as the SO post-ILC
noise curves (see appendix A.3 of [167]).

These specifications are summarized in table 1 and the CMB temperature map noise curves
are shown in figure 1. For the LSS survey data, we consider five configurations for different
tracers:

• unWISE [168] galaxy number density, i.e., X = δg, as in [70, 71]. For halo-model
calculations, we characterize the galaxy-halo connection using the HOD results for the
blue sample obtained in [161]. See appendix B.8 for details on the HOD parameters.
For the shot noise we set N δgδg

` = 8.94 × 10−8, which corresponds to 1/n̄ with n̄ =
3409 deg−2 [from 71] converted to steradians.

13https://github.com/simonsobs/so_noise_models/tree/master/LAT_comp_sep_noise/v3.1.0
(filename: SO_LAT_Nell_T_atmv1_goal_fsky0p4_ILC_CMB.txt — We use the deproj-0 case, i.e., stan-
dard ILC.)

14https://sns.ias.edu/~jch/S4_190604d_2LAT_Tpol_default_noisecurves.tgz or https://github.com/
msyriac/orphics/tree/master/data
(filename: S4_190604d_2LAT_T_default_noisecurves_deproj0_SENS0_mask_16000_ell_TT_yy.txt). See
also the wiki page https://cmb-s4.uchicago.edu/wiki/index.php/Survey_Performance_Expectations for fur-
ther information.
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• DES-like galaxy weak lensing, i.e., X = κg, assuming a galaxy weak lensing survey
similar to DES-Y3 [e.g., 169], with fsky = 0.12 (i.e., 5000 deg2 sky area) a source galaxy
number density ns = 8 arcmin−2 and shape noise σ2

γ = 0.3. For the source galaxy
redshift distribution, we take the distribution of the third redshift bin of the Redmagic
sample peaking at z ≈ 0.7 [the dashed red line in the top panel of figure 3 of 162].

• VRO/Euclid-like galaxy weak lensing, i.e., X = κg, assuming a galaxy weak lensing
survey similar to VRO [142] or Euclid [170], with the same source distribution and
shape noise as above, but a galaxy source density five times larger, ns = 40 arcmin−2,
and full overlap with the CMB maps.

• SO CMB lensing, i.e., X = κcmb, with the reconstructed CMB lensing noise curve from
the online repository, which is built by applying the lensing quadratic estimator to the
same post-ILC noise curves described above.15 Note that we truncate the power spectra
at `max = 5000 (since there is no SNR beyond this multipole).

• CMB-S4 CMB lensing, i.e., X = κcmb, with the reconstructed CMB lensing noise
curve from the online repository and truncating at `max = 5000.16

These specifications are summarized in table 3 and the SO and CMB-S4 CMB lensing noise
curves are shown in figure 19 of the appendix.

The Fisher matrix is computed using the analytical covariance matrix (see subsection 3.5)
and the halo model predictions for the projected-field kSZ power spectrum (see subsection 3.2).
With the lensing contribution included (see subsection 3.6), the total signal is C̄kSZ2X

` =
CkSZ2X
` +C

Θ2
uψX

` . (Note the over-bar to distinguish the total signal from the kSZ signal only.)
Then the Fisher matrix elements are

Fij =
∑
aa′

∂C̄kSZ2X
a

∂pi
[M−1]aa′

∂C̄kSZ2X
a′

∂pj
(4.1)

where p denotes the vector of varied parameters, i, j are the varied parameter indices, and a
is the multipole bin index. With this, the marginalized 1σ uncertainty on a parameter pi is
given by

√
[F−1]ii. The binning of the covariance matrix is discussed in subsection 3.5. For

the binned power spectrum we simply assume that is it well approximated by the value at
the center of the bin. Note that we use a linear binning with ∆` = 564 and `min = 100 for
the Fisher forecasts.

To start, we compute the total detection signal-to-noise ratio, SNRtot. We can define
a single parameter, AkSZ2 , such that CkSZ2X

` = AkSZ2CkSZ2X,fid.
` where CkSZ2X,fid.

` is the
fiducial prediction, corresponding to AkSZ2 = 1. In this case, the derivatives in eq. (4.1) are
straightforward and the Fisher calculation yields

SNRtot =
(∆AkSZ2

AkSZ2

)−1
=
√
F =

[∑
a

(CkSZ2X,fid.
a )2

Maa

]1/2

. (4.2)

Results are reported in the first column of table 4. The highest SNR values are obtained
for galaxy number density cross-correlation. For Planck × unWISE we find SNRtot = 1.7,

15(SO-Goal) link. (filename: ../nlkk_v3_1_0_deproj0_SENS2_fsky0p4_it_lT30-3000_lP30-5000.dat).
16(CMB-S4) https://github.com/toshiyan/cmblensplus/tree/master/example/data.
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consistent with the measurement in [70], which reported SNRtot = 1.35 (for the unWISE
blue galaxy sample). With data that is already on hand, e.g., AdvACT CMB maps and
unWISE galaxies, we forecast a detection SNR over 10σ. In the next decade, with CMB-S4
× unWISE, the SNR should reach & 100σ. For galaxy-density cross-correlation, we note that
AkSZ2 is degenerate with the galaxy bias, bg (which also determines the amplitude of the
lensing term). Nonetheless, the galaxy bias can be tightly constrained by galaxy clustering
(Cδgδg` ) and galaxy-lensing cross-correlation (Cδgκg

` ) measurements. If we set a Gaussian prior
on bg corresponding to the measurements of [71], we find that the SNRtot forecasts only
change marginally.

Galaxy weak lensing cross-correlation based on DES data (SNRtot ≈ 10 with CMB-S4)
do not reach SNR values as high as with galaxy density (due to the influence of shape
noise), but with VRO/Euclid we expect clear detections of this cross-correlation as well
(SNRtot ≈ 30 with CMB-S4). A detection with CMB lensing cross-correlation will certainly
require next-generation CMB maps such as those from SO and CMB-S4, for which we find
SNRtot ≈ 16 and SNRtot ≈ 35, respectively.

With such high SNR detections, we can ask how well different gas profile shapes could
be distinguished. In figure 11 we see that galaxy density cross-correlation using unWISE will
be able to exclude particular gas profile models at high significance. It appears to be more
challenging with galaxy weak lensing or CMB lensing cross-correlations, but forecasts with
SO × VRO/Euclid (galaxy weak lensing) and CMB-S4 (CMB weak lensing) are promising.

