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Abstract—In various application domains (e.g., health, psychol-
ogy), experts use Bayesian networks to represent relationships
among variables. However, these variables are not in practice
directly observable, but can be instead inferred via noisy but
costly features. Herein, we study the problem of datum-wise
feature selection and classification in the case where the label of
each data instance is described by a known Bayesian network,
and features are available at a cost. The goal is to accurately
classify each data instance, while keeping the feature acquisition
cost minimum. To this end, we first propose a forward pass
algorithm that sequentially acquires features to infer the label
of each variable in the Bayesian network. During this process,
the proposed algorithm uses both the acquired features and the
Bayesian network relationships. In an effort to improve classifica-
tion accuracy, we also devise a backward pass algorithm, which
exploits Bayesian network relationships along with evidence. We
discuss the computational complexity of both algorithms and
experimentally assess their performance on 11 datasets. We
observe that the forward pass algorithm achieves higher accuracy
using a small fraction of features compared to state—of-the-art,
while the backward pass algorithm enhances accuracy without
acquiring additional features.

Impact Statement—In traditional supervised classification, each
data instance is associated with a single label (e.g., cat). However,
in many real-world applications (e.g., medical diagnosis, insur-
ance recommendation), a data instance is described by a set of
related labels (e.g., physical activity and emotion, driving quality
and accident severity). At the same time, access to all features is
prohibitive due to cost, invasiveness, or limited resources. This
work addresses the above challenges by proposing a methodology
and two algorithms to perform accurate classification, while
minimizing the total feature acquisition cost. The proposed
methodology has the additional benefit of tailoring classification
decisions to each individual data instance, not only resulting in up
to 19.68% improvement in accuracy, but also decreasing by up
to 88.35% the average number of acquired features. Thereby,
it enables resource-efficient and accurate reasoning in non-
traditional machine learning environments with a wide variety of
applications including medical diagnosis, education, economics,
environmental science, and transportation.

Index Terms—Bayesian networks, classification, instance—wise
acquisition, noisy features, sequential acquisition.
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VER the past few decades, Bayesian networks have
received considerable attention finding applications in
many domains (e.g., medical diagnosis [2], behavioral analysis
[3], insurance recommendation [4]). There are two main
reasons that explains their prevalence. First, they facilitate
knowledge representation since they employ directed acyclic
graphs (DAGs) to visually describe relationships between
variables using nodes and edges [5]. For instance, the cancer
Bayesian network [6] consists of five nodes, i.e., “pollution”,
“smoker”, “cancer”, “X—ray”, and “dyspnoea”, representing
the factors that potentially contribute to the probability of
having cancer. Second, Bayesian networks can also be used for
reasoning in a domain of interest. For example, it is possible
to identify causes of road accidents via backward analysis [7].
In supervised machine learning, Bayesian networks have
been typically used to represent class—feature dependencies,
where the goal is to classify a data instance in one out of NV
classes [8]. For example, Naive Bayes and its extensions (e.g.,
Tree—Augmented Naive Bayes) can be graphically represented
using Bayesian networks. In this context, a single Bayesian
network node represents the classification variable, while the
rest represent noisy features (see Fig. 1(a)). On the other
hand, Bayesian networks have been employed to describe
relationships between multiple classification variables [6], [9].
In this case, the objective is to infer their values by exploiting
the associated relationships (see Fig. 1(b)). For instance, a
recommendation system is proposed in [4] to predict insurance
products for customers. Note that such classification variables
are assumed to be fully observable. This is typically not the
case in many real-world applications, where classification
variables are observed via noisy features (see Fig. 1(c)). For
example, the emotion and personality characteristics of an
individual, which are only observable through noisy galvanic
skin response, electrocardiogram, and electroencephalogram
data [10], are related and thus, can be represented by a
Bayesian network with two classification variables.

In many real-world applications (e.g., medical diagnosis,
planetary imaging), features are acquired at a cost that captures
the relevant effort needed to access them. At the same time,
using different features for classification has a different effect
on the accuracy of the resulting prediction (e.g., in the medical
domain, tests may be intrusive, uncomfortable and/or costly,
but may impact accurate and timely diagnosis). As a result,
feature selection in this context has received considerable
attention [11]-[16]. Depending on the stage that feature selec-
tion takes place, relevant methods can be roughly categorized
either as streaming [11], [12], or dynamic instance-wise [13]-
[16]. The former methods assume that feature selection takes
place during training, where features arrive one at a time or
in batches, and the same selected feature subset is used for
classification during testing. In contrast, the latter methods

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 31,2023 at 01:37:00 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3271616

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, JULY 2022

(a) (b) (c)

Fig. 1: Graphical illustration of: (a) a Bayesian network
of a single classification variable X; observed via features
Fi' F55 F5¥' ) (b) a Bayesian network of three observable
variables X, X5, X3, and (c) a Bayesian network of two clas-
sification variables X, X5 observed via features Fj*', F;<'
and F;¥2, F5%2, respectively.

perform dynamic feature selection during testing, essentially
using different features to classify each data instance. To the
best of our knowledge, all such works consider supervised
classification of a single variable observed via noisy features.

In this work, we consider supervised classification of struc-
tured data instances, i.e., the label of each data instance corre-
sponds to a set of classification variables with the relationships
between them captured by a known Bayesian network. We
particularly focus on the case where features are not freely
available, but instead are sequentially acquired at a cost one
at a time during testing. The objective is two—fold: accurately
classify each data instance while keeping the total feature
acquisition cost minimum. In summary, our contributions are:

1) We present a novel variant of the dynamic instance—
wise feature selection problem [13], where multiple
interrelated variables need to be classified.

2) To address this problem, we propose an algorithm that
assigns a label to each variable in the Bayesian network
by acquiring the appropriate optimum number of fea-
tures per instance. The algorithm also propagates the
labels through the Bayesian network in a forward pass,
incorporating their effect in the inference process.

3) We also present a backward pass algorithm that incorpo-
rates evidence into the inference process, thus improving
accuracy.

