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Abstract—Detecting dangerous traffic agents in videos cap-
tured by vehicle-mounted dashboard cameras (dashcams) is
essential to ensure safe navigation in complex environments.
Accident-related videos are just a minor portion of the driving-
related big data, and the transient pre-accident process is highly
dynamic and complex. Besides, risky and non-risky traffic agents
can be similar in their appearance. These make risky traffic
agent localization in the driving video particularly challenging.
To this end, this paper proposes an attention-guided multistream
feature fusion network (AM-Net) to localize dangerous traffic
agents from dashcam videos ahead of potential accidents. Two
Gated Recurrent Unit (GRU) networks use object bounding box
and optical flow features extracted from consecutive video frames
to capture spatio-temporal cues for distinguishing risky traffic
agents. An attention module, coupled with the GRUs, learns to
identify traffic agents that are relevant to an accident. Fusing the
two streams of global and object-level features, AM-Net predicts
the riskiness scores of traffic agents in the video. In supporting
this study, the paper also introduces a new benchmark dataset
called Risky Object Localization (ROL). The dataset contains
spatial, temporal, and categorical annotations of the accident,
object, and scene-level attributes. The proposed AM-Net achieves
a promising performance of 85.59% AUC on the ROL dataset.
Additionally, the AM-Net outperforms the current state-of-the-
art for video anomaly detection by 3.5% AUC on the public
DoTA dataset. A thorough ablation study further reveals AM-
Net’s merits by assessing the impact of its constituents.

Index Terms—accident prediction, early risky object localiza-
tion, autonomous vehicle, multi-modal, attention, deep learning,
dashcam

I. INTRODUCTION

Autonomous driving and Advanced Driver Assistance Sys-
tems (ADAS) have made rapid progress in recent years [1].
Although research is progressing positively towards a vision
of more comfortable and safer driving experiences, there are
still concerns about traffic accidents. From 2014 to March
17, 2023, 564 autonomous vehicle collisions were reported in
California [2]. Moreover, according to the 2018 Global Status
Report on Road Safety from World Health Organization, about
1.35 million people are killed in traffic accidents yearly [3].
Developing an intelligent driving function to help drivers or
autonomous systems identify and localize risky traffic agents
is urgently needed to reduce collisions and fatalities.
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Therefore, it is an essential task to recognize risky traffic
agents that will cause, or be involved in, accidents and localize
these agents in the driving video captured by a vehicle-
mounted dashboard camera (dashcam), a type of sensor that
is both low-cost and widely deployed. Creating the ability
to recognize and localize risky traffic agents will provide a
valuable reference for the subsequent behavior and motion
planning of ADAS. Besides, detecting the presence of risky
traffic agents can help drivers reduce the chance of involving
in accidents. This capability applies to other applications, such
as traffic safety, autonomous driving, and pedestrian protection
[4], [5].

Several computer vision studies have addressed a related
task that detects anomalous events from a dashcam [6]-[11].
That is, this stream of literature focuses on identifying frames
where the risk of a traffic accident is present. However, those
studies did not address the critical challenge of localizing risky
traffic agents in a driving scene.

Early localization of risky traffic agents, which are likely
to involve in a future accident, from a highly dynamic and
complex driving scene have three crucial challenges. First,
the visual appearance of a traffic agent in the driving scene
may not tell much about its risk level because of the very
similar visual appearance of some traffic agents. Second, the
time window for recognizing risky traffic agents is short.
Last but not the least, the long-term temporal dependency of
traffic agents underlying the accident risk is hard to capture.
Several attempts have explored this topic, mainly using deep
learning methods [12]-[16]. While these studies have laid a
solid foundation for risky traffic agent localization, there are
still several research needs that must be addressed.

One of the main research needs is the identification and
utilization of features most relevant to risky traffic agents.
Despite the various features used, including appearance, mo-
tion, size, and shape, a consensus on the most informative
features has yet to be established. Thus, research is needed to
identify these features and their contribution to the localization
of risky traffic agents. Furthermore, how the selected features
are fused would impact their ability to characterize these traffic
agents. However, no such guidance exists, particularly for risky
traffic agent localization. Another need is a dynamic attention
mechanism for differentiating traffic agents. In complex traffic
scenes, spatially distributed objects interact, and the interaction
evolves. Incorporating the attention mechanism into the deep
learning framework will improve the performance of risky
traffic agent localization. Furthermore, the ability to localize
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the presence of risky traffic agents ahead of time is crucial to
avoiding accidents or mitigating their consequences. Current
work has yet to create and measure such ability, and one reason
for this is the need for the appropriate temporal annotation of
risky traffic agents in existing datasets.

To tackle the challenges, the contributions of this paper are
as follow:

o A new attention-guided multistream feature fusion net-
work (AM-Net) is proposed for the early localization of
risky traffic agents in driving videos. Scene- and object-
specific spatio-temporal features are extracted and fused
to better capture risk-related cues. A dynamic attention
mechanism is further incorporated to selectively attend to
critical cues. This framework has led to a new state-of-
the-art performance.

e« A new dataset, called the Risky Object Localization
(ROL) dataset, has been developed to support training the
model for the early localization of risky traffic agents and
assessment of model performance in terms of correctness
and earliness.

o A comprehensive study uses numerical experiments to
verify the contribution of feature selection, feature fusion,
and attention mechanism to the early localization of risky
traffic agents.

