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Abstract—Health risk prediction is a challenge task that
aims to predict whether patients would suffer from a certain
disease/condition in the near future based on their historical EHR
data. Although existing approaches can achieve better perfor-
mance, none of them can deal with the noise existing in the EHR
data explicitly. In this paper, we hypothesize that automatically
removing noise from EHR data should help the models further
improve the performance. Correspondingly, we propose a novel
model named MedSkim, which is able to automatically rule
out irrelevant visits and codes by effectively skimming through
the EHR data. In particular, the proposed model has a code
selection module that can directly make a skipping decision to
each individual diagnosis codes and then remove the target-
irrelevant ones. A backward probing RNN (BPRNN) is designed
to reversely process the EHR data and provide a coarse grained
representation learning for visits. Besides, a forward skipping
RNN (FSRNN) is proposed to read the EHR in a preceding
way and dynamically select important visits and codes based on
the results of previous two modules. Finally, the risk prediction
module uses the output hidden states from FSRNN for generating
the final representation to make predictions. Additionally, we also
design an extra regularization term based on the skip rate of the
model and combine it with standard cross entropy loss to train
the model in an end-to-end setting. Experimental results show
that MedSkim achieves the best performance on three real-world
datasets compared with the state-of-the-art baselines in terms of
PR-AUC, F1 and Cohen’s Kappa. Moreover, the ablation study
and case study confirm that the proposed MedSkim is reasonable
and effective for removing noise from EHR data '.

Index Terms—Health Risk Prediction, Electronic Health
Records, Denoising Algorithm

I. INTRODUCTION

Deep learning techniques have been widely used in the
medical domain to analyze comprehensive electronic health
records (EHRs) in recent years. Health risk prediction is
a representative task in the medical domain, which aims to
predict patients’ future health conditions based on analyzing
their historical EHR data [1]. The commonly-used EHR data
consist of a sequence of administrative claims encoded by
medical code systems such as International Classification
of Diseases (ICD) codes?. Such temporal, high-dimensional,
discrete, and sparse EHR data make the design of health risk
prediction models challenging.

Exiting work mainly focuses on applying recurrent neural
networks (RNN) [2]-[7] and Transformer [8]-[10] to modeling

'The source code of the proposed MedSkim is available at https:/github.
com/SH-Src/MedSkim
Zhttps://www.cdc.gov/nchs/icd/icd9.htm
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Fig. 1: An example of claims data of a patient who will suffer
from heart failure in the future.

the unique characteristics of EHR data. Besides, several works
have been proposed to incorporate extra information such
as time information associated with each visit [4], [5], [9],
medical knowledge graph [11]-[13], medical rules [14], and
medical text data [15], [16] to improve the health prediction
performance of RNN or Transformer-based models. Although
these models can further improve models’ predictive power
and interpretability, an open yet fundamental challenge in the
health risk prediction task is still unsolved thoroughly, which
is how to better handle the noise in the EHR data. To clearly
demonstrate this challenge, we take a patient who will suffer
from heart failure in the future as an example, and the patient’s
EHRs are shown in Figure 1.

Visit-level noise. In this example, most visits are highly
related to the target disease since they contain key risk
factors of heart failure according to Mayo Clinic,’ such as
“401.9” (unspecified essential hypertension) in visit 1, “278.0”
(overweight and obesity) in visit 3, and “305.02” (alcohol
abuse, episodic) in visit 4. However, visit 2 only contains one
ICD code “V72.2” representing dental examination,* which
is largely irrelevant to our target disease. However, existing
models still take all the visits as inputs to make a prediction.
Even though they apply attention mechanisms [2], [3], [9],
[10] to lower the weights for some visits, the noise will still
be accumulated continuously during the model learning. To
avoid this issue, an effective way is to directly skip such visits
when models analyze EHR data.

Code-level noise. Besides the irrelevant visits among EHR
data, even for each relevant visit, it still contains quite a

3https://www.mayoclinic.org/diseases-conditions/heart-failure/
symptoms-causes/syc-20373142

“http://www.icd9data.com/2015/Volume1/VO1-V91/V70-V82/VT2/V72.2.
htm
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few noisy diagnosis codes. For example, the third visit in
Figure 1 contains a code “V49.84” (bed confinement status).’
According to the Medicare Benefit Policy Manual from the
Centers for Medicare & Medicaid Services (CMS), bed-
confinement applies to those Medicare patients who are unable
to tolerate any activity out of bed and may or may not, by
itself, meet the requirement of an Paramedic or emergency
medical technicians (EMT) monitoring him/her on their way
to the hospital.® Obviously, this code does not explicitly or
not even implicitly associate with the target heart failure.
Therefore, recognizing and discarding these noisy codes from
EHR data are of importance for further enhancing models’
performance.

Our approach. To address the aforementioned challenges
brought by EHR noise, in this paper, we propose a novel
denoised risk prediction model named MedSkim, which can
automatically identify both noise visits and codes within
each visit and then directly discard them when the model
skims the medical claims data. MedSkim consists of four
key modules, including target-driven code selection, backward
probing RNN, forward skipping RNN, and risk prediction.

