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Abstract— To assist human users according to their indi-
vidual preference in assembly tasks, robots typically require
user demonstrations in the given task. However, providing
demonstrations in actual assembly tasks can be tedious and
time-consuming. Our thesis is that we can learn the preference
of users in actual assembly tasks from their demonstrations in
a representative canonical task. Inspired by prior work in
economy of human movement, we propose to represent user
preferences as a linear reward function over abstract task-
agnostic features, such as movement and physical and mental
effort required by the user. For each user, we learn the weights of
the reward function from their demonstrations in a canonical
task and use the learned weights to anticipate their actions in
the actual assembly task; without any user demonstrations in
the actual task. We evaluate our proposed method in a model-
airplane assembly study and show that preferences can be
effectively transferred from canonical to actual assembly tasks,
enabling robots to anticipate user actions.

I . INTRODUC T I ON

The advent of human-safe robots has enabled deployment
of human-robot teams on manual assembly tasks where
robots can carry out supporting actions, e.g., bringing parts
and tools or clearing out the assembly area, while humans
focus on the high value actions, e.g., using the tool to
assemble the parts. To effectively assist humans, robots need
to predict actions that are likely to be performed by humans
[1]–[4]. For example, if a human is expected to perform
assembly of a part that requires a screwdriver, the robot can
proactively fetch a screwdriver from the tool shelf and deliver it
to the human to improve the task efficiency.

However, in many assembly tasks, while a lot of aspects of
the task are prespecified and constrained, workers still have
their individualized preferences on how to execute a task [5]–
[7]. For example, one worker may prefer to do all the difficult
actions first and easy actions at the end, while another
worker may prefer the opposite. Thus, robotic assistants
would need to adapt to the individualized preferences of a
human operator, e.g., deliver parts in the worker’s preferred
sequence, to execute the task efficiently and fluently [8].

Prior work in learning user preferences for task execution
relies on demonstrations (e.g., state-action pairs) of the user
in the actual task to learn a policy [9], [10] or an underlying
reward function [11]–[15] that captures the user’s preferred
sequence of actions. However, providing demonstrations
for each assembly task that a given user must perform is
especially tedious and time-consuming.
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(a) Canonical assembly task (b) Actual assembly task

Fig. 1: Example of a user that prefers to perform high-effort actions at the
end of assembly tasks. (a) Last action of the user in the canonical task is to
screw the long bolt which requires the most physical effort. (b) Second last
action of user in the actual task is to screw the intricate propeller which also
requires the most physical effort (as rated by the user).

Instead, to reduce the cost of obtaining demonstrations, we
posit that we can transfer the user’s preference from a rep-
resentative canonical task (source task) to a new yet related
assembly task (target task). We wish our canonical task to be
short so that users can easily provide demonstrations, but also
expressive enough so that users can demonstrate preferences
that enable anticipation of their actions in the actual task. In
this work, we empirically design a canonical task for a given
assembly task, and focus on investigating whether human
preferences can be effectively transferred from canonical to
actual assembly tasks. Our problem is especially challenging
and distinct from prior work in transfer learning [16]–[18],
since we focus on transferring preferences of real users – as
opposed to agent policies – across tasks.

Inspired from prior work in economy of human movement
[19]–[22] and task ordering [23], our key insight is that user
preference across different related assembly tasks can be
represented with a common set of abstract, task-agnostic
features, such as the movement and physical and mental
effort required by the user to perform each action in the
assembly. Thus, we model the user’s internal reward function
as linear in the task-agnostic features, where the feature
weights represent the user’s preference.

For a given user, we hypothesize that their preferences
over these features will be similar in both the canonical and
actual tasks. For example, if a worker prefers to perform the
high-effort actions at the end of the canonical task, they will
likely prefer the same in the actual task (see Fig. 1). We use
the maximum-entropy inverse reinforcement learning (IRL)
[11] approach to learn the weights for each user from their
demonstration in a canonical task and then use the same
weights to model their rewards and compute their policy in
the actual task.

