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Agents in Driving Videos
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Abstract—Detecting dangerous traffic agents in videos cap-
tured by vehicle-mounted dashboard cameras (dashcams) is
essential to ensure safe navigation in complex environments.
Accident-related videos are just a minor portion of the driving-
related big data, and the transient pre-accident process is highly
dynamic and complex. Besides, risky and non-risky traffic agents
can be similar in their appearance. These make risky traffic
agent localization in the driving video particularly challenging.
To this end, this paper proposes an attention-guided multistream
feature fusion network (AM-Net) to localize dangerous traffic
agents from dashcam videos ahead of potential accidents. Two
Gated Recurrent Unit (GRU) networks use object bounding box
and optical flow features extracted from consecutive video frames
to capture spatio-temporal cues for distinguishing risky traffic
agents. An attention module, coupled with the GRUs, learns to
identify traffic agents that are relevant to an accident. Fusing the
two streams of global and object-level features, AM-Net predicts
the riskiness scores of traffic agents in the video. In supporting
this study, the paper also introduces a new benchmark dataset
called Risky Object Localization (ROL). The dataset contains
spatial, temporal, and categorical annotations of the accident,
object, and scene-level attributes. The proposed AM-Net achieves
a promising performance of 85.59% AUC on the ROL dataset.
Additionally, the AM-Net outperforms the current state-of-the-
art for video anomaly detection by 3.5% AUC on the public
DoTA dataset. A thorough ablation study further reveals AM-
Net’s merits by assessing the impact of its constituents.

Index Terms—accident prediction, early risky object localiza-
tion, autonomous vehicle, multi-modal, attention, deep learning,
dashcam

I. INTRODUCTION

Autonomous driving and Advanced Driver Assistance Sys-

tems (ADAS) have made rapid progress in recent years [1].

Although research is progressing positively towards a vision

of more comfortable and safer driving experiences, there are

still concerns about traffic accidents. From 2014 to March

17, 2023, 564 autonomous vehicle collisions were reported in

California [2]. Moreover, according to the 2018 Global Status

Report on Road Safety from World Health Organization, about

1.35 million people are killed in traffic accidents yearly [3].

Developing an intelligent driving function to help drivers or

autonomous systems identify and localize risky traffic agents

is urgently needed to reduce collisions and fatalities.
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Therefore, it is an essential task to recognize risky traffic

agents that will cause, or be involved in, accidents and localize

these agents in the driving video captured by a vehicle-

mounted dashboard camera (dashcam), a type of sensor that

is both low-cost and widely deployed. Creating the ability

to recognize and localize risky traffic agents will provide a

valuable reference for the subsequent behavior and motion

planning of ADAS. Besides, detecting the presence of risky

traffic agents can help drivers reduce the chance of involving

in accidents. This capability applies to other applications, such

as traffic safety, autonomous driving, and pedestrian protection

[4], [5].

Several computer vision studies have addressed a related

task that detects anomalous events from a dashcam [6]–[11].

That is, this stream of literature focuses on identifying frames

where the risk of a traffic accident is present. However, those

studies did not address the critical challenge of localizing risky

traffic agents in a driving scene.

Early localization of risky traffic agents, which are likely

to involve in a future accident, from a highly dynamic and

complex driving scene have three crucial challenges. First,

the visual appearance of a traffic agent in the driving scene

may not tell much about its risk level because of the very

similar visual appearance of some traffic agents. Second, the

time window for recognizing risky traffic agents is short.

Last but not the least, the long-term temporal dependency of

traffic agents underlying the accident risk is hard to capture.

Several attempts have explored this topic, mainly using deep

learning methods [12]–[16]. While these studies have laid a

solid foundation for risky traffic agent localization, there are

still several research needs that must be addressed.

One of the main research needs is the identification and

utilization of features most relevant to risky traffic agents.

Despite the various features used, including appearance, mo-

tion, size, and shape, a consensus on the most informative

features has yet to be established. Thus, research is needed to

identify these features and their contribution to the localization

of risky traffic agents. Furthermore, how the selected features

are fused would impact their ability to characterize these traffic

agents. However, no such guidance exists, particularly for risky

traffic agent localization. Another need is a dynamic attention

mechanism for differentiating traffic agents. In complex traffic

scenes, spatially distributed objects interact, and the interaction

evolves. Incorporating the attention mechanism into the deep

learning framework will improve the performance of risky

traffic agent localization. Furthermore, the ability to localize
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the presence of risky traffic agents ahead of time is crucial to

avoiding accidents or mitigating their consequences. Current

work has yet to create and measure such ability, and one reason

for this is the need for the appropriate temporal annotation of

risky traffic agents in existing datasets.

To tackle the challenges, the contributions of this paper are

as follow:

• A new attention-guided multistream feature fusion net-

work (AM-Net) is proposed for the early localization of

risky traffic agents in driving videos. Scene- and object-

specific spatio-temporal features are extracted and fused

to better capture risk-related cues. A dynamic attention

mechanism is further incorporated to selectively attend to

critical cues. This framework has led to a new state-of-

the-art performance.

• A new dataset, called the Risky Object Localization

(ROL) dataset, has been developed to support training the

model for the early localization of risky traffic agents and

assessment of model performance in terms of correctness

and earliness.

• A comprehensive study uses numerical experiments to

verify the contribution of feature selection, feature fusion,

and attention mechanism to the early localization of risky

traffic agents.

The remainder of this paper will further the discussion

by presenting the following contents in sequence. Section II

summarizes the literature to determine state-of-the-art. After

that, Section III delineates the proposed AM-Net, followed

by the development of the ROL dataset in Section IV. Then,

Section V presents experimental studies to demonstrate and

verify the merits of the contributed network and dataset. In

the end, Section VI summarizes research findings, limitations,

and important future work.