A more refined way to answer this question is to study forecasts on the gas profile
parameters. There are three parameters: first, the overall amplitude of the gas density profile
(i.e., the parameter C in eq. (3.7) which is completely degenerate with the product of the free
electron and baryon fractions, fbffree; second, the parameter α controlling the inner slope
of the profile; third, the parameter β controlling the outer slope of the profile. We compute
the Fisher matrix for these gas profile parameters. To do so, we evaluate the derivatives in
eq. (4.1) around the fiducial model. The Fisher confidence ellipses are shown in figure 12
for cross-correlation with galaxy number density, in figure 13 for galaxy weak lensing, and
in figure 14 for CMB weak lensing. The marginalized constraints are reported in table 4.
Since the baryon fraction at large halo-centric radii should be close to the cosmological value
Ωb/Ωm and the free electron fraction close to unity because the universe is fully reionized at
low redshift, we can safely assume an external constraint on fbffree. In table 4 the forecasts
where we have imposed a 10% prior on fbffree are reported in parentheses.

For cross-correlation with galaxy density, we also take into account the uncertainties on
the HOD parameters (see appendix B.8) by using priors corresponding to the marginalized
1σ uncertainty found in [161]. In this case, the peculiar scale dependence of the lensing
contribution, which depends on HOD parameters, also helps to break degeneracies with the
gas profile parameters (see figure 12 for the contour plots including HOD parameters).

For all the cross-corelations (galaxy density, galaxy lensing, and CMB lensing) we see
that α and β are always degenerate. This is because a larger α can be compensated by a
larger β, consistent with the results of figure 9, which shows that these parameters mainly
change the amplitude of the projected field power spectrum in a rather scale-independent
manner. That means that the slope parameters are also strongly degenerate with fbffree
(see dotted blue contours in figure 12, dotted orange contours in figure 13, and dotted green
contours in figure 14). These degeneracies can be significantly reduced with a prior on
fbffree. Still, it is worth noting that even without external information on fbffree, CMB-S4
CMB maps should allow high significance measurements of α and β. Indeed, for CMB-S4 ×
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SNRtot (∆Aβ0
Aβ0

)−1 (∆Aα0
Aα0

)−1 (∆ffree
ffree

)−1

δg


Planck × unWISE . . . . . . 1.7 0.18 (0.37) 0.29 (0.38) 0.19 (10)
AdvACT × unWISE . . . 17.8 1.72 (2.87) 2.22 (2.54) 0.71 (10)
SO × unWISE . . . . . . . . . 61.9 3.70 (5.51) 2.07 (4.98) 0.78 (10)
CMB-S4 × unWISE . . . . 102.9 7.32 (7.83) 2.38 (7.18) 1.12 (10)

κg



AdvACT × DES . . . . . . . . 2.24 0.28 (0.79) 0.59 (0.88) 0.09 (10)
AdvACT × VRO/Euclid 5.98 0.92 (2.11) 1.72 (2.44) 0.31 (10)
SO × DES . . . . . . . . . . . . . . 6.14 1.03 (2.75) 0.93 (2.34) 0.23 (10)
SO × VRO/Euclid . . . . . 18.81 3.89 (6.84) 3.24 (8.22) 0.88 (10)
CMB-S4 × DES . . . . . . . . 9.71 2.19 (4.36) 1.33 (5.23) 0.40 (10)
CMB-S4 × VRO/Euclid 29.72 8.57 (13.07) 4.71 (15.08) 1.51 (10)

κcmb

{
SO . . . . . . . . . . . . . . . . . . . . . 16.39 0.92 (2.84) 1.72 (2.72) 0.94 (10)
CMB-S4 . . . . . . . . . . . . . . . . 34.52 2.76 (7.01) 5.75 (7.79) 2.4 (10)

Table 4. Forecasts for projected-field kSZ power spectrum detection significance (first column), gNFW
parameters for the gas profile (second and third column), and the free electron fraction (last column).
Numbers quoted in parentheses are computed assuming a 10% prior on ffree. Note that we assume
our fiducial AGN feedback model in all calculations here (see table 2). Note that δg forecasts have
been marginalized over HOD parameters, while this is not necessary for the lensing cross-correlation
forecasts (since they do not depend on galaxy HOD’s).

unWISE (galaxy density cross-correlation) we forecast a 7σ measurement of β. For CMB-S4
× VRO/Euclid (galaxy weak lensing cross-correlation) we forecast a 9σ measurement of β
and a 5σ measurement of α. And for the CMB-S4 kSZ2-CMB lensing cross-correlation we
find that, unlike galaxy density or galaxy lensing cross-correlation, the inner slope is better
measured (6σ) than the outer slope (3σ).

As can be seen in figure 12, and in the bottom plots of figure 13, the addition of
an external prior on fbffree allows us to constrain the slope parameters with forthcoming
SO CMB maps before CMB-S4 will become available. For SO × unWISE (galaxy density
cross-correlation) we forecast 5σ measurements of both α and β. With SO × VRO/Euclid
(galaxy weak lensing cross-correlation) we find 7σ for β and 8σ for α. With CMB-S4 maps
and the prior on fbffree the significance of the forecasted measurements of α and β is roughly
two times larger than without the external prior.

With readily available AdvACT CMB maps, although we forecast high SNR detections
of the projected-field power spectrum, a measurement of the slope parameters appears to
be more challenging owing to the degeneracies discussed above. With the external prior on
fbffree, we forecast measurements of α and β at a significance of ∼ 2σ in cross-correlation with
unWISE galaxies and VRO/Euclid weak lensing data. Nonetheless, we emphasize that our
forecasts are conservative in the sense that they rely on the AGN feedback gas density model,
which yields a low projected-field power spectrum compared to the NFW and Adiabatic
models (see figure 5, 6, 7, and 11 for comparisons of the respective predictions). It is possible
that the spatial distribution of the gas around real halos is significantly different than the
AGN feedback model and could be measured with the projected-field power spectrum using
AdvACT or SPT CMB maps.
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Figure 12. 2D marginalized posterior probability distribution from Fisher matrix calculations for
kSZ2-galaxy density cross-correlation. Galaxies are assumed to be the unWISE blue sample. The
orange and green lines assume AdvACT and SO CMB maps, respectively, as well as a 10% prior on
ffree. The blue contours are with CMB-S4 CMB maps with (filled) and without (empty) the prior
on fbffree.