Our main contribution is to show how preferences of
real users can be transferred from a canonical to an actual
assembly task. We validate our proposed method in a user
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Fig. 2: Example of a user that prefers to keep working on the same part (2), and perform actions with high physical effort (red) at the end of the task. In the
above plots, the x-axis represents the steps (progress) in the task, and y-axis represents all the different actions in the task. At each time step, the actions
that can be executed are marked with a shape that indicates whether that action requires the same tool and part as the previous action (refer to legend).
The color of the shape indicates the physical and mental effort required to perform that action (refer to color map). In the canonical task, the user performs
action 2 at the start of the task (time step 0) because it requires less physical effort (least red) compared to the other choices (actions 0, 1, and 5). At the
next time step, the user performs action 1 because it requires the same part as the previous action 2. In the remaining steps, the user performs actions on the
same part as before, and if no actions use the same part, perform the least physical effort action. Interestingly, the user follows the same preference in the
actual task by performing the least physical effort (least red) action 6 at the start. The predictions made by our proposed approach at each time step are
shown with a larger green (or red) circle. For further discussion, refer to Section VI.

study where we anticipate user actions in a model-airplane
assembly task based on their demonstration in a canonical
task. Our results show that transferring user preferences from
a canonical task can enable accurate anticipation of the user
actions in the actual task by modeling user preferences in
both the tasks over the same set of task-agnostic features.

I I . R E L AT E D  WO R K

Similar to prior work [5], [12], [24], we consider that the
preferences of a user are captured by their internal reward
function. Therefore, our goal is to transfer the user’s reward
function from a canonical task to an actual assembly task.

A. Transferring human preference from source to target task
The problem of transferring the preferences of real users

is distinct from the problem of transfer learning [17], [18],
[25] that focuses on using the policies of robotic or simulated
agents in a source task as priors to speed-up learning in the
target task. Instead, our work focuses on learning the user’s
preference as a function of abstract features for anticipating
their actions in a different assembly task. Moreover, unlike
prior work in transfer learning [16], [26]–[28], we attempt to
transfer user preferences without access to the user’s rewards
or demonstrations in the target task.

The prior work most similar to our problem transfers
the preference of a simulated human from a (source) block
stacking task to a target task with an extra red block [6]
by modeling artificial preferences based on the color of
the blocks. However, to our knowledge, no prior work
has studied transferring preferences of real users from one
assembly task to another.

B. Factors affecting human preferences in physical tasks
User preferences for sequencing the actions (or sub-tasks)

in assembly and manufacturing tasks can be affected by
several factors that are task-specific. For example, in a part
stacking assembly [29], user preferences depended on the
size and color of the parts, and were modelled as a linear
reward function of the two features. While in a Lego model

assembly [30], user preferences for task allocation depended
on the type of sub-task - fetching or building.

In order to transfer user preferences from one assembly
task to another, we want to model the preferences based on
features that are task-agnostic. Previous studies [19], [21],
[22] have shown that users prefer to minimize movements
during task execution. We expect the same for users in an
assembly task, i.e., users would prefer to minimize move-
ments required to perform the assembly. Similarly, users
may also look to minimize their effort spent in the task. For
example, in an object pick-up task [23] some users preferred
to pick up the closest object first because it reduced their
cognitive effort, even if it increased their physical effort in
the long run. In a study on human jump landing [20], users
optimized a combination of active and passive efforts, while
also accounting for other factors like safety.

In this work, we presume that users will prefer to minimize
some combination of the movement cost and the physical
and mental efforts, with different users having different
combinations (i.e. preferences).