4) We analyze the computational complexity of both al-
gorithms, and experimentally assess their performance
on 11 real-world datasets. We also compare them with
the state—of—the—art, showing their effectiveness and
generalizability on a variety of applications.

The remainder of this paper is organized as follows. Sec-
tion II summarizes relevant prior work. Section III describes
the problem of classifying structured data instances and pro-
vides the optimum solution. Sections IV and V describe the
proposed forward and backward pass algorithms that exploit
the optimum solution and the Bayesian network relationships
to perform feature selection and classification. Section VI
presents detailed experiments that assess the performance of
the proposed algorithms and discuss relevant findings. Finally,
Section VII concludes the paper and briefly describes future
research directions. For reproducibility purposes, the source
code of the proposed algorithms will become available upon
acceptance of this manuscript.

II. RELATED WORK

In this section, we briefly review the most relevant litera-
ture. For clarity, consider a supervised classification setting
with variables X 2 {Xi, Xo,...,X,} and features F =
{F1,Fy,...,Fg}. Here, we use n to denote the number
of categorical variables, and K to represent the number of
features. The goal is to infer the value of X using F', where
each X; € X takes one out of N;,¢ = 1,...,n, possible
values. Depending on the values that n and N; take, we
have the following cases: (i) binary classification: n = 1 and
Ny = 2, (ii) multi—class classification: n = 1 and N1 > 2, (iii)
multi-label classification: n > 1 and N; = 2,i = 1,...,n,
and (iv) multi-dimensional classification: n > 1 and N; >
2,2 =1,...,n. The problem we study in this paper is closely
related to multi-dimensional classification (MDC).

Historically, MDC problems have been addressed by the
independent classifier (IC) and the power—set classifier (PC)
approaches [17]. The former approaches independently learn
the value of each variable in X using a set of standard
multi—class classifiers (e.g., multi-label music classification
via the Binary Relevance method [18]), the results of which
are then combined to obtain the final result. Even though the
IC approach is computationally efficient, it fails to capture the
relationships between variables in X resulting in a significant
loss in accuracy. On the other hand, the latter approaches
convert the original MDC problem into a single multi—class
classification problem by considering a single vector vari-
able [X1, Xo,...,X,]. As a result, they succeed in directly
accounting for the relationships between variables in X at
the expense of computational complexity, which increases
as the number of variables and their values grow [19]. In
this context, the proposed approach combines the best of the
above two extremes. Namely, it indeed classifies each variable
separately, but at the same time, it exploits the structure of the
Bayesian network that describes the relationships between the
variables by propagating classification decisions through the
network. The proposed approach has the additional flexibility
of dynamically selecting which features to use, not only
boosting accuracy but also saving on resources.

In an effort to reduce computational complexity while
ensuring that relationships between variables are appropriately
accounted for, various other MDC approaches have been
proposed. These can be roughly categorized into classifier—
chains [19], variable partitioning [20], [21], and probabilistic
graphical model methods [22]-[24]. Next, we briefly review
the most important relevant works.

Inspired by multi-label classification [25], the classifier
chains (CC) approach extends the IC approach by considering
relationships between variables in X captured by a chain.
During classification, the value learned for each variable in
X is used as an additional source of information for the next
variable in the chain. Since the fixed variable ordering in the
chain considerably affects accuracy, ensembles of classifier
chains (ECC) have been proposed [25], where each member
in the ensemble is trained with a random chain ordering and
on a random subset of the training dataset. The Bayesian
chain classifier (BCC) approach [19] can be considered as
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an extension of CC, where the goal is to improve accuracy
without incurring additional computational complexity by con-
sidering meaningful variable orderings in the chain. To this
end, BCC first learns relationships from data in the form
of a Bayesian network, thus restricting the possible variable
orderings in the chain. In the second step, a chain classifier
is built such that the chain ordering is consistent with the
previously learned Bayesian network structure. Similar to our
work, the above methods account for relationships between
variables in X through the use of an appropriate mechanism
(e.g., chain, Bayesian network). However, in contrast to our
work, classification decisions are based on the entire feature
set F' for all variables in X, not on the most cost—efficient
and “informative” features per variable. At the same time, all
such methods require access to a base classifier (e.g., Naive
Bayes [19]), the performance of which affects the overall
accuracy achieved. Contrary to this, the proposed approach
jointly optimizes feature selection and classification, hence
selecting the classification decision that gives the best accuracy
when using a specifically selected feature subset.

In an effort to achieve comparable accuracy but avoid the
large computational complexity of the PC approach, variable
partitioning has been proposed [20], [21]. The main idea is
to partition variables in X into groups (also known as super—
classes [20]) based on relevant conditional dependence infor-
mation, and use the PC approach on top of these groups. Re-
cently, Jia et al. [21] proposed a two—step grouping approach
that involves first computing relevant counting statistics from
an unseen data instance’s k nearest neighbors (kNN) in the
training dataset, and then performing maximum a posteriori
(MAP) inference based on these statistics for each possible
pair of class spaces. Similar to our approach, the above line
of work accounts for relationships between variables in X.
Yet, relationship information is used to reduce the size of the
classification space by carrying out classification in subsets of
X. At the same time, such approaches use a base classifier
and perform classification using the whole feature set F'. In
contrast, the proposed approach explicitly models variable
relationships in terms of a Bayesian network and propagates
classification decisions over this structure. At the same time, it
explicitly determines both the optimum number of features and
optimum classification strategy for each variable in X. Thus,
unlike [20], [21], there is no need to employ a base classifier
and use the whole feature set F', which affect performance
and hinder explainability of the classification decisions.

