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Abstract—In various application domains (e.g., health, psychol-
ogy), experts use Bayesian networks to represent relationships
among variables. However, these variables are not in practice
directly observable, but can be instead inferred via noisy but
costly features. Herein, we study the problem of datum–wise
feature selection and classification in the case where the label of
each data instance is described by a known Bayesian network,
and features are available at a cost. The goal is to accurately
classify each data instance, while keeping the feature acquisition
cost minimum. To this end, we first propose a forward pass
algorithm that sequentially acquires features to infer the label
of each variable in the Bayesian network. During this process,
the proposed algorithm uses both the acquired features and the
Bayesian network relationships. In an effort to improve classifica-
tion accuracy, we also devise a backward pass algorithm, which
exploits Bayesian network relationships along with evidence. We
discuss the computational complexity of both algorithms and
experimentally assess their performance on 11 datasets. We
observe that the forward pass algorithm achieves higher accuracy
using a small fraction of features compared to state–of–the–art,
while the backward pass algorithm enhances accuracy without
acquiring additional features.

Impact Statement—In traditional supervised classification, each
data instance is associated with a single label (e.g., cat). However,
in many real–world applications (e.g., medical diagnosis, insur-
ance recommendation), a data instance is described by a set of
related labels (e.g., physical activity and emotion, driving quality
and accident severity). At the same time, access to all features is
prohibitive due to cost, invasiveness, or limited resources. This
work addresses the above challenges by proposing a methodology
and two algorithms to perform accurate classification, while
minimizing the total feature acquisition cost. The proposed
methodology has the additional benefit of tailoring classification
decisions to each individual data instance, not only resulting in up
to 19.68% improvement in accuracy, but also decreasing by up
to 88.35% the average number of acquired features. Thereby,
it enables resource–efficient and accurate reasoning in non–
traditional machine learning environments with a wide variety of
applications including medical diagnosis, education, economics,
environmental science, and transportation.

Index Terms—Bayesian networks, classification, instance–wise
acquisition, noisy features, sequential acquisition.
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O
VER the past few decades, Bayesian networks have

received considerable attention finding applications in

many domains (e.g., medical diagnosis [2], behavioral analysis

[3], insurance recommendation [4]). There are two main

reasons that explains their prevalence. First, they facilitate

knowledge representation since they employ directed acyclic

graphs (DAGs) to visually describe relationships between

variables using nodes and edges [5]. For instance, the cancer

Bayesian network [6] consists of five nodes, i.e., “pollution”,

“smoker”, “cancer”, “X–ray”, and “dyspnoea”, representing

the factors that potentially contribute to the probability of

having cancer. Second, Bayesian networks can also be used for

reasoning in a domain of interest. For example, it is possible

to identify causes of road accidents via backward analysis [7].

In supervised machine learning, Bayesian networks have

been typically used to represent class–feature dependencies,

where the goal is to classify a data instance in one out of N

classes [8]. For example, Naive Bayes and its extensions (e.g.,

Tree–Augmented Naive Bayes) can be graphically represented

using Bayesian networks. In this context, a single Bayesian

network node represents the classification variable, while the

rest represent noisy features (see Fig. 1(a)). On the other

hand, Bayesian networks have been employed to describe

relationships between multiple classification variables [6], [9].

In this case, the objective is to infer their values by exploiting

the associated relationships (see Fig. 1(b)). For instance, a

recommendation system is proposed in [4] to predict insurance

products for customers. Note that such classification variables

are assumed to be fully observable. This is typically not the

case in many real–world applications, where classification

variables are observed via noisy features (see Fig. 1(c)). For

example, the emotion and personality characteristics of an

individual, which are only observable through noisy galvanic

skin response, electrocardiogram, and electroencephalogram

data [10], are related and thus, can be represented by a

Bayesian network with two classification variables.

