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Abstract— Managing robot workloads in human robot teams
is critical for efficient team operation. If robots are overloaded
with work, then they will miss deadlines and force humans
to take on extra work. This paper presents a framework for
a robot to assess its own workload based on an initial goal
assignment. The robot does this by generating task and motion
plans and computing the probability of missing deadlines due to
the possibility of delays in task execution. A branch and bound
based search is used to generate task and motion plans by
minimizing task execution effort. The robot presents a diverse
set of task and motion plans to the humans to offer multiple
different options. Humans can either approve a plan or provide
guidance to reduce the workload by either relaxing deadlines
or removing goal(s) assigned to the robots.

I. INTRODUCTION
The advent of human-safe robots is creating new opportu-
nities for humans and robots to collaborate in performing
assembly, service, and maintenance operations, thereby in-
creasing human productivity. Humans can focus on tasks
that require a higher level of dexterity and human judgment
to complete. For example, a human operator may need to
assemble a fragile part to ensure that the part is not damaged
during handling. A human may also need to perform an in-
spection to ensure that the two parts have formed a tight seal
after an assembly step. On the other hand, robots can focus
on supporting tasks such as fetching a tool/part or holding a
part in place. This assistance can reduce the total time needed
to complete the operation. Moreover, many supporting tasks
may require extracting (placing) objects from (into) spaces
that are hard-to-reach for human operators. Getting robots
to do such ergonomically challenging tasks can also reduce
the physical burden on human operators. Thus, humans must
appropriately delegate goals to the robot for efficient human-
robot teaming. The robot workload should be carefully
managed. If the robot is overloaded with work, it will fail to
meet deadlines and delay the overall work. If the robot is not
given enough work, it will lead to poor resource utilization.

Our work considers tasks where robots serve as smart
assistants to a human, and the human assigns a set of goals to
the robots. For example, a human operator may ask a mobile
manipulator to bring parts and tools at specific times during
the task to facilitate the assembly or service operations that
the user will perform. Figure 1 shows an example of the
factory floor and challenges arising in task assignment and
motion planning. Because of the variability in the human task
execution times, the robot would be given a time window
within which it must complete each goal, i.e., deliver each
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part. In this work, we particularly focus on problems where
the robot may be unable to complete some of the goals in
their given time windows due to delays caused by stochastic
events such as congestion [1].

Example workcell
in a factory

Fig. 1: An example workcell on a factory floor that is to be visited by
the robot is illustrated. The mobile manipulator has three tasks
assigned by the human. Human prefers the task-1 to be completed
within a shorter timeline since the object is needed for assembly.
Task-3 is difficult as moving from machine to inventory space has a
congested workspace making motion planning challenging and task
success uncertain.

We want to enable robots to evaluate the feasibility of
completing the initial set of goals given by a human and
generate plans to complete as many goals as possible. More
importantly, we want to allow robots to reason over the goals
and with human-guidance determine which can be skipped
or changed to complete the remaining goals successfully.
Our key insight is that humans have a preference for which
goals the robot can or cannot skip or change, e.g., humans
may prefer that the robot skips one or more simple goals to
ensure the completion of a critical goal. Thus, we propose to
account for human preferences by (i) relaxing the deadline
for specific goals and (ii) removing certain goals from the
robot’s assignment.

Given an initial set of goals, we first use an integrated task
and motion planning framework to covert goals into actions
and actions into motion plans. We then evaluate the motion
plans to determine if the robot can complete the given set of
goals by the given deadlines. During this evaluation, we use a
model of the environment to obtain probabilistic estimates of
the travel times and determine the probability of completing
each goal within the given deadline. This environment model
will capture uncertainties like workspace congestion which
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can cause delays. The robot generates multiple plans that
minimize human (and robot) effort while considering the
importance of goals and present them to the human for
refinement.