Finally, in multi-dimensional Bayesian network classifica-
tion (MBC) [22]-[24], relationships between variables in X
are modeled using a Bayesian network model (see [24] for a
comprehensive survey). Such approaches learn the underlying
unknown Bayesian network structure between variables in X
and features in F', and then perform inference to compute the
values of variables in X. Since the Bayesian network can be
split into three main subgraphs (i.e., class, feature, bridge) with
potentially different structures, different MBC families (e.g.,
tree—tree) have been designed. Irrespective of the structures,
however, the associated computational complexity of these
approaches is high. Furthermore, it has been experimentally
shown that BCC achieves better accuracy than them. In an

effort to limit computational complexity, Bielza et al. [22]
theoretically formulate the notion of decomposable class—
bridge MBC, where maximal connected components that do
not share children are identified. A variable ordering approach
is also proposed to efficiently navigate through all possible
variable combinations, but no overall algorithmic solution
is provided. A conditional tree-structured Bayesian network
(CTBN) is proposed in [23] as an alternative way of addressing
MBC. In this context, variable relationships are modeled as
a directed tree, where the set of all features is treated as a
common parent for all classification variables. Classification
is then conducted based on MAP estimation using exact
inference. The main difference between prior work on MBC
and our proposed approach is that the former methods use
the entire feature set F' to perform classification, while the
latter approach dynamically selects the optimum number of
features per classification variable in X to balance accuracy
with the cost of feature acquisition. The benefits of such an
approach are: (1) improved accuracy using fewer features, (2)
being able to reason about the classification outcomes, and (3)
lower computational complexity than performing MBC.

III. PROBLEM DESCRIPTION & SOLUTION

In this section, we describe the problem of classifying
structured data instances and provide the basis of the proposed
approach discussed in Section IV. Specifically, we start by
introducing the details of the problem and stating our as-
sumptions. Next, we define an optimization problem for each
variable in the Bayesian network, where the goal is to limit the
number of features used for classification accounting for the
effect on the classification performance. Finally, we summarize
the solution to the optimization problem.

A. Description

We consider a supervised classification setting, in which
each data instance is associated with n categorical variables
X1,Xs,...,X,, each of which can take multiple values.
These variables are related and thus described by a Bayesian
network G = (X, E). We note that X £ {X|, X5, ..., X,,}
and the set E represents relationships between variables in X
as directed edges (e.g., Xy — X, indicates that the associated
variables are related). According to the chain rule [5], the joint
probability distribution P over the random variables in X is:

n

X)) =[] P(xilPa%,), (1)

i=1

P(Xy,. ..

where P(Xi\Pag(i) denotes the conditional probability of
variable X; given its parents Pa%i in graph G. Further-
more, we have access to labeled training data, i.e., each
data instance is represented by a feature vector described by
F & (P FR PN R FR L Far
where FkXi,k = 1,2,..., Kj;, denotes the kth feature asso-
ciated with variable X;, and its label is an appropriate n—
dimensional class vector described by X. At the same time,
during testing, features in F' are not readily available (e.g.,
due to large feature space or cost of feature acquisition), but
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become available one at a time based on a fixed ordering. In
this context, the goal is to learn functions that dynamically
select which features in F' to acquire, and use the acquired
features to assign a vector of values to the variables in X.
The ideal functions will of course limit the number of features
acquired per variable to restrict the total feature acquisition
cost, while maintaining accuracy within acceptable levels. To
simplify the problem of classifying structured data instances,
we adopt the following three crucial assumptions:

(A1) We assume that the Bayesian network structure is known

and given.

(A2) We assume that the features F,;X, k=1,2,...,K,, as-
sociated with variable X; € X are conditionally inde-
pendent given Xj;.

(A3) We assume that features F,j(i,k: =1,2,...,K,, are or-

dered based on a certain performance measure (c.f. Sec-
tion VI-B), and such ordering is given for each variable
X; € X. As a side note, it is possible that features are
ordered differently for each variable X; € X.

B. Optimization Problem Formulation

For each categorical variable X;,7 = 1,2,...,n, in the
Bayesian network G, we define two random variables, R;
and Dp,. We use random variable R; € {0,1,...,K;}
to denote the last feature acquired from the ordered set
FXi & {FIXl,,FI)((l} before proceeding with a classi-
fication decision for categorical variable X;. Furthermore,
we use random variable Dp, to denote the classification
decision for categorical variable X;. Since X, takes one out
of N; possible values, Dp, € {1,2,...,N;}. To acquire
each feature FkX we expense cost e;, k = 1,2,..., K;. At
the same time, we use the term M} to capture the cost of
classifying X; as C’lXi,l =1,2,...,N;, when its true class is
Cnff‘ ,m=1,2 ..., N;. In line with our goal in Section III-A,
we define the cost function below:

R,
2
>k
k=1

where P(Dg, = [,C;X¢) denotes the probability of assigning
class C’lXi to categorical variable X;, even though its true class
is CXi. The first expression in Eq. (2) represents the total cost
of acquiring R; features to classify X;. On the other hand,
the second expression in Eq. (2) represents the cost of the
classification decision Dp,. Thus, the goal is to minimize the

cost function in Eq. (2) with respect to both R; and Dg,.

N; N;
J(Ri,Dg,) =E +3 3 M, P(Dr, =1,C), (2)

=1 m=1

C. Optimum Solution

We solve the optimization problem in Section III-B in two
steps. In the first step, we determine the optimum decision D,
for fixed given R; features. In the second step, we determine
the optimum R} features by minimizing J(R;), which is the
reduced cost function resulting from the first step.

