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Abstract—Health risk prediction is a challenge task that
aims to predict whether patients would suffer from a certain
disease/condition in the near future based on their historical EHR
data. Although existing approaches can achieve better perfor-
mance, none of them can deal with the noise existing in the EHR
data explicitly. In this paper, we hypothesize that automatically
removing noise from EHR data should help the models further
improve the performance. Correspondingly, we propose a novel
model named MedSkim, which is able to automatically rule
out irrelevant visits and codes by effectively skimming through
the EHR data. In particular, the proposed model has a code
selection module that can directly make a skipping decision to
each individual diagnosis codes and then remove the target-
irrelevant ones. A backward probing RNN (BPRNN) is designed
to reversely process the EHR data and provide a coarse grained
representation learning for visits. Besides, a forward skipping
RNN (FSRNN) is proposed to read the EHR in a preceding
way and dynamically select important visits and codes based on
the results of previous two modules. Finally, the risk prediction
module uses the output hidden states from FSRNN for generating
the final representation to make predictions. Additionally, we also
design an extra regularization term based on the skip rate of the
model and combine it with standard cross entropy loss to train
the model in an end-to-end setting. Experimental results show
that MedSkim achieves the best performance on three real-world
datasets compared with the state-of-the-art baselines in terms of
PR-AUC, F1 and Cohen’s Kappa. Moreover, the ablation study
and case study confirm that the proposed MedSkim is reasonable
and effective for removing noise from EHR data 1.

Index Terms—Health Risk Prediction, Electronic Health
Records, Denoising Algorithm

I. INTRODUCTION

Deep learning techniques have been widely used in the

medical domain to analyze comprehensive electronic health

records (EHRs) in recent years. Health risk prediction is

a representative task in the medical domain, which aims to

predict patients’ future health conditions based on analyzing

their historical EHR data [1]. The commonly-used EHR data

consist of a sequence of administrative claims encoded by

medical code systems such as International Classification

of Diseases (ICD) codes2. Such temporal, high-dimensional,

discrete, and sparse EHR data make the design of health risk

prediction models challenging.

Exiting work mainly focuses on applying recurrent neural

networks (RNN) [2]–[7] and Transformer [8]–[10] to modeling

1The source code of the proposed MedSkim is available at https://github.
com/SH-Src/MedSkim

2https://www.cdc.gov/nchs/icd/icd9.htm

Fig. 1: An example of claims data of a patient who will suffer

from heart failure in the future.

the unique characteristics of EHR data. Besides, several works

have been proposed to incorporate extra information such

as time information associated with each visit [4], [5], [9],

medical knowledge graph [11]–[13], medical rules [14], and

medical text data [15], [16] to improve the health prediction

performance of RNN or Transformer-based models. Although

these models can further improve models’ predictive power

and interpretability, an open yet fundamental challenge in the

health risk prediction task is still unsolved thoroughly, which

is how to better handle the noise in the EHR data. To clearly

demonstrate this challenge, we take a patient who will suffer

from heart failure in the future as an example, and the patient’s

EHRs are shown in Figure 1.

Visit-level noise. In this example, most visits are highly

related to the target disease since they contain key risk

factors of heart failure according to Mayo Clinic,3 such as

“401.9” (unspecified essential hypertension) in visit 1, “278.0”

(overweight and obesity) in visit 3, and “305.02” (alcohol
abuse, episodic) in visit 4. However, visit 2 only contains one

ICD code “V72.2” representing dental examination,4 which

is largely irrelevant to our target disease. However, existing

models still take all the visits as inputs to make a prediction.

Even though they apply attention mechanisms [2], [3], [9],

[10] to lower the weights for some visits, the noise will still

be accumulated continuously during the model learning. To

avoid this issue, an effective way is to directly skip such visits

when models analyze EHR data.

Code-level noise. Besides the irrelevant visits among EHR

data, even for each relevant visit, it still contains quite a

3https://www.mayoclinic.org/diseases-conditions/heart-failure/
symptoms-causes/syc-20373142

4http://www.icd9data.com/2015/Volume1/V01-V91/V70-V82/V72/V72.2.
htm
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few noisy diagnosis codes. For example, the third visit in

Figure 1 contains a code “V49.84” (bed confinement status).5

According to the Medicare Benefit Policy Manual from the

Centers for Medicare & Medicaid Services (CMS), bed-

confinement applies to those Medicare patients who are unable

to tolerate any activity out of bed and may or may not, by

itself, meet the requirement of an Paramedic or emergency

medical technicians (EMT) monitoring him/her on their way

to the hospital.6 Obviously, this code does not explicitly or

not even implicitly associate with the target heart failure.

Therefore, recognizing and discarding these noisy codes from

EHR data are of importance for further enhancing models’

performance.

Our approach. To address the aforementioned challenges

brought by EHR noise, in this paper, we propose a novel

denoised risk prediction model named MedSkim, which can

automatically identify both noise visits and codes within

each visit and then directly discard them when the model

skims the medical claims data. MedSkim consists of four

key modules, including target-driven code selection, backward

probing RNN, forward skipping RNN, and risk prediction.

Specifically, the code selection modules aims to remove

target-irrelevant codes using Gumbel-Softmax [17] to learn a

skipping indicator am for each individual code m. If the code

is skipped, then it will be “removed” from all the visits. The

backward probing RNN (BPRNN) and forward skipping RNN

(FSRNN) will take the filtered visits as inputs. The backward
probing RNN (BPRNN) tries to learn a coarse-grained feature

representation hn from the filtered visits in a reverse way,

i.e., hn = BPRNN([vN , · · · , vn+1], {am}Mm=1), where N is

the number of visits and M denotes the number of unique

codes in the code set C. The forward skipping RNN (FSRNN)

will read the EHR data in a preceding way and learn a visit-

level skipping indicator bn for each visit vn according to the

embeddings of the remaining target-related codes, the target

embedding, the time information, hidden state hn learned from

BPRNN, and the hidden state sn−1 outputted by FSRNN.