A key challenge is to shortlist a small set of good but
diverse task plans to present to the human user to avoid
overloading the user with too many or too similar options.
We achieve this by recording best-seen plans, scoring based
on the difference in the task sequence, and presenting the
good plans with high diversity. The user can select their
preferred task plan and refine the goal assignment if none
of the plans are acceptable. For the latter, we allow the users
to remove a goal from the robot’s assignment or relax the
deadline for an assigned goal. Each time the goal assignment
is changed, the robot will re-plan and generate a new set of
task plans to present to the user.

Il. RELATED WORKS

Extensive work exists for task scheduling of multi-agent
teams under temporal and spatial constraints [2], [3]. Ap-
proaches using hybrid mixed-integer linear programming,
constraint programming methods, and auction-based meth-
ods have demonstrated task scheduling with upper and
lower bound time constraints. Advancements in heuristic
schedulers like apprenticeship learning [4], [5] have further
increased scalability and efficiency.

Prior work exists in the multi-agent scheduling space that
also considers the human agent’s preferences and decision
authority for the task scheduling process [6]. Santana et
al. has presented a risk-sensitive scheduling algorithm that
incorporates temporal uncertainty models for different activ-
ities when modeling uncertainties in the scheduling problem
[7]. These works do not account for generating optimal task
and motion plans when finding the best task schedules. For
realizing capable robotic assistants, task and motion planning
(TAMP) becomes essential and challenging to solve [8].

A detailed survey of TAMP problems and methods of
solving them is provided in [9]. New works have lever-
aged symbolic planning, heuristics and learning to advance
algorithmic approaches like in [10]. Works described in
[11]-[13] discuss algorithmic methods for solving task and
motion planning problems under uncertainty. Mansouri et al.
addresses multi-robot planning under uncertain travel times
using generalized stochastic petri nets [14], which is later
interpreted as an MDP to generate optimal policies.

Our work focuses on managing the workload of a smart
robot assistant, where the human takes on tasks that the
robot may not be able to complete. This problem has sim-
ilar elements with multi-agent scheduling, and multi-agent
TAMP works. However, previous work does not treat hybrid
scheduling and TAMP style problems where the goal is to
minimize human effort from intervention, and how human
input can help better manage robot workload.

The robot must present diverse options of plans so that hu-
mans are informed and can choose and refine the best option.
Different works have investigated the generation of diverse
solutions [15]-[19]. These methods use distance/diversity
metrics to give insight into the plan set’s diversity . Sohrabi et

al. efficiently finds best-k solutions and then uses clustering
to get diverse plans as cluster representatives [20]. Work of
Nguyen et. al further considers user preferences to find a set
of plans [21]. Our work builds on past work by finding best-k
schedules and defining a diversity score (distance metric) to
find the best diverse plans.

[11. PROBLEM FORMULATION

A. Background

A mobile manipulator is given a set of tasks to complete
on a factory warehouse. The robot traverses a factory floor
which consists of a large 2-D environment with n locations
that the robot can occupy. Items are located in different work
cells of the factory floor. An inventory of m objects describes
the available items and the corresponding locations and items
that can be picked up and transported by a robot with a
payload p. The robot is a holonomic mobile manipulator
that can move at a max velocity of v m/s and a max payload
(pmax) of k items. We assume that different factors in the
environment can delay the robot as it traverses the factory
floor. We model these as probabilistic delays at different
locations in a stochastic environment. We define the function
travelTime(locA,locB) that simulates the robot executing
a path plan once withing the stochastic environment and
returns the time taken to travel. Figure 2 shows an example
of a 2-D factory floor, its visitable locations, the areas for
delays and the item inventory.
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Fig. 2: 2D factory floor with height and width 100 x 100 m.
(Left) Item inventory (item index shown at current location). (Right)

Visitable locations (location index shown) and distribution of where
congestion can occur.

We will now formalize the planning domain and provide
definitions that are used in this work.
Definition 1. Workspace State Space S: The state of the
environment is formally defined by an array of symbolic
representations for all the items, robot, robot payload and
current time step of the world. We define these symbols
below.