We begin by considering the a posteriori probabil-
ity vector my, 2 [r},77,...,mn]7. Each term 7" £
P(CXi|FXt, ..., F;X*) represents the a posteriori probability
of the mth class, m = 1,2,...,N;, when k£ out of K;
features associated with categorical variable X; have been
acquired. We assume that initially, 7o £ [p1,p2,...,0n,]7

)

where p,, = P(CX:),m = 1,2,...,N;. The a posteriori
probability 7;* can be recursively updated as more features
are sequentially acquired using Bayes’ rule:
Xi i
m P(F O )iy

m = : , , —. (3)
Y PESICE R .+ PES OO

Furthermore, we can rewrite the second term of Eq. (2) in
terms of the a posteriori probability and the indicator function
1a (e, 1y £ 1 when event A occurs, and 0 otherwise) as:

R; N; N;
J(Ri,Dp,) =T |> e+ > > M, 77 1lp, _,
k=1 =1 m=1

“)
Starting from Eq. (4), we can show that the optimum
classification strategy Dp. for any fixed and given feature

selection strategy R; has the following form [13]:
D%, = argmin [(Mf)TwRi], )

1<ISN;
where M £ [M{,, My, ..., M} ]7. Thus, we rewrite the
cost function in Eq. (4) as follows:

J(R) =E

R; '
Z ei} + g(ﬂ-Ri )] ) (6)
k=1

where g(mg,) £ mini<<n,[(M!)T7g,]. To determine the
optimum feature selection strategy 7, we minimize the cost
function in Eq. (6) using dynamic programming [13] as:

Ly(m) = min [g(me), y(mi)| k=0, K =1, (D)

where
Li(mi) = €1 + Y Lipa(mer) AL (B me,— (8)
F,jiil
with AR(FY) 2 [P(FXCT), .., P(FXICK))T and

Ly, (7k,) = g(7k,). We observe that there are K; + 1 stages
for the resulting dynamic programming equations, since there
are K; features in total for each Xj;.

IV. PROPOSED APPROACH

In this section, we propose an algorithm that exploits the op-
timum solution in Section III to classify all X;,i =1,2,...,n,
in the Bayesian network G using the least number of features
per categorical variable.

A. Instancewise Structured Environments Classification Algo-
rithm

We start by explaining the main idea behind the pro-
posed approach, referred to as Instance—wise Structured
Environments Classification (ISEC) algorithm. Specifically,
ISEC initializes the a posteriori probability vector my for
each categorical variable X;,7 = 1,2,...,n, in the Bayesian
network G. Next, ISEC uses Egs. (7) and (8) to determine
the optimum number of features needed to reach an accurate
classification decision for each categorical variable in the
Bayesian network G. Finally, ISEC uses the optimum number
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Fig. 2: Mlustration of ISEC’s operation during testing. (a) Original Bayesian network, (b) feature selection and classification
for variables of indegree 0, (c) feature selection and classification for subset of variables of indegree greater than 0. Acquired
features at each round of ISEC are highlighted. ISEC classifies X1, X9, and X3 using 3,5, and 2 features, respectively.

Algorithm 1 ISEC

1: Input: test dataset Dyes, numerical solutions {M;, M!},
topological ordering Og, indegree 0 nodes X, indegree
> 0 nodes X+

2: Output: classification decisions Valx

3: for each data instance s in Dy do

4:  for each node X; € Og do

5; if node X; € X° then

6: M = Mi

7: else

8: o= Pa%i

9: pred = Valx (s, «)

10: Let pred be the 7" value combination of «

11: M = Mj

12: end if

13: for each feature F'* do

14 Acquire feature and update 75 using Eq. (3)

15: Get stopping cost g (1) & continuing cost L ()
from M

16: if g (7)) < Li(my) then

17: Find optimum decision D7 using Eq. (5)

18: Set Valx([s,i] = Df,

19: Terminate feature acquisition process

20: end if

21: end for

22:  end for

23: end for

24: Return: Valx

of features along with the optimum classification strategy
in Eq. (5) and the Bayesian network structure to classify
each categorical variable X;,7 = 1,2,...,n. We discuss the
training and testing phases of ISEC next.

During training of ISEC, we numerically solve Egs. (5), (7),
and (8) for each X;,7 =1,2,...,n, in the Bayesian network
G. Specifically, for each categorical variable X;, we generate
a K; x d matrix by quantizing the interval [0,1] such that
SN 7 =1, and evaluate the above equations. We denote

the resulting numerical solutions associated with categorical
variables of indegree 0 as M;,7 = 1,2,...,z, while we use
the notation M7 ,i =2 +1,...,n,r =1,...,¢, to represent
the numerical solutions associated with categorical variables of
indegree > (. Here, z denotes the total number of categorical
variables with indegree 0 and c represents the total number of
value combinations of parent nodes Paggp.

During testing, ISEC starts the feature selection and clas-
sification process from categorical variables of indegree O.
Specifically, it uses the numerical solutions M; to dynamically
select features for each X;,2 = 1,2,..., 2, separately. If the
cost of continuing the feature selection process is less than the
cost of reaching a classification decision, ISEC keeps acquiring
more features and updates the a posteriori probability vector
accordingly using Eq. (3). It repeats the process until either all
features associated with a categorical variable X; are acquired
or if it decides that a subset of features is sufficient for
reaching an accurate classification decision. In that case, ISEC
uses the numerical solutions M; to assign a classification
decision to each categorical variable X;,7 = 1,2,...,z2, of
indegree 0. Next, ISEC moves on to categorical variables
Xi,t=2z41,...,n, of indegree > 0 for which it has already
classified their parent variables. ISEC uses the numerical so-
lutions M}, r =1,...,c, and these classification decisions to
dynamically select features for each such categorical variable
until it reaches a classification decision. It repeats this process
until all categorical variables in the Bayesian network G have
been assigned a classification decision. Algorithm 1 outlines
this process, while Fig. 2 illustrates ISEC on a Bayesian
network G of five binary variables.

B. Complexity Analysis

We discuss the computational complexity of ISEC during
testing next. We observe that acquiring a single feature value
requires O(1), and updating the a posteriori probability vector
using Eq. (3) requires O(XV;) since it involves the dot product
of two IV,—dimensional vectors. Selecting between continuing
or terminating the feature acquisition process in Eq. (7) using
pre—computed numerical solutions requires O(1). In the worst
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Fig. 3: (a) Graphical representation of ISEC’s classification
decisions and number of acquired features, (b) CPD tables for
data instance s after running ISEC.

case, ISEC carries out these comparisons for all K; features.
Thus, the total computational complexity is O(K;N;). Finally,
ISEC carries out the classification process via Eq. (5) requiring
O(N?) computational complexity. Thus, the total computa-
tional complexity of ISEC for feature acquisition and classifi-
cation of a single categorical variable X; is O(K;N; + Ni2).
Since there are in total n such categorical variables, the time
complexity of ISEC during testing is O(n(K;N; + N?)).