5 Conclusion

Our main results are the first calculation of the projected-field kSZ power spectrum using
the halo model formalism and its numerical implementation in class_sz (section 3) for
galaxy density, galaxy weak lensing, and CMB weak lensing cross-correlations. Improving
upon previous works by [67], [68], and [91] that were based on an effective approach for the
computation of the hybrid bispectrum (subsection 2.4), the halo model formalism allows
us to access the scale-dependent information on the gas distribution around halos. Since
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Figure 13. 2D marginalized posterior probability distributions from Fisher matrix calculations for
kSZ2-galaxy weak lensing cross-correlation. (Top Left:) AdvACT CMB maps with DES (orange) and
VRO/Euclid (blue) galaxy weak lensing, with a 10% prior on ffree in both cases. (Top right:) AdvACT
(orange), SO (green), and CMB-S4 (blue) CMB maps with VRO/Euclid galaxy weak lensing, with
a 10% prior on fbffree in all cases. (Bottom Left:) SO CMB maps with VRO/Euclid galaxy weak
lensing, with (blue) and without (orange) a 10% prior on ffree. (Bottom Right:) Same as bottom left
but with CMB-S4 CMB maps.

the projected-field power spectrum is an integral of a three-point function (i.e., the hybrid
bispectrum), the halo model expressions are a sum of a 1-halo, 2-halo, and 3-halo term. We
find that the 1-halo term largely dominates for ` & 500 (see figure 5, 6, and 7).

An important aspect of the numerical implementation is to take advantage of the
separable form of the expressions so we can evaluate integrals as products in Fourier space,
using FFTLog methods for the Fourier transforms (subsection 3.4). This speeds up the
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Figure 14. 2D marginalized posterior probability distribution from Fisher matrix calculations for
kSZ2-CMB lensing cross-correlation. The orange line assumes SO CMB maps and a 10% prior on
fbffree. The blue and green lines assume CMB-S4 CMB maps with and without a 10% prior on
fbffree, respectively.

computation by a factor of ∼ 100 compared to trapezoidal or quadrature rules. Still, the
evaluation of a projected-field power spectrum takes O(10s) on a laptop. This may be too
time-consuming for a fast Monte-Carlo-Markov-Chain parameter inference analysis. In order
to accelerate MCMCs, it will be profitable to develop emulators using existing codes such as
cosmopower [150].

Projected-field power spectrum measurements require Wiener filtering of the CMB
temperature map in order to mitigate foreground contamination and maximize the detec-
tion significance (subsection 2.3). As a secondary improvement, we found a Wiener filter
that is more optimal than the previous ansatz and justified it with a heuristic derivation
(appendix C.1). We leave for future work the task of finding a rigorous derivation of the
optimal filter.

We parameterized the gas density profile using a gNFW formula with parameters
calibrated on hydrodynamical simulations from [83]. We computed halo model predictions
for three different shapes of the gas profile, motivated by different physical assumptions
on feedback mechanisms, namely an NFW-like model, an Adiabatic model, and an AGN
feedback model (subsection 3.3). Regarding the subtle treatment of the truncation of the
gas density profile, necessary to obtained a converged Fourier transform, we proposed a
procedure that preserves the total gas mass without altering the scale dependence of the
profile (see text around eq. (3.10)). For a fixed total gas mass, the gas profile extends toward
larger radius in the Adiabatic model compared to the NFW model and even more so in
the AGN feedback model (figure 4), in accordance with the fact that energetic mechanisms
tend to push the gas from the center towards outer regions of halos. Because of this, the
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projected-field power spectrum is the lowest in the AGN feedback model. Although we
focused on the [83] parameterization, the formalism presented here can be easily extended to
other gas density profiles. For instance, motivated by recent results from simulations [171]
and observations [10], it will be interesting to include a more general dependence on halo
concentration and allow for a broken power law mass dependence of the gas density profile.
As cosmological inference is moving into a stage where it relies heavily on non-analytical
models trained on results from simulations, it will also be beneficial to extend our numerical
implementation so that it can accomodate emulators for the gas density profiles [e.g., 172]
and the halo mass function [e.g., 173].

We found that the halo model predictions roughly match the previous effective approach
predictions for galaxy density cross-correlation (figure 5). However, they are significantly
lower for weak lensing cross-correlation (figure 6 and 7).

The low-` behavior of the projected-field power spectrum when we change the gas
density profile shape is not straightforward to interpret. The naive expectation that the
low-` limit should be independent of the scale dependence of the gas density profile because
it is determined by the total gas mass does not hold here. In fact, the low-` limit also
receives contributions from small scales probing the inner part of halos. This is because of
the convolution in harmonic space that arises from the real-space squaring operation of the
CMB temperature field. We found that variations of the inner and outer slopes of the profiles
mainly amount to a scale-independent rescaling of the projected field power spectrum at the
sensitivity level of near-term data (figure 9), although there is a noticeable scale-dependent
effect associated with the outer slope for CMB weak lensing cross-correlation.

We also used the halo model to estimate the covariance matrix of the projected-field
power spectrum (subsection 3.5) and the CMB lensing contribution to the measured signal
(subsection 3.6).

We assumed that the covariance matrix is dominated by the Gaussian contribution and
neglected contributions from higher-point functions, i.e., in this case a connected 6-point
function, combinations of 3-point functions, and combinations of 4- and 2-point functions. As
an example, we neglect terms like a 〈TTTT 〉〈XX〉 term, i.e., the connected 4-pt function of
T generated by lensing and the trispectrum of the foregrounds and kSZ, which are expected
to be small. At some point these higher order terms should be investigated, but the Gaussian
contributions certainly dominate for the forecasts considered here [see, e.g., 174, for an analysis
of non-Gaussian covariance for the primordial bispectrum from CMB observations].

For the covariance matrices we considered four classes of CMB maps (Planck, AdvACT,
SO, and CMB-S4) characterized by different resolutions and noise properties (table 1) in
combination with five LSS survey configurations, namely: unWISE for galaxy density, DES
and VRO/Euclid for galaxy weak lensing, and SO and CMB-S4 for CMB weak lensing
(table 3).