. atloc(item, location, tarrival): Symbolic representation
for item index, it’s location in the factory floor, and
time of arrival.

- robotLoc(robot, location): Symbolic representation for
current robot location. The first element is the specific
robot, and the second element is the location in the
factory floor.

« p = [item1,item2,..itemn]: Representation for the set of
items present in the robot payload.
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o tworld: Defines the current time step of the world.

An example starting world state with two items and a robot
with no items in its payload will be the following:

sp = [atLoc(1, 2, 0.0), atLoc(2, 5, 2.0), robotLoc(1, 3),

p = [, tworla = 5.0].

Definition 2. Tasks T: The legal transitions between s and
s’ is represented by a set of robot tasks with associated
preconditions (pre) and effects (eff). In the environment, the
robot can move to a location, pick an item and place it. Lastly
the robot can wait for some amount of time.

1) moveRobot(robotl, locl, loc2, travelTime(locl, loc2))

- pre: robotLoc(robotl, locl), tyorig =t
. eff: robotLoc(robotl, loc2), tyoriq = t + travel-
Time(locl,loc2)

2) pick(robotl, item1, locl)

- pre: atloc(item1, locl, tarrival), robotLoc(robotl,
locl), |pl< Pmax
. eff: atLoc(item1, robotl, tyoriq), item1 B p

3) place(robotl, item1, loc2)

- pre: atLoc(item1, robot1, ta rival), robotLoc(robot1,

loc2), iteml1l B p
. eff: atLoc(item1, loc2, tworig), item1 B p
4) wait(robotl, twait)

o pre: tworld =t

o eff: tyorlg = t+twait
Definition 3. Goal g: A goal gi to be completed by a robot
is defined by the state of an item i i.e. atLoc(item, location,
tarrival) that satisfy the constraint tmin < taimvaI < tmax. This
goal describes the item, the location it should be delivered,
and the time windows that it should be delivered by.
Definition 4. Goal Importance I(gi): Different goals will
have a different value of importance to the human. We define
a function that takes in a goal input and returns a scalar value
of importance. This value is defined by the human.
Definition 5. Effort to Complete Goal e(gi): Each goal
will require some value of effort to complete it. The effort
function takes in a goal input and returns a scalar value of
the effort required to complete that specific goal by the robot
(e") or a human (eh).
Definition 6. Plan (I?,r*): A solution candidate for this
problem will be a plan that takes the form of a sequence
of goals attempted by the robot, ' = {gi,..gn} and a set of
goals skipped by the robot, I'* = [gj,..gm].

A fetching goal has an associated time window that
the item must arrive within. A successful completion of a
goal is affected by the uncertainty present in environment.
Because we have modeled an environment with stochastic
occurring delays, the robot runs multiple simulations of the
corresponding motion plan. It gets a distribution of goal
completion times and this determines the probability of goal
completion within the deadline, as follows.

Definition 7. Probability of Goal Completion P(gi): The

probability that goal g; is completed by the robot within the

arrival time deadline constraint.

By conducting multiple simulations of the robot complet-ing
a proposed goal sequence I, the robot then gets a vector

[P(g1), P(g2),..P(gn)] that details the probability a goal is
completed within a deadline. For any goals skipped by the
robot in 'S, we set P(G) = 0.
Definition 8. Set of Constraints C: A plan can be con-
strained in the following ways. 1) As previously mentioned,
the human can impose a time window deadline that the
goal must be completed by. The solution may further be
constrained by demanding 2) that the robot must attempt a
particular goal or 3) the robot must skip a goal. 4) Lastly, the
solution can be constrained by defining that the probability of
success of an attempted goal must be above a certain
threshold 6. These four constraints are defined below.