Specifically, the code selection modules aims to remove
target-irrelevant codes using Gumbel-Softmax [17] to learn a
skipping indicator a.,, for each individual code m. If the code
is skipped, then it will be “removed” from all the visits. The
backward probing RNN (BPRNN) and forward skipping RNN
(FSRNN) will take the filtered visits as inputs. The backward
probing RNN (BPRNN) tries to learn a coarse-grained feature
representation h,, from the filtered visits in a reverse way,
ie., h, = BPRNN([vn, -+, vns1), {am}M_;), where N is
the number of visits and M denotes the number of unique
codes in the code set C. The forward skipping RNN (FSRNN)
will read the EHR data in a preceding way and learn a visit-
level skipping indicator b,, for each visit v,, according to the
embeddings of the remaining target-related codes, the target
embedding, the time information, hidden state h,, learned from
BPRNN, and the hidden state s,,_; outputted by FSRNN.
If the visit is kept, MedSkim will update a new hidden
state s,,; otherwise, it will directly use the previous hidden
state, i.e., s, = sS,_1. Based on the learned hidden states
[S1,- - ,sn] from FSRNN, the target embedding, and the time
information, an attention mechanism is used to generate the
final representation, which is used for making prediction in
the risk prediction module.

In addition to automatically learning code-level and visit-
level skipping indicators, we also take the skip rate into consid-
eration, i.e., the percentage of skipped codes associated with
visits. Finally, we design a skip rate-based regularization
term working with the cross entropy loss generated from the
risk prediction module. To sum up, our contributions are listed
as follows:

Shttp://www.icd9data.com/2015/Volume1/VO1-V91/V40-V49/V49/V49.84.
htm

Ohttps://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/
Downloads/bp102¢10.pdf
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o To the best of our knowledge, we are the first to deal
with noise information in EHR data via learning skip-
ping mechanisms, i.e., automatically removing target-
irrelevant codes and visits simultaneously.

« Correspondingly, we propose a novel denoised health risk
prediction model named MedSkim to skim EHR data
using a bidirectional RNN structure, i.e., the backward
probing RNN and the forward skipping RNN, over the
denoised visits via the code selection module. Such a
design not only enhances the prediction performance but
also increases the efficiency.

« Experimental results on three real-world claims datasets
show the proposed MedSkim model achieves a large per-
formance improvement compared to state-of-art baselines
and has excellent interpretability via a case study.

II. RELATED WORK
A. Health Risk Prediction with Deep Learning

Many studies focus on modeling the temporal features of
the EHR data and using the sequential models like RNN [18],
[19] and Transformer [20] as the backbone model. Built
upon the backbone models, some approaches consider to use
other information such as visit time information and extra
knowledge as well as advanced attention mechanisms [21] to
further improve the prediction performance. Next, we briefly
survey those state-of-the-art risk prediction models.

Basic Attention. Based on the naive recurrent structure,
attention based enhancements are first proposed to improve
the medical risk prediction tasks. Retain [2] is the first inter-
pretable model for risk prediction. It learns visit-level weights
and code level weights together with two independent RNNs.
Compared to Retain, Dipole [3] tries to model longitudinal
EHR data using bidirectional RNNs which have a stronger
feature extraction ability. In addition, it applies more attention
mechanisms and achieves a better result. SAnD [8] uses the
self-attention [20] to calculate the importance of different
visits. In MedSkim, we also utilize the attention mechanism
and take advantages from the previous methods, learning the
attention scores on multiple levels including diagnosis codes,
visits and even the task.

Using Time Information. One important feature of the EHR
records is that, the time gap between the visits are not identical.
Thus, different adjacent visits actually have different gap
time, and the differences can be huge. This may directly
influence the final prediction task. As a result, many existing
approaches try to take the time information into consideration.
T-LSTM [22] is the first work proposed in this direction, which
assumes that the patient information may decay as the time
gap increases. RetainEX [4] and TimeLine [5] also adopt the
similar ideas. LSAN [10] and HiTANet [9] apply a more open
hypothesis on the time information, that is different diseases
have different inner time models, and thus, we should let
the model learn the time attention by itself. AdaCare [6]
does not directly model the time information, but tries to
model it using a multi-scale convolutions cores, which are set
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Fig. 2: Overview of the proposed MedSkim.

for different time-scales. Hence, different cores can represent
different time scale information. In our work, we adopt the
similar assumptions like LSAN and HiTANet, which is more
flexible for task-specific optimization.

Using External Knowledge. On the other hand, some studies
focus on the incorporation of the external knowledge on the
prediction to improve the interpretation of the model. For
example, the work [11], [15], [23] adopts the ICD hierarchy
structure as external knowledge to enhance the code represen-
tations. The work of Ye et al. [16] applies the unstructured
medical text to augment health risk prediction tasks. For the
rest work, the majority solutions of using external knowledge
is through the medical knowledge graph [12]-[14], [24] and
use multi-sourced information as extra knowledge [25].

B. Selective Recurrent Neural Network

To address the long sequences data on the Natural Language
Processing (NLP) domain, a special kind of RNN networks are
developed. Compared to the normal RNN models, Selective
Recurrent Neural Network has the ability to dynamically select
parts of the data sequence as the input. In such a way, the total
length of the processed sequence can be reduced. To achieve
this goal, two lines of solutions are proposed. The first solution
is to froze the state of the RNN models for unimportant steps,
e.g., Variable Computation RNN (VCRNN) [26] and Skim-
RNN [27]. The other methods choose to directly filter out
the unimportant input sequence, such as LSTM-Jump [28],
Skip RNN [29] and Leap LSTM [30], which need to predict
whether to skip the next or multiple next inputs.