With these experimental specifications we obtained Fisher forecasts on the total detection
SNR of the projected-field power spectrum and on measurements of the inner slope α and
outer slope β of the gas density profile (table 4 in section 4), accounting for degeneracies with
HOD parameters present in galaxy density cross-correlation (figure 12). We found that galaxy
density cross-correlation will be the easiest to detect with current datasets (SNRtot = 17.8
with AdvACT × unWISE) although it will be challenging to probe the radial shape of
the profiles. A first measurement of the slopes of the density profile, using galaxy density
cross-correlation should be achievable with SO CMB maps. For galaxy weak lensing cross-
correlation, we forecast a first robust detection (above 5σ) with AdvACT × VRO/Euclid
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and high-significance measurements of the profile slopes with SO CMB maps. CMB lensing
cross-correlation detections should be possible with SO CMB maps and measurements of the
slopes with CMB-S4 maps. Interestingly, CMB lensing cross-correlation seems to be more
sensitive to the inner slope of the profile than the outer slope, while galaxy density and galaxy
lensing cross-correlations appear to probe both parameters equally well. Whether this is an
artefact of our approximations or a real feature will be assessed in future work.

Although current SNR forecasts are often higher for cross-correlation with galaxy
number density, studying cross-correlations with CMB or galaxy weak lensing is a particularly
appealing avenue because it is free of degeneracies with HOD parameters or galaxy bias.
Moreover, cross-correlation with CMB lensing can yield a measurement of the gas profile
from all halos up to z ≈ 2− 3 (without selection effects), while cross-correlation with galaxy
weak lensing should enable gas tomography depending on the redshift distribution of the
source galaxies.

We note that the halo model formalism we presented here can be extended to other
cross-correlations. For instance, kSZ2-21cm cross-correlation has been shown to open a unique
window on patchy reionization [see, e.g., 100–102]. Our formalism can also be used to compute
the full three-point function (the hybrid bispectrum) which should carry more information
than the projected-field power spectrum.

A priority for future work will be to establish the robustness of the modeling choices
based on further analytical investigations [e.g., 175] and comparison with hydrodynamical
simulations, building on the initial comparisons in [69] and [91]. State-of-the-art simulations
that could be used for such investigations include cosmological hydrodynamical simulations
like Illustris TNG [88, 89] and BAHAMAS [176], or baryon pasting simulations such as the
ones presented in [177].

This work continues to pave the way for kinetic SZ measurements with upcoming CMB
observations and LSS surveys to become a major source of information on the ICM and
CGM gas thermodynamics [e.g., 178]. This is an increasingly important research topic,
as current cosmological analyses show signs of inconsistencies which could be due to our
misunderstanding of the behavior of baryonic matter in dense regions of the universe [e.g.,
179]. Understanding baryons will be crucial in order to maximize cosmological information
extraction from ongoing and upcoming LSS surveys.

Data availability. The code class_sz is public.17 All numerical computations presented
in this paper are reproducible using a Jupyter notebook online.18 We used getdist [180] for
computing the Fisher contours.
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A Velocity dispersion

In figure 15 we show the velocity dispersion, as computed in eq. (2.22) with different choices for
the matter power spectrum. In our fiducial model [as in, e.g., 70], we use the non-linear matter
power spectrum computed with halofit (dotted line). With this, we get σ2

v ' 1.55× 10−6

of v2
rms ' 648 km/s. The computation with the hmcode non-linear matter power spectrum is

nearly identical to the halofit one. If we use the linear matter power spectrum instead [as
in, e.g., 69, 91], the velocity dispersion is ≈ 30% lower at z = 0 — we get σ2

v ' 1.05× 10−6 of
v2

rms ' 531 km/s. This difference would propagate linearly into the projected-field kSZ power
spectrum, since it is proportional to σ2

v (in our approximation, see eq. (2.32)).

B Useful halo model tools

The halo model [92, 93, 133–135, 151, 181] is an analytic model to compute power spectra,
bispectra and higher order statistics of LSS tracers.

B.1 Halo mass function

The model assumes that matter is distributed within distinct spherical halos whose abundance
is determined by the linear matter power spectrum through the halo mass function (HMF).
The HMF determines the comoving number density of haloes of mass M at redshift z via [e.g,
105, 182–184]

dn
dm = νf(ν)ρm,0

m

d ln σ−1

dm (B.1)
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where ν = δc/σ,19 is the peak height in the linear density field with δc = (3/20)(12π)2/3 ≈ 1.686
the spherical collapse density threshold [see 185, for the Ωm correction — not used here], ρm,0
is the mean matter density at z = 0 and

σ2(m, z) = 1
2π2

∫
dkk2Ŵ(kR)2PL(k, z) (B.2)

is the variance of the matter density field smoothed in region of radius R = (3m/4πρm,0)1/3

using the Fourier transform of the real-space top-hat window function Ŵ(x) = 3j1(x)/x where
j1(x) = [sin(x)− x cos(x)] /x2 is the first-order spherical Bessel function. Here, PL is the
linear matter power spectrum. In this paper, we use the [105] formula (see their eq. 3) for the
function f(ν) rather than the [184] formula for the same reasons as explained in appendix B
of [161]. One should keep in mind that these fitting formulas are calibrated on simulations
with a limited mass and redshift range. Namely 0.25 . σ−1 . 2.5, which corresponds to
masses ∼ 1010 − 1015 M�/h at z = 0) and 0 < z . 2. [105] suggests to use f(σ, z = 2.5) for
all z > 2.5, while [184] suggests to use f(σ, z = 3) for all z > 3.

By consistency, the HMF must be such that∫
dνf(ν) = 1,

∫
dνb(1)(ν)f(ν) = 1,

∫
dνb(n)(ν)f(ν) = 0 for n > 1, (B.3)

where b(1) is the linear bias (see eq. (B.13)) and b(n) are higher order biases. These constraints
enforce that all matter is within halos and that it is not bias with respect to itself [e.g., 184].