In many real–world applications (e.g., medical diagnosis,

planetary imaging), features are acquired at a cost that captures

the relevant effort needed to access them. At the same time,

using different features for classification has a different effect

on the accuracy of the resulting prediction (e.g., in the medical

domain, tests may be intrusive, uncomfortable and/or costly,

but may impact accurate and timely diagnosis). As a result,

feature selection in this context has received considerable

attention [11]–[16]. Depending on the stage that feature selec-

tion takes place, relevant methods can be roughly categorized

either as streaming [11], [12], or dynamic instance–wise [13]–

[16]. The former methods assume that feature selection takes

place during training, where features arrive one at a time or

in batches, and the same selected feature subset is used for

classification during testing. In contrast, the latter methods
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an extension of CC, where the goal is to improve accuracy

without incurring additional computational complexity by con-

sidering meaningful variable orderings in the chain. To this

end, BCC first learns relationships from data in the form

of a Bayesian network, thus restricting the possible variable

orderings in the chain. In the second step, a chain classifier

is built such that the chain ordering is consistent with the

previously learned Bayesian network structure. Similar to our

work, the above methods account for relationships between

variables in X through the use of an appropriate mechanism

(e.g., chain, Bayesian network). However, in contrast to our

work, classification decisions are based on the entire feature

set F for all variables in X , not on the most cost–efficient

and “informative” features per variable. At the same time, all

such methods require access to a base classifier (e.g., Naive

Bayes [19]), the performance of which affects the overall

accuracy achieved. Contrary to this, the proposed approach

jointly optimizes feature selection and classification, hence

selecting the classification decision that gives the best accuracy

when using a specifically selected feature subset.

In an effort to achieve comparable accuracy but avoid the

large computational complexity of the PC approach, variable

partitioning has been proposed [20], [21]. The main idea is

to partition variables in X into groups (also known as super–

classes [20]) based on relevant conditional dependence infor-

mation, and use the PC approach on top of these groups. Re-

cently, Jia et al. [21] proposed a two–step grouping approach

that involves first computing relevant counting statistics from

an unseen data instance’s k nearest neighbors (kNN) in the

training dataset, and then performing maximum a posteriori

(MAP) inference based on these statistics for each possible

pair of class spaces. Similar to our approach, the above line

of work accounts for relationships between variables in X .

Yet, relationship information is used to reduce the size of the

classification space by carrying out classification in subsets of

X . At the same time, such approaches use a base classifier

and perform classification using the whole feature set F . In

contrast, the proposed approach explicitly models variable

relationships in terms of a Bayesian network and propagates

classification decisions over this structure. At the same time, it

explicitly determines both the optimum number of features and

optimum classification strategy for each variable in X . Thus,

unlike [20], [21], there is no need to employ a base classifier

and use the whole feature set F , which affect performance

and hinder explainability of the classification decisions.

Finally, in multi–dimensional Bayesian network classifica-

tion (MBC) [22]–[24], relationships between variables in X

are modeled using a Bayesian network model (see [24] for a

comprehensive survey). Such approaches learn the underlying

unknown Bayesian network structure between variables in X

and features in F , and then perform inference to compute the

values of variables in X . Since the Bayesian network can be

split into three main subgraphs (i.e., class, feature, bridge) with

potentially different structures, different MBC families (e.g.,

tree–tree) have been designed. Irrespective of the structures,

however, the associated computational complexity of these

approaches is high. Furthermore, it has been experimentally

shown that BCC achieves better accuracy than them. In an

effort to limit computational complexity, Bielza et al. [22]

theoretically formulate the notion of decomposable class–

bridge MBC, where maximal connected components that do

not share children are identified. A variable ordering approach

is also proposed to efficiently navigate through all possible

variable combinations, but no overall algorithmic solution

is provided. A conditional tree–structured Bayesian network

(CTBN) is proposed in [23] as an alternative way of addressing

MBC. In this context, variable relationships are modeled as

a directed tree, where the set of all features is treated as a

common parent for all classification variables. Classification

is then conducted based on MAP estimation using exact

inference. The main difference between prior work on MBC

and our proposed approach is that the former methods use

the entire feature set F to perform classification, while the

latter approach dynamically selects the optimum number of

features per classification variable in X to balance accuracy

with the cost of feature acquisition. The benefits of such an

approach are: (1) improved accuracy using fewer features, (2)

being able to reason about the classification outcomes, and (3)

lower computational complexity than performing MBC.