I I I . ME T HODO L OGY

We want to transfer user preferences from a canonical
task C  to an actual assembly task X  for anticipating user
actions. We model each task as a Markov Decision Process
(MDP) defined by the tuple (S; A; T ; R), where S  is the set
of states in the assembly, A  is the set of actions that must
be performed to complete the assembly, T (st+1 jst ; at ) is
the probability of transitioning to state st +1  2  S  from state st

2  S  by taking action at 2  A, and R(s t + 1 )  is the reward
received by the user in st+1 .

We assume that S X ,  A X  and T X  are known for the actual
assembly task X .  While T X  models the ordering constraints,
because each worker can have their own preferred sequence
X  =  [a1; : : : ; at; : : : ; aN ] of performing the actions at 2
A X ,  R X      will be specific to each worker. Therefore, to
anticipate the actions of a user i  in the actual assembly task,
we must learn their individual reward function R X ; i .
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Goal. We want to learn the user’s reward function R X
from demonstrations C  provided by the user in a canonical
task C  (which has its own set of S C ,  A C  and TC ).

Intuition. Our key insight is that preferences of users
in actual assembly tasks can be represented with abstract
features from a task-agnostic feature space . Given  :
f S C ; S X g  !  , we can map any state in the canonical and
actual tasks to a d-dimensional feature vector in .

As the rewards received by a user depend on the state of
the task, using , we can model the reward function of a
given user i  as a function of the task-agnostic features.

R X ; i ( s )  =  f X ; i ( (s ) )      8 s 2  S X

The function f X ; i  is specific to the user i, and captures
their individual preference. Our hypothesis is that users will
have similar preferences over the abstract features in both
the canonical and actual tasks, i.e., f X ; i  ’  f C ; i ,  given that: (i)
the feature space  fully captures the preferences of all users,
and (ii) the canonical task C  is expressive enough to capture
preferences over a diverse range of feature values.

Knowing , we can learn each user’s f C ; i  from their
demonstrations C  in the canonical task, and use the same
function, i.e., f X ; i  =  f C ; i ,  to calculate the user’s rewards
R X ; i  for states in the actual assembly task.

To anticipate user actions, we assume that the user will try
to maximize their long-term reward in the actual assembly
task. Thus, we use the learned R X  to perform value iteration
[31] for all states s 2  S X  in the actual task, and select the
action with the highest value as our prediction ât in a given
state. In our study, we calculate the value of taking an action in
a given state without discounting the future rewards, since
users plan for the entire assembly before they demonstrate
their preference.1

I V. TA S K - AG N O S T I C F E AT U R E S PA C E

Inspired from prior work in economy of human movement
[19], [21], [22], we presume that users would try to minimize
their movement throughout the task. Because the set of
actions is fixed in our assembly tasks, users can minimize
their movement when they switch from one action to the
next. For example, a worker may prefer to consecutively
perform all the actions on one side of the assembly to
avoid having to shift sides. In our user study, movement for
switching between actions is performed when the user
changes the tool or the part they are working on. Thus, we
consider the following features to capture user preferences
for minimizing movement:

TA B L E  I: Movement-Based Features

Feature
P
T

Weight        Value
w P                   f0; 1g
wT                    f0; 1g

Preference
Keep same part
Keep same tool

Fig. 3: Flowchart of our proposed method for transferring preferences

Approach. Following prior work [11], we model the
reward function R X ; i ( s )  =  wT     (s) as linear in the features
(s). Here, w is a d-dimensional weight vector where each
weight in the vector represents the user’s preference for a
particular dimension of the feature space.

Given a demonstration sequence C  =  [a1; : : : ; aM ] of
actions a 2  A C ,  we use maximum-entropy I R L  [11] to learn
the weights wC  for the user. In this approach, we iteratively
update the weights to maximize entropy (as there can be
multiple solutions) such that our learner visits the features in
the canonical task with the same frequency as observed in C .
We choose the maximum entropy approach because we wish
the learned weights to explain the demonstrations without
adding any additional constraints to the resulting policy.