B.2 Consistency conditions

To impose the consistency conditions numerically, the mass integrals are approximated as
follows [186]:∫ +∞

0
dnûX(m, z)ûY (m, z) =

∫ mmax

mmin
dnûX(m, z)ûY (m, z) +Nmin(z)ûX(mmin, z)ûY (mmin, z)

(B.4)∫ +∞

0
dnb(i)(m, z)ûX(m, z) =

∫ mmax

mmin
dnb(i)(m, z)ûX(m, z) + b(i)mmin(z)[ρm,0/mmin]ûX(mmin, z)

(B.5)

with i = 1, 2 for the first and second order bias [see also 125, 157]. The counter-terms on
the r.h.s. account for the low-mass part of HMF that cannot be parameterized using current
N-body simulations. With this implementation, “halo model predictions do not depend on
any properties of low-mass halos that are smaller than the scales of interest” [186]. The
counter-terms require a mass integral at each redshift that we pretabulate as

Nmin(z) = [1− I0(z)]ρm,0/mmin with I0(z) =
∫ mmax

mmin
dnm/ρm,0 (B.6)

b
(1)
min(z) = 1− I1(z) with I1(z) =

∫ mmax

mmin
dnb(1)(m, z)m/ρm,0 (B.7)

b
(2)
min(z) = −I2(z) with I2(z) =

∫ mmax

mmin
dnb(2)(m, z)m/ρm,0. (B.8)

19Note that [184] use the peak-height definition ν ≡ δc/σ(m, z) while class_sz uses ν ≡ (δc/σ)2 as in
E. Komatsu’s szfast code. Also, [105] do not use the peak height explicitly, but σ−1 instead.
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One can check that eq. (B.4)–(B.5) amounts to substituting the HMF dn/dm with dn/dm+
Nminδ(m −mmin) in all mass integrals and setting a cut-off at mmin. Eq. (B.6)–(B.8) are
then equivalent to the consistency conditions∫

dnm = ρm,0,

∫
dnmb(1)(m, z) = ρm,0,

∫
dnmb(2)(m, z) = 0, (B.9)

ensuring that all mass is within halos and that matter is unbiased with respect to itself.
As shown on the left panel of figure 17, the correction of the matter power spectrum

associated with these consistency condition can be very significant.

B.3 Halo model power spectra

Let X and Y be two LSS tracers with radial profiles uX and uY . Their 3D power spectrum is
defined via

〈X(k1)Y (k2)〉 = (2π)2δ(k1 + k2)PXY (k1) (B.10)

The halo model power spectrum for the r.h.s. is P hm
XY = P 1h

XY + P 2h
XY where the 1-halo term,

P 1h
XY , accounts for correlations between points within the same halo, and the 2-halo term,
P 2h
XY , accounts for correlations between points in distinct halos. Each term can be expressed

using the 3D Fourier transforms of the profiles. Note that the Fourier transforms reduce to
Hankel transforms since the profiles are radially symmetric. The Fourier transform of a radial
profile is given by

û(k) = 4π
∫ ∞

0
drr2j0(kr)H(rout − r)u(r) where j0(x) = sin(x)/x (B.11)

is the spherical Bessel function of order 0 and where we added the Heaviside step function H
in order to truncate the profile at some radius rout. Note that in the k → 0 limit, û is the
volume average of u within a sphere of radius rout. Explicitly, the 1- and 2-halo terms are

P 1h
XY = 〈ûX ûY 〉n with P 2h

XY = 〈b(1)ûX〉n〈b(1)ûY 〉nPL (B.12)

where b(1) = b(1)(m, z) is the first-order halo bias [e.g., 184, 187]. Here, we use

b(1)(ν) = 1−A νa

νa + δac
+Bνb + Cνc (B.13)

with parameters fixed to the values in table 2 of [184]. In general, for two fields X and Y
there is a contribution to the 1-halo power spectrum coming from correlated fluctuations so
that 〈ûX ûY 〉 = (1 + r)〈ûX〉〈ûY 〉 with r 6= 0 (here the angle brackets are to be understood as
ensemble-average at fixed mass and redshift). Although, we can often assume r � 1 since it
is unlikely that two different fields X and Y would fluctuate in a correlated way. See e.g. [8]
where they took this effect into account.

B.4 Halo model bispectra

Let X,Y, Z be three LSS tracers. Their bispectrum is defined by

〈X(k1)Y (k2)Z(k3)〉 = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3). (B.14)
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Its halo model expression is the sum of three terms, Bhm = B1h +B2h +B3h, associated with
correlations between triplets within 1,2 and 3 halos, respectrively. The halo model terms
expressions are [135, 152, 154]:

B1h = 〈ûXk1 û
Y
k2 û

Z
k3〉n + perm(X,Y, Z) (B.15)

B2h = 〈ûXk1 û
Y
k2〉n〈û

Z
k3〉nPL(k3) + 〈ûXk3 û

Y
k1〉n〈û

Z
k2〉nPL(k2) + 〈ûXk2 û

Y
k3〉n〈û

Z
k1〉nPL(k1)

+ perm(X,Y, Z) (B.16)
B3h = 2〈b(1)ûXk1〉nPL(k1)〈b(1)ûYk2〉nPL(k2)〈b(1)ûZk3〉nF2(k1, k2, k3) + 2cyc

+ 〈b(1)ûXk1〉nPL(k1)〈b(1)(m2)ûYk2〉nPL(k2)〈b(2)(m3)ûZk3〉n + 2cyc (B.17)
+ perm(X,Y, Z) (B.18)

where F2 is given in eq. (2.34) and b(2) is the second order halo bias. We compute b(2) with
the peak background split formula using eq. (8) of [188]. Here, ‘2cyc’ denotes the cyclic
permutations with respect to scales/wavenumbers (as explicitly written in the 2-halo term
equation), whereas, ‘perm(X,Y, Z)’ denotes the cyclic permutations of the tracers.

In this paper, we are interested in a case where X = Y = δe and where Z is always
evaluated at the scale k3 (so is the hybrid bispectrum in eq. (2.32)). Hence, for the 1-halo term,
there is only one permutation to evaluate. For the 2-halo term there are three permutations
(those of eq. (B.16) where Z and k3 are together). Similarly, for the 3-halo term there are
three permutations proportional to F2 and three other permutations proportional to b(2).
In [189], the 2-halo term of the kSZ-kSZ-ISW bispectrum was computed including the nine
permutations (see their eq. 30).

B.5 Angular power spectra and correlation functions
With the Limber approximation in flat-sky [e.g., appendix A of 109, and references therein],
angular power spectra are obtained by integrating the 3D power spectra, evaluated at
k = (`+ 1/2)/χ, over comoving volume

CXY` =
∫

dvWX(χ)W Y (χ)P hm
XY

(
`+ 1/2
χ

)
(B.19)

whereWX andW Y are projection kernels. From the angular power spectra we get the angular
2-point correlation functions (2PCF) as

ξXY (θ) = 1
2π

∫
d``Ji(`θ)CXY` (B.20)

where Ji is the ith order Bessel function of the first kind and i depends on the spin of the field.
For instance, i = 2 for X = δg and Y = κg. In this case, the angular 2PCF is the so-called
galaxy tangential shear γt(θ). For X = Y = δg, we have i = 0 and the angular 2PCF is the
galaxy clustering correlation function, often denoted w(θ). For X = Y = κg we have i = 0/4
and the angular 2PCF is the so-called shear ξ+/−(θ) [see, e.g., 190, and references therein].
Numerically, the integral in eq. (B.20) can be evaluated efficiently with FFTLog routines.