II. THE LITERATURE

This paper is built on studies that contribute to risky traffic

agent localization, either directly or indirectly. The related

literature is summarized below.

A. Anomaly Detection in a Video

A topic related to risky traffic agent localization in a

driving scene is video anomaly detection, which is about

finding abnormal events in the video. Video anomaly de-

tection is often formulated by profiling the normal behavior

and measuring the spatial-temporal feature consistency. Deep

learning-based methods can improve video anomaly detection

by creating a more accurate normal video profile ( [15],

[17]–[20]). For example, Hasan et al. [17] developed a 3D

Convolutional feed-forward Auto-Encoder (ConvAE) to model

regular video frames. Motivated by this, Chong et al. [18]

used a Convolutional Long Short Term Memory Auto-Encoder

(ConvLSTMAE) to simultaneously take advantage of both

Convolutional Neural Network (CNN) and Recurrent Neural

Network (RNN) in modeling normal appearance and motion

patterns. Georgescu et al. [19] proposed a self-supervised and

multitask learning approach for anomaly detection in videos,

which can also be applied to risky traffic agent localization.

Liu et al. [15] developed a Future Frame Prediction (FFP)

method, and an observed deviation against the prediction

indicates abnormality. In those studies, normal situations are

usually stable scenes, which limits their applicability to driving

videos captured by cameras in rapid motion.

B. Traffic Accident Anticipation Using Dashcam Videos

Traffic accident anticipation in dashcam videos has become

a research focus recently. Unlike video surveillance systems,

dashcam videos capture moving traffic agents that not only

rapidly move but appear and disappear quickly in the scene.

Different advanced methods have been developed to learn the

spatio-temporal patterns of traffic agents to provide an overall

riskiness score for the scene, including an LSTM predictor [6],

reinforced learning [8], graph neural network [11], generative

adversarial network [21], and a dynamic attention network

[9]. Although they only predict a risky event in the temporal

domain, a risky event is always caused by risky traffic agents

in the driving scene. As a result, these studies have established

a strong methodological foundation for localizing risky traffic

agents in the spatial domain.

C. Risky Traffic Agent Localization in a Driving Scene

Several recent studies have put forward various approaches

for the localization of risky traffic agents. Ohn-Bar et al. [22]

developed a deep spatio-temporal importance prediction model

that assigns riskiness scores to objects in a driving scene.

Kozuka et al. [12] proposed a weakly supervised method for

forecasting pedestrian-involved risky regions, whereas Zeng

et al. [13] introduced a soft-attention mechanism to provide

agent-centric riskiness scores for different traffic agents. An

RNN has been employed explicitly to model nonlinear in-

teractions among agents. However, these techniques have not

made use of motion and location-scale features, which are

essential for capturing the dynamic nature of traffic agents and

their spatial relationships. Moreover, restricting the number of

candidate objects in each frame is not a practical solution in

many driving scenarios where the number of traffic agents can

vary considerably.

Li et al. [14] investigated the causal impact of risky traffic

agents on the driver’s behavior by eliminating candidate traffic

agents from the input video stream. Although it appears

straightforward, it is an extremely complex problem to solve

in real-world applications due to the presence of numerous

known and unknown casualties. Kim et al. [23] introduced a

domain adaptation technique to train a deep neural network for

the identification of dangerous vehicles using synthetic data.

Their approach is impressive in domain adaptation; however,

their CNN-based method suffers from capturing long-term

spatio-temporal relationships of accident-relevant cues. Malla

et al. [24]’s DRAMA system performs joint risk localization

and captioning in driving scenes. DRAMA employs a cap-

tioning approach to provide context for the identified risky

traffic agents and their impact on the driving scene. Another

line of research [25]–[27] formulated this problem as an

important object identification problem by imitating human

gaze behavior and predicting a pixel-level attention map that
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serves as a proxy for risk. Nonetheless, human attention maps

may not always be accurate for capturing risky agents.

Other methods, such as [16], [28], are trained to per-

form a related task such as trajectory prediction problem,

where higher inconsistencies between the ground truth and

the predicted trajectories are considered as risk. Specifically,

Yao et al. [16] proposed a trajectory-based technique for

localizing risky traffic agents, using future trajectory prediction

to identify inconsistencies in agent behavior. Kim et al. [28]

estimated agent importance by forecasting pixel-level attention

heat maps. However, these methods are vulnerable when a

traffic agent suddenly appears in the scene.

Although impressive, the methods outlined above exhibit

some limitations in terms of identifying and capturing the most

significant accident-relevant cues from video sequences to

determine risky traffic agents. Furthermore, these approaches

do not sufficiently explore the potential of feature fusion to

enhance localization capability. Notably, existing work in the

literature lacks the capacity to measure how early the models

can localize risky traffic agents.

D. Risky Object Localization Datasets

In response to the increased focus on deep learning-based

anticipation of risky events in traffic videos, several large-

scale datasets have emerged. Chan et al. [6] curated the

Dashcam Accident Dataset (DAD), consisting of 620 video

clips depicting on-road accidents, with the last ten frames

of each video clip containing the accident. Yao et al. [29]

developed the A3D dataset, comprising 1,500 videos annotated

with the starting and ending times of accidents. Bao et al. [7]

created a car accident dataset consisting of 1,500 videos, which

includes annotations of environmental attributes and accident

causes to support traffic accident anticipation. However, these

datasets do not directly apply to the problem of localizing risky

traffic agents due to the absence of object-level risk annotation.