III. PROBLEM DESCRIPTION & SOLUTION

In this section, we describe the problem of classifying

structured data instances and provide the basis of the proposed

approach discussed in Section IV. Specifically, we start by

introducing the details of the problem and stating our as-

sumptions. Next, we define an optimization problem for each

variable in the Bayesian network, where the goal is to limit the

number of features used for classification accounting for the

effect on the classification performance. Finally, we summarize

the solution to the optimization problem.

A. Description

We consider a supervised classification setting, in which

each data instance is associated with n categorical variables

X1, X2, . . . , Xn, each of which can take multiple values.

These variables are related and thus described by a Bayesian

network G = (X,E). We note that X , {X1, X2, . . . , Xn}
and the set E represents relationships between variables in X

as directed edges (e.g., X` → Xm indicates that the associated

variables are related). According to the chain rule [5], the joint

probability distribution P over the random variables in X is:

P (X1, . . . , Xn) =

n
∏

i=1

P (Xi|PaGXi
), (1)

where P (Xi|PaGXi
) denotes the conditional probability of

variable Xi given its parents PaGXi
in graph G. Further-

more, we have access to labeled training data, i.e., each

data instance is represented by a feature vector described by

F , {FX1

1 , . . . , FX1

K1
, FX2

1 , . . . , FX2

K2
, . . . , FXn

1 , . . . , FXn

Kn
},

where FXi

k , k = 1, 2, . . . ,Ki, denotes the kth feature asso-

ciated with variable Xi, and its label is an appropriate n–

dimensional class vector described by X . At the same time,

during testing, features in F are not readily available (e.g.,

due to large feature space or cost of feature acquisition), but
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become available one at a time based on a fixed ordering. In

this context, the goal is to learn functions that dynamically

select which features in F to acquire, and use the acquired

features to assign a vector of values to the variables in X .

The ideal functions will of course limit the number of features

acquired per variable to restrict the total feature acquisition

cost, while maintaining accuracy within acceptable levels. To

simplify the problem of classifying structured data instances,

we adopt the following three crucial assumptions:

(A1) We assume that the Bayesian network structure is known

and given.

(A2) We assume that the features FXi

k , k = 1, 2, . . . ,Ki, as-

sociated with variable Xi ∈ X are conditionally inde-

pendent given Xi.

(A3) We assume that features FXi

k , k = 1, 2, . . . ,Ki, are or-

dered based on a certain performance measure (c.f. Sec-

tion VI-B), and such ordering is given for each variable

Xi ∈ X . As a side note, it is possible that features are

ordered differently for each variable Xi ∈ X .

B. Optimization Problem Formulation

For each categorical variable Xi, i = 1, 2, . . . , n, in the
Bayesian network G, we define two random variables, Ri

and DRi
. We use random variable Ri ∈ {0, 1, . . . ,Ki}

to denote the last feature acquired from the ordered set

FXi , {FXi

1 , . . . , FXi

Ki
} before proceeding with a classi-

fication decision for categorical variable Xi. Furthermore,
we use random variable DRi

to denote the classification
decision for categorical variable Xi. Since Xi takes one out
of Ni possible values, DRi

∈ {1, 2, . . . , Ni}. To acquire

each feature FXi

k , we expense cost eik, k = 1, 2, . . . ,Ki. At
the same time, we use the term M i

lm to capture the cost of

classifying Xi as CXi

l , l = 1, 2, . . . , Ni, when its true class is

CXi
m ,m = 1, 2, . . . , Ni. In line with our goal in Section III-A,

we define the cost function below:

J(Ri, DRi
) = E

[

Ri
∑

k=1

e
i

k

]

+

Ni
∑

l=1

Ni
∑

m=1

M
i

lmP (DRi
= l, C

Xi
m ), (2)

where P (DRi
= l, CXi

m ) denotes the probability of assigning

class CXi

l to categorical variable Xi, even though its true class

is CXi
m . The first expression in Eq. (2) represents the total cost

of acquiring Ri features to classify Xi. On the other hand,

the second expression in Eq. (2) represents the cost of the

classification decision DRi
. Thus, the goal is to minimize the

cost function in Eq. (2) with respect to both Ri and DRi
.

C. Optimum Solution

We solve the optimization problem in Section III-B in two

steps. In the first step, we determine the optimum decision D∗
Ri

for fixed given Ri features. In the second step, we determine

the optimum R∗
i features by minimizing J(Ri), which is the

reduced cost function resulting from the first step.

We begin by considering the a posteriori probabil-

ity vector πk , [π1
k, π

2
k, . . . , π

Ni

k ]T . Each term πm
k ,

P (CXi
m |FXi

1 , . . . , FXi

k ) represents the a posteriori probability

of the mth class, m = 1, 2, . . . , Ni, when k out of Ki

features associated with categorical variable Xi have been

acquired. We assume that initially, π0 , [p1, p2, . . . , pNi
]T ,

where pm , P (CXi
m ),m = 1, 2, . . . , Ni. The a posteriori

probability πm
k can be recursively updated as more features

are sequentially acquired using Bayes’ rule:

πm
k =

P (FXi

k |CXi
m )πm

k−1

P (FXi

k |CXi

1 )π1
k−1

+ . . .+ P (FXi

k |CXi

Ni
)πNi

k−1

. (3)

Furthermore, we can rewrite the second term of Eq. (2) in

terms of the a posteriori probability and the indicator function

1A (i.e., 1A , 1 when event A occurs, and 0 otherwise) as:

J(Ri, DRi
) = E

[

Ri
∑

k=1

eik +

Ni
∑

l=1

Ni
∑

m=1

M i
lmπm

Ri
1D{Ri=l}

]

.

(4)

Starting from Eq. (4), we can show that the optimum

classification strategy D∗
Ri

for any fixed and given feature

selection strategy Ri has the following form [13]:

D∗
Ri

= argmin
1≤l≤Ni

[

(Mi
l)

TπRi

]

, (5)

where M
i
l , [M i

1l,M
i
2l, . . . ,M

i
Nil

]T . Thus, we rewrite the

cost function in Eq. (4) as follows:

J(Ri) = E

[

Ri
∑

k=1

eik + g(πRi
)

]

, (6)

where g(πRi
) , min1≤l≤Ni

[(Mi
l)

TπRi
]. To determine the

optimum feature selection strategy R∗
i , we minimize the cost

function in Eq. (6) using dynamic programming [13] as:

Lk(πk) = min
[

g(πk), L̃k(πk)
]

, k = 0, . . . ,Ki − 1, (7)

where

L̃k(πk) = eik+1 +
∑

F
Xi
k+1

Lk+1(πk+1)∆
T
k+1(F

Xi

k+1
)πk, (8)

with ∆k(F
Xi

k ) , [P (FXi

k |CXi

1 ), . . . , P (FXi

k |CXi

Ni
)]T and

LKi
(πKi

) = g(πKi
). We observe that there are Ki +1 stages

for the resulting dynamic programming equations, since there

are Ki features in total for each Xi.

IV. PROPOSED APPROACH

In this section, we propose an algorithm that exploits the op-

timum solution in Section III to classify all Xi, i = 1, 2, . . . , n,
in the Bayesian network G using the least number of features

per categorical variable.