The remainder of this paper will further the discussion
by presenting the following contents in sequence. Section II
summarizes the literature to determine state-of-the-art. After
that, Section III delineates the proposed AM-Net, followed
by the development of the ROL dataset in Section IV. Then,
Section V presents experimental studies to demonstrate and
verify the merits of the contributed network and dataset. In
the end, Section VI summarizes research findings, limitations,
and important future work.

II. THE LITERATURE

This paper is built on studies that contribute to risky traffic
agent localization, either directly or indirectly. The related
literature is summarized below.

A. Anomaly Detection in a Video

A topic related to risky traffic agent localization in a
driving scene is video anomaly detection, which is about
finding abnormal events in the video. Video anomaly de-
tection is often formulated by profiling the normal behavior
and measuring the spatial-temporal feature consistency. Deep
learning-based methods can improve video anomaly detection
by creating a more accurate normal video profile ( [15],
[17]-[20]). For example, Hasan et al. [17] developed a 3D
Convolutional feed-forward Auto-Encoder (ConvAE) to model
regular video frames. Motivated by this, Chong et al. [18]
used a Convolutional Long Short Term Memory Auto-Encoder
(ConvLSTMAE) to simultaneously take advantage of both
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) in modeling normal appearance and motion
patterns. Georgescu et al. [19] proposed a self-supervised and
multitask learning approach for anomaly detection in videos,
which can also be applied to risky traffic agent localization.

Liu et al. [15] developed a Future Frame Prediction (FFP)
method, and an observed deviation against the prediction
indicates abnormality. In those studies, normal situations are
usually stable scenes, which limits their applicability to driving
videos captured by cameras in rapid motion.

B. Traffic Accident Anticipation Using Dashcam Videos

Traffic accident anticipation in dashcam videos has become
a research focus recently. Unlike video surveillance systems,
dashcam videos capture moving traffic agents that not only
rapidly move but appear and disappear quickly in the scene.
Different advanced methods have been developed to learn the
spatio-temporal patterns of traffic agents to provide an overall
riskiness score for the scene, including an LSTM predictor [6],
reinforced learning [8], graph neural network [11], generative
adversarial network [21], and a dynamic attention network
[9]. Although they only predict a risky event in the temporal
domain, a risky event is always caused by risky traffic agents
in the driving scene. As a result, these studies have established
a strong methodological foundation for localizing risky traffic
agents in the spatial domain.

C. Risky Traffic Agent Localization in a Driving Scene

Several recent studies have put forward various approaches
for the localization of risky traffic agents. Ohn-Bar et al. [22]
developed a deep spatio-temporal importance prediction model
that assigns riskiness scores to objects in a driving scene.
Kozuka et al. [12] proposed a weakly supervised method for
forecasting pedestrian-involved risky regions, whereas Zeng
et al. [13] introduced a soft-attention mechanism to provide
agent-centric riskiness scores for different traffic agents. An
RNN has been employed explicitly to model nonlinear in-
teractions among agents. However, these techniques have not
made use of motion and location-scale features, which are
essential for capturing the dynamic nature of traffic agents and
their spatial relationships. Moreover, restricting the number of
candidate objects in each frame is not a practical solution in
many driving scenarios where the number of traffic agents can
vary considerably.

Li et al. [14] investigated the causal impact of risky traffic
agents on the driver’s behavior by eliminating candidate traffic
agents from the input video stream. Although it appears
straightforward, it is an extremely complex problem to solve
in real-world applications due to the presence of numerous
known and unknown casualties. Kim et al. [23] introduced a
domain adaptation technique to train a deep neural network for
the identification of dangerous vehicles using synthetic data.
Their approach is impressive in domain adaptation; however,
their CNN-based method suffers from capturing long-term
spatio-temporal relationships of accident-relevant cues. Malla
et al. [24]’s DRAMA system performs joint risk localization
and captioning in driving scenes. DRAMA employs a cap-
tioning approach to provide context for the identified risky
traffic agents and their impact on the driving scene. Another
line of research [25]-[27] formulated this problem as an
important object identification problem by imitating human
gaze behavior and predicting a pixel-level attention map that
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serves as a proxy for risk. Nonetheless, human attention maps
may not always be accurate for capturing risky agents.

Other methods, such as [16], [28], are trained to per-
form a related task such as trajectory prediction problem,
where higher inconsistencies between the ground truth and
the predicted trajectories are considered as risk. Specifically,
Yao et al. [16] proposed a trajectory-based technique for
localizing risky traffic agents, using future trajectory prediction
to identify inconsistencies in agent behavior. Kim et al. [28]
estimated agent importance by forecasting pixel-level attention
heat maps. However, these methods are vulnerable when a
traffic agent suddenly appears in the scene.

Although impressive, the methods outlined above exhibit
some limitations in terms of identifying and capturing the most
significant accident-relevant cues from video sequences to
determine risky traffic agents. Furthermore, these approaches
do not sufficiently explore the potential of feature fusion to
enhance localization capability. Notably, existing work in the
literature lacks the capacity to measure how early the models
can localize risky traffic agents.

D. Risky Object Localization Datasets

In response to the increased focus on deep learning-based
anticipation of risky events in traffic videos, several large-
scale datasets have emerged. Chan et al. [6] curated the
Dashcam Accident Dataset (DAD), consisting of 620 video
clips depicting on-road accidents, with the last ten frames
of each video clip containing the accident. Yao et al. [29]
developed the A3D dataset, comprising 1,500 videos annotated
with the starting and ending times of accidents. Bao et al. [7]
created a car accident dataset consisting of 1,500 videos, which
includes annotations of environmental attributes and accident
causes to support traffic accident anticipation. However, these
datasets do not directly apply to the problem of localizing risky
traffic agents due to the absence of object-level risk annotation.