III. METHODOLOGY

The EHR data of each patient consists of multiple time-
ordered visits V' = [(v1,t1), (va,t2), -+, (vn, tn)], Wwhere N
is the total number of visits. At each visit, a set of diagnosis
codes is recorded, i.e., v, [T, e, -+, cly], where M
represents the total number of unique codes in the dataset.
¢y, = 1 means the m-th code appears in the n-th visit;
otherwise, ¢!, = 0. The task of health risk prediction is to
predict whether the patient will suffer from the target disease
g in the future according to the historical EHR data V.
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A. Model Overview

Figure 2 shows the overall architecture of the proposed
MedSkim, which consists of four major modules, i.e., code
selection, backward probing RNN (BPRNN), forward skipping
RNN (FSRNN), and risk prediction. The code selection mod-
ule aims to filter out noisy diagnosis codes by learning a code
level action a,, using the target embedding e, and the code
embedding e,,. a,, = 1 indicates that the code will be kept;
otherwise, it will be removed from visits. Both BPRNN and
FSRNN will take the denoised visits as inputs. The backward
probing RNN (BPRNN) module aims at learning hidden
states [hy, - -+ , hy] for denoised visits using a reversed RNN.
The forward skipping RNN (FSRNN) first learns a visit-
level action b,, for each denoised visit v,, using the previous
output s,,_; from FSRNN, the target embedding e, the time
embedding r,,, and the learned hidden state h,, from BPRNN.
If b, = 0, then the cell of FSRNN will not be updated,
and s,, = s,,_1. Otherwise, FSRNN will take denoised v; as
input to generate s,,. Finally, the risk prediction module uses
outputs from FSRNN to make predictions. Since MedSkim
is designed to automatically skip target-irrelevant information,
a skip rate-based regularization term is then attached to the
classification loss as the final loss function.

B. Code Selection

The main aim of this paper is to predict the target disease
g, and the design of the double RNN mechanism is to extract
key features from two directions. To enhance the probing
speed and efficiency, we only take target-related diagnosis
codes as the inputs of two RNNs. The challenge here is how
to identify target-related diagnosis codes. An easy way is
to introduce extra knowledge such as a medical knowledge
graph to select target-related diagnosis codes. However, such
an approach may miss some codes that are implicitly related
to the target. To address this problem, we propose a code
selection mechanism to automatically identify important codes
as follows.

e Code and Target Embedding. To identify target-related
codes, we first map the m-th diagnosis code in the code set
C into a high dimensional embedding e,, € R%. The target
disease g is also mapped to the same space, which is denoted
as e, € R, Note that the code embeddings and the target
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embedding are shared across all the visits even for different
patients.

e Target-driven Code Selection. Based on the learned
code embeddings [e1,es, - ,ep] and the target embedding
ey, MedSkim can automatically identify target-related codes
using Gumbel-Softmax [17] over a one-layer feedforward
network:

exp((log(pPm[0]) + g0)/7) )
Y=o exp((log(pmli]) + 9;)/7)
P = Softmax(W (e, e,] + b,),

Ay, = Binarize(

ey

where p,, € R? is a probability distribution indicating
the relevance of the m-th code, 7 is the softmax temper-
ature, g; is i.i.d samples drawn from Gumbel distribution
Gumbel(0, 1), and [+, -] means the operation of concatenation.
W, € R?*(2+de) and b, € R? are parameters. a,, = 1
indicates that the m-th code is selected; otherwise, this code
will be removed from the inputs. With the reparameterization
trick of Gumbel Softmax sampling, the gradients can be
approximated using the soft value of a,.

C. Backward Probing RNN (BPRNN)

The goal of MedSkim is to dynamically skip irrelevant
visits and codes to improve both the prediction performance
and efficiency. However, only using the forward RNN may
discard some key information, which may be highly related
to the future visits. To avoid this issue, we propose a novel
backward probing RNN (shorten for BPRNN) to extract key
features from the following visits. Next, we introduce the
design of BPRNN.

e Backward Visit Embedding. In Section III-B, we can
automatically learn a global selection indicator a,, for each
diagnosis code. When learning the embedding of each visit
vy, we only consider the selected codes as follows:

M
— E n
Xy = Am * Cpy * €,y

m=1

(@)

where x,, € R% is the visit embedding.

e Backward Hidden State Updating. Based on the learned
embeddings [X1,---,Xy], we can generate the hidden state
for each visit via a reversed long short-term memory (LSTM)
network [18], i.e.,

3

where h,, € R% is the hidden state of the n-th visit. Note that
to speed up the learning, we usually set dj, as a small number.

[hy,---,hy] = BPRNN[xy, - ,x1],

D. Forward Skipping RNN (FSRNN)

Based on the hidden states obtained by BPRNN, we further
design a Forward Skipping RNN (FSRNN) to dynamically
skip irrelevant visits and codes considering both historical and
future visits information. Additionally, time information is also
essential for identifying key information from EHR data [5],
[9], [22]. Therefore, our design of FSRNN comprehensively
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analyzes the bidirectional and time information to make rea-
sonable visit-level and code-level skipping.

In particular, FSRNN first analyzes each visit information
and learns an action to decide whether this visit will be as
the input of the RNN cell or directly skipped. If the visit is
selected, then FSRNN learns an embedding for each visit by
considering code importance, target embedding, and probing
feature learned by Eq. (3). Finally, FSRNN updates the hidden
states based on the learned action and visit embeddings. Next,
we describe the details of FSRNN.