V. THE EFFECT OF EVIDENCE

In this section, we propose to improve ISEC’s classification
decisions through backward inference. Specifically, assuming
that the values of categorical variables of outdegree O are
given as evidence, the goal is to determine the values of the
remaining categorical variables in the Bayesian network G.

A. Instance—wise Backward Structured Environments Classifi-
cation Algorithm

As discussed in Section IV, ISEC employs the optimum
classification strategy D7 in conjunction with the optimum
number R of features to classify each categorical variable
X;,i=1,2,...,n, in the Bayesian network G. At that time,
the a posteriori probability 7 g £ P(X;|Fy, PaX ), where

(FXi .. Féi }, has been computed only for the
values of parents propagated through the Bayesian network
G. However, in order to perform backward inference, we
need to have access to the complete posterior probability
distribution (CPD) table for each data instance s incorporating
both the dependence of each categorical variable on its parents
and the optimum number R of features acquired for each
variable X;,7 = 1,2,...,n. We can reconstruct these CPD
tables for all parents values combinations by running ISEC.
Specifically, we observe that ISEC has determined the CPD
tables for all categorical variables of indegree 0. Thus, during
training, we only need to reconstruct the CPD tables for
categorical variables of indegree > 0 by running ISEC for
all the relevant parents values combinations. Fig. 3 illustrates
ISEC’s hypothetical classification decisions D7 using Rj
features for the Bayesian network G of Fig. 2 and the missing
values of the CPD table for a data instance s. We observe
that the CPD tables for X; and X, have already been
determined by ISEC. Thus, we proceed with determining the
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Fig. 4: Ilustration of IBSEC’s operation. (a) Original Bayesian
network with evidence for X, and X5, (b) Classification of
X3, (¢) Classification of X; and Xo.

Algorithm 2 IBSEC

1: Input: CPD tables Cg, outdegree 0 nodes X°
for outdegree 0 nodes 5"”0—,

, evidence
reverse topological order Og

2: for each data instance s in D do

3. for each node X; € Og5 do

4: if node X; € X° then

S: = fxo—

6: else

7: Obtain P(X;, Ch%,, F;) & P(Ch$, ,F}) using
Co P(X;,ChS ,F})

8 P(X;|ChS,  F}) = P(Chix)

9: X; = argmax, P(X; = m|Ch F)

10: end if

11:  end for

12: end for

13: Return: classification decisions for all X; (except X 9)

CPD table of X3 by running ISEC for the remaining X; and
X, value combinations i.e., {(0,1),(1,0),(1,1)}. Similarly,
we determine the CPD tables of X4 and X5.

During testing, we start from the categorical variables of
outdegree 0, the values of which are given as evidence. The
proposed approach, referred to as Instance-wise Backward
Structured Environments Classification (IBSEC) algorithm,
performs backward inference by using the evidence values
along with the CPD tables determined during training. It
carries out MAP inference to find the most likely assignment
for the parent categorical variables given the evidence values
through variable elimination [5]. IBSEC repeats this process
for the remaining categorical variables in the Bayesian network
G by visiting them in reverse topological ordering of G. Fig. 4
illustrates IBSEC on the Bayesian network of Fig. 2, while

Algorithm 2 outlines this process’.

B. Complexity Analysis

Next, we discuss the computational complexity of IB-
SEC during testing. Since MAP inference is carried out
during variable elimination, the complexity of computing
P(X;,Ch%,, Fy) is O(nWmax) [5]. Here, Wina is the maxi-
mum number of entries in a factor’ of the Bayesian network

IThe children of a random variable X; are denoted as Chg

The joint distribution is represented as a product of factors where each
factor is a conditional probability of the form P(X;|Pa$ X, ) [5].
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TABLE 1. Datasets description (number of instances (.5),
number of variables (n), number of classes per each variable
(N;), number of features (K;)).

Dataset S n N; K; Domain
Edm 154 2 3 16 Machines
Voice 3136 | 2 | 2to 4 19 Voice
Jura 359 2 | 4t05 9 Geography
Song 785 3 3 98 Music
Flare 323 3 1 2to4 10 Solar flares
Student 649 3 2 30 Education
Emotion 593 6 2 72 Music
Child 1000 | 3 2 17 Medical
Hepar2 1000 | 3 2 67 Medical
Sachs 1000 | 2 3 9 Biology
Insurance | 1000 | 2 | 3to 4 25 Insurance

G. The complexity of computing the probability P(Chii ,EF)
of evidence is O(N;), since it involves variable elimination
over a single variable X;. Since /N, divisions are carried
out, the total complexity of computing P(XAC’th, ) is
O(nWhax + 2N;). Since X; takes N; values, carrying out
MAP inference via variable elimination incurs computational
complexity O(nWpau+3N;). Since there are I' = n— 3 nodes,
where [ is the number of outdegree 0 nodes in G, the time
complexity of IBSEC during testing is O(I'(nWnax + 3N;)).

VI. EXPERIMENTAL RESULTS

In this section, we conduct a number of experiments on a
variety of datasets from different domains to assess the perfor-
mance of ISEC and IBSEC and illustrate their operation. All
experiments are conducted on a PC with Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz with 16 GB memory. All reported
results are five—fold cross validated.

A. Datasets

Table I presents the 11 datasets used in our experiments
including a description of their characteristics and the domain
they represent. Edm [26], Voice [27], Jura [28], Song [29],
Solar—flare (Flare) [30] and Emotion [18] are typical MDC
datasets®. Following the standard approach in MDC literature
[24], we also employ forward sampling [5] to generate four
additional datasets of 1, 000 instances* each based on the Child
[31], Hepar2 [32], Sachs [33], and Insurance [34] Bayesian
networks. In each case, we randomly split the nodes between
classification variables and features, keeping the number of
classification variables low (i.e., 2 or 3). Finally, we preprocess
the Student performance dataset (Student) [35] such that the
3 classification variables G1, G2, G3 representing three period
grades are binary, i.e., we set G; = 1,7 € {1,2,3}, if the
corresponding student score is > 11.