You et al. [30] developed the CTA dataset, a benchmark

dataset comprising 1,935 crash videos, which includes cause

and effect events for different accidents, including their tem-

poral intervals. This dataset contains labels for the cause of a

crash and their potential effect after the crash. Fang et al. [31]

collected driver attention on 2,000 crash videos to construct the

DADA-2000 dataset, which demonstrated that driver attention

can support future accident prediction problems.

In addition, Kim et al. [23] developed a synthetic dataset

called GTA-crash, which was collected from the GTA5 game

to reduce the cost of accident video collection. However,

synthetic data may not capture the distribution of real driv-

ing scenes. Recently, Fang et al. [32] developed the largest

dataset with 2.19 million video frames named CAP, which

provides factual text descriptions before the accident and driver

attention maps to support different transportation research

problems.

Yao et al. [16] collected 4,600 videos and annotated risky

traffic agents contributing to an accident with their bounding

boxes in videos, when annotators judged the accident to be

inevitable. It should be noted that the subjective nature of the

annotation approach in many of these datasets may introduce

some variability in the annotation quality. Additionally, the

annotations in many of these datasets either do not include the

beginning time of accidents or consider risky object appear-

ance time as the accident or anomaly beginning time. However,

the beginning time of accidents is necessary information to

assess the earliness of a model’s ability to localize risky traffic

agents.

III. METHODOLOGY

This paper proposes an Attention-Guided Multistream Net-

work (AM-Net) to address identified gaps in current studies

on risky traffic agent localization. Fig. 1 illustrates the model,

which reads frames of an input video to output the riskiness

score st,i of traffic agent i detected in frame t. Detailed

description of the proposed AM-Net is below.

A. Feature Extraction and Aggregation

AM-Net uses a pretrained object detector YOLOv5 [33] to

detect traffic agents in each frame and provide the bounding

boxes of the detected objects in the frame. M is the number

of detected objects, which may vary from one frame to

another. Because the temporal association of the same object

in successive frames is critical information for risky object

localization, a multi-object tracker DeepSort [34] is used to

make the association of objects in different frames.

The change in pixel-level motion among video frames is

an important clue to find objects with unusual movement.

Therefore, AM-Net uses a pretrained RAFT model [35] to

extract the optical flow image for every frame. Then, regions in

the flow image, determined by the detected objects’ bounding

boxes, are cropped to become object-level flow images. Then,

the feature extractor ResNet50 [36] turns the frame-level flow

image into a global feature vector, gt(∈ R
D), and any of those

at the object level into another feature vector, ot,i(∈ R
D).

Here, D is the dimension of those feature vectors. Then, ot,i

is concatenated with gt to become the overall flow feature

vector for the ith object, pt,i(∈ R
2D):

pt,i = [ot,i; gt], (1)

which captures the object’s motion feature in the driving scene.

After further passing a fully connected layer φ, the flow

feature vector pppt,i becomes a lower dimensional feature vector,

fff t,i ∈ (R2d):

fff t,i = φ(pppt,i;θθθ0), (2)

where θθθ0 are learnable parameters of the fully connected layer.

Changes in bounding boxes’ location and scale in successive

frames capture the spatial dynamics of traffic agents over time.

Therefore, for any object i in frame t, its bounding box’s

location (xt,i, yt,i) and its scale in width wt,i and height ht,i

are encoded as a feature vector bbbt,i(∈ R
4):

bbbt,i = [xt,i; yt,i;wt,i;ht,i]. (3)
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Fig. 1. Overview of the proposed AM-Net framework. The network has two branches: one for detecting and tracking bounding boxes using an object detector
and tracker, and then encoding them with a GRU encoder. The other branch estimates optical flow, crops objects based on bounding box information, and
extracts features for both the cropped objects and global frame. These two types of features are concatenated and fed into another GRU encoder to update the
hidden representation. After that, the two GRUs are coupled with an attention module to get weighted hidden representations from the previous M frames.
Finally, concatenated hidden representations are passed through FC layers to produce riskiness scores for each object.

B. Spatio-temporal Relational Learning with GRUs

Two Gated Recurrent Units (GRUs) respectively encode the

extracted bounding box feature vector and flow feature vector

of any detected object into their hidden representations and

update them over time. Fig. 1 shows that, one GRU takes the

bounding box feature vector of object i in frame t, bbbt,i, and

the weighted hidden representation of the same object in the

last frame, ĥhhb,t−1,i, to update its hidden representation:

hhhb,t,i = GRU(bbbt,i, ĥhhb,t−1,i;θθθ1), (4)

where θθθ1 are learnable parameters of the GRU, and hhhb,t,i ∈
R

Nb . Here, Nb is the number of hidden states of the GRU at

the bounding box branch. In parallel, the second GRU takes

the flow feature vector of the object, fff t,i, and its weighted

hidden representation in the past frame, ĥhhf,t−1,i, to update

the hidden representation:

hhhf,t,i = GRU(fff t,i, ĥhhf,t−1,i;θθθ2), (5)

where θθθ2 are the learnable parameters, and hhhf,t,i ∈ R
Nf . Nf

represents the number of hidden states of the GRU at the

optical flow branch. The weighted hidden representations in

eqs. (4) and (5) are introduced below.

C. Attention Module

Objects in the driving scene have unequal contributions to

a traffic accident. Therefore, learnable attentions should be

distributed among the detected objects. DenoteHHHb,t ∈ R
Nb×M

as the hidden representations of the M objects’ bounding box

features in frame t:

Hb,t = [hb,t,1, . . . ,hb,t,i, . . . ,hb,t,M ]. (6)

Here, the number of detected objects M is a variable that

can vary over time. Since the number of objects is not a fixed

number, the spatio-temporal relational learning is not biased

to unrelated features.