1) t;nin Stairrival < tr’ri1ax

2) gilla

3) g @

4) P(gi) 2 i

B. Problem Statement

Given a set of goals G = [g1,8>,..8m], a set of constraints C
and an initial workspace state sg, we want to determine a plan
for the robot to execute that minimizes the effort expended
by the human, and uses the robot efficiently. If P(gi) is the
probability that the robot will accomplish the goal, then we
define that the probability the human will have to accomplish
the goal is (1 - P(gi)). The effort that the human will have
to exert for a proposed goal sequence is then defined asy,
e"(g)(1-P(g)). We, therefore, want to generate the best plan
that minimizes the effort expended by the human and the
effort expended by the robot. The cost function is the sum
of the weighted human effort and the weighted robot effort
for a certain plan. The goal importance is accounted for by
multiplying the scalar returned from 1(g;) by both the human
and robot effort terms in the cost function so as to account
for the importance of the goal. Lastly, we tune the A and B
parameters so that the human effort is prioritized. The cost
function and objective is formulated below.

Cost = Azl(g)eh(g)(l—P(g))+le(g)er(g) (1)
mignimize(Cost), subject tocC (2)

Overview of Approach. This paper presents a framework
where the robot first generates the best plans that minimizes
human effort, then select diverse plans to present and lastly
enable the human to refine a plan by updating planning
constraints. Figure 3 shows the system framework.

To generate the plans, the robot uses an integrated task and
motion planning framework to find the best goal sequences
and associated task and motion plans. The time delays while
traveling to locations are incorporated during the search
process. A branch and bound search is used in our work
due to the anytime behavior of the algorithm. The task and
motion plans generated in the search are simulated using a
congestion model to find delays. The robot then evaluates
the goal completion times against the deadline constraint to
score each goal with the probability of it being completed.
The method produces a good solution fast and then improves
upon the solution by exploring other branches in the tree.
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This is presented in Section IV.

The robot then records the best evaluated goal sequences,
calculates a diversity factor for every good plan and popu-
lates a list of different diverse plans to be returned later to
the human. This method is presented in Section V

Lastly a constraint sensitivity analysis table and a diverse
set of plans are presented to the human from which they can
select a suitable plan. If the human does not find any good
plans, they can refine plans by updating planning constraints.
We discuss this in Section VI.

IV. PLAN GENERATION
Applying classical scheduling techniques is not feasible to
generate optimal plans since the state space is large and
there is uncertainty in motion plan execution. Furthermore,
because the robot can carry more than one item, we must
find a task plan that efficiently utilizes the payload space
for a determined goal sequence. Our approach evaluates the
probability of successfully executing good candidate plans by
accounting for robot motion and workspace congestion. The
formal description of the algorithm is given in Algorithm 1. A
best-first branch and bound (BFBnB) search is used in our
approach to find the goal sequences that meet our objective in
Equation 1. The goal states we defined earlier are treated as
nodes in the search algorithm. The robot will complete tasks
(pick, place, or wait) to get to the next node. Two nodes in the
tree are connected using an edge which represents the robot
motion plan found by using A* algorithm.

For every new node that is explored, the path to get to that
node is a partial goal sequence to be attempted by the robot. In
our approach, we first use a standard search to find the best task
plan, i.e [pick,pick,move,wait,place], to complete that partial
goal sequence (Line 19). For a task plan, we use an A* path
planner to find the path that takes the least amount of time from
the robot’s location to the goal location. The path planner
generates a deterministic path without accounting for delays
due to congestion. A velocity parameterization of the path
using an environment model and a Gaussian delay model
takes the congestion into account.

We model the environment as a coarse discrete grid in
2D where the robot can either travel in a delay-free zone
or a congested zone. We simulate the travel through a
delay free zone at max speed of the robot. When the robot
traverses a grid cell in a congested zone, then the robot
will have some average delayed velocity Vay. We model
this delay by setting the robot’s delayed speed in the cell to be
Vgelayed = delayFunction(). The delay function samples a
Gaussian probability distribution, where i = Vmax = Vavg and
20 = Vmaxdelay- From this formulation, we simulate a motion
plan n times and get a distribution of robot arrival times for
completing each action. We then score a candidate task plan
by evaluating the item’s probability of being delivered within
the deadline constraint (Line 20).