B.6 Navarro-Frenk-White density profile
The Navarro-Frenk-White density profile is defined as ρNFW(r) = ρm,0uNFW(r) with

uNFW(r) = ρs
ρm,0

1
r
rs

(
1 + r

rs

)2 where rs = r∆/c∆. (B.21)
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Here, the scale radius rs is defined in terms of characteristic radius and concentrations r∆
and c∆. These depend on the halo mass m∆. The concentration is often computed with a
relation calibrated on simulations [e.g., 106, 191]. In this paper, we use the [106] relation.
It is common to take r∆ as the radius of the spherical region of mass m∆ within which the
density is ∆ times the critical density, at redshift z. Thus,

r∆ = [3m∆/(4π∆ρcrit(z))]1/3 . (B.22)

Common values for ∆ are 180, 200 and 500. Instead of using the critical density as a
reference, one can use the matter density which means replacing ∆ by ∆Ωm(z), where
Ωm(z) = ρm(z)/ρcrit(z). Another common choice for these definitions are the virial mass
and radius, which amount to taking ∆ = ∆c(z) given in [192]. By consistency, we have
m∆ =

∫ r∆
0 dr4πr2ρNFW(r), which yields

ρs = m∆
4πr3

s

fNFW(c∆) with fNFW(x) = [ln(1 + x)− x/(1 + x)]−1. (B.23)

The Fourier transform of uNFW truncated at rcut = λr∆ (see eq. (B.11)) has an analytical
expression given by [135]:

ûNFW(k) = mλr∆

ρm,0

(
[Ci((1+λc∆)q)−Ci(q)] cosq+[Si((1+λc∆)q)−Si(q)] sin q− sin(λc∆q)

(1+λc∆)q

)
×fNFW(λc∆) (B.24)

where mλr∆ is the mass within λr∆ (i.e., m∆ for λ = 1) and where Ci(x) =
∫∞
x dt cos(t)/t

and Si(x) =
∫ x
0 dt sin(t)/t are the cosine and sine integrals, and q = (1 + z)krs = `/`s.20

Noting that q ∝ m
1/3
∆ , the asymptotic behaviors of ûNFW when k → 0 or m∆ → 0 are the

same, namely
lim
q→0

ûNFW
k = mλr∆

ρm,0
. (B.25)

This is an important property which implies that in the low-k regime 〈ûNFW
k 〉n ≈ 1 (when

λ = 1), as a consequence of the consistency conditions.

B.7 Mass conversions
Although here we exclusively used the m200c mass definition, we explain how to convert
between mass definition as it can be useful for comparison with other analyses or to implement
different mass functions, HOD’s and tracer profiles. To convert between m∆ and m∆′ , we
compute m∆′ =

∫ r∆′
0 dr4πr2ρNFW(r) with the NFW profile defined in terms of rs = r∆/c∆.

Its expression is equivalent to

m∆′

m∆
− fNFW(c∆)
fNFW(c∆r∆′/r∆) = 0 with r∆′ =

[
3m∆/(4π∆′ρcrit(z))

]1/3 (B.26)

which can be solved for m∆′ with a root-finding algorithm. In class_sz we use Brent’s
method [158]. For reference, we show the conversions between m200c, m200m and m500c at
three redshifts for the [106] and [191] concentration-mass relations in figure 16. Overall,
m200m is ≈ 5− 20% larger than m200c, while m500c is ≈ 20− 40% lower than m200c. The [106]
and [191] agree well at high masses but differ substantially at low masses.

20In the last equality we defined `s = dA/rs with angular diameter distance dA = χ/(1 + z), and traded
wavenumber for multipole according to kχ = `+ 1/2.
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Figure 16. Ratios between mass definitions at z = 0.5 (left), z = 1 (middle) and z = 1.5 (right) using
the [106] relation (B13) and the [191] relation (D08).

B.8 Galaxy halo occupation distributions
Galaxies populate dark matter halos in complicated ways. Its simple and faithful description,
galaxy Halo Occupation Distributions (HOD) was proposed in [193]. Here we use a slightly
different parameterization, to match that of [162]. The expectation value for number of central
galaxies in a halo of mass m is given by

Ncent(m) = 1
2

(
1 + erf

[
log10(m/mmin)

σlog10m

])
(B.27)

where mmin is a pivot mass above which, on average, halos have a central galaxy. Here, σlog10m

controls the steepness of the transition in mass from no galaxy to having at least one galaxy
in the halo. The expectation value for number of satellite galaxies is a power law with an
exponent αs,

Nsat(m) = Ncent(m)
(
m

m1

)αs
, (B.28)

where m1 is a pivot mass above which the number of satellites increases steeply. In our
fiducial model, corresponding to the best-fit to blue unWISE galaxies, these parameters are
set to mmin = 1.01× 1013M�/h, m1 = 1.18× 1014M�/h, αs = 2.08 and σlog10m = 0.76 [see
161, for details].