1) Time-aware Visit Selection: In EHR data, only a few
of visits are of great importance for the final prediction. In
other words, many visits can be considered as noise. Current
approaches for dealing with noisy EHR data usually apply
attention mechanism [2], [3], [9], [10], i.e., automatically
assigning lower weights for those irrelevant visits. Although
these approaches can improve the prediction performance, the
existence of irrelevant visits still affects the learning of patient
representations. Thus, to further enhance the prediction ability,
we propose to select the important visits first and then only
use the selected ones to learn patient representations.

e Time-aware Visit Embedding. Intuitively, the importance
of a visit v,, is mainly determined by its embedding x,, learned
by Eq. (2). However, as we mentioned before, time information
t,, also plays a key role in the prediction. Thus, following [9],
we embed the time information using the time interval At,
between the current time ¢,, and the last recorded time %,
ie., At, =tny —t,, as follows:

At 2

" b
s T 7))

f, =1 — tanh((Wy
r, = ern + br»

where Wy € R¥, W, € R%*4/ b, € RY and b, € R
are all parameters. In this way, all the time information can be
embedded into the latent space, which is the same as that of
the visit embedding x,,. Thus, the time-aware visit embedding
z,, € R% can be represented by

“4)

(&)

Zp = Xp + Ty

e Visit Selection. In addition to the time-aware visit embed-
ding z,, the target g, the following visits [v 41, - ,UN], @S
well as the previous visits [vy,- - ,v,_1] are also key factors
to decide whether to skip the current visit v,, or not. Thus, we
need to consider them all together. Similar to Eq. (1), we use
the Gumbel-Softmax over another feedforward layer to learn
the visit selection action b,, as follows:

d,, = Softmax(W [z, eq, hy,s,_1] + bg),
exp((log(d..[0]) + go)/7)
S g exp((log(dy[j]) + g;)/7)

where W, € R2¥(2#detdntds) and b, € R? are parameters to
be learned. h; € R is the following feature extracted from
BPRNN using Eq. (3), e, is the target embedding, and s,,_1 €
R% is the previous step hidden state of FSRNN that will be
introduced in Section III-D3, respectively. A distribution d,, €

b, = Binarize( ), ©)
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R? is obtained for each visit, indicating whether to skip the
current visit, from which we can also sample an action b,,.
b, = 0 indicates that the current visit v,, will be skipped, and
b, = 1 means FSRNN will take v,, as an input. In such a way,
the gating module considers bidirectional context information
and also the global target disease so that it can make the most
reasonable decision.

2) Forward Visit Embedding: After making the visit-level
skip decision, as long as the decision is to keep the current
visit (i.e., b, = 1), FSRNN will take v,, as the input to update
the hidden state. An easy way is to directly use z,, learned by
Eq. (5) as the visit embedding. However, it treats each selected
diagnosis code equally. However, previous work [10] shows
that assigning different weights to diagnosis codes can improve
the prediction performance. Thus, we propose a query-based
attention mechanism to assign weights to diagnosis codes
within each visit. In particular, upon the global code selection
introduced in Section III-B, we also conduct visit-level or local
code selection again. Based on the learned attention weights
and the selected codes, we can obtain the visit embedding.

o Code Query Generation. The query used for learning the
importance of each diagnosis code should contain contextual
information of the whole visits and the target information.
Thus, we choose to concatenate the previous hidden state of
the FSRNN cell s,,_1, the following features extracted by
BPRNN h,, along with the target embedding e,, and apply
a linear projection to the concatenated features as follows:

dn = ReLU(W[sp,—1,hy, €] + by), )

where q, € R% is the contextualized query, and W, €
Rdex(dstdntde) b ¢ RYe are both parameters of the linear
projection. We also use an ReLU activation function here to
keep the positive values.

e Query-based Code Attention. Using the learned query
qn, We can assign attention scores to diagnosis codes to get
the importance of them as follows:

T . .
q, [c] xe1;ch xeq; -
Ve
where a™ € RM is a distribution over all the diagnosis codes.

If ¢!, = 0, then the corresponding weight will be 0. [-;-]
denotes the column-wise stack operation.

e Attention-based Visit Embedding. Based on the learned
attention weights o using Eq. (8), we can directly learn the
visit embedding by applying weighted summation on all the
code embeddings. However, as we discussed in Section I1I-B,
only a few diagnosis codes are highly related to the final
prediction. The global code action a,, can help us to filter out
a subset of target-irrelevant codes, which should be considered
when learning the visit embedding. Besides, the time embed-
ding r,, associated with each visit is an essential factor. Based
on these embeddings, we can obtain the final visit embedding
v,, € R as follows:

;c%*eM])

a” = Softmax(

)

M

Vp =T, + E QU Gy % Chyy % €.
m=1

(€))

85

3) Forward Hidden State Updating: As mentioned in Sec-
tion III-D1, the visit v, may be skipped if b,, = 0 estimated
by Eq. (6). In such a way, FSRNN does not need to update
the hidden state for v,, and directly uses the previous s,,_i.
Otherwise, it will update the hidden state s, based on the
previous hidden states [s1,- - ,S,—1] and the visit embedding
v, learned by Eq. (9), i.e.,

if b, = 1;
if b, = 0.