The dynamic spatial attention weights for the hidden repre-

sentation of bounding box features, αb,t(∈ R
M ), are computed

as

αb,t = softmax(tanh(HT
b,t)wb), (7)

where wb(∈ R
Nb) are learnable parameters. Then, αb,t is used

to turn Hb,t into a weighted aggregation, ĤHHb,t(∈ R
Nb×M ):

Ĥ̂ĤHb,t = [ĥhhb,t,1, . . . , ĥhhb,t,i, . . . , ĥhhb,t,M ] = αT
b,t �Hb,t. (8)

where, � represents the element-wise product.

The same attention mechanism is applied to the hidden

representation of flow features,

HHHf,t = [hhhf,t,1, . . . ,hhhf,t,i, . . . ,hhhf,t,M ]. (9)

to get their flow feature attention weights αααf,t(∈ R
M ):

αf,t = softmax(tanh(HT
f,t)wf ), (10)

where wf (∈ R
Nf ) are learnable parameters of the attention

module. αααf,t is applied to HHHf,t to obtain the weighted flow

hidden representations:

Ĥ̂ĤHf,t = [ĥhhf,t,1, . . . , ĥhhf,t,i, . . . , ĥhhf,t,M ] = αT
f,t �Hf,t. (11)

D. Riskiness Score Prediction

As Fig. 1 shows, for any object i, the two attention-weighted

hidden representations, ĥhhb,t,i and ĥhhf,t,i, will respectively flow

into the corresponding GRUs to update the object’s hidden

representations in the next frame t+1, as discussed in Section

III-B. Meanwhile, they are concatenated to become the overall

hidden representation of the object, ĥhht,i(∈ R
Nb+Nf ):

ĥt,i = [ĥhhb,t,i; ĥhhf,t,i]. (12)

ĥhht,i is decoded by two fully-connected layers φ to output

the scores of positive and negative classes, which are further

normalized by the softmax operation to find the riskiness score

of object i in frame t, st,i,

st,i = softmax(φ(φ(ĥhht,i;θθθ3);θθθ4), (13)
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Fig. 2. Sample images from ROL Dataset. The first row shows the spatial annotations of risky traffic agents, in the form of white-shaded bounding boxes.
The second row further visualizes traffic agent trajectories, with red curves for risky traffic agents and yellow ones for non-risky traffic agents. The third row
are optical flow images of the sample frames.

which is the probability that the object will be involved in an

accident soon, and θθθ3’ and θθθ4’ are the learnable parameters.

E. The Loss Function

The goal of the model training process is to fit all the

learnable parameters θθθ’s and www’s of the proposed model in

Sections III-A∼III-D by backpropagating a differentiable loss

function. A training dataset contains videos that each has T

frames in total and M objects in each frame. In frame t, the

risk class of the ith object, is indicated by the ground truth

label, lt,i. lt,i is one if the object is a risky object (i.e., in the

positive class) and zero (i.e., in the negative class) otherwise.

In real-world driving scenarios, positive and negative classes

are imbalanced. Therefore, a weighted cross entropy loss is

calculated for each video in the training dataset:

L = −
T∑

t=1

M∑

i=1

[λplt,i log(st,i) + λn(1− lt,i) log(1− st,i)] ,

(14)

where λp and λn are the weights for the positive and negative

classes, respectively. Losses of all the training videos are

summed up to get the total loss for optimizing the learnable

parameters.

IV. DATASET DEVELOPMENT

This study introduces a new dataset named Risky Object Lo-

calization (ROL) dataset, which is available to the public [37].

ROL has 1,000 video clips. Each video clip has 100 frames

and contains one or multiple risky traffic agents involved in

an accident.

A. Data Acquisition

To develop the ROL dataset, videos were collected from

the crowd sourced online platform YouTube using query terms

like “traffic accident” and “road crash”. A long video retrieved

from the platform often contains multiple accidents edited to-

gether. Consecutive frames of the same accident video segment

have similar histograms of image pixels, which distinguishes

them from other video segments. Using a threshold of 0.75,

long videos were segregated into video clips based on their

similarity measurement of frame histograms. These video clips

may contain irrelevant portions, such as the part too early

before an accident or post-accident portions. To address this,

collected video clips were trimmed down to 5 seconds each

with a frame rate of 20 frames per second (fps), resulting in

100 frames per video. The resolution of video frames is 1,080

× 720. The collected 1,000 videos were randomly divided into

800 training videos and 200 testing videos.

B. Data Annotation

The dataset provides detailed annotations for each video

clip, including object, accident, and scene information. Anno-

tations are further categorized as either categorical, spatial,

or temporal, offering comprehensive insights into the data.

TABLE -I shows the hierarchy of the annotations in the ROL

dataset.

The object-level annotations and the accident-level temporal

annotation are necessary for developing the proposed AM-Net.

Other annotations are provided to examine their impact to the

AM-Net’s performance. Details of the temporal, spatial and

categorical annotations of the dataset are described below.
1) Temporal Annotations: Temporal information is anno-

tated for both risky traffic agents and accidents in this study.

This is because identifying risky traffic agents that may be

involved in accidents in subsequent frames is critical for

accident prevention. In contrast to the previous methods, such

as [16], that rely on annotators’ judgment to determine the

moment an accident becomes inevitable, this study takes a

more objective approach. Specifically, this study annotates the

time when a risky traffic agent first appears in the driving scene

as the risky object appearance time. The accident beginning

time is defined as the moment when a vehicle collides with

another static or moving object, which serves as a reference

for calculating the earliness of localizing a risky traffic agent.