You et al. [30] developed the CTA dataset, a benchmark
dataset comprising 1,935 crash videos, which includes cause
and effect events for different accidents, including their tem-
poral intervals. This dataset contains labels for the cause of a
crash and their potential effect after the crash. Fang et al. [31]
collected driver attention on 2,000 crash videos to construct the
DADA-2000 dataset, which demonstrated that driver attention
can support future accident prediction problems.

In addition, Kim et al. [23] developed a synthetic dataset
called GTA-crash, which was collected from the GTAS game
to reduce the cost of accident video collection. However,
synthetic data may not capture the distribution of real driv-
ing scenes. Recently, Fang et al. [32] developed the largest
dataset with 2.19 million video frames named CAP, which
provides factual text descriptions before the accident and driver
attention maps to support different transportation research
problems.

Yao et al. [16] collected 4,600 videos and annotated risky
traffic agents contributing to an accident with their bounding
boxes in videos, when annotators judged the accident to be
inevitable. It should be noted that the subjective nature of the
annotation approach in many of these datasets may introduce

some variability in the annotation quality. Additionally, the
annotations in many of these datasets either do not include the
beginning time of accidents or consider risky object appear-
ance time as the accident or anomaly beginning time. However,
the beginning time of accidents is necessary information to
assess the earliness of a model’s ability to localize risky traffic
agents.

III. METHODOLOGY

This paper proposes an Attention-Guided Multistream Net-
work (AM-Net) to address identified gaps in current studies
on risky traffic agent localization. Fig. 1 illustrates the model,
which reads frames of an input video to output the riskiness
score s;,; of traffic agent i detected in frame ¢. Detailed
description of the proposed AM-Net is below.

A. Feature Extraction and Aggregation

AM-Net uses a pretrained object detector YOLOVS [33] to
detect traffic agents in each frame and provide the bounding
boxes of the detected objects in the frame. M is the number
of detected objects, which may vary from one frame to
another. Because the temporal association of the same object
in successive frames is critical information for risky object
localization, a multi-object tracker DeepSort [34] is used to
make the association of objects in different frames.

The change in pixel-level motion among video frames is
an important clue to find objects with unusual movement.
Therefore, AM-Net uses a pretrained RAFT model [35] to
extract the optical flow image for every frame. Then, regions in
the flow image, determined by the detected objects’ bounding
boxes, are cropped to become object-level flow images. Then,
the feature extractor ResNet50 [36] turns the frame-level flow
image into a global feature vector, g,(€ RP), and any of those
at the object level into another feature vector, o;;(€ RP).
Here, D is the dimension of those feature vectors. Then, oy ;
is concatenated with g, to become the overall flow feature
vector for the ith object, p, ;(€ R*P):

D = [Ot,i;gt]a (D

which captures the object’s motion feature in the driving scene.
After further passing a fully connected layer ¢, the flow
feature vector p; ; becomes a lower dimensional feature vector,

fii € (R*):

fti = 0(ps,:;00), 2

where 8 are learnable parameters of the fully connected layer.

Changes in bounding boxes’ location and scale in successive
frames capture the spatial dynamics of traffic agents over time.
Therefore, for any object ¢ in frame ¢, its bounding box’s
location (z,;,y:,;) and its scale in width w, ; and height h, ;
are encoded as a feature vector b; ;(€ R?):

bei = [4,i5 Ye,i5 Weis e i) 3)
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Fig. 1. Overview of the proposed AM-Net framework. The network has two branches: one for detecting and tracking bounding boxes using an object detector
and tracker, and then encoding them with a GRU encoder. The other branch estimates optical flow, crops objects based on bounding box information, and
extracts features for both the cropped objects and global frame. These two types of features are concatenated and fed into another GRU encoder to update the
hidden representation. After that, the two GRUs are coupled with an attention module to get weighted hidden representations from the previous M frames.
Finally, concatenated hidden representations are passed through FC layers to produce riskiness scores for each object.

B. Spatio-temporal Relational Learning with GRUs

Two Gated Recurrent Units (GRUs) respectively encode the
extracted bounding box feature vector and flow feature vector
of any detected object into their hidden representations and
update them over time. Fig. 1 shows that, one GRU takes the
bounding box feature vector of object ¢ in frame ¢, b; ;, and
the weighted hidden representation of the same object in the
last frame, hj ;1 ;, to update its hidden representation:

hyti = GRU(bt,ijl\b,tfl,i;ol)a )

where 8, are learnable parameters of the GRU, and hy ¢+ ; €
RNe. Here, N, is the number of hidden states of the GRU at
the bounding box branch. In parallel, the second GRU takes
the flow feature vector of the object, ft,i; and its weighted
hidden representation in the past frame, hy; 1, to update
the hidden representation:

hyii=GRU(frihpi 143602), (5)

where 0 are the learnable parameters, and hy,; € RNs. N [
represents the number of hidden states of the GRU at the
optical flow branch. The weighted hidden representations in
egs. (4) and (5) are introduced below.

C. Attention Module

Objects in the driving scene have unequal contributions to
a traffic accident. Therefore, learnable attentions should be
distributed among the detected objects. Denote H;, ; € RV *M
as the hidden representations of the M objects’ bounding box
features in frame t:

Hyt = [hoti,. . ot (6)

B hb,t,M]~

Here, the number of detected objects M is a variable that
can vary over time. Since the number of objects is not a fixed
number, the spatio-temporal relational learning is not biased
to unrelated features.