asnfl]: Vn)>

(10)
Sp—1,

. {FSRNN([S1,~-~

Next, we introduce how to learn the hidden state s,, when
b, = 1. Intuitively, we can directly follow the standard RNN
model to generate s,, using the FSRNN cell taking s,,_; and
v, as the input. However, existing work [3] points out that
the key information may be forgotten especially when the
number of visits is large. To address this issue, similar to
Eq. (8), we propose to use query-based attention again to
assign an attention score to each previous hidden state s;
( =1,---,n—1). We then aggregate all the hidden states
with their attention weights to generate the current hidden state
Sn.-

e State Query Generation. To generate the hidden state

query k, € R%, we propose to only use the current visit
embedding v,, and s,_1, i.e.,

k,, = FSRNNCell(s,,_1, v,). (11)

e Query-based State Attention. Similar to query-based
code attention mechanism, we can generate the attention
weight 7" for each previous hidden state s; as follows:

Tlan - g
k,, [s1382;---

Vids

¢ Forward Hidden State Generation. Based on the learned
attention weights in Eq. (12) and the query vector k, in
Eq. (11), we can finally generate the hidden state as follows:

sn = Ws(ReLU(Wys!, + b)) + b,

;Snfl] )

4™ = Softmax( (12)

n—1
13
s;/:kn—kZ'yj’v‘*sj, (13)

Jj=1

where W), € R(4*da)xds 1 e Réxds W € RaX(4xds)  gnd
b, € R% are all parameters.

From Eq. (13), we can observe that all the historical hidden
states are stored into a dynamic memory. At each step, we
generate a query k, to perform attention operation over the
history hidden states and retrieve important information from
the stored memory. Then, we apply a feed forward network
to further transform the features. In this way, we can get a
comprehensive hidden state representation s, that contains
all the important historical information. Eventually, we attend
Sy, to the memory [s,Sa, -+ ,S,], which can be dynamically
maintained at every step and provide more comprehensive visit
features for the prediction.
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E. Risk Prediction

The outputs from the FSRNN are a sequence of hidden
states from the stored memory [s1,So, - -+ ,Sn]. They are used
to generate a comprehensive representation for the patient,
which is further used to make final prediction.

Towards this goal, we first use the target embedding e,
and time encoding to determine the importance of each visit
feature and fuse them together effectively. We achieve this by
using a softmax function over a feedforward layer to generate
the weights for each visit as follows:

[¢1a¢27"' 7¢N] = SOftmaX(llaZZa"' 7lN)a

14
ln = W [Sn,Tn,€y] + by, Vn € [1,--+ | N, (1

where Wy € R%+2%de and b, € R are parameters. After ob-
taining the attention weight for each visit feature, we can fuse
them together to get the comprehensive feature representation
u € R% for the whole EHR as follows:

N
u= Z OnSn,
n=1

We further apply an output classifier to get the final prediction,
ie.,

s)

¥ = Softmax(W,u + b,), (16)

where y € R? is the output classification distribution, W, €
R2*4s and b, € R? are parameters.

F. Loss Function

To train the proposed MedSkim, we can directly use
traditional cross entropy function. However, this simple loss
function cannot handle the skip rate, i.e., the ratio of how many
diagnosis codes and visits that will be skipped. To explicitly
control the skip rate, we follow the previous work [30] to add
a regularization term with regard to the skip rate.

Let ¢’ be a hyperparameter that represents the desired skip
rate, and 6 be the actual skip rate, which is the percentage of
skipped codes among all the visits, i.e.,

N M
f = Zn:l Zm:l[b’ﬂ * (CZLn B a’m) + (1 - bn) * C:ln}
- N M,
Zn:l Zm:l Cm
N M
_ Zn:l Zmzl(C%L - bn * am)
- N M,
Zn:l Zm:l Cm
where a,, is the global code selection via Eq. (1), and b,, is
the visit selection action from Eq. (6). We can observe that if
b, = 0, all the codes within the n-th visit will be accounted.
When b,, = 1, only the codes filtered by global code selection

(i.e., a,, = 0) will be accounted. Finally, we define our loss
function as follows:

a7

)

L = CrossEntropy(y,y) + A0 — 0)?, (18)

where y is the ground truth vector, and X is a predefined
hyperparameter to control the weight of the regularization
term.
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TABLE I: Statistics of the used claim datasets.

Dataset \ Heart Failure COPD  Amnesia
Positive Cases 3,080 7,314 2,982
Negative Cases 9,240 21,942 8,946
Average Visits per Patient 38.74 30.39 72.52
Average Codes per Visit 4.24 3.50 2.53
Unique ICD-9 Codes 8,692 10,053 9032

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: In our experiments, we conduct retrospective
analysis on three common chronic and progressive health
conditions, which are Heart Failure, Chronic Obstructive Pul-
monary Disease (COPD), and Amnesia. The corresponding
EHR data including positive cases and negative/control cases
are extracted from a real-world claims database, with the
guidance of clinicians. When extracting the data for positive
cases, we identify the first disease diagnosis date and then only
keep the EHR data before six months of that date. For each
positive case, we extract three control cases based on gender,
age, race, and underlying diseases. We keep the whole EHR
data for negative/control cases. The statistics of these datasets
are shown in Table I.

2) Baselines: We consider both state-of-the-art health risk
prediction models and selective RNNs as baselines. Risk
prediction models include:

o LSTM [18] is the basic baseline, which first embeds visits
and then feeds them to the LSTM cell to generate hidden
states for making predictions.

o Dipole [3] is an RNN-based risk prediction model that
apply attention mechanism to perform visit analysis on
top of bidirectional GRU, which can use attention weights
to determine the importance of each visit.