If the visit is kept, MedSkim will update a new hidden

state sn; otherwise, it will directly use the previous hidden

state, i.e., sn = sn−1. Based on the learned hidden states

[s1, · · · , sN ] from FSRNN, the target embedding, and the time

information, an attention mechanism is used to generate the

final representation, which is used for making prediction in

the risk prediction module.

In addition to automatically learning code-level and visit-

level skipping indicators, we also take the skip rate into consid-

eration, i.e., the percentage of skipped codes associated with

visits. Finally, we design a skip rate-based regularization
term working with the cross entropy loss generated from the

risk prediction module. To sum up, our contributions are listed

as follows:

5http://www.icd9data.com/2015/Volume1/V01-V91/V40-V49/V49/V49.84.
htm

6https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/
Downloads/bp102c10.pdf

• To the best of our knowledge, we are the first to deal

with noise information in EHR data via learning skip-

ping mechanisms, i.e., automatically removing target-

irrelevant codes and visits simultaneously.

• Correspondingly, we propose a novel denoised health risk

prediction model named MedSkim to skim EHR data

using a bidirectional RNN structure, i.e., the backward

probing RNN and the forward skipping RNN, over the

denoised visits via the code selection module. Such a

design not only enhances the prediction performance but

also increases the efficiency.

• Experimental results on three real-world claims datasets

show the proposed MedSkim model achieves a large per-

formance improvement compared to state-of-art baselines

and has excellent interpretability via a case study.

II. RELATED WORK

A. Health Risk Prediction with Deep Learning

Many studies focus on modeling the temporal features of

the EHR data and using the sequential models like RNN [18],

[19] and Transformer [20] as the backbone model. Built

upon the backbone models, some approaches consider to use

other information such as visit time information and extra

knowledge as well as advanced attention mechanisms [21] to

further improve the prediction performance. Next, we briefly

survey those state-of-the-art risk prediction models.

Basic Attention. Based on the naive recurrent structure,

attention based enhancements are first proposed to improve

the medical risk prediction tasks. Retain [2] is the first inter-

pretable model for risk prediction. It learns visit-level weights

and code level weights together with two independent RNNs.

Compared to Retain, Dipole [3] tries to model longitudinal

EHR data using bidirectional RNNs which have a stronger

feature extraction ability. In addition, it applies more attention

mechanisms and achieves a better result. SAnD [8] uses the

self-attention [20] to calculate the importance of different

visits. In MedSkim, we also utilize the attention mechanism

and take advantages from the previous methods, learning the

attention scores on multiple levels including diagnosis codes,

visits and even the task.

Using Time Information. One important feature of the EHR

records is that, the time gap between the visits are not identical.

Thus, different adjacent visits actually have different gap

time, and the differences can be huge. This may directly

influence the final prediction task. As a result, many existing

approaches try to take the time information into consideration.

T-LSTM [22] is the first work proposed in this direction, which

assumes that the patient information may decay as the time

gap increases. RetainEX [4] and TimeLine [5] also adopt the

similar ideas. LSAN [10] and HiTANet [9] apply a more open

hypothesis on the time information, that is different diseases

have different inner time models, and thus, we should let

the model learn the time attention by itself. AdaCare [6]

does not directly model the time information, but tries to

model it using a multi-scale convolutions cores, which are set
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Fig. 2: Overview of the proposed MedSkim.

for different time-scales. Hence, different cores can represent

different time scale information. In our work, we adopt the

similar assumptions like LSAN and HiTANet, which is more

flexible for task-specific optimization.

Using External Knowledge. On the other hand, some studies

focus on the incorporation of the external knowledge on the

prediction to improve the interpretation of the model. For

example, the work [11], [15], [23] adopts the ICD hierarchy

structure as external knowledge to enhance the code represen-

tations. The work of Ye et al. [16] applies the unstructured

medical text to augment health risk prediction tasks. For the

rest work, the majority solutions of using external knowledge

is through the medical knowledge graph [12]–[14], [24] and

use multi-sourced information as extra knowledge [25].

B. Selective Recurrent Neural Network

To address the long sequences data on the Natural Language

Processing (NLP) domain, a special kind of RNN networks are

developed. Compared to the normal RNN models, Selective

Recurrent Neural Network has the ability to dynamically select

parts of the data sequence as the input. In such a way, the total

length of the processed sequence can be reduced. To achieve

this goal, two lines of solutions are proposed. The first solution

is to froze the state of the RNN models for unimportant steps,

e.g., Variable Computation RNN (VCRNN) [26] and Skim-

RNN [27]. The other methods choose to directly filter out

the unimportant input sequence, such as LSTM-Jump [28],

Skip RNN [29] and Leap LSTM [30], which need to predict

whether to skip the next or multiple next inputs.

III. METHODOLOGY

The EHR data of each patient consists of multiple time-

ordered visits V = [(v1, t1), (v2, t2), · · · , (vN , tN )], where N
is the total number of visits. At each visit, a set of diagnosis

codes is recorded, i.e., vn = [cn1 , c
n
2 , · · · , cnM ], where M

represents the total number of unique codes in the dataset.

cnm = 1 means the m-th code appears in the n-th visit;

otherwise, cnm = 0. The