Given a specific HOD (eq. (B.27) and (B.28)) we can compute the galaxy number density
and galaxy bias at z as

n̄g(z) = 〈Ncent +Nsat〉n, with bg(z) = 1
n̄g(z)〈b

(1)(Ncent +Nsat)〉n, (B.29)

where b(1) is the linear bias of eq. (B.13). As for the spatial distribution, central galaxies are
naturally assumed to be located at the center of halos (their density profile is a Dirac delta
function) and satellite galaxies are assumed to be randomly distributed along an NFW-like
radial profile. Thus, the Fourier transform of the galaxy density profile is

ûg
k = 1

n̄g

(
Ncent +Nsatû

sat
k

)
(B.30)

where ûsat
k is the same eq. (B.24) with λ = 1 and without the mλr∆/ρm,0 prefactor. In

addition, c∆ is often replaced by a free parameter csat to allow for more freedom in the radial
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Figure 17. Left: The matter power spectrum at z = 1 computed in the halo model (1-halo term is the
solid black line, 2-halo term is the dash-dotted black line, and sum is the thick solid line) compared with
the halofit formula (dotted blue line) [123] and the hmcode prediction (dashed orange) [125]. The
thick grey line shows the halo model prediction when the consistency prescriptions of subsection B.2
are not taken into account. Middle: The power spectrum of baryons in the halo model for two different
density profile types (Adiabatic and AGN Feedback) and rescaled by 1/f2

b compared with the halofit
matter power spectrum. Right: Galaxy power spectrum in the halo model (black lines) at z = 1
compared with the matter power spectrum computed with halofit (dotted blue line) and the halofit
power spectrum times b2

g squared (dashed blue) with bg from eq. (B.29).

distribution. Another important HOD quantity is the Fourier transform of the second moment
of the satellites galaxy distribution:

ûgg
k = 1

n̄2
g

[
N2

sat(ûsat
k )2 + 2Nsatû

sat
k

]
, (B.31)

[see, e.g., 8, 194], as it determines the 1-halo term of the galaxy power spectrum.

B.9 Application to tracers

In this section we present explicit expressions for 3D auto-power spectra of tracers in the
halo-model. Cross-power spectra expressions are easily obtained in a similar fashion.

B.9.1 Cold dark matter
When CDM density is assumed to follow the NFW profile (see appendix B.6), the halo model
matter power spectrum at z is P hm

δmδm
= P 1h

δmδm
+ P 2h

δmδm
with

P 1h
δmδm(k, χ) = 〈ûNFW

k ûNFW
k 〉n and P 2h

δmδm(k, χ) = 〈b(1)ûNFW
k 〉2nPL(k, χ) (B.32)

where PL is the linear matter power spectrum. In the low-k limit we have 〈b(1)ûNFW
k 〉n → 1

(by construction and consistency) so that P 2h
δmδm

∼ PL, whereas P 1h
δmδm

∼ 〈m2
∆/ρ

2
m,0〉 which

is independent of k.21 Hence, at low-k the 2-halo term dominates and we have P hm
δmδm

∼ PL.
The halo model matter power spectrum is plotted on the left panel of figure 17 against
the halofit and hmcode (which are nearly identical). The mismatch between the halo

21On ultra-large scales the power spectrum should grow as k4. Hence, we follow [124] and add an exponential
damping to the 1-halo term. In principle, the 2-halo term should also be damped in the non-linear regime due
to perturbative effects. We did not account for that subtlety here and refer to [125] and [157] for details on
these aspects.
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model power spectrum and the N-body calibrated formulas (halofit and hmcode) in the
transition regime between the 2-halo and 1-halo term is a well-known short-coming of the halo
model. This issue has been addressed in several manners. For instance, [124] suggest using
P hm
δmδm

= [(P 1h
δmδm

)α + (P 2h
δmδm

)α)]1/α where α is a free parameter. Another approach, proposed
in [157] is to use perturbation theory at one-loop order in the modeling of the 2-halo term,
amounting to replace PL in eq. (B.32) by PNL = PL + Pspt + Pct where Pspt = P22 + P13
with P22 and P13 resulting from higher-order terms associated with the F2 and F3 coupling
kernels [see, e.g., 131] and Pct(k) = −c2

sk
2PL(k) with cs a free parameter of the model. What

these approaches have in common is inclusion of the nuisance parameters to the model. The
extra nuisance parameters then need to be calibrated on simulations or marginalized over.
Here we do not study these extra pieces of modelling for the transition regimes and leave
them for future work.

B.9.2 Electrons
The electron power spectrum is computed in the halo model using the Fourier transform of
the gas density profile, ûe of eq. (3.9), as

P 1h
δeδe(k, χ) = 〈ûe

kû
e
k〉n and P 2h

δeδe(k, χ) = 〈b(1)ûe
k〉2nPL(k, χ). (B.33)

The gas density profile is normalized such that

lim
k→0

ûe
k = fbffree

m∆
ρm,0

, (B.34)

and there for in the low-k limit we have P hm
δeδe
≈ P 2h

δeδe
≈ f2

bPL, irrespective of the gas density
profile assumption. In the high-k regime, the difference between the gas density profile and
the NFW profile can be significant and therefore the scale dependence of the baryon power
spectrum can depart from that of the non-linear matter power spectrum. This is illustrated
in the middle panel of figure 17.

B.9.3 Galaxies
The galaxy power spectrum is P hm

δgδg
= P SN

δgδg
+ P 1h

δgδg
+ P 2h

δgδg
, where P SN

δgδg
is the shot-noise

contribution, whose expression is
P SN
δgδg = 1

n̄g
, (B.35)

where n̄g is defined in eq. (B.29). The 1- and 2-halo terms are

P 1h
δgδg = 〈ûgg

k 〉n and P 2h
δgδg = 〈b(1)ûg

k〉
2
nPL(k, χ), (B.36)

respectively, where ûgg
k and ûg

k are defined in eq. (B.31) and (B.30). In the low-k limit, since
ûsat
k ≈ 1, we have 〈b(1)ûg

k〉n → bg(z) and thus P hm
δgδg
≈ b2gPL. In the high-k regime, the scale

dependence is determined by the HOD and departs from that of the halofit power spectrum,
as can be seen on the right panel of figure 17.

In fact, the observed power spectrum of galaxies includes an extra contributions coming
from lensing magnification. We have

δobs
g = δg + µg with µg = (5s− 2)δm and s ≡ dlog10N

dM (B.37)

whereM is the apparent magnitude of the galaxies, evaluated near the magnitude limit of
the survey. The extra-contributions are P hm

δgµg
= (5s− 2)P hm

δgδm
and P hm

µgµg = (5s− 2)2P hm
δmδm

.
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B.9.4 Useful angular power spectra
Angular power spectra are obtained from the 3D power spectra using eq. (B.19). Each tracer
has its own projection kernel. For the kSZ effect, W kSZ is given in eq. (2.24) along with the
angular power spectrum expression in the high-k limit. We show the kSZ angular power
spectrum in figure 18 for different gas profile assumptions. The low-` limit does not depend
on the assumption. The halo model power spectrum computed with the AGN Feedback gas
profile agrees reasonably well with results from simulations [90].

For CMB lensing, the projection kernel is

W κCMB (χ) = 3
2

Ωm(H0/c)2

χ2 (1 + z)χχ? − χ
χ?