The dynamic spatial attention weights for the hidden repre-
sentation of bounding box features, o, 1 (€ RM ), are computed
as

(7

where wy (€ RN v) are learnable parameters. Then, o 4 is used
to turn H, ¢ into a weighted aggregation, H ;(€ RNv*M):

oy = softmax(tanh(HZyt)wb) ,

Hyp=hoi1,. . by shoen] =g, @ Hyyo (8)

where, © represents the element-wise product.
The same attention mechanism is applied to the hidden
representation of flow features,

Hyi=[hpea,--shyii- byl )
to get their flow feature attention weights a (€ RM):
ay, = softmax(tanh(Hy ,)wy), (10)

where w (€ RN7) are learnable parameters of the attention
module. a; is applied to H ¢, to obtain the weighted flow
hidden representations:

Hy=1Thpoa, o hpoar.. hpou) =of, @ Hypyo (11)

D. Riskiness Score Prediction

As Fig. 1 shows, for any object ¢, the two attention-weighted
hidden representations, hs ;; and hy ¢ ;, will respectively flow
into the corresponding GRUs to update the object’s hidden
representations in the next frame ¢+ 1, as discussed in Section
III-B. Meanwhile, they are concatenaled to become the overall
hidden representation of the object, hy ;(€ RNo+Nr):

Bii = [hosihpai). (12)

ﬁm‘ is decoded by two fully-connected layers ¢ to output
the scores of positive and negative classes, which are further
normalized by the softmax operation to find the riskiness score
of object ¢ in frame ¢, sy ;,

s1.4 = softmax(¢(d(hy.i;03);04), (13)
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Fig. 2. Sample images from ROL Dataset. The first row shows the spatial annotations of risky traffic agents, in the form of white-shaded bounding boxes.
The second row further visualizes traffic agent trajectories, with red curves for risky traffic agents and yellow ones for non-risky traffic agents. The third row

are optical flow images of the sample frames.

which is the probability that the object will be involved in an
accident soon, and €3’ and 6, are the learnable parameters.

E. The Loss Function

The goal of the model training process is to fit all the
learnable parameters 8’s and w’s of the proposed model in
Sections III-A~III-D by backpropagating a differentiable loss
function. A training dataset contains videos that each has T’
frames in total and M objects in each frame. In frame ¢, the
risk class of the ith object, is indicated by the ground truth
label, I, ;. l; ; is one if the object is a risky object (i.e., in the
positive class) and zero (i.e., in the negative class) otherwise.
In real-world driving scenarios, positive and negative classes
are imbalanced. Therefore, a weighted cross entropy loss is
calculated for each video in the training dataset:

T
L==" [plrilog(sei) + An(1 = 1) log(1 — s¢)]

t=1 i=1

(14
where )\, and A, are the weights for the positive and negative
classes, respectively. Losses of all the training videos are
summed up to get the total loss for optimizing the learnable
parameters.

IV. DATASET DEVELOPMENT

This study introduces a new dataset named Risky Object Lo-
calization (ROL) dataset, which is available to the public [37].
ROL has 1,000 video clips. Each video clip has 100 frames
and contains one or multiple risky traffic agents involved in
an accident.

A. Data Acquisition

To develop the ROL dataset, videos were collected from
the crowd sourced online platform YouTube using query terms
like “traffic accident” and “road crash”. A long video retrieved
from the platform often contains multiple accidents edited to-
gether. Consecutive frames of the same accident video segment

have similar histograms of image pixels, which distinguishes
them from other video segments. Using a threshold of 0.75,
long videos were segregated into video clips based on their
similarity measurement of frame histograms. These video clips
may contain irrelevant portions, such as the part too early
before an accident or post-accident portions. To address this,
collected video clips were trimmed down to 5 seconds each
with a frame rate of 20 frames per second (fps), resulting in
100 frames per video. The resolution of video frames is 1,080
x 720. The collected 1,000 videos were randomly divided into
800 training videos and 200 testing videos.

B. Data Annotation

The dataset provides detailed annotations for each video
clip, including object, accident, and scene information. Anno-
tations are further categorized as either categorical, spatial,
or temporal, offering comprehensive insights into the data.
TABLE -I shows the hierarchy of the annotations in the ROL
dataset.

The object-level annotations and the accident-level temporal
annotation are necessary for developing the proposed AM-Net.
Other annotations are provided to examine their impact to the
AM-Net’s performance. Details of the temporal, spatial and
categorical annotations of the dataset are described below.

1) Temporal Annotations: Temporal information is anno-
tated for both risky traffic agents and accidents in this study.
This is because identifying risky traffic agents that may be
involved in accidents in subsequent frames is critical for
accident prevention. In contrast to the previous methods, such
as [16], that rely on annotators’ judgment to determine the
moment an accident becomes inevitable, this study takes a
more objective approach. Specifically, this study annotates the
time when a risky traffic agent first appears in the driving scene
as the risky object appearance time. The accident beginning
time is defined as the moment when a vehicle collides with
another static or moving object, which serves as a reference
for calculating the earliness of localizing a risky traffic agent.
It is worth noting that the accident beginning time of each
video clip varies in the ROL dataset.
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TABLE I
RISKY OBJECT LOCALIZATION (ROL) DATASET STRUCTURE.