It is worth noting that the accident beginning time of each

video clip varies in the ROL dataset.
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TABLE I
RISKY OBJECT LOCALIZATION (ROL) DATASET STRUCTURE.

Object-level Accident-level Scene-level

Categorical

- Risky object class - Ego-vehicle involvement - Road system
- Traffic agent class - Manner of collision - Related to roadway

- Intersection related
- Weather
- Lighting condition

Spatial - Bounding box

Temporal - Risky object appearance time - Accident beginning time

2) Spatial Annotations: ROL provides bounding boxes as

the spatial annotation of objects in a semi-automated approach

that keeps human annotators in the loop. The object detector

YOLOv5 [33] detects traffic agents and renders their bounding

boxes. The multiobject tracker DeepSort [34] further asso-

ciates the same object over successive frames as a tracklet and

provides a unique tracking ID. By watching videos overlaid

with tracking IDs, human annotators identify the tracking IDs

of risky objects. Solely relying on the object detector and the

object tracker to provide the object-level spatial annotation

could miss a few agents, thus lowering the quality of the

dataset. In resolving this problem, the paper develops a click-

to-select object tracker based on DaSiamRPN [38] as an

additional intervention. The tool requires only a few mouse

clicks by human annotators to select missing or mis-tracked

objects. Although it requires some effort from the annotators,

human intervention ensures the best quality of the dataset. Fig.

2 illustrates six sample frames in ROL.

3) Categorical Annotations: ROL provides additional an-

notations of categorical variables, which are summarized in

Table II. The traffic agent class is automatically annotated

using YOLOv5, while other categorical variables are anno-

tated by human annotators. The annotators also reviewed

the automatically annotated traffic agents and re-annotated

any mislabeled positive traffic agents. The accident-related

and scene-related categorical variables follow the definitions

provided by FIRST [39], although they were not required for

developing the AM-Net. Nevertheless, they were included in

the ROL dataset to broaden the dataset’s applications.

TABLE III presents a comparison between the ROL dataset

and other existing traffic accident datasets. It has been ob-

served that several datasets, including DAD, A3D, and CCD,

lack important components of accident-level and object-level

annotations, such as the manner of collision and spatial

locations of objects. The GTA dataset, although a synthetic

dataset, offers the object-level annotation, thus enabling the

localization of risky objects. However, it lacks accident- and

scene-level annotations. On the other hand, the CTA dataset

provides both accident- and object-level annotations, but the

appearance time of risky objects is subject to the annotator’s

judgment. The DADA dataset is further extended to form

a large CAP dataset. While the DoTA offers annotations at

all levels, albeit with certain limitations. Specifically, DoTA

lacks collision starting time (i.e., accident beginning time).

Additionally, it is worth noting that the (*) marked levels

TABLE II
SUMMARY OF CATEGORICAL VARIABLES AND DISTRIBUTIONS

Variable Categories Dist(%)

Traffic agent class

Person 3.0
Car 84.1
Truck 11.2
Bus 0.9
Motorcycle 0.5
Bicycle 0.2

Risky object class
Positive 21.3
Negative 78.7

Frame class
Positive 83.03
Negative 16.97

Ego vehicle involvement
Ego involved 45.4
Non-ego involved 54.6

Road system
Local 32.2
Arterial 36.8
Interstate 30.9

Related to roadway

Roadway 52.5
Shoulder & roadside 12.3
Median 2.4
Intersection related 29.2
Others 3.6

Intersection related
No intersection 70.8
3-way 5.3
4-way 20.1

Weather

Clear 76.6
Cloudy 12.9
Rain 8.5
Snow 3.9

Lighting condition
Day 81.3
Night 18.7

Manner of collision

Angle 36.4
Sideswipe 11.6
Rear-end 19.2
Head-on 6.0
Others 26.8

differ from those in the proposed ROL dataset, as discussed

in Section IV-B

V. RESULTS AND DISCUSSION

Experiments are conducted to verify the effectiveness of

the proposed AM-Net and the newly collected ROL dataset.

Implementation details, evaluation metrics, and the results are

discussed below.

A. Implementation Details

The proposed AM-Net is built using PyTorch [40]. Model

training and testing are performed using an Nvidia Tesla V100

GPU with 32GB of memory. All the input frames are resized
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TABLE III
COMPARISON BETWEEN ROL DATASET WITH OTHER DATASETS. INFORMATION OF OTHER DATASETS ARE OBTAINED FROM THEIR RELEASED SOURCES.

Accident-level Object-level
Scene-levelDataset #Videos # Frames Collision

starting time
Manner of
collision

Risky object
appearance time

Spatial
-negative object

Spatial
-positive object

DAD [6] 620 62k X

A3D [29] 1,500 128k X X

CCD [7] 1,500 75k X X

GTA [23] 7,720 128k X X X

CTA [30] 1,935 - X X* X X

DADA [31] 2,000 658k X X*
CAP [32] 11,727 2.19m X X* X* X X

DoTA [16] 4,677 732k X* X* X X X

ROL 1,000 100k X X X X X X

to 224×224 before feeding to the ResNet50 [36] feature

extractor. Feature vectors gggt,i and ooot,i are obtained by applying

an average pooling operation to the output of the ResNet50

feature extractor, and their dimension (D) is 2,048. A fully-

connected layer further reduces the dimension to 256 (d). The

dimension of flow hidden representations (Nf ) is 256 and

that for bounding box hidden representations (Nb) is 32. A

learning rate of 0.001 is used to train the AM-Net on the newly

developed ROL dataset, and ReduceLROnPlateau is used as

the learning rate scheduler. Adam optimizer is used to optimize

the network for 30 epochs and the best model is selected. The

positive to negative class ratio in ROL is 0.27 : 1. Therefore,

the class weights for the negative class (wn) and positive class

(wp) are selected as 0.27 and 1, respectively.