The algorithm computes the cost of the sequence task
and motion plans in order to score different goal sequences
generated from the BFBnb. We use Equation 1 to calculate
the cost of a scored sequence (Line 21). For the cost function,
we make the effort expended to complete a goal as a function

of the total distance d traveled to retrieve a part. The human
effort function is defined to be e"(d) = w;d2. We choose a
scaled quadratic function of distance traveled because we
make the assumption that there is a diminishing decrease
in perceived effort for humans traveling short distances
compared to longer distances to complete a task. Lastly, the
robot effort function is defined to be a scaled linear function of
distance e"(d) = w,d so that plans with efficient robot
actions are chosen. We choose a linear function because
the distance traveled by the robot is proportional to its
expended energy. The BFBnB algorithm searches through
a combination of attempted and skipped nodes in order to
find the plan (2, *).

For this problem, we choose a BFBnB search that quickly
finds low cost solutions using heuristic knowledge first and
then keeps on improving solutions. Given an initial popped
partial goal sequence to branch on, we order the remaining
goals to be completed by arrival deadline times and incre-
mentally add the next earliest goal that can be completed
(Line 17). This produces a new candidate partial solution
which is scored from the associated task and motion plan
(Line 20). If the success probability of that last attempted
goal in the sequence is above the threshold constraint, then
we calculate the worst-case cost of the partial sequence. The
algorithm then stores the partial solution back in the queue
and orders the queue by the worst-case cost (Line 33). The
process then repeats, and the lowest cost partial solution is
taken off the queue. We branch on the sequence to generate
new partial solutions that contain a different possible next
goal to complete.

If the success probability of the last goal in the partial
sequence is below the threshold constraint defined by the
human, then it is considered to have failed (Line 22). The
algorithm then returns the goal sequence without the last goal
as solution. For that returned sequence, if the robot still had
unattempted goals that could have been completed within the
deadline, then inherently a better solution exists where the
robot’s time is used more efficiently. Therefore the returned
sequence is inefficient and pruned. If the last goal in the
sequence failed because the robot ran out of time, then the
cost of the complete solution is compared to the best cost
found at the time.

If there are no more goals to complete, it is considered a
complete solution and is compared against the best solution
found at the time. We terminate the algorithm when there
are no more partial solutions in the queue to branch upon.
The best stored solution is the goal sequence '? that will be
attempted by the robot. Any assigned goals that are not in
the best goal sequence are goals that are skipped by the robot
. The terminated algorithm returns a plan (I?,*).

V. DIVERSE PLAN SELECTION

Although the algorithm we present in Section 1V will gen-
erate the optimal solution, there exist multiple sub-optimal
plans that a human might consider useful for plan refinement.
While the search algorithm explores different candidate solu-
tions, the robot maintains a list of explored best solutions that
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Fig. 3: Block diagram describing process of generating plans, selecting the best diverse plans and presenting them to the human.

have a cost within some percentage of the optimal solution
cost. The user defines this percentage.

It would be inefficient to use a k best solutions approach
and show every possible best solution to the human because it
would result in cognitive overload. Instead, we want to
generate a list of goal sequences that are different from
each other. We define a diversity factor D that quantifies the
difference or diversity of two plans (I'j, I'Sl) and (I’g, FSZ). In
this paper, we formulate this factor to be dependent on how
different the order of two attempted goal sequences, Fi and
r'< are with each other, as well as whether one plan contains
an attempted goal that the other plan skips.

We quantify D4, the diversity in the order that goals in
two sequences are attempted by taking the difference of
the location of each goal in the sequences. This method is
formulated as the following, where the function pos(goal, %)
returns the index of a goal in a specific sequence.