| Object-level |

Accident-level | Scene-level

- Risky object class
- Traffic agent class

- Ego-vehicle involvement
- Manner of collision

- Road system
- Related to roadway

Categorical - Intersection related
- Weather
- Lighting condition
Spatial | - Bounding box | |
Temporal | - Risky object appearance time | - Accident beginning time |

2) Spatial Annotations: ROL provides bounding boxes as
the spatial annotation of objects in a semi-automated approach
that keeps human annotators in the loop. The object detector
YOLOVS [33] detects traffic agents and renders their bounding
boxes. The multiobject tracker DeepSort [34] further asso-
ciates the same object over successive frames as a tracklet and
provides a unique tracking ID. By watching videos overlaid
with tracking IDs, human annotators identify the tracking IDs
of risky objects. Solely relying on the object detector and the
object tracker to provide the object-level spatial annotation
could miss a few agents, thus lowering the quality of the
dataset. In resolving this problem, the paper develops a click-
to-select object tracker based on DaSiamRPN [38] as an
additional intervention. The tool requires only a few mouse
clicks by human annotators to select missing or mis-tracked
objects. Although it requires some effort from the annotators,
human intervention ensures the best quality of the dataset. Fig.
2 illustrates six sample frames in ROL.

3) Categorical Annotations: ROL provides additional an-
notations of categorical variables, which are summarized in
Table II. The traffic agent class is automatically annotated
using YOLOVS, while other categorical variables are anno-
tated by human annotators. The annotators also reviewed
the automatically annotated traffic agents and re-annotated
any mislabeled positive traffic agents. The accident-related
and scene-related categorical variables follow the definitions
provided by FIRST [39], although they were not required for
developing the AM-Net. Nevertheless, they were included in
the ROL dataset to broaden the dataset’s applications.

TABLE III presents a comparison between the ROL dataset
and other existing traffic accident datasets. It has been ob-
served that several datasets, including DAD, A3D, and CCD,
lack important components of accident-level and object-level
annotations, such as the manner of collision and spatial
locations of objects. The GTA dataset, although a synthetic
dataset, offers the object-level annotation, thus enabling the
localization of risky objects. However, it lacks accident- and
scene-level annotations. On the other hand, the CTA dataset
provides both accident- and object-level annotations, but the
appearance time of risky objects is subject to the annotator’s
judgment. The DADA dataset is further extended to form
a large CAP dataset. While the DoTA offers annotations at
all levels, albeit with certain limitations. Specifically, DoTA
lacks collision starting time (i.e., accident beginning time).
Additionally, it is worth noting that the (*) marked levels

TABLE I
SUMMARY OF CATEGORICAL VARIABLES AND DISTRIBUTIONS

Variable | Categories Dist(%)
Person 3.0
Car 84.1
Truck 11.2
Traffic agent class Bus 09
Motorcycle 0.5
Bicycle 0.2
Risky object class l]zI(;Sgletllt\il\?e ?;;
Frame class Positiye 83.03
Negative 16.97
Ego vehicle involvement E%)(I)l—lengv(?li\rlliilve d gig
Local 322
Road system Arterial 36.8
Interstate 30.9
Roadway 52.5
Shoulder & roadside 12.3
Related to roadway Median 24
Intersection related 29.2
Others 3.6
No intersection 70.8
Intersection related 3-way 5.3
4-way 20.1
Clear 76.6
Cloudy 12.9
Weather Rain 85
Snow 39
Lighting condition g?ght ?é;
Angle 36.4
Sideswipe 11.6
Manner of collision Rear-end 19.2
Head-on 6.0
Others 26.8

differ from those in the proposed ROL dataset, as discussed
in Section IV-B

V. RESULTS AND DISCUSSION

Experiments are conducted to verify the effectiveness of
the proposed AM-Net and the newly collected ROL dataset.
Implementation details, evaluation metrics, and the results are
discussed below.

A. Implementation Details

The proposed AM-Net is built using PyTorch [40]. Model
training and testing are performed using an Nvidia Tesla V100
GPU with 32GB of memory. All the input frames are resized
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TABLE III
COMPARISON BETWEEN ROL DATASET WITH OTHER DATASETS. INFORMATION OF OTHER DATASETS ARE OBTAINED FROM THEIR RELEASED SOURCES.

Accident-level Object-level
Dataset #Videos | # Frames Collision Manner of Risky object Spatial Spatial Scene-level
starting time collision appearance time -negative object -positive object

DAD [6] 620 62k v

A3D [29] 1,500 128k v v

CCD [7] 1,500 75k v v

GTA [23] 7,720 128k v v v

CTA [30] 1,935 - v v'E v v

DADA [31] 2,000 658k v v

CAP [32] 11,727 2.19m v v'E vE v v

DoTA [16] 4,677 732k Ve vE v v v

ROL 1,000 100k v v v v v v
to 224x224 before feeding to the ResNet50 [36] feature TABLE IV
extractor. Feature vectors g; ; and o; ; are obtained by applying ABLATION STUDY ON THE ROL DATASET.
an average pooling operation to the output of the ResNet50 RGB Flow AUC WTTA
feature extractor, and their dimension (D) is 2,048. A fully- Model 0O G Bbox O G Att. (%) (s)
connected layer further reduces the dimension to 256 (d). The ; v o v , 2(1)?8 ;;g
dimension of ﬂow hldde?n representahons (Ny) is 256 and 3 v v 22,07 502
that for bounding box hidden representations (V) is 32. A 4 v 83.21 211
learning rate of 0.001 is used to train the AM-Net on the newly 5 v o v v o v 81.87 213
developed ROL dataset, and ReduceLROnPlateau is used as ? o/ \‘; i i 232‘; }g;
the learning rate scheduler. Adam optimizer is used to optimize 8 v v 3414 1.89
the network for 30 epochs and the best model is selected. The 9 v v v v v | v | 8491 2.19
positive to negative class ratio in ROL is 0.27 : 1. Therefore, 10 v | v v v |85 2.18

O: object level feature; G: global frame level feature; Att: Attention;

the class weights for the negative class (w,,) and positive class
(w,,) are selected as 0.27 and 1, respectively.