B. Evaluation Metrics

The model performance evaluation focuses on two aspects:

the correctness in localizing risky traffic agents in videos and

the earliness of risky traffic agent detection. To evaluate the

correctness, this study uses Area under the Receiver Operating

Characteristic Curve (AUC). AUC can measure the ability of

AM-Net to differentiate risky and non-risky traffic agents.

To measure the earliness of the prediction, mean Time-to-

Accident (mTTA) is used. Time-to-Accident (TTA) is defined

as the first time when a riskiness score st,i goes across a

threshold value s̄. That is,

TTA = max{τ − t|st,i ≥ s̄, 0 ≤ t ≤ τ, ∀ i}, (15)

where τ is the accident beginning time. TTA is dependent of

the selection of a threshold value s̄. mTTA, the average of

TTA values at different threshold values, is calculated as an

earliness metric independent of the threshold value selection.

C. Evaluation of the Proposed Model Architecture

An ablation study is conducted to evaluate the contribution

of different components of AM-Net. In addition to the bound-

ing box and flow features described in Section-III, this ablation

study includes the RGB appearance feature to assess its effect

in localizing risky traffic agents. The RGB appearance feature

is integrated into the AM-Net in the same manner as the

flow feature. Ten models are trained and tested on ROL to

compare the correctness and earliness metrics of AM-Net and

nine variants. The results are summarized in TABLE IV.

TABLE IV
ABLATION STUDY ON THE ROL DATASET.

Model
RGB

Bbox
Flow

Att.
AUC mTTA

O G O G (%) (s)

1 X X 80.30 2.36
2 X 81.19 2.22
3 X X 82.07 2.02
4 X X X 83.21 2.11
5 X X X X 81.87 2.13
6 X X X X X 84.54 1.95
7 X X X 84.53 1.92
8 X X 84.14 1.89
9 X X X X X X 84.91 2.19
10 X X X X 85.59 2.18

O: object level feature; G: global frame level feature; Att: Attention;
Bbox: Bounding box feature

Single feature: Model #1 from the table utilizes object-level

(O) and global frame-level (G) appearance features that can be

directly extracted from RGB images as the input for localizing

risky traffic agents. This model achieves 80.30% AUC with

2.36 second mTTA, setting a benchmark for evaluating the

proposed AM-Net (model #10) and its variants (models #2∼9).

Model #2 uses the bounding box (Bbox) feature as the sole

input, which increases AUC to 81.19% but reduces mTTA

by 0.14 seconds. This suggests that changes in bounding box

location and scale are more discriminative than appearance

features for detecting risky traffic agents in traffic videos.

Similarly, Model #3 uses flow features as the input, achiev-

ing 82.07% AUC with 2.02 second mTTA. The comparison

between Models #1, #2, and #3 shows that flow features in

standalone is stronger compared to the other two features in

increasing the localization accuracy.

Feature fusion:Model #4, which combines the bounding

box feature with appearance features, achieves a higher AUC

than using any individual feature type (Models #1 and #2).

However, it does not result in a longer mTTA. Similar results

are observed for Model #5, which fuses the flow features

with appearance features. When all three types of features are

combined in Model #6, the AUC increases to 84.54%, but the

mTTA decreases to 1.95 seconds. In general, Models #4∼#6

provide evidence that feature fusion is effective in enhancing

localization accuracy.

Model #7 removes the appearance feature input from Model

#6, yielding a similar result in terms of both AUC and mTTA.
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Model#8 further removes the global frame-level flow feature

from Model #7, resulting in lower AUC and mTTA. The global

frame-level flow feature captures the motion of the traffic

scene due to the ego-vehicle movement and the motion of

other objects in the same frame, which are important clue for

identifying risky traffic agents in the frame. The comparison of

those four models (#6∼#8) suggests that fusing bounding box

feature and flow features (both the object level and the global

frame level) is the most suitable design of feature fusion.

Appearance features, while are effective in other tasks, may

lower the ability to differentiate traffic agents by their riskiness

classes.

Attention: Model # 9 and Model #10 show the effectiveness

of the proposed attention module. Model # 9 adds the attention

module to Model # 6 where all the features (i.e. appearance,

bbox, and flow) have been used. This model achieved 84.91

% AUC with a much longer mTTA of 2.19 second. Finally,

Model #10 (i.e., the proposed AM-Net) adds the proposed

attention module to Model #7, which achieves a promising

combination of performance, 85.59% AUC and 2.18 seconds

mTTA. In both Models, the attention module significantly

improves the mTTA indicating that it effectively addresses

the limitation of bounding box feature and flow features in

localizing risky traffic agents earlier.

D. Comparison to State-of-the-Art Models

This study compares the proposed AM-Net (i.e., #10 in

TABLE IV) with existing models [15]–[18] on DoTA [16]. To

make this comparison, the AM-Net model, which was initially

trained on ROL, is fine-tuned using 300 randomly selected

videos from the DoTA training dataset. Specifically, the final

fully connected layers were fine-tuned for three epochs. The

comparison is made from the perspective of video anomaly

detection. That is, they are compared on the metric of frame-

level AUC. TABLE V summarizes the comparative study

results. The frame-level AUC values of models [15]–[18] are

provided by [16]. To compute the frame-level AUC using the

output of AM-Net, the highest riskiness score of any detected

objects in a frame (maxi{st,i}) is considered as the riskiness

score for the frame. The Receiver Operating Characteristic

(ROC) curve is attained by calculating the true positive rate

and false positive rate at various detecting threshold values.