, (B.38)

where χ? is the comoving distance to last scattering.
For galaxy weak lensing, the projection kernel is

W κg (χ) = 3
2

Ωm(H0/c)2

χ2 (1 + z)χIs(χ) with Is(χ) =
∫ +∞

z
dzsϕ

′
s(zs)

χs − χ
χs

(B.39)

where ϕ′s is the normalized redshift distribution of source galaxies, and we used the notation
χs = χ(zs) for the comoving distance to redshift zs. (Note that, formally, eq. (B.39) reduces
to eq. (B.38) if ϕ′(zs) = δD(zs − z?).).

For galaxy number density, the projection kernel is

W δg(χ) = H

χ2c
ϕ′g(z) with ϕ′g(z) = 1

N tot
g

dNg
dz where N tot

g =
∫

dzdNg
dz . (B.40)

Here, dNg
dz is the galaxy redshift distribution of the survey which is from data. For lensing

magnification, the projection kernel is

Wµg (χ) = 3
2

Ωm(H0/c)2

χ2 (1 + z)χIg(χ) with Ig(χ) =
∫ +∞

z
dzgϕ′g(zg)χg − χ

χg
, (B.41)

where ϕ′g is the normalized redshift distribution of lens galaxies, and we used the notation
χg = χ(zg) for the comoving distance to redshift zg. in figure 19 we show a comparison of
CMB angular power spectra computed with the halo-model and the halofit power spectrum.
The noise curves for SO and S4 are also plotted.

C Comparison with previous works

C.1 Choices of Wiener filter
In all previous works using the projected-field kSZ estimator, the filter ansatz was

wprev.(`) = b(`)C
kSZ
`

Ctot
`

. (C.1)

This differs from our filter definition (see eq. (2.25)) as we use a square root in the numerator.
These two choices yield similar SNR, but the version with the square root is always better,
yielding larger SNRs by ≈ 3− 5%.22

22The denominator of the filter actually used in previous works also differed slightly from Ctot
` , due to a

missing beam factor in the noise contribution to the total power spectrum. The only effect due to this is a
slight change in the high-` turnover of the filter.
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101 102 103 104

`

10−11

10−10

10−9

10−8

10−7

10−6

C
κ

cm
b
κ

cm
b

`

1-halo

2-halo

1 + 2-halo

class sz (PNL)

class

SO

S4

Figure 19. Dimensionless angular power spectrum of CMB lensing convergence with noise estimates
for SO and S4. The red dotted line shows the class prediction which is based on halofit. The
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To justify the filter definition of eq. (2.25) we provide a heuristic derivation based on
appendix B of [195]. Since the projected field kSZ power spectrum is an integral over the
bispectrum, we expect the optimal estimator to be similar to the optimal bispectrum estimator.
In general, the optimal bispectrum estimator is given by

Ĉ = 1
F

(Ĉ3 − Ĉ1), (C.2)
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where F is a normalization (whose exact expression is not important here) and where Ĉ3 and
Ĉ1 are a three-point and one-point term. The one-point term can be significant when the sky
coverage is partial and the noise is inhomogeneous, but we can omit it for the purpose of this
discussion. The three-point term contains the scale-dependent information we are interested
in. It is given by

Ĉ3 ≈
∑
`i,mi

B`1`2`3G`1`2`3m1m2m3 ã`1m1 ã`2m2X̃`3m3 (C.3)

where B is the theoretical/predicted hybrid bispectrum, G is a Wigner-3j symbol [see eq. 6
of 195] and the tilde fields ã and X̃ are the harmonic coefficients of inverse-variance weighted
CMB and LSS maps, i.e.,

ã`m = (CΘΘ
` + CkSZ

` +NΘΘ
` )−1a`m, and X̃`m = (CXX` +NXX

` )−1X`m. (C.4)

The inverse variance weighting ensures that the poorly measured modes are filtered out
and hence contribute less to the variance of the estimator. From eq. (C.3) we see that the
optimal filter w`1 to apply to the temperature map a`1m1 should have the scale dependence
of B`1`2`3/Ctot

`1
. Since the term that contributes most to the bispectrum in the range of scales

of interest here is the 1-halo term, we can approximate the scale dependence as

w`1 ∼
1

Ctot
`1

∫
dn1û

e
`1(m1)ûe

`2(m1)ûX`3(m1) ∼

√
CkSZ
`1

Ctot
`1

. (C.5)

C.2 Comparison with forecats from Ferraro et al.

We compared our effective approach calculations with the code used in [69, 70, 91]. We found
a good agreement over all scales for Planck×WISE and AdvACT×WISE (relative difference
of ≈10%). For this comparison we used the same settings as in [91]. In particular, we used
the filters labeled ‘Kusiak et al’ and ‘Ferraro et al’ in figure 20, a sky fraction fsky, an effective
galaxy bias beff

g = 1.13, the linear matter power spectrum in the velocity dispersion, and
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Figure 21. Projected-field kSZ power spectrum in cross-correlation with galaxy density assuming
Planck×WISE (left) and AdvACT×WISE (right). The solid lines with error bars are the class_sz
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independent code that was used in [69, 70, 91]. Here the computations are done within the effective
approach (see subsection 2.4), using the filters of figure 20 (grey lines).

the normalized galaxy redshift distribution of figure 10 of [91]. For the covariance matrix
calculation we used a shot noise of CSN

` = 1.26 × 10−7 (which corresponds to 50 million
galaxies over half the sky). The power spectra are plotted together on figure 21.

[91] presented SNR forecasts that differ from the ones we obtained in section 4. For
AdvACT×WISE they obtained an SNR on ffree of 232. In the same settings as them (see
paragraph above) we get nearly the same estimate, finding 223. This is roughly six times
larger than our most optimistic forecast with AdvACT×unWISE (note that the SNR on
ffree is two times SNRtot if we do not take into account degeneracies with HOD parameters
and assume the galaxy bias to be tightly constrained). This significant difference is mainly
explained by the fact that the filter in [91] uses a 10µK-arcmin pixel noise level while we
use 20µK-arcmin (which is more consistent with current ILC noise estimates) and that our
fiducial model for the projected-field kSZ power spectrum assumes the AGN Feedback gas
density profile whereas [91] uses the effective approach calculation. The difference of filter
and the difference of fiducial model change the SNR by roughly the same amount.
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