Based on our key insight, we assume that user i  would
have the same weights (wX ; i  =  wC ; i ) for the features  in
the actual task. Thus, we can calculate the transferred
rewards R X  by using the weights wC :

R X ; i ( s )  =  wC ; i (s) 8s 2  S X (1)

Fig. 3 summarizes our proposed approach for transferring
preferences from canonical to actual tasks. We conduct a
user study to evaluate whether R X  can be used to effectively
anticipate user actions in the actual task.

Here, w P      and wT      are the weights for the respective
movement-based features in the user’s reward function. For a
state st+1 , P (s t + 1 )  =  1 if the latest action at uses the same
part as the previous action at 1. Similarly, T  (st + 1 )  =  1
when at requires the same tool as at 1. Because we want
our features to be state dependent, we augment the current
state with the previous two actions: st + 1 [st+1; at ; at 1].
At the start of the task, the previous two actions in the start
state are set to N one.

Previous work [20] also states that users may choose
actions trying to minimize the effort they spend in the
task. For each action, we define the effort " as a weighted
combination of the nominal physical ("p) and mental ("m)
efforts required to perform that action.

"(a) =  wp"p(a) +  wm "m (a)

Here, the weights wp and wm are specific to the user and
depend on their individual preference towards minimizing
their physical and mental effort. For example, users may
prefer to perform specific actions first to reduce cognitive
load, even if it results in requiring more time and physical
effort [23]. Specifically in our pilot studies, we observed that
some users preferred performing the high-effort (mental or
physical) actions at the start of the assembly, while others
preferred to start with low-effort actions.

1 For very long assembly tasks users might minimize movement or effort
over a shorter horizon, in which case we would adapt the time horizon
accordingly.
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b;p b;p b

If a worker prefers to perform high-effort actions at the
end, they must be receiving a higher internal reward for
performing the high-effort action at the end instead of at
the start. We consider this as the perceived effort "b of an
action based on the user’s preference to backload the high-
effort actions. To model the time-dependency, we introduce
a variable - phase : s !  [0; 1] which represents the
percentage of the task that has been completed. We use
phase instead of the actual time steps for generality, since
the actual task is typically much longer than the canonical
task. Using this feature, we model the perceived effort as a
linear function of the phase: "b(a; )  = "(a).

We can see that at the start, i.e.,      ’  0, the perceived effort
will be very small compared to at the end (     ’  1). Thus to
maximize the accumulated reward, users will backload the
high-effort actions. We can also have the opposite scenario,
where a workers prefers to perform the high effort actions
at the start. In this case, the reward that the user receives for
performing the high-effort actions at the start must be higher
than at the end. Hence, we model the perceived effort for
frontloading high-effort action as: "f  (a; )  =  (1       )  "(a).

As our state contains the information of the latest action,
we can model the features for frontloading and backloading
actions with high physical effort as:

Fig. 4: Actual assembly task: Airplane model and task actions.

A. Actual assembly task
We choose an R C  model-airplane assembly (see Fig. 4)

as our actual task. The actions in this assembly task can be
sequenced in multiple ways, with few constraints, e.g., action 2
must precede action 4 since a bolt must be inserted before it
is screwed. The actions can also require different physical and
mental efforts. For example, the user shown in Fig. 2 rates
the action 0 of inserting the (large) main wing as having higher
physical effort than the action 6 of screwing a (small)
propeller. As some actions need to be repeated, e.g., action
6 must be performed for each of the 4 propellers, the length of
a demonstration in the actual task is 17 time steps. On
average, users required 8:81 minutes to complete this task.

B. Canonical assembly task

f ;p (s) =

b;p(s) =

f  (s)"p(s) (2)

b(s)"p(s) (3)

Where,     f  =  1  and     b =      . Similarly, we can calculate
the features for sequencing actions based on their mental
effort to obtain the following list of features:

TA B L E  II: Effort-Based Features
Feature Weight Equation Preference

                  w                      "p                    Frontloading of high "p  actions
w                      " m                 Frontloading of high " m  actions

w                      "p                    Backloading of high "p  actions b ; m
wb ; m                   b " m                  Backloading of high " m  actions

We assume that the effort values for actions in both the
canonical and actual assembly tasks can be measured prior
to task execution e.g., through user surveys. Therefore, we
use the six features from Tables I, I I  to create our feature
function (s), that maps each state s in the canonical and
actual tasks to a 6-dimensional feature space.