D, = z

gkl ﬁﬁ raz

Ipos(gi, 1) -pos(gi, )| (3)

This paper quantifies the difference in what goals are
skipped for each plan by defining D, to be the number of
goals skipped in one plan but not the other. First, the
function mem(goal, ®) is defined to return one if the goal is
a member of the set of skipped goals and otherwise returns
zero if not. D, is defined as:

Dy= 3 (1-mem(g, M)+ 5 (1-mem(g;, ) (4)
gill f'l gjl ?'2
We formulate the diversity between two plans as the
weighted sum of D; and D,. The weights are defined by the
user based on their preference of whether goal order or

skipped goals makes a plan more diverse.

D(P1,Py) = wiD1+w;,D; (5)

The robot initializes a list of diverse plans with just the
optimal solution as its member. It then takes alternative
solutions and calculate the diversity factor between each
member of the diverse plan list. A plan’s diversity scores
gets assigned the lowest calculated diversity factor. If the
diversity score is not within a defined threshold of the highest
diversity score, it is not added to the list of diverse plans.

VI. GETTING HUMAN GUIDANCE

Even though the robot generates diverse plans for a user to
choose from, the human may still not find them acceptable. A
user would therefore update planning constraints in order to
search for a better solution. For example, goals may im-
plicitly have more relaxed deadlines then initially specified.
The human would decide to relax those deadline constraints
to generate and select a lower cost plan. A user could also
add more constraints by specifying goals they need the robot
to attempt or skip.

In order for the robot to get guidance, the human must
first be informed of what constraints are affecting workload
management. In this work, we focus on conducting a con-
straint sensitivity analysis for the deadline constraints. For
every explored solution, there already a distribution of goal
completion times sampled from simulating a motion plan. We
individually examine each assigned goal’s deadline constraint
tho St 2t by relaxing tmax by an increment of
time 6t and recalculate the scored goal sequences and cost of
the best-found plans. We find the percentage decrease of the
lowest-cost plan for relaxed constraints compared with
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Algorithm 1 Task Plan Generation

1: 8seq: Current Goal Sequence

2: Cseq: Current Goal Sequence Cost

3: Bpestseq: Current Goal Sequence

4: Cpestseq: Current Goal Sequence Cost

5: BFPartialSol: Best First Ordered List of Partial Solu-
tions

6:

7: function BRANCH-AND-BOUND-SOLVE()

8: INITIALIZE

9: Bbestseq < {}

10: Chestseq <

11: 8seq < {1}

12: 8seq €< 0

13: P < EMPTYPLAN

14: Insert P in BFPartialSols

15: while BF PartialSol is not empty do

16: Ppartial € MIN-COST-PLAN(BF PartialSol)

17: GoalSequences €& GET-NEXT-PLANS(Ppartial)

18: for sequence in Goal Sequences do

19: motionplan € GET-BEST-ACTION-PLAN

20: scoredgoals €<~ SIMULATE-MOTION-PLAN

21: PlanCost €& GET-COST

22: if last goal failed then

23: if Cseq < Cbestseq then

24: 8bestseq = 8Bseq

25: Cbestseq = Cseq

26: end if

27: else if no goals left to attempt then

28: if Cseq < Cpestseq then

29: Bbestseq = Bseq

30: Cbestseq = Cseq

31: end if

32: else

33: Insert sequence in BF PartialSols

34: end if

35: end for

36: end while

return Bbestseq
37: end function
38:

.. . C -C i

the original optimal plan cost: IOSt%f’jt“'"a'lloo%.
. e . . Slorgina

A constraint sensitivity analysis table is then presented to

inform the user of how changing a deadline constraint can

decrease the solution cost.

Along with the table, the robot shows n diverse plans
that were previously generated as described in Section V.
If the human does not find any plans acceptable, they would
give the robot inputs to help the robot find a suitable plan.
The input is given by updating planning constraints and then
finding new solutions that satisfy the constraints. We define
four input types that the human may give and map these
inputs to a constraint modification action as shown in Table I.
The user can iteratively give inputs and have the robot find
new plans until an acceptable plan is selected, which then
terminates the search as shown in Figure 4.