« Retain [2] applies reversed RNN model to conduct at-
tentional analysis in both visit level and variable level
by mimicking the physicians’ diagnosis, which typically
focuses more on recent visits.

e SAnD [8] is an early Transformer based risk prediction
model that uses dense interpolation strategies to fuse
visits information by incorporating temporal order.

« AdaCare [6] applies dilated convolutional neural network
to extract the visit features from EHR data in multiple
scales and further uses a GRU model to conduct risk
prediction.

e RetainEx [4] is an extension work of Retain, which
incorporates time information into the visit feature inputs
of retain, which can enhance the original model to achieve
better performance.

o Timeline [5] is also an RNN based model that designs
a time-aware mechanism by modeling the time decaying
factor of each diagnosis code to improve the representa-
tion learning of EHR data.

o T-LSTM [22] designs a time-aware mechanism based on
LSTM that is able to handle irregular time intervals in
longitudinal patient records.
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e LSAN [10] is a recent Transformer based model that
develops a hierarchical attention mechanism to jointly
consider the long term and short term dependencies of
EHR data.

o HiTANet [9] is the state-of-the-art Transformer-based
risk prediction model that designs a time-aware attention
mechanism to capture the dynamic disease progression
patterns from EHR data.

We also choose two representative selective RNNs as
baselines, we first transform the EHR data into a sequence
of visit embedding and then feed it into these models:

o Leap-LSTM [30] is a step-wise selective RNN that uses a
gating module to extract messages from preceding texts,
following texts and the current word, and then determines
whether to skip the current word.

o Skim-RNN [27] designs a partial updating mechanism for
the RNN cell. It has an additional small RNN and could
only update partial hidden states using the small RNN at
unimportant steps.

Note that there are two commonly-used selective RNNs, which
are LSTM-Jump [28] and Skip RNN [29]. However, they are
not suitable as baselines for the risk prediction task because
they design mechanisms to skip multiple consecutive steps at
one time. For EHR data, skipping multiple visits would cause
the training process to be unstable, since there are no strong
associations among consecutive visits (i.e. a patient happened
to go the hospital for an irrelevant disease among his multiple
visits about an important disease) for those models to make
reasonable jumping.

3) Implementation: We implement the proposed model by
the PyTorch framework and run it on an NVIDIA RTX A6000
GPU. The parameters are trained by Adam optimizer [31] with
the learning rate of 10~* and weight decay of 1073, and the
mini-batch size is set to 64. In MedSk im, the EHR embedding
d. and hidden state dimensions of the forward skipping RNN
ds are all set to 256. For the Back Probing RNN, the hidden
state size dy, is set to 32. The temperature for Gumble Softmax
sampling 7 is set to 1.0. We set the weight of skip rate
regularization term A as 0.1, For the desired skip rate 6, we
set different values on different datasets. 8’ = 0.5 on the heart
failure dataset, ’ = 0.3 on both COPD and Amnsia datasets.
We will discuss the effect of A and 6’ on the performance in
the following experiments. We implement the baselines on the
same platform with the proposed model and apply the same
optimization settings. We use standard cross-entropy loss for
all baselines. The numbers of hidden state of baselines are all
256 no matter for RNN or Transformer based models.

Moreover, we randomly partition the datasets into training
set, validation set, and test set in the ratio of 0.75:0.10:0.15.
We select the best model based on the performance on the
validation set, and we run the algorithms five times and report
the mean results for performance evaluation.

4) Evaluation Metrics: To fairly compare the proposed
model with baselines, we use PR-AUC (area under the
precision-recall curve), FI score, and Cohen’s Kappa as the
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evaluation metrics. The reason of choosing these metrics is
that our datasets have imbalanced class distributions as shown
in Table 1. All three metrics could take class imbalance
into consideration and provide more reasonable performance
measurements for this task.

B. Performance Evaluation

In Table II, we show the experimental results of all base-
lines and the proposed model on three datasets under three
evaluation metrics. All the results are average results of
five-round experiments. We can observe that the proposed
MedSkim achieves the best performance on three datasets in
terms of three metrics. Additionally, we conduct significance
testing (t-test) to justify that our model can bring significant
improvement over the best baseline (i.e., HiTANet), and all
p-values are less than 0.01.

We first analyze the results of the selective RNNs. From
the result we can find that compared to the naive LSTM,
only the Skim-RNN achieves a positive improvement on the
experiment results. Compared to the Leap-LSTM, the Skim-
RNN does not skip visits, but it uses a partial mechanism to
update the unimportant visits. It is a softer method compared to
the directly skipping. As a result, it has a better generalization
ability on the medical risk prediction task. However, both
methods do not take into account the special features of
the EHR data, and hence, they can only achieve limited
improvements.

For attention-based risk prediction methods that do not
include the time information, the performance is similar and
with relative low scores, including Dipole, Retain, and SAnD.
Adacare, RetainEx, Timeline, T-LSTM, LSAN and HiTANet
are much better compared to non-time information models.
Among them, LSAN and HiTANet are both designed with
more advanced hierarchical attention mechanisms based on
Transformer and could achieve better results than others.
However, they only use soft attention weights to lower the
unimportant visits and codes, which is not effective enough to
rule out the noisy information.

As for MedSkim, it achieves the best performance on these
three datasets measured by these three metrics. With the mod-
eling of time information, we can find significant improvement
on the final performance. MedSkim can dynamically perform
visit skipping and code skipping, which could explicitly select
important visits and codes from original EHR. Thus, our model
could outperform the two strong baselines.