V. U S E R S T U DY

We want to show that human preferences learned from
demonstrations in a canonical task can be used to anticipate
their actions in an actual assembly task. Thus, we conduct a
user study where participants demonstrate their preferred
sequence of actions in a canonical task and an actual model-
airplane assembly task. We use the demonstrations in the
actual task as ground truth to measure the accuracy of
anticipating actions based on the weights (i.e. preference)
learned from demonstrations in the canonical task.

Fig. 5: Canonical assembly task: (Left) Model, (Right) Task actions.

A  key challenge in designing the canonical assembly task
is to create a subset of diverse states and actions, such that
we can capture the user preference over a wide range of
feature values, while keeping the task significantly shorter
than the actual assembly task.

To capture user preferences for consecutively performing
actions related to the same part, we design our canonical
assembly with two different parts (see Fig. 5), each of which is
required by at least two different actions. Next, to capture user
preferences for consecutively performing actions that need
the same tool, we design a pair of actions that require the
same tool, i.e., a screwdriver. Finally, to capture the user
preference for sequencing actions based on their physical and
mental effort, we design an action for each combination of
high and low values for physical and mental effort:

TA B L E  III: Actions with distinct physical and mental efforts.
Low "p High "p

Low " m Action 4 Action 3
High " m Action 2 Action 5

To induce the corresponding physical and mental efforts,
we design the actions as follows:

 Action 4, where the user screws a short bolt with a
screwdriver. Because the bolt is short, it requires less
physical effort to screw it in. Also, since we expect our
participants to be familiar with using a screwdriver, we
expect this action to require less mental effort.
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 Action 3, where the user screws a long bolt using a
screwdriver. Because the bolt is long, it requires high
physical effort to completely screw it in.

 Action 2, where the user inserts a wire through three
small spacers. Because it requires more focus than the
other actions, we expect it to require high mental effort.

 Action 5, where the user inserts a long wire through six
spacers. Since there are more spacers, it requires more
physical and mental effort to maneuver the long wire.

We conducted pilot studies to fine-tune the design of the
canonical task and verified that participants perceived the
physical and mental efforts of the actions as intended. Our
final canonical task has 6 time steps, and on average, users
required only 3:83 minutes to complete the task. In future, we
wish to formalize the process of designing such a canonical
task for a given actual assembly task.

C. Study protocol
We recruited 19 (M =  12, F  =  7) participants from the

graduate student population at the University of Southern
California (USC) and compensated each user with 20 USD.

Fig. 6: (Left) Experimental setup, and (Right) setup at start of actual task

1) Exper imental Setup: We divide the space into: (i)
a storage area where the parts and tools and fasteners
are initially placed, (ii) a workbench upon which the user
performs all the actions required to complete the assembly,
and (iii) the shop floor where the user can stand and move
(see Fig. 6). April Tags [32] are used to track the parts during
the assembly with the help of an overhead camera.

2) Study Procedure: We asked each user to perform both
the canonical and the actual assembly task. We counterbal-
ance the order of the tasks to guard against any sequencing
effect. For each task, we have a (i) training round - where
users learn the assembly task, and an (ii) execution round -
where users plan, demonstrate, and explain their preference.

In the training round, we provide each user with a labeled
image of the assembled model, as shown in Fig. 4 and 5,
and we describe all the parts and actions in the assembly.
We show how to perform each action in a random order and
provide no instruction about the sequence of actions. We
also allow users to try each action once for practice, after
which they fill in a post-training questionnaire to rate the
physical and mental effort that they required for performing
each action. We obtain the user’s values for "p and "m for
each action from these ratings.