B. Training

We have assumed that the Bayesian network structure that
represents relationships between variables in X is known and
given (see Section III-A). Thus, we employ the well-known

3The preprocessed versions of Voice, Jura, and Song [29] are used herein.
4Accuracy values stabilize at around 1,000 data instances.

Chow-Liu algorithm [36] to learn the underlying Bayesian
network structure for those datasets that we do not have access
to such information. For the Student dataset, we construct the
relevant Bayesian network by first carrying out correlation—
based analysis. Specifically, we observed that variable G3
exhibits a strong correlation with variables G; and Gy [35].
Next, we take into account the immediate effect of cause
variables to generate directed edges [9]. Thus, the resulting
Bayesian network includes a set X £ {G, Gy, G3} of 3 nodes
with two directed edges E = {(G1,G3), (G2, G3)} (see also
Fig. 7). The variable relationships for the Insurance and Sachs
datasets are obtained from the original Bayesian network.
During training, we estimate the prior probabilities
P(X;) and conditional probabilities P(F; ,;( CX) k=
1,2,...,K;,m = 1,2,..., N;. Specifically, P(F,j(’|C£) =
*2“7:1;1, where S}, ., represents the number of instances that
are in class Cx¢ and feature FkX takes a specific value, Sy,
represents the total number of instances in class Cj¢, and B
represents the number of bins considered. Similarly, P(Xl) =

—2m*l _ For each variable X;,i = 1,2,...,N;, we

cof;li)lufé”;lrl]glsum of type I and II errors and scale the result by
the feature cost e}, of the kth feature. We use this performance
indicator to order features for each variable X; separately, such
that low cost and accurate features appear earlier in the order.
Finally, since there are no restrictions imposed by the datasets,
we assume that each variable has access to the same set of

features.

C. Performance Metrics

In this work, we use mean accuracy, global accuracy, and
average number of features acquired as performance metrics.
We define mean accuracy and global accuracy as:

n S
1
Mean Accuracy (MA) £ P E E ly=2:0s 9
1

1=1 s=

s
Global Accuracy (GA) £ 1 Z Ty, =z, (10)
S
s=1
where n represents the total number of variables in the
Bayesian network, S represents the total number of instances
and we use (+) to indicate predicted values. The former per-
formance metric represents the effect of separately predicting
the values of the variables in the Bayesian network, while the
latter represents the effect of joint prediction.

D. Sensitivity Analysis

In this subsection, we assess the effect of the feature
cost e; and the number B of bins on the performance of
ISEC. Specifically, Fig. 5 illustrates MA, average number
of features, and testing time of ISEC as the feature cost
et varies. For simplicity, we assume that all features incur
the same cost, i.e., e}C = e, Vk, i, and misclassification costs
are Mj = 1,V # m,M}, = 0,l,m = 1,...,N;. We
observe that different feature costs yield different accuracy,
and acquiring more features typically results in better accuracy
on the premise that such features are informative. However,
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Fig. 5: Variation of (a) MA, (b) average number of features, and (c) testing time of ISEC as a function of feature cost
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Fig. 6: Variation of training time (sec) of ISEC as a function
of number B € {2,4,5,6,10,12,20,100} of bins for Voice,
Jura, Student and Insurance datasets.

acquiring more features comes at a cost, and also results in
an increase in testing time. Even though not included herein,
GA exhibits similar trends to MA, yet has lower values since
even the misclassification of a single variable is considered an
error (see also Eq. (10)). Training time is not affected by the
selection of feature cost, since training involves numerically
solving Eqgs. (5), (7) and (8). Unless otherwise specified,
results are reported for e}:C = e = 0.0001, since this value
achieves a relatively good trade—off between the two accuracy
metrics, the average number of features, and testing time.

To understand the effect of the number B of bins on
the performance of ISEC, we compute the values of MA,
GA, and average number of acquired features for B €
{2,4,5,6,10,12,20,100}. We observe that the values of these
performance metrics do not change significantly for different
values of B. However, as expected, the training time linearly
increases when we increase B (see Fig. 6). To keep the training
time manageable while also achieving good accuracy results,
from here onwards, we set B = 10 for all datasets except from
Emotion, Flare, and Jure where B = 20.

E. The effect of Bayesian Network and Feature Importance

In this subsection, we assess the effect of the Bayesian
network on the average number of features acquired for
each variable X, as well as the effect of feature importance

8 <>

11.9660
11.1105

s <D,
6 CaD

3.0050
24056 2.8180

Student Insurance

Fig. 7: Average number of features acquired per variable
in Student and Insurance (D: Driving Quality, A: Accident)
datasets.

on the classification outcome. Fig. 7 illustrates the average
number of features per variable for the Student and Insurance
datasets. We observe that the average number of features
acquired to classify variables G; and G2 does not significantly
differ. However, classifying variable G3 requires on average
significantly less number of features, which is expected since
the final grade (G3) of a student depends heavily on their
intermediate grades (G'1, G). In contrast, we observe that for
the Insurance dataset, the average number of features acquired
to classify variables D and A does not significantly differ, as
both of them are classified using a small number of features
(= 3). Still, A requires on average less number of features than
D as the classification decision of D affects the classification
decision of A. We underscore that our analysis indicates that
combining parents’ classification decisions with the smart ac-
quisition of features results in accurate classification decisions
using very few number of features on average for the majority
of data instances (e.g., 6,3, and 1 features on average for
classifying G1, G2, and (3, respectively). We observe similar
trends for the remaining datasets.