C. Ablation Study

Since the proposed MedSkim contains several key and
effective components, to thoroughly validate the influence of
each component for the final predictions, we conduct the
following ablation studies:

« Skip-rate Regularization: we remove the second term
in Eq. (18) and only use the cross entropy loss to train
the model.
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TABLE II: Performance comparison in terms of PR-AUC, F1 score, and Cohen’s Kappa. Statistical significance of pairwise
differences of MedSkim against the best baseline (*) is determined by the t-test (p < 0.01).

Dataset | Heart Failure | COPD | Amnesia
Metrics | PR-AUC F1 Kappa | PR-AUC F1 Kappa | PR-AUC F1 Kappa
Plain and LSTM 0.5498 0.5958 0.4392 0.5534 0.5596 0.4178 0.5536 0.6114 0.4838
Sclective RNNs Leap-LSTM 0.5845 0.5580 0.4001 0.5227 0.5368 0.3916 0.4932 0.5596 0.4178
’ Skim-RNN 0.6309 0.6100 0.4536 0.6265 0.5792 0.4492 0.6024 0.5978 0.4612
Attention based Dipole 0.5680 0.5884 0.4302 0.5870 0.5618 0.4218 0.5804 0.6016 0.4646
Models Retain 0.5390 0.4996 0.3488 0.5356 0.5096 0.3746 0.5604 0.5506 0.4348
SAnD 0.5374 0.5538 0.3942 0.5170 0.5212 0.3766 0.5250 0.5638 0.4168
Adacare 0.6074 0.5746 0.4298 0.6050 0.5508 0.4234 0.5968 0.6068 0.4784
LSAN 0.6824 0.6010 0.4638 0.6384 0.5498 0.4352 0.6816 0.6412 0.5288
Time-aware RetainEx 0.6246 0.5406 0.4108 0.6052 0.5404 0.4344 0.6344 0.5892 0.4906
Models Timeline 0.6018 0.5708 0.4210 0.5486 0.4902 0.3640 0.5646 0.5824 0.4552
T-LSTM 0.6466 0.6240 0.4889 0.6862 0.6292 0.5155 0.6319 0.6291 0.5108
HiTANet 0.6756 0.6470 0.5219 0.6846 0.6370 0.5178 0.7080 0.6540 0.5328
MedSkim 0.7238*  0.6717*  0.5433* | 0.6932*  0.6372*  0.5201* | 0.7309*  0.6685*  0.5507*

TABLE III: Ablation study results in term of PR-AUC when
removing each component from MedSkim.

Dataset ‘ Heart Failure = COPD  Amnesia
MedSkim | 0.7238 0.6932 0.7309
without Skip-rate Regularization 0.7136 0.6845 0.7115
without Backward Probing RNN 0.7082 0.6607 0.7101
without Code Selection 0.6847 0.6825 0.7034
without Visit Selection 0.6786 0.6573 0.7052
without State Query Attention 0.6821 0.6547 0.7065

« Backward Probing RNN: when we conduct visit-level
selection and code query, we do not consider the features
outputted by Eq. (3) in BPRNN anymore.
Target-Driven Code Selection: we remove this module
by setting a,, = 1 in Eq. (1) for all diagnosis codes.
Visit Selection: at each visit, we set all actions as 1, i.e.,
b, = 1 in Eq. (6). In such a way, we can use all visits to
conduct risk prediction.

State Query Attention: we remove the state query
attention in Eq. (12), (13) and directly use the output
hidden state of FSRNN cell k,, without aggregating from
all historical visits.

Table III shows the results of ablation study. We can ob-
serve that removing any these components from the proposed
MedSkim will lead to the drop of performance. These results
clearly show the effectiveness and reasonableness of each
designed component. In the meanwhile, we can find that the
contribution of different modules to different tasks are variant.

Without using the skip-rate regularization term, the per-
formance slightly drops, but it is still better than that of
baselines as shown in Table II. The use of this regularization
term is to control the skip rate. Even discarding this term,
the proposed MedSkim can still automatically skip target-
unrelated codes and visits. Under this scenario, the actual
skip rates are 0.2625, 0.4395 and 0.2818 for heart failure,
COPD and Amnesia, respectively. We also can observe that
the designed backward probing RNN is helpful to enhance
the performance since it can extract some useful information
from the future visits. The designed state query attention also
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improve the performance for its ability to memorize important
information from historical visits.

The main hypothesis of this work is that filtering out target-
irrelevant information in EHR can improve the performance
for the risk prediction task. The results of the two ablation
studies, including without code selection and without visit
selection, clearly validate our hypothesis. We can see that
removing these key components from MedSkim makes the
performance drops a lot. Thus, our design is reasonable, and
each component has its own contributions for the performance
improvement.

D. Case Study

In this section, we conduct further analysis of the proposed
model. In order to show the interpretability of the proposed
model and its internal mechanisms, we use a case study to
analyse how the visit skipping and code skipping modules
could infer about the possible causes of the target disease.