A. Instancewise Structured Environments Classification Algo-

rithm

We start by explaining the main idea behind the pro-

posed approach, referred to as Instance–wise Structured

Environments Classification (ISEC) algorithm. Specifically,

ISEC initializes the a posteriori probability vector π0 for

each categorical variable Xi, i = 1, 2, . . . , n, in the Bayesian

network G. Next, ISEC uses Eqs. (7) and (8) to determine

the optimum number of features needed to reach an accurate

classification decision for each categorical variable in the

Bayesian network G. Finally, ISEC uses the optimum number
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TABLE I: Datasets description (number of instances (S),

number of variables (n), number of classes per each variable

(Ni), number of features (Ki)).

Dataset S n Ni Ki Domain

Edm 154 2 3 16 Machines

Voice 3136 2 2 to 4 19 Voice

Jura 359 2 4 to 5 9 Geography

Song 785 3 3 98 Music

Flare 323 3 2 to 4 10 Solar flares

Student 649 3 2 30 Education

Emotion 593 6 2 72 Music

Child 1000 3 2 17 Medical

Hepar2 1000 3 2 67 Medical

Sachs 1000 2 3 9 Biology

Insurance 1000 2 3 to 4 25 Insurance

G. The complexity of computing the probability P (ChG
Xi

, F ∗
i )

of evidence is O(Ni), since it involves variable elimination

over a single variable Xi. Since Ni divisions are carried

out, the total complexity of computing P (Xi|ChG
Xi

, F ∗
i ) is

O(nWmax + 2Ni). Since Xi takes Ni values, carrying out

MAP inference via variable elimination incurs computational

complexity O(nWmax+3Ni). Since there are Γ , n−β nodes,

where β is the number of outdegree 0 nodes in G, the time

complexity of IBSEC during testing is O(Γ(nWmax + 3Ni)).

VI. EXPERIMENTAL RESULTS

In this section, we conduct a number of experiments on a

variety of datasets from different domains to assess the perfor-

mance of ISEC and IBSEC and illustrate their operation. All

experiments are conducted on a PC with Intel(R) Core(TM)

i7-8565U CPU @ 1.80GHz with 16 GB memory. All reported

results are five–fold cross validated.

A. Datasets

Table I presents the 11 datasets used in our experiments

including a description of their characteristics and the domain

they represent. Edm [26], Voice [27], Jura [28], Song [29],

Solar–flare (Flare) [30] and Emotion [18] are typical MDC

datasets3. Following the standard approach in MDC literature

[24], we also employ forward sampling [5] to generate four

additional datasets of 1, 000 instances4 each based on the Child

[31], Hepar2 [32], Sachs [33], and Insurance [34] Bayesian

networks. In each case, we randomly split the nodes between

classification variables and features, keeping the number of

classification variables low (i.e., 2 or 3). Finally, we preprocess

the Student performance dataset (Student) [35] such that the

3 classification variables G1, G2, G3 representing three period

grades are binary, i.e., we set Gi = 1, i ∈ {1, 2, 3}, if the

corresponding student score is > 11.

B. Training

We have assumed that the Bayesian network structure that

represents relationships between variables in X is known and

given (see Section III-A). Thus, we employ the well–known

3The preprocessed versions of Voice, Jura, and Song [29] are used herein.
4Accuracy values stabilize at around 1, 000 data instances.

Chow–Liu algorithm [36] to learn the underlying Bayesian

network structure for those datasets that we do not have access

to such information. For the Student dataset, we construct the

relevant Bayesian network by first carrying out correlation–

based analysis. Specifically, we observed that variable G3

exhibits a strong correlation with variables G1 and G2 [35].

Next, we take into account the immediate effect of cause

variables to generate directed edges [9]. Thus, the resulting

Bayesian network includes a set X , {G1, G2, G3} of 3 nodes

with two directed edges E , {(G1, G3), (G2, G3)} (see also

Fig. 7). The variable relationships for the Insurance and Sachs

datasets are obtained from the original Bayesian network.