Figs. 8 and 9 illustrate the features (and their frequency)
acquired by ISEC during testing and used to classify the
variables in the Insurance and Student datasets. We observe
that in both cases ISEC selects intuitive features. For example,
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the driving skills and driving history are most often used
to classify the driving quality of an individual (Fig. 8(a)),
while the car damage is more often used for assessing if an
accident happened (Fig. 8(c)). We observe similar trends in the
case of the Student dataset (Figs. 9(a), (c), (e)). For instance,
feature school is most often selected to classify all variables.
Intuitively, a student’s school may be a good rough indicator
of a student’s grade, since in good schools students also tend
to have higher grades. Next, we consider the effect of feature
costs on the classification decisions by introducing different
costs for different features based on the difficulty of collecting
them in practice. For instance, considering the Insurance
dataset, age is relatively easy to acquire, contrary to driving
skills [34]. We assign feature costs as e}‘C = d x 0.0001, Vk,
where d € {1,2,3} with the corresponding values indicating
that it is easy (green), medium (yellow), and difficult (red)
to acquire the corresponding feature, respectively. Our results
indicate that the MA in the Student dataset goes down by
0.49% using 0.70% fewer features on average compared to
constant feature costs. On the other hand, for the Insurance
dataset, MA increases by 0.66% using 23.77% more fea-
tures on average, which illustrates that accuracy is robust for
different feature costs. We also observe that ISEC tends to
acquire more low—cost features (see Figs. 9(b), (d) and (f) for
example) so at to preserve accuracy. Nonetheless, if features
are quite informative (e.g., driving skills in Fig. 8(b)), ISEC
still acquires them but later in the feature acquisition process.

F. Comparison with Baselines

In this subsection, we illustrate the performance of ISEC
on the datasets in Table I with respect to the metrics intro-
duced in Section VI-C. Further, ISEC is compared with the
following baseline algorithms: 1) Independent Classifier with
Naive Bayes (IC-NB), SVM (IC-SVM) and ETANA [13] (IC-
ETANA) as base classifiers, 2) Powerset Classifier with Naive
Bayes (PC-NB) and SVM (PC-SVM) as base classifiers,
3) BCC [19], which uses a Bayesian network to determine
variable relationships and chaining order, and 4) MD-KNN
[21], which considers pair—wise variable dependencies and
performs classification using kNN counting statistics. IC and
PC with NB and SVM as base classifiers are widely used
in MDC literature, while BCC and MD-KNN are recently
proposed algorithms that outperform prior MDC methods. We
underscore that none of these baselines dynamically selects
features for classification; thus, we use ETANA [13], which
performs dynamic feature selection for classification of a sin-
gle variable, as a base classifier for the independent classifier
approach. We set parameter £ of MD-KNN to 10 as used in
[21], and parameters e, B,n of ETANA to 0.0001, 10, 10, as
used in [13], respectively. We use LIBSVM with the linear
kernel for MD-KNN, IC-SVM, and PC-SVM, as suggested
in [21], and Naive Bayes as the base classifier for BCC [19].
All baselines’ codes have been provided by their authors or
are publicly available. In addition, for fair comparison, we
evaluate all algorithms using the same performance metrics.
Table II provides our experimental results and we discuss our
main observations next.

As expected, MA is higher than GA for almost all datasets.
This is because GA represents the result of predicting all
variables’ values together as a single variable in each instance,
unlike MA, which evaluates individual variables separately
(see Egs. (9) and (10)). Therefore, a classification error of
a single variable is considered a misclassified instance in
terms of GA, irrespective of the correct classification of other
variables, unlike MA. Furthermore, ISEC outperforms nearly
all baselines with respect to MA (improvement between 5.97%
and 19.68%) and GA (improvement between 2.10% and
32.00%), since it not only uses the most informative features
per classification variable to infer its value, but also takes
advantage of the parent—child relationships in the Bayesian
network. PC based algorithms (e.g., PC-SVM) perform com-
petitively with ISEC with respect to GA. We suspect that this
is due to the fact that they translate the original problem
into a single multi—class classification problem promoting
the joint assignment of all the variables in the Bayesian
network. However, ISEC achieves high MA and GA, while
acquiring the least number of features on average (feature
reduction is between 1.75% and 88.35%) compared to all
the baselines. In fact, it performs better than IC-ETANA,
which also performs dynamic instance—wise feature selection
on a single classification variable, suggesting that exploiting
parent—child relationships in the Bayesian network can benefit
both accuracy and the feature acquisition process.

To validate the statistical significance of the results pre-
sented in Table II, we conduct the Friedman test that is
typically used to compare the performance of classifiers over
multiple datasets [37]. We include the average ranks in Ta-
ble II, and we note that the p—values for GA, MA, and AF
are 4.16 x 1073,7.74 x 104, and 4.53 x 10~ !, respectively.
Thus, we conclude that there is statistical difference in the
performance of ISEC and the baselines.

G. ISEC versus IBSEC

In this subsection, we compare ISEC with IBSEC using the
datasets in Table I. Specifically, assuming that the true values
of the classification variables of outdegree 0 are provided
in the form of evidence, we run IBSEC on all datasets and
assess its performance. Since all datasets except Student and
Emotion have only one ancestor, we report only mean accuracy
values since global and mean accuracy coincide in this case.
Fig. 10 illustrates the mean accuracy of ISEC versus the mean
accuracy of IBSEC, where each point (MAjsgc, MAgsec) is
associated with a specific dataset. We include the 45° line to
enable easy interpretation of the results. We observe that the
majority of points lie over this line. This suggests that the
inclusion of evidence significantly improves mean accuracy.
Note that the average number of features acquired is not
affected, since IBSEC just uses the Bayesian network structure
to improve the classification decisions of the variables in the
network.