We draw a positive example from the Heart Failure dataset
where the model successfully predicts the future condition of
the patient and show the complete visit records in Table IV. At
each visit, the model could obtain a visit selection action score
b, using Eq. (6) that indicates whether to skip the current visit,
where b, = 1 means to keep the current visit and 0 means
to skip it. We can see that the model only keeps the first
visit, since all of the codes from the remaining visits have
weak associations with the target heart failure. Besides, for
the selected visit, the model only keeps four ICD codes (i.e.,
Shortness of breath, Screening for diabetes mellitus, Morbid
obesity, Edema) that have strong relations to heart failure,
which have been reported by the Centers for Disease Control
and Prevention (CDC)’ and Mayo Clinic®. This case study
also proves that our model is effective in filtering unrelated
codes, and more importantly, this feature can improve the
interpretabilty of the model on both visit and code level.

Thttps://www.cdc.gov/diabetes/library/features/diabetes- and- heart.html
Shttps://www.mayoclinic.org/diseases-conditions/edema/symptoms- causes/
syc-20366493
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Fig. 4: Performance on three datasets when trying different penalty weight.

TABLE IV: Case study on the heart failure dataset.

Code Skipping |

[0.335] Shortness of breath (786.05)

[0] Other abnormal blood chemistry (790.6)
[0.113] Screening for diabetes mellitus (V77.1)
[0] Other specified counseling (V65.49)

Visit Skipping |

Vi 1 1 [0] Other nonspecific abnormal findings (796.9)
[0.106] Morbid obesity (278.01)
[0.149] Edema (782.3)
[0] Sprain of medial collateral ligament of knee (844.1)
Visit 2: 0 [0.278] Care involving other physical therapy (V57.1)
18It = [0.339] OId disruption of medial collateral ligament (717.82)
Visit 3: 0 [0.300] Care involving other physical therapy (V57.1)
18t [0.371] OId disruption of medial collateral ligament (717.82)
| Visit4: 0 | [0.592] Sprain of medial collateral ligament of knee (844.1) |
‘ Visit 5: 0 ‘ [0.536] Sprain of medial collateral ligament of knee (844.1) ‘

E. Effect of Hyperparemeters

In this section, we conduct experiments to survey the
effect of hyperparameters of MedSkim. There are two key
hyperparameters in our model: The first is the skip rate 6’ that
controls how many visits and codes should be skipped; and the
second is the weight of regularization term A for punishing the
model if the model does not follow the desired skip rate 6'. We
first set the weight A to be a fixed value and then try different
values of skip rate ¢’. After finding the optimal skip rate for
each dataset, we fix the value of 8’ and test different values
of A\. We report the performance of the model in terms of PR-
AUC and the actual skip rate # under all the hyperparameter
settings.

We show the results of MedSkim by testing for different
skip rate on three datasets in Figure 3. The weight of regu-
larization term A is set to 0.1. We try five candidate target
skip rates {0.1,0.3,0.5,0.7,0.9}. On all three datasets, we
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run our algorithm under these five target skip rates and record
the actual skip rates that the model achieve. In addition, we
also report the model’s performance under different settings of
skip rates. Based on these results, we can obtain the optimal
skip rate for each dataset. From these results, we can find
that for the heart failure dataset, the optimal skip rate is 0.5,
while for the other two datasets, the optimal skip rate is 0.3.
Generally speaking, increasing the skip rate would force the
model to discard more visits and codes, which will cause the
decrease of model performance (e.g., the case when the skip
rates are set to 0.7 and 0.9). However, we can see that small
skip rates that are lower than the optimal skip rates would also
cause the performance to decrease. In this case, too much noisy
information is included in the model’s input data, which has
negative effects on the learning process of MedSkim. Hence,
the choosing of the skip rate is a cautious process requiring
careful validation using the development sets.

Moreover, we show the results of testing different regu-
larization weights \ under the optimal skip rates discovered
above on three datasets in Figure 4. We use four candidate
values of A: {0.0,0.1,0.5,1.0}, and as above, we also run our
algorithm on three datasets and report the model performance
in terms of PR-AUC and actual skip rate under these settings.
We first focus on the case when A = 0.0, and the model is
solely supervised by the standard cross-entropy loss. We can
observe that the performance decreases on all three datasets
since the actual skip rates of the model cannot be controlled,
which indicates that the extra regularization term that we
introduce is helpful for training the model and enables us to
control the actual behaviors of the model. We can also pick
an optimal value of A on each dataset (0.5 for heart failure,
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0.1 for COPD and Amnesia). We can also observe that the
variation of the model performance are not very large under
different settings of A on Heart Failure and COPD datasets,
which means that MedSkim is not very sensitive to the value
of \. However, the effect of A\ becomes larger on the Amnesia
dataset. This is because the number of visits per EHR within
Amnesia dataset is much longer than that of Heart Failure and
COPD datasets, which makes the model more sensitive to the
extra skip rate regularization term. In this way, we should tune
the values of A\ based on the datasets that we use.

V. CONCLUSIONS

In this paper, we propose a novel risk prediction model
named MedSkim, which dynamically selects important visits
and codes during processing the EHR. MedSkim first con-
ducts global code selection to remove the target-irrelevant
codes from the input visits. Then MedSkim applies two
RNNs (BPRNN and FSRNN) to process the EHR data in
two directions, which enables the proposed model to fully
consider the historical and future information when making
skipping decisions. The FSRNN makes visit-level skipping
operation at each visit based on time information and target
information, and outputs hidden states eventually. Finally, the
risk prediction module fuses the sequence of hidden states
together to make predictions. We evaluate MedSkim on three
real-world datasets and show that it outperforms existing state-
of-the-art deep learning baselines steadily and robustly. Also,
the experimental results can demonstrate that the explicit
selection of visits and codes provides highly interpretable
results.
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