In the execution round, we first give users 5 minutes
to plan their preferred sequence of actions for assembling
the model as fast as possible. Finally, they demonstrate

their preferred sequence and then fill in a post-execution
questionnaire to report and explain the features that informed
their preference in that task.

Note: To avoid influencing the users’ preference, we do
not inform them that their preference in one task will be
used to infer their preference in another and we label the
tasks as A  and B  (not canonical and actual). We also do not
tell the users to consider effort or movement while planning
their preferred sequence. We simply ask them to demonstrate
their preferred sequence of actions in each assembly task.

V I . E X P E R I M E N TA L E VA L UAT I O N

We wish to show that user preferences transferred from
the canonical task can be used for action anticipation in the
actual assembly task. Our hypothesis is that the accuracy of
predicting the users’ next action in the actual task based on
weights learned in the canonical task would be higher than:
(i) randomly picking the next action (H1) and (ii) randomly
setting the weights for the features (H2).

We calculate the accuracy of anticipating the users’ actions
by comparing the action at taken by each user in the actual
task with the action ât predicted by our approach at each time
step t. The accuracy is 1 when at =  ât, and 0 otherwise.

Fig. 7: Mean accuracy of predicting the user actions at each time step
(averaged over all users) in the actual assembly task.

For baseline (i), we randomly select an action from the
remaining actions that can be executed at each time step.
For each user, we run the baseline for 100 trials and compute
the average accuracy at each time step. We then compare the
mean accuracy over all time steps of the proposed method
and to randomly selecting actions. A  paired t-test showed a
statistically significant difference (t(18) =  13:82, p <  0:001)
between the mean accuracy for our proposed approach (M =
0:866, S E  =  0:032) and the mean accuracy for random
actions (M =  0:543, S E  =  0:057). This supports H1.

In baseline (ii), we calculate R X  by uniformly sampling
random weights for the actual task features and predict
actions based on the computed rewards as in the proposed
method. Similar to (i), we run 100 trials and compute the
average accuracy. A  paired t-test showed a statistically
significant difference (t(18) =  2:93, p =  0:008) between
the mean accuracy for our proposed approach and the mean
accuracy for random weights (M =  0:828, S E  =  0:042).
This supports H2.

Fig. 7 shows the mean accuracy of predicting the action
at each time step. We can see that the prediction accuracy
increases as we reach the final time step, as there are fewer
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Fig. 8: Example of a user that prefers to perform actions with the high mental effort at the start of the task. In the canonical task, the user performs actions
5 and 2 that have high mental and physical effort (yellow) at the start (time steps 1 and 2). While the user leaves actions 3 and 4 that have low mental effort
and high physical effort (red) for the end (time steps 3 and 5). Thus, from the canonical task demonstration, we learn that the user prefers to frontload actions
with high " m .  In the actual task, the user starts with action 6 that has the highest mental effort. Based on the canonical task, our proposed method correctly
predicts (green circle) that the user will perform action 6 at time step 0. Similarly, at time step 5 the user performs action 3, which is also what we predict,
since it has higher mental effort than actions 0 and 7.

actions to choose at the end. The accuracy for random actions
(and random weights) is 0:33 at the time step 0 as there are
3 actions that can be performed at the start. The accuracy
for our proposed method is significantly higher at the start as
we correctly anticipate the first action for 11 out of 19 users
based on their transferred weights.

V I I .  DI S C US S I O N

We consider two user examples to demonstrate how pref-
erences transfer from our canonical to actual task.

A. Learning user preferences in the canonical task
Consider the demonstrations shown in Fig. 2, where the

user prefers to pick the actions with the same part as the
previous action whenever possible (time steps 1, 2 and 4).
In the other steps, the user picks the action with the least
physical effort (time steps 0 and 3). Accordingly, the weights
we learn from the canonical task demonstration are higher
for the feature of part similarity (P ), followed by the feature of
backloading high physical effort actions (b;p).