VII. CONCLUSIONS AND FUTURE WORK

In this work, a datum-wise inference methodology is pro-
posed for structured data instances by balancing classifica-
tion accuracy and cost of acquired features. Specifically, a
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Fig. 9: Features (and their frequency) selected by ISEC during testing for the Student dataset (X £ {G1, G2, G3}). Features
are illustrated in descending order (Y—axis). (a), (b) Feature acquisition for variable G; under same and different feature costs,
(c), (d) Feature acquisition for variable G5 under same and different feature costs, (e), (f) Feature acquisition for variable G

under same and different feature costs.

forward pass algorithm is designed that assigns a label to
each classification variable in the Bayesian network by select-
ing the appropriate optimal number of informative features.
The proposed algorithm propagates the resulting classification
decisions through the Bayesian network, incorporating their
effect in the inference process. Furthermore, a backward pass
algorithm is designed that improves classification accuracy by
incorporating evidence without requiring additional acquisi-
tion of features. The experimental analysis indicates that the
proposed algorithms not only improve classification accuracy
by wisely acquiring features, but also shed light into the effect
of different features on classification decisions.

A limitation of the proposed methodology is its high training
time, which is a direct outcome of numerically solving the
relevant dynamic programming equations. Consequently, ISEC
does not scale to large datasets. As part of our current efforts,
we are looking into characterizing the structural properties

of the associated cost functions, which along with existing
methods can help to significantly decrease the training time.
At the same time, we are considering the design of greedy
approaches that may be suboptimal but scale well to large
datasets. To improve classification accuracy even more, we
are also considering extending the proposed methodology to
employ more powerful classifiers (e.g., neural networks) than
the proposed variable feature classification strategy.
Motivated by applications in medical diagnosis and behav-
ioral analysis among others, we plan to consider time—varying
inference of the values of the categorical variables in the
Bayesian networks. In contrast to our proposed framework
that focuses on supervised learning over static data assum-
ing conditional feature independence, in these cases, semi—
supervised learning over time—varying correlated features is
more appropriate. To address such cases, we can consider
dynamic Bayesian networks to formally describe time—series
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TABLE II: Comparison of global accuracy (GA), mean accuracy (MA), and the average number of features (AF). The highest

and the second highest accuracy values are bolded and gray—shaded, and gray—shaded, respectively. The smallest and the
second smallest AF values are bolded and gray—shaded, and gray—shaded, respectively.

Dataset Metric ISEC IC-NB | IC-ETANA | PC-NB BCC MD-KNN | IC-SVM | PC-SVM
GA 0.5905 0.3890 0.4668 0.5443 0.3905 0.3864 0.3578 0.4483
Edm MA 0.7401 0.6491 0.6500 0.7101 0.6952 0.6209 0.6755 0.7013
AF 5.8654 16.0000 8.6333 16.0000 | 16.0000 16.0000 16.0000 16.0000
GA 0.8753 0.6897 0.8224 0.6824 0.2735 0.8359 0.7663 0.7220
Voice MA 0.9364 0.8243 0.8748 0.8343 0.5210 0.9142 0.8780 0.8514
AF 2.5127 19.0000 2.2719 19.0000 | 19.0000 19.0000 19.0000 19.0000
GA 0.4402 0.3036 0.3481 0.4010 0.1588 0.2591 0.2562 0.2393
Jura MA 0.6352 0.5405 0.5845 0.6016 0.4764 0.4889 0.5307 0.4830
AF 7.0517 9.0000 8.2394 9.0000 9.0000 9.0000 9.0000 9.0000
GA 0.3299 02114 0.2509 0.2611 0.3082 0.4229 0.3471 0.3548
Song MA 0.7134 0.6012 0.6709 0.6360 0.6802 0.7565 0.6728 0.6724

AF 16.3172 | 98.0000 16.6072 98.0000 | 98.0000 98.0000 98.0000 98.0000
GA 0.8173 0.0277 0.7800 0.0463 0.8204 0.7802 0.8202 0.8202

Flare MA 0.9205 0.2194 0.8906 0.5736 0.9226 0.9035 0.9225 0.9225
AF 1.3040 10.0000 7.0573 10.0000 | 10.0000 10.0000 10.0000 10.0000
GA 0.6099 0.5742 0.5914 0.0815 0.5469 0.5208 0.5334 0.5021
Student MA 0.7409 0.7227 0.5529 0.5418 0.6522 0.6546 0.6560 0.6084
AF 8.4940 | 30.0000 14.9458 30.0000 | 30.0000 30.0000 30.0000 30.0000
GA 0.3121 0.1820 0.2378 0.2731 0.0000 0.1164 0.2631 0.3203
Emotion MA 0.7783 0.7391 0.7641 0.7700 0.6885 0.7026 0.7934 0.7718

AF 8.5983 | 72.0000 15.3432 72.0000 | 72.0000 72.0000 72.0000 72.0000
GA 0.5620 0.5509 0.5350 0.4800 0.3910 0.5098 0.3909 0.3909
Child MA 0.8197 0.8156 0.8069 0.7783 0.7106 0.7799 0.7106 0.7106
AF 4.4293 17.0000 5.8147 17.0000 | 17.0000 17.0000 17.0000 17.0000
GA 0.4200 0.0900 0.4170 0.0350 0.4180 0.4150 0.4230 0.4150
Hepar2 MA 0.7807 0.4260 0.7757 0.4193 0.7813 0.7792 0.7813 0.7747
AF 12.6213 | 67.0000 31.9470 67.0000 | 67.0000 67.0000 67.0000 67.0000
GA 0.7920 0.7770 0.6000 0.3000 0.7920 0.7880 0.7920 0.7920
Sachs MA 0.8420 0.8345 0.7250 0.5765 0.8420 0.8399 0.8420 0.8420
AF 1.8575 9.0000 8.4295 9.0000 9.0000 9.0000 9.0000 9.0000
GA 0.8270 0.6920 0.8100 0.6150 0.4320 0.6062 0.7240 0.7310

Insurance MA 0.9050 0.8350 0.9030 0.7840 0.5870 0.7841 0.8540 0.8520
AF 29115 | 25.0000 5.4565 25.0000 | 25.0000 25.0000 25.0000 25.0000
GA 1.86 5.55 4.09 5.64 5.32 4.95 4.32 4.27
Avg. rank MA 1.77 5.64 491 5.82 5.09 4.73 341 4.64
AF 1.09 5.50 1.91 5.50 5.50 5.50 5.50 5.50
0.951 voigs extending our framework to semi—supervised settings.
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