B. Evaluation Metrics

The model performance evaluation focuses on two aspects:
the correctness in localizing risky traffic agents in videos and
the earliness of risky traffic agent detection. To evaluate the
correctness, this study uses Area under the Receiver Operating
Characteristic Curve (AUC). AUC can measure the ability of
AM-Net to differentiate risky and non-risky traffic agents.

To measure the earliness of the prediction, mean Time-to-
Accident (mTTA) is used. Time-to-Accident (TTA) is defined
as the first time when a riskiness score s;; goes across a
threshold value 5. That is,

TTA = max{7T —t|s;; > 5,0 <t < 7,Vi}, (15)

where 7 is the accident beginning time. TTA is dependent of
the selection of a threshold value s. mTTA, the average of
TTA values at different threshold values, is calculated as an
earliness metric independent of the threshold value selection.

C. Evaluation of the Proposed Model Architecture

An ablation study is conducted to evaluate the contribution
of different components of AM-Net. In addition to the bound-
ing box and flow features described in Section-III, this ablation
study includes the RGB appearance feature to assess its effect
in localizing risky traffic agents. The RGB appearance feature
is integrated into the AM-Net in the same manner as the
flow feature. Ten models are trained and tested on ROL to
compare the correctness and earliness metrics of AM-Net and
nine variants. The results are summarized in TABLE IV.

Bbox: Bounding box feature

Single feature: Model #1 from the table utilizes object-level
(O) and global frame-level (G) appearance features that can be
directly extracted from RGB images as the input for localizing
risky traffic agents. This model achieves 80.30% AUC with
2.36 second mTTA, setting a benchmark for evaluating the
proposed AM-Net (model #10) and its variants (models #2~-9).
Model #2 uses the bounding box (Bbox) feature as the sole
input, which increases AUC to 81.19% but reduces mTTA
by 0.14 seconds. This suggests that changes in bounding box
location and scale are more discriminative than appearance
features for detecting risky traffic agents in traffic videos.
Similarly, Model #3 uses flow features as the input, achiev-
ing 82.07% AUC with 2.02 second mTTA. The comparison
between Models #1, #2, and #3 shows that flow features in
standalone is stronger compared to the other two features in
increasing the localization accuracy.

Feature fusion:Model #4, which combines the bounding
box feature with appearance features, achieves a higher AUC
than using any individual feature type (Models #1 and #2).
However, it does not result in a longer mTTA. Similar results
are observed for Model #5, which fuses the flow features
with appearance features. When all three types of features are
combined in Model #6, the AUC increases to 84.54%, but the
mTTA decreases to 1.95 seconds. In general, Models #4~#6
provide evidence that feature fusion is effective in enhancing
localization accuracy.

Model #7 removes the appearance feature input from Model
#6, yielding a similar result in terms of both AUC and mTTA.
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Model#8 further removes the global frame-level flow feature
from Model #7, resulting in lower AUC and mTTA. The global
frame-level flow feature captures the motion of the traffic
scene due to the ego-vehicle movement and the motion of
other objects in the same frame, which are important clue for
identifying risky traffic agents in the frame. The comparison of
those four models (#6~#8) suggests that fusing bounding box
feature and flow features (both the object level and the global
frame level) is the most suitable design of feature fusion.
Appearance features, while are effective in other tasks, may
lower the ability to differentiate traffic agents by their riskiness
classes.

Attention: Model # 9 and Model #10 show the effectiveness
of the proposed attention module. Model # 9 adds the attention
module to Model # 6 where all the features (i.e. appearance,
bbox, and flow) have been used. This model achieved 84.91
% AUC with a much longer mTTA of 2.19 second. Finally,
Model #10 (i.e., the proposed AM-Net) adds the proposed
attention module to Model #7, which achieves a promising
combination of performance, 85.59% AUC and 2.18 seconds
mTTA. In both Models, the attention module significantly
improves the mTTA indicating that it effectively addresses
the limitation of bounding box feature and flow features in
localizing risky traffic agents earlier.

D. Comparison to State-of-the-Art Models

This study compares the proposed AM-Net (i.e., #10 in
TABLE IV) with existing models [15]-[18] on DoTA [16]. To
make this comparison, the AM-Net model, which was initially
trained on ROL, is fine-tuned using 300 randomly selected
videos from the DoTA training dataset. Specifically, the final
fully connected layers were fine-tuned for three epochs. The
comparison is made from the perspective of video anomaly
detection. That is, they are compared on the metric of frame-
level AUC. TABLE V summarizes the comparative study
results. The frame-level AUC values of models [15]-[18] are
provided by [16]. To compute the frame-level AUC using the
output of AM-Net, the highest riskiness score of any detected
objects in a frame (max;{s;;}) is considered as the riskiness
score for the frame. The Receiver Operating Characteristic
(ROC) curve is attained by calculating the true positive rate
and false positive rate at various detecting threshold values.
Then, the frame-level AUC is calculated accordingly.