Then, the frame-level AUC is calculated accordingly.

TABLE V
COMPARISON OF THE PROPOSED MODEL WITH EXISTING METHODS ON

DOTA [16] TESTING DATASET FOR VIDEO ANOMALY DETECTION

Method Features Frame-level AUC(%)

ConvAE [17] Flow (G) 66.3

ConvLSTMAE [18] Flow (G) 62.5

FFP [15] RGB(G) 67.5

FOL [16] RGB(G) + Bbox + Flow(O) + Ego 73.0

AM-Net (Ours) Bbox + Flow (O+G) + Att. 76.5

TABLE V shows that ConvAE and ConvLSTMAE, using

the global frame-level flow feature as the only input, achieve

66.3% and 62.5% AUC, respectively. FFP, which uses the

global frame-level appearance feature, achieves 67.5% AUC.

TABLE VI
PERFORMANCE BY MANNER OF COLLISION: AM-NET VS. RGB-B [23]

Manner
AUC (%) mTTA (s) TTA 0.3 (s)

AM-Net RGB-B AM-Net RGB-B AM-Net RGB-B

Angle 83.84 63.11 1.91 1.64 2.22 1.96
Sideswipe 91.17 68.80 2.20 2.68 2.98 3.05
Rear-end 90.85 67.52 2.34 1.98 3.38 2.85
Head-on 80.99 67.71 2.07 1.44 2.29 1.47
Others 83.47 62.72 2.85 2.12 3.04 1.93

FOL effectively boosts up the performance to 73.0% by fusing

the bounding box, ego motion, and object-level optical flow

feature with the global frame-level appearance feature. AM-

Net achieves the highest AUC of 76.5%, about 3.5% higher

than FOL. The improvement of AM-Net over FOL can be

attributed to the choice of features and the method of video

anomaly detection. The comparison also indicates that the

bounding box and flow features, along with the attention

mechanism, are the most important information that captures

the spatio-temporal pattern of risky traffic agents. It is worth

noting that the proposed attention mechanism significantly

contributes to the early localization of risky traffic agents,

as shown in the ablation study (Table-IV). However, the

earliness of localization on DoTA is skipped in this comparison

because DoTA’s testing dataset lacks the annotation of accident

beginning time. In this study, AM-net was also compared with

the RGB-B method, proposed by Kim et al. [23], on the ROL

dataset. The RGB-B method was both trained and tested on

the ROL dataset, and yielded an AUC of 64.66% with 1.85

seconds of mTTA, while AM-Net outperforms it with an AUC

of 85.59% and 2.18 seconds of mTTA.

E. Performance by Manner of Collision

To evaluate the performance of the proposed AM-Net in

localizing risky traffic agents involved in different manner of

collisions, this study conducted a comparative study with the

RGB-B method proposed by Kim et al. [23]. AUC, mTTA,

TTA 0.3 are calculated for each collision type. TTA 0.3 refers

to the TTA value when prediction threshold is 0.3. The testing

dataset of ROL contains 34.0% angle, 18.5% sideswipe, 10.0%

rear-end, 5.5% head-on, and 32.0% other types of collision

videos.

Localizing risky traffic agents in sideswipe collisions is

particularly challenging due to the short time for localization.

However, AM-Net achieves the highest AUC of 91.17% in this

category. In contrast, RGB-B approach only obtained an AUC

of 68.80%. AM-Net also achieves a high AUC of 90.85% in

rear-end collisions whereas RGB-B achieved 63.11% AUC.

For angle collisions, AM-Net achieves AUC of 83.84%, while

for head-on collisions, it achieves an AUC of 80.99%. It should

be noted that the low AUC for detecting risky traffic agents

in head-on collisions (80.99%) may be due to the rarity of

these collisions in the collected dataset (6%). On testing videos

of other collision types, AM-Net achieves 83.47% AUC. In

contrast, in these three categories, AUC obtained by the RGB-

B method is below 68%.

AM-Net achieves impressive early localization results, even

in angle collisions where risky traffic agents can be localized
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Fig. 3. Examples of risky traffic agent localization in driving scenes.

with an mTTA of only 1.91 seconds. This is notable given

the sudden changes in motion and trajectory that characterise

this type of collisions. For the rest of collision types, AM-

Net is also effective at early localization, with lead times

of at least 2 seconds prior to the accident. Notably, AM-

Net outperforms the RGB-B method in terms of mTTA for

all categories except sideswipe. The TTA 0.3 results show a

similar pattern to the mTTA values for both AM-Net and RGB-

B. In terms of the most effective early localization, AM-Net

performs best for rear-end collisions, with an average lead time

of 2.34 seconds before the accident occurs, when excluding

the ”other” category.

The experimentation with respect to different manners of

collision confirms that AM-Net can achieve promising perfor-
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mance in localizing risky traffic agents, particularly in angle,

sideswipe, and rear-end collision types. As per NHTSA report

[39], 66% of reported collisions with body injury or property

damage pertain to these three manners of collision. Correctly

localizing risky traffic agents ahead of time would allow for

taking preventive actions to avoid the accident.

F. Performance by Ego Vehicle Involvement

In determining whether the proposed AM-Net performs

differently on the early localization of risky traffic agents in

ego vehicle-involved versus non-involved accidents, a test was

conducted to compute the AUC and mTTA on both categories.