During training, we estimate the prior probabilities

P (Xi) and conditional probabilities P (FXi

k |CXi
m ), k =

1, 2, . . . ,Ki,m = 1, 2, . . . , Ni. Specifically, P̂ (FXi

k |CXi
m ) =

Sk,m+1

Sm+B
, where Sk,m represents the number of instances that

are in class CXi
m and feature FXi

k takes a specific value, Sm

represents the total number of instances in class CXi
m , and B

represents the number of bins considered. Similarly, P̂ (Xi) =
Sm+1

∑Ni
m=1

Sm+Ni

. For each variable Xi, i = 1, 2, . . . , Ni, we

compute the sum of type I and II errors and scale the result by

the feature cost eik of the kth feature. We use this performance

indicator to order features for each variable Xi separately, such

that low cost and accurate features appear earlier in the order.

Finally, since there are no restrictions imposed by the datasets,

we assume that each variable has access to the same set of

features.

C. Performance Metrics

In this work, we use mean accuracy, global accuracy, and

average number of features acquired as performance metrics.

We define mean accuracy and global accuracy as:

Mean Accuracy (MA) ,
1

n× S

n
∑

i=1

S
∑

s=1

1xis=x̂is
, (9)

Global Accuracy (GA) ,
1

S

S
∑

s=1

1xs=x̂s
, (10)

where n represents the total number of variables in the

Bayesian network, S represents the total number of instances

and we use (̂·) to indicate predicted values. The former per-

formance metric represents the effect of separately predicting

the values of the variables in the Bayesian network, while the

latter represents the effect of joint prediction.

D. Sensitivity Analysis

In this subsection, we assess the effect of the feature

cost eik and the number B of bins on the performance of

ISEC. Specifically, Fig. 5 illustrates MA, average number

of features, and testing time of ISEC as the feature cost

eik varies. For simplicity, we assume that all features incur

the same cost, i.e., eik = e, ∀k, i, and misclassification costs

are M i
lm = 1, ∀l 6= m,M i

ll = 0, l,m = 1, . . . , Ni. We

observe that different feature costs yield different accuracy,

and acquiring more features typically results in better accuracy

on the premise that such features are informative. However,
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the driving skills and driving history are most often used

to classify the driving quality of an individual (Fig. 8(a)),

while the car damage is more often used for assessing if an

accident happened (Fig. 8(c)). We observe similar trends in the

case of the Student dataset (Figs. 9(a), (c), (e)). For instance,

feature school is most often selected to classify all variables.

Intuitively, a student’s school may be a good rough indicator

of a student’s grade, since in good schools students also tend

to have higher grades. Next, we consider the effect of feature

costs on the classification decisions by introducing different

costs for different features based on the difficulty of collecting

them in practice. For instance, considering the Insurance

dataset, age is relatively easy to acquire, contrary to driving

skills [34]. We assign feature costs as eik = d × 0.0001, ∀k,
where d ∈ {1, 2, 3} with the corresponding values indicating

that it is easy (green), medium (yellow), and difficult (red)

to acquire the corresponding feature, respectively. Our results

indicate that the MA in the Student dataset goes down by

0.49% using 0.70% fewer features on average compared to

constant feature costs. On the other hand, for the Insurance

dataset, MA increases by 0.66% using 23.77% more fea-

tures on average, which illustrates that accuracy is robust for

different feature costs. We also observe that ISEC tends to

acquire more low–cost features (see Figs. 9(b), (d) and (f) for

example) so at to preserve accuracy. Nonetheless, if features

are quite informative (e.g., driving skills in Fig. 8(b)), ISEC

still acquires them but later in the feature acquisition process.