TABLE V
COMPARISON OF THE PROPOSED MODEL WITH EXISTING METHODS ON
DOTA [16] TESTING DATASET FOR VIDEO ANOMALY DETECTION

Method Features Frame-level AUC(%)
ConvAE [17] Flow (G) 66.3
ConvLSTMAE [18]  Flow (G) 62.5
FFP [15] RGB(G) 67.5
FOL [16] RGB(G) + Bbox + Flow(O) + Ego 73.0
AM-Net (Ours) Bbox + Flow (O+G) + Att. 76.5

TABLE V shows that ConvAE and ConvLSTMAE, using
the global frame-level flow feature as the only input, achieve
66.3% and 62.5% AUC, respectively. FFP, which uses the
global frame-level appearance feature, achieves 67.5% AUC.

TABLE VI
PERFORMANCE BY MANNER OF COLLISION: AM-NET vS. RGB-B [23]

Manner | AUC(%) | mTTA() | TIA03()
[[AM-Net RGB-B | AM-Net RGB-B | AM-Net RGB-B
Angle 8384  63.11 191 1.64 222 1.96
Sideswipe | 9117 68.80 2.20 2.68 2.98 3.05
Rear-end 9085  67.52 2.34 1.98 3.38 2.85
Head-on 8099 6771 2.07 1.4 229 147
Others 8347 6272 2.85 2.12 3.04 1.93

FOL effectively boosts up the performance to 73.0% by fusing
the bounding box, ego motion, and object-level optical flow
feature with the global frame-level appearance feature. AM-
Net achieves the highest AUC of 76.5%, about 3.5% higher
than FOL. The improvement of AM-Net over FOL can be
attributed to the choice of features and the method of video
anomaly detection. The comparison also indicates that the
bounding box and flow features, along with the attention
mechanism, are the most important information that captures
the spatio-temporal pattern of risky traffic agents. It is worth
noting that the proposed attention mechanism significantly
contributes to the early localization of risky traffic agents,
as shown in the ablation study (Table-IV). However, the
earliness of localization on DoTA is skipped in this comparison
because DoTA’s testing dataset lacks the annotation of accident
beginning time. In this study, AM-net was also compared with
the RGB-B method, proposed by Kim et al. [23], on the ROL
dataset. The RGB-B method was both trained and tested on
the ROL dataset, and yielded an AUC of 64.66% with 1.85
seconds of mTTA, while AM-Net outperforms it with an AUC
of 85.59% and 2.18 seconds of mTTA.

E. Performance by Manner of Collision

To evaluate the performance of the proposed AM-Net in
localizing risky traffic agents involved in different manner of
collisions, this study conducted a comparative study with the
RGB-B method proposed by Kim et al. [23]. AUC, mTTA,
TTA_0.3 are calculated for each collision type. TTA_0.3 refers
to the TTA value when prediction threshold is 0.3. The testing
dataset of ROL contains 34.0% angle, 18.5% sideswipe, 10.0%
rear-end, 5.5% head-on, and 32.0% other types of collision
videos.

Localizing risky traffic agents in sideswipe collisions is
particularly challenging due to the short time for localization.
However, AM-Net achieves the highest AUC of 91.17% in this
category. In contrast, RGB-B approach only obtained an AUC
of 68.80%. AM-Net also achieves a high AUC of 90.85% in
rear-end collisions whereas RGB-B achieved 63.11% AUC.
For angle collisions, AM-Net achieves AUC of 83.84%, while
for head-on collisions, it achieves an AUC of 80.99%. It should
be noted that the low AUC for detecting risky traffic agents
in head-on collisions (80.99%) may be due to the rarity of
these collisions in the collected dataset (6%). On testing videos
of other collision types, AM-Net achieves 83.47% AUC. In
contrast, in these three categories, AUC obtained by the RGB-
B method is below 68%.

AM-Net achieves impressive early localization results, even
in angle collisions where risky traffic agents can be localized
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Fig. 3. Examples of risky traffic agent localization in driving scenes.

with an mTTA of only 1.91 seconds. This is notable given
the sudden changes in motion and trajectory that characterise
this type of collisions. For the rest of collision types, AM-
Net is also effective at early localization, with lead times
of at least 2 seconds prior to the accident. Notably, AM-
Net outperforms the RGB-B method in terms of mTTA for
all categories except sideswipe. The TTA_0.3 results show a

similar pattern to the mTTA values for both AM-Net and RGB-
B. In terms of the most effective early localization, AM-Net
performs best for rear-end collisions, with an average lead time
of 2.34 seconds before the accident occurs, when excluding
the “other” category.

The experimentation with respect to different manners of
collision confirms that AM-Net can achieve promising perfor-
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mance in localizing risky traffic agents, particularly in angle,
sideswipe, and rear-end collision types. As per NHTSA report
[39], 66% of reported collisions with body injury or property
damage pertain to these three manners of collision. Correctly
localizing risky traffic agents ahead of time would allow for
taking preventive actions to avoid the accident.

FE. Performance by Ego Vehicle Involvement

In determining whether the proposed AM-Net performs
differently on the early localization of risky traffic agents in
ego vehicle-involved versus non-involved accidents, a test was
conducted to compute the AUC and mTTA on both categories.
AM-Net achieves a high AUC of 91.23% with a relatively
short mTTA of 2.02 seconds on ego vehicle-involved acci-
dents. For ego non-involved accidents, the proposed method
achieves a slightly lower AUC of 83.78% and a longer mTTA
of 2.79 seconds. It is worth noting that localization of risky
objects in ego vehicle-involved accidents is less challenging
in terms of prediction accuracy, as the objects appear rel-
atively closer to the ego vehicle. In contrast, traffic agents
appear relatively far in the third-party non-ego vehicle footage,
making the accurate localization more difficult. Overall, the
proposed AM-Net achieves very promising performance in
both categories, indicating its potential to improve traffic
safety.