AM-Net achieves a high AUC of 91.23% with a relatively

short mTTA of 2.02 seconds on ego vehicle-involved acci-

dents. For ego non-involved accidents, the proposed method

achieves a slightly lower AUC of 83.78% and a longer mTTA

of 2.79 seconds. It is worth noting that localization of risky

objects in ego vehicle-involved accidents is less challenging

in terms of prediction accuracy, as the objects appear rel-

atively closer to the ego vehicle. In contrast, traffic agents

appear relatively far in the third-party non-ego vehicle footage,

making the accurate localization more difficult. Overall, the

proposed AM-Net achieves very promising performance in

both categories, indicating its potential to improve traffic

safety.

G. Performance in Negative Videos

To understand the effectiveness of the proposed method

in distinguishing between risky and non-risky traffic agents

in completely negative videos, a small scale experiment was

conducted. Specifically, the experiment collected 60 negative

videos from the DAD dataset, which were combined with 60

positive videos from the ROL dataset, to form a test dataset

of 120 video. Then, AM-Net achieved an AUC of 87.04% on

this dataset. Moreover, AM-Net achieved an AUC of 86.05%

on the 60 positive videos of this dataset. These results confirm

that proposed AM-Net has learned enough cues from the ROL

dataset to differentiate between risky and non-risky traffic

agents in both positive and negative videos.

H. Qualitative Evaluation

Fig. 3 illustrates three representative examples of risky

traffic agent localization in ROL dataset to demonstrate the

effectiveness of the proposed AM-Net. These examples illus-

trate the scenarios of complex scenes with small objects, ego

vehicle-involved accidents, and suddenly appearing risky traf-

fic agents. Video demonstrations of the results are available at

[37]. In each example, white-shaded bounding boxes highlight

the true risky traffic agents. The green curve in the bottom row

represents the true riskiness score of these agents, which is one

as long as they appear in the frame. AM-Net localizes risky

traffic agents with colored bounding boxes, and a threshold

value of 0.3 is set to determine if a predicted object is a risky

traffic agent for the illustration purpose. The reddish black to

yellowish white color scheme of bounding boxes shown in

Fig. 3 corresponds to the range [0.3, 1]. The riskiness score

of the localized risky traffic agents is indicated by curves in

colors other than green.

The video of example (a) contains two risky traffic agents,

which are two vehicles far away from the ego vehicle. Since

they appear in the video from the beginning, the ground

truth riskiness score (i.e., the green line) remains constant

at one throughout the timeline of the video sequence. The

video contains a risky situation where the two vehicles are

approaching each other from the side, resulting in a collision

starting at frame #70. The accident scene is complex because

the two risky traffic agents are very small due to the far

distance from the ego vehicle. AM-Net successfully assigns

the highest riskiness scores to those two traffic agents from

a very early stage. The color of the first risky traffic agent’s

bounding box (in the middle row of the example) quickly turns

from red to yellow, and the riskiness score (the cyan curve in

the bottom row of the example) increases gradually. For the

second risky traffic agent, its riskiness score (the dark blue

curve) is a little lower than that of the first traffic agent. It is

mainly because of the relatively lower velocity and relatively

smaller size of the second vehicle than the first one. Upon

reaching the 0.3 threshold value, the network successfully

maintains the riskiness score above the threshold value almost

throughout the timeline.

In example (b), the ego vehicle collides with another vehicle

(the risky traffic agent) that cuts into its lane from the side at

frame #36. In this example also, the risky traffic agent appears

in the video from the beginning. AM-Net assigns the highest

riskiness score to the correct vehicle in the traffic.

In example (c), the risky traffic agent is not in the video

until frame #33 when the vehicle is coming to the front of the

ego vehicle from the opposite direction, resulting in an angle

collision at frame #70. Despite the risky traffic agent appearing

briefly, AM-Net accurately assigns the highest riskiness score

to this vehicle and did not generate any false positive detection.

VI. CONCLUSION

This paper introduced a novel deep learning framework

named Attention-guided Multistream feature fusion Network

(AM-Net) for the early localization of risky traffic agents from

dashcam videos. AM-Net extracts spatial and motion infor-

mation and learns spatio-temporal features of traffic agents

from successive frames. By fusing multistream features at

object and global frame levels and differentiating attention

to different agents, AM-Net effectively localizes risky agents

before accident occurrences. An ablation study justified the

input selection and verified the effectiveness of the proposed

mechanism. Experimental evaluation showed that AM-Net

outperforms state-of-the-art. The paper also introduced ROL,

a benchmark dataset containing object-, accident-, and scene-

level annotations, which can fuel multidisciplinary research on

transportation safety enhancement.

Limitations and future work: Although the AM-Net has

shown promising results in localizing risky traffic agents and

anticipating traffic accidents, some limitations still need to

be addressed in future research. One of the main limitations

is the scarcity of data, which hinders the early localization
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of risky traffic agents from head-on collisions. In addressing

this issue, future research could explore incorporating prior

knowledge from the dataset to allocate more attention to the

front-facing vehicles approaching the ego vehicle. Another

limitation is the ability of the object detector and tracker in

adverse weather conditions, which can cause the tracker to

reset and hinder the updating of the hidden representation

based on observed trajectory. This problem could be addressed

using more robust object detectors and trackers or multiple

sensor fusion. In addition, AM-Net currently considers six

main types of traffic agents, which may limit its ability to

localize risky traffic agents in low-frequent cases where other

types of objects, such as road debris or animals, initiate the

risk. Future research could therefore expand the types of traffic

agents the model considers to include animals and road debris

to better anticipate potential accidents caused by such objects.

Another promising avenue of the future research is predicting

the crash severity level. Further investigation is required to

predict more fine-grained severity level of different crash

scenarios.
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