[
L

Select Plan

Fig. 4: Flowchart showing human input for plan refinement with
robot.

Human Input and Associated Constraint Modification
"Increase goal’s upper bound deadline time”

x1(8i,t2) > (t1 £ Biltarrival) € 12) BIC

”"Robot must complete goal”

x2(gi) > (gi B I?) BIC

”Robot can skip goal”

x3(gi) > (g BT EC

”Increase/decrease goal minimum probability of success ”
xa(,8i,01) > (P(gi) = &)@C

TABLE 17 This shows human inputs mapped to constraint updates
for plan refinement.

VIlI. RESULTS
A. Experimental Case Study Details
We define a 100m by 100m factory floor with 8 locations
for this work. Figure 2 shows the map of this workspace.
The robot is a Im by 1m holonomic mobile manipulator
that can move at a max velocity of 1.3 m/s and a max
payload (pmax) of two items. We give the robot six goals to
complete within 30 minutes. We first design three different
goal assignment types. The planner finds the best goal
sequence, task and motion plan, and alternative solutions
for each goal assignment to present to the human. Lastly,
we show examples of how a single user can give different
human inputs to guide plan refinement. For two scenarios, a
single user is first presented both the best and alternative goal
sequences, and then they help the robot refine the plan by
giving a constraint modification input through the command
line.

B. Generating Goal Sequences For Different Problem Inputs

We first create three sets of goal assignments,
(G1,G,,G3). Each set has six goals with randomly
generated items and delivery locations that must be

completed with different deadline constraints. We choose
large delivery time windows (loose deadlines), small
delivery time windows (tight deadlines), and a mix of
loose and tight deadlines as constraints for the respective
goal assignments. These goal inputs and the delivery time
windows over a 30-minute span is visualized in Figure 5 .
We execute our plan generation algorithm for each input
to generate the optimal plan solution. These optimal plans
are shown in Figure 6. We also show an example of a task
plan generated for the third goal assignment in Figure 7. For a
30-minute span, the robot can accomplish about five tasks at
best. The generated goal sequence has a higher proba-bility
of success for the loose deadline goal assignment. In
contrast, goals with tight deadlines have a lower probability
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Case Study 1

géb (item3,loc2)
g5 (item7, loc2)
g4 (item5, loca)
g3 (itemd, loc2)
g2 (item1, loc7)
gl (item2, loc2)
Case Study 2
g6 (item7, locl)
g5 (item2, loc1)
g4 (item3, loc6)
g3 (item8, loc7)
g2 (item1, loc2)
gl (iteme, locd)
Case Study 3
g6 (item4, loc5)
g5 (item7, loc3)
gd (itemb, loc8)
E3 (items5, locd)
g2 (item2, loc3)
gl (item3, loc6)
o 5 10 15 20 25 30
Time {min)

Fig. 5: Three different goal assignment types: loose, tight, and
mixed deadlines.

of success. The plan generated for the mixed deadline goal
assignment has a slightly less probability of success for each
goal than the first goal assignment. A set of goals with tight
deadlines results in poor plans being generated. However,
both loose and mixed deadlines result in lower-cost plans
being generated. We also generated best alternative plans
using the diversity scoring metric.

Plan, Plan, Plan,
goal P(g) goal P(g) goal P(g)
I, = Iy = =

g: 1.0 g1 71 g1 94
93 93 gz .88 9a 57
94 .88 ga 81 g2 .89
gs .82 gs 49 gs 92
e .7 9e .17 9e .7

FS: FS: r5:
[9: 00] [g 00] [g5 00]

Fig. 6: Optimal plans generated with associated cost

C. Getting Human Guidance for Refining a Plan

In order to facilitate human guidance for refining the plan
for the third goal assignment, the robot generates a sensitivity
analysis table for adjusting the deadline constraints. The
analysis individually increases each constraint to see how
it affects the best plan cost. We see that the plans for g3 can be
improved by relaxing time constraints for g4, gs, g6.

We present two examples of inputs the human can give to
manage the robot’s workload. These examples are shown in
Figure 8. The three plans calculated for g3 are first presented
to the human for both examples.

Example 1. For the first example, we show plan refine-
ment for a human who is 1) concerned with reducing the
probability of the robot missing a goal and 2) has a higher

perceived effort for certain goals that were not captured by
the human effort function. The human wants to refine the
plan without compromising on the assigned deadlines. In
example 1, let us say that the human’s perceived effort for
goal 3 is actually greater than what is modeled by the human
effort function. The human decides to consider the lowest
presented plangl. For that plan, they would have to complete
goal 3 (a perceived high effort goal), and there is a higher
probability that the robot will miss goals four and six. In
this example, the human takes responsibility for goals 4 and
6 and directs the robot to attempt high-effort goal 3. This
task reassignment is mapped as inputs x,(g3) and x3(g4, 6).
Furthermore, the human adds a threshold constraint so that
the newly generated plan must have the robot complete
goal 3 with P(gi) > .9 . This scenario shows that the robot
can generate a new plan that satisfies the updated planning
constraints provided by the human.

Task 81 82 g3 g4 g5 86
Cost Reduction | 15% | 0% | 8% | 18% | 10% | 20%
TABLE II: Each task’s upper deadline bound was extended by 5.0
min to see the effect on the cost of the best solution

Example 2. In the second example, we show plan re-
finement iteration with another human who has situational
knowledge of goals with deadlines that can be further
relaxed. With information from the constraint sensitivity
analysis shown in Table I, the human gives an input to
increase the upper deadline bound for goals four and six.
This input decreases the cost of the first presented plan: B, 1,
which the human selects. In this example, we show that the
human can give deadline relaxations to improve the robot’s
workload management.

_—— —m(RLL0,14)
v
p(R1,13,14) »m(R1,14,16) ~ pl(R1,I3,16) -.

— —m(RLLELT) « — —
o
P(R1,16,L7) —+m(R1,17,L1) — pl(R1,I6,L1) —_

—

p(RL,12,L1) —+m(R1,L1,L3) — pI(R1,12,L3) -

- —m(RLI3L6) «— ——
-
p(RL17,16) —» m(R1,16,15)

e

p(R1,14,L5) — »m(R1,L5,L3) — pl(R1,17,L3) —

-
m(R1,13,L0) —» pl(R1,14,10)

Fig. 7: Task and motion plan for goal sequence 3, where the robot
can pick (p), move (m) or place (pl)

VIIl. CONCLUSIONS
We have presented a framework for a human to manage
a robot’s workload based on their preference. We have
demonstrated that a branch and bound-based search can be
used to generate and evaluate alternative task sequences to
minimize task execution effort. Our work has also illustrated
how congestion modeling can determine the probabilities of
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Example 1

Robot

New generated plan®

Example 2

Fig. 8: Two examples of human guidance with workload management

completing a goal within a given time window. Furthermore,
we have demonstrated how task execution effort sensitivity
can be computed by relaxing deadlines and offering hu-
mans helpful information to make decisions. This framework
enables humans to take actions based on their preferences
and needs. They can either remove goals from the robot’s

[9]

[10]
list or increase their workload. Alternatively, they can relax
deadlines for the robot to complete specific goals and accept a [11]
delay in task completion.

A key limitation to this work is the lack of a human
user study with a real robot. This is needed to evaluate the (12!
computational tools presented in this paper and give insight
into how human risk tolerance, preferences, and availability
of information affect the robot workload management pro- (13]
cess. Furthermore, the robot has full observability of the |14
environment and does not consider sensor coverage [22],
[23], or human viewpoint [24].
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