On the other hand, consider the user in Fig. 8 who prefers to
perform actions with high mental effort (actions 5 and 2)
at the start of the task (time steps 1 and 2). Based on their
demonstration, we learn a high weight for the feature of
frontloading high mental effort actions (f ;m ).

We note that none of the users had the exact same weights
wC  even if some users had the same demonstration sequence
C ,  since they gave different ratings for the physical and
mental effort of the canonical task actions.

B. Transferring learned preferences to the actual task
For many users, weights learned for the task-agnostic

features in the canonical task enable accurate anticipation of
their actions in the actual task. For the user in Fig. 2, we
learn high weights for minimizing part change (P ) and
backloading high-effort actions (b;p). Using these weights to
calculate rewards in the actual task, we can accurately
anticipate the actions at 15 out of the 17 time steps. For
example, we correctly anticipate action 7 at time step 4 as it
uses the same part as the action 6 at the previous time step.
Similarly, for the user in Fig. 8, we are able to transfer their

preference for frontloading actions with high mental effort.
For example, at time step 0, we accurately predict the user’s
action as 6, since it has the highest mental effort.

However, in few cases, preferences (weights) over a spe-
cific feature did not transfer to the actual task due to human
variability. For example, we incorrectly predict at time steps
0 and 5 for the user in Fig. 2 since we also learn a high
weight for backloading actions with high mental effort (b;m) in
the canonical task. This is because the last three actions in the
user’s demonstration have a higher mental effort than the first
three actions. Therefore, in the actual task, we predict action
0 at time step 0 even if it has high physical effort (low
immediate reward), since it would allow the user to perform
subsequent low mental effort actions (not shown in the figure)
at the start of the task. However, since the user’s true
preference is to only backload the high physical effort
actions, the user performs action 6 instead. Thus, we see that
while the user preference for backloading actions with high
physical effort transfers to the actual task, their preference
for backloading actions with high mental effort does not.

Finally, we discuss a limitation where the user preference
in the actual task was affected by a new feature that wasn’t
modeled in the canonical task. For example, in Fig. 8, we
expect the user to perform action 7 at time step 4 based on
their preference for frontloading actions with high mental
effort. However, we see that the user instead performs action
1 which has lower mental effort and leaves action 7 for the
end. Based on open-ended responses provided by users at the
end of the study, we suspect that the user preferred to leave
the action of screwing the propeller hub (action 7) for the
end as they thought that the propellers might break (when
they perform the remaining actions) if they were attached at
the start. In such cases, we would like the robotic assistant to
identify the states where the new feature affects user actions
and query the user to actively learn the weights for the new
feature. We plan to explore this in future work.

Overall, we see that preferences can be transferred when
the features that determine the user’s preferred sequence in
the canonical task overlap with the features considered by
the user to determine their preference in the actual task.
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V I I I .  CO N C L US I O N

Our work demonstrates the potential of anticipating user
actions in actual assembly tasks based on preferences learned
over task-agnostic features in abstract, shorter canonical
tasks. Our results show that predictions in the actual assem-
bly task based on transferred preferences are significantly
better than the predictions for random actions and random
weights. Moreover by learning from user demonstrations
in a shorter canonical task we can reduce the time and
human effort required to obtain demonstrations in the actual
assembly tasks.

In future, we want to evaluate the benefit of transferring
human preferences from canonical to actual assembly tasks
by having a robotic assistant perform the anticipated actions.
We would also like to consider longer tasks, where users plan
for only a portion of the task and may change their preference
over time. While the current setup assumes full observability
of the workspace by both the robot and the user, future work
will consider sensor placement [33] and user viewpoint [34]
in robot decision making. Finally, automatically inferring the
effort for different actions, instead of using questionnaire
responses, is an important area for future work.
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