F. Comparison with Baselines

In this subsection, we illustrate the performance of ISEC

on the datasets in Table I with respect to the metrics intro-

duced in Section VI-C. Further, ISEC is compared with the

following baseline algorithms: 1) Independent Classifier with

Naive Bayes (IC–NB), SVM (IC–SVM) and ETANA [13] (IC–

ETANA) as base classifiers, 2) Powerset Classifier with Naive

Bayes (PC–NB) and SVM (PC–SVM) as base classifiers,

3) BCC [19], which uses a Bayesian network to determine

variable relationships and chaining order, and 4) MD–KNN

[21], which considers pair–wise variable dependencies and

performs classification using kNN counting statistics. IC and

PC with NB and SVM as base classifiers are widely used

in MDC literature, while BCC and MD–KNN are recently

proposed algorithms that outperform prior MDC methods. We

underscore that none of these baselines dynamically selects

features for classification; thus, we use ETANA [13], which

performs dynamic feature selection for classification of a sin-

gle variable, as a base classifier for the independent classifier

approach. We set parameter k of MD–KNN to 10 as used in

[21], and parameters e,B, η of ETANA to 0.0001, 10, 10, as

used in [13], respectively. We use LIBSVM with the linear

kernel for MD–KNN, IC–SVM, and PC–SVM, as suggested

in [21], and Naive Bayes as the base classifier for BCC [19].

All baselines’ codes have been provided by their authors or

are publicly available. In addition, for fair comparison, we

evaluate all algorithms using the same performance metrics.

Table II provides our experimental results and we discuss our

main observations next.

As expected, MA is higher than GA for almost all datasets.

This is because GA represents the result of predicting all

variables’ values together as a single variable in each instance,

unlike MA, which evaluates individual variables separately

(see Eqs. (9) and (10)). Therefore, a classification error of

a single variable is considered a misclassified instance in

terms of GA, irrespective of the correct classification of other

variables, unlike MA. Furthermore, ISEC outperforms nearly

all baselines with respect to MA (improvement between 5.97%
and 19.68%) and GA (improvement between 2.10% and

32.00%), since it not only uses the most informative features

per classification variable to infer its value, but also takes

advantage of the parent–child relationships in the Bayesian

network. PC based algorithms (e.g., PC–SVM) perform com-

petitively with ISEC with respect to GA. We suspect that this

is due to the fact that they translate the original problem

into a single multi–class classification problem promoting

the joint assignment of all the variables in the Bayesian

network. However, ISEC achieves high MA and GA, while

acquiring the least number of features on average (feature

reduction is between 1.75% and 88.35%) compared to all

the baselines. In fact, it performs better than IC–ETANA,

which also performs dynamic instance–wise feature selection

on a single classification variable, suggesting that exploiting

parent–child relationships in the Bayesian network can benefit

both accuracy and the feature acquisition process.

To validate the statistical significance of the results pre-

sented in Table II, we conduct the Friedman test that is

typically used to compare the performance of classifiers over

multiple datasets [37]. We include the average ranks in Ta-

ble II, and we note that the p–values for GA, MA, and AF

are 4.16× 10−3, 7.74× 10−4, and 4.53× 10−11, respectively.

Thus, we conclude that there is statistical difference in the

performance of ISEC and the baselines.

G. ISEC versus IBSEC

In this subsection, we compare ISEC with IBSEC using the

datasets in Table I. Specifically, assuming that the true values

of the classification variables of outdegree 0 are provided

in the form of evidence, we run IBSEC on all datasets and

assess its performance. Since all datasets except Student and

Emotion have only one ancestor, we report only mean accuracy

values since global and mean accuracy coincide in this case.

Fig. 10 illustrates the mean accuracy of ISEC versus the mean

accuracy of IBSEC, where each point (MAISEC,MAIBSEC) is

associated with a specific dataset. We include the 45◦ line to

enable easy interpretation of the results. We observe that the

majority of points lie over this line. This suggests that the

inclusion of evidence significantly improves mean accuracy.

Note that the average number of features acquired is not

affected, since IBSEC just uses the Bayesian network structure

to improve the classification decisions of the variables in the

network.

VII. CONCLUSIONS AND FUTURE WORK

In this work, a datum–wise inference methodology is pro-

posed for structured data instances by balancing classifica-

tion accuracy and cost of acquired features. Specifically, a
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