G. Performance in Negative Videos

To understand the effectiveness of the proposed method
in distinguishing between risky and non-risky traffic agents
in completely negative videos, a small scale experiment was
conducted. Specifically, the experiment collected 60 negative
videos from the DAD dataset, which were combined with 60
positive videos from the ROL dataset, to form a test dataset
of 120 video. Then, AM-Net achieved an AUC of 87.04% on
this dataset. Moreover, AM-Net achieved an AUC of 86.05%
on the 60 positive videos of this dataset. These results confirm
that proposed AM-Net has learned enough cues from the ROL
dataset to differentiate between risky and non-risky traffic
agents in both positive and negative videos.

H. Qualitative Evaluation

Fig. 3 illustrates three representative examples of risky
traffic agent localization in ROL dataset to demonstrate the
effectiveness of the proposed AM-Net. These examples illus-
trate the scenarios of complex scenes with small objects, ego
vehicle-involved accidents, and suddenly appearing risky traf-
fic agents. Video demonstrations of the results are available at
[37]. In each example, white-shaded bounding boxes highlight
the true risky traffic agents. The green curve in the bottom row
represents the true riskiness score of these agents, which is one
as long as they appear in the frame. AM-Net localizes risky
traffic agents with colored bounding boxes, and a threshold
value of 0.3 is set to determine if a predicted object is a risky
traffic agent for the illustration purpose. The reddish black to
yellowish white color scheme of bounding boxes shown in
Fig. 3 corresponds to the range [0.3, 1]. The riskiness score

of the localized risky traffic agents is indicated by curves in
colors other than green.

The video of example (a) contains two risky traffic agents,
which are two vehicles far away from the ego vehicle. Since
they appear in the video from the beginning, the ground
truth riskiness score (i.e., the green line) remains constant
at one throughout the timeline of the video sequence. The
video contains a risky situation where the two vehicles are
approaching each other from the side, resulting in a collision
starting at frame #70. The accident scene is complex because
the two risky traffic agents are very small due to the far
distance from the ego vehicle. AM-Net successfully assigns
the highest riskiness scores to those two traffic agents from
a very early stage. The color of the first risky traffic agent’s
bounding box (in the middle row of the example) quickly turns
from red to yellow, and the riskiness score (the cyan curve in
the bottom row of the example) increases gradually. For the
second risky traffic agent, its riskiness score (the dark blue
curve) is a little lower than that of the first traffic agent. It is
mainly because of the relatively lower velocity and relatively
smaller size of the second vehicle than the first one. Upon
reaching the 0.3 threshold value, the network successfully
maintains the riskiness score above the threshold value almost
throughout the timeline.

In example (b), the ego vehicle collides with another vehicle
(the risky traffic agent) that cuts into its lane from the side at
frame #36. In this example also, the risky traffic agent appears
in the video from the beginning. AM-Net assigns the highest
riskiness score to the correct vehicle in the traffic.

In example (c), the risky traffic agent is not in the video
until frame #33 when the vehicle is coming to the front of the
ego vehicle from the opposite direction, resulting in an angle
collision at frame #70. Despite the risky traffic agent appearing
briefly, AM-Net accurately assigns the highest riskiness score
to this vehicle and did not generate any false positive detection.

VI. CONCLUSION

This paper introduced a novel deep learning framework
named Attention-guided Multistream feature fusion Network
(AM-Net) for the early localization of risky traffic agents from
dashcam videos. AM-Net extracts spatial and motion infor-
mation and learns spatio-temporal features of traffic agents
from successive frames. By fusing multistream features at
object and global frame levels and differentiating attention
to different agents, AM-Net effectively localizes risky agents
before accident occurrences. An ablation study justified the
input selection and verified the effectiveness of the proposed
mechanism. Experimental evaluation showed that AM-Net
outperforms state-of-the-art. The paper also introduced ROL,
a benchmark dataset containing object-, accident-, and scene-
level annotations, which can fuel multidisciplinary research on
transportation safety enhancement.

Limitations and future work: Although the AM-Net has
shown promising results in localizing risky traffic agents and
anticipating traffic accidents, some limitations still need to
be addressed in future research. One of the main limitations
is the scarcity of data, which hinders the early localization
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of risky traffic agents from head-on collisions. In addressing
this issue, future research could explore incorporating prior
knowledge from the dataset to allocate more attention to the
front-facing vehicles approaching the ego vehicle. Another
limitation is the ability of the object detector and tracker in
adverse weather conditions, which can cause the tracker to
reset and hinder the updating of the hidden representation
based on observed trajectory. This problem could be addressed
using more robust object detectors and trackers or multiple
sensor fusion. In addition, AM-Net currently considers six
main types of traffic agents, which may limit its ability to
localize risky traffic agents in low-frequent cases where other
types of objects, such as road debris or animals, initiate the
risk. Future research could therefore expand the types of traffic
agents the model considers to include animals and road debris
to better anticipate potential accidents caused by such objects.
Another promising avenue of the future research is predicting
the crash severity level. Further investigation is required to
predict more fine-grained severity level of different crash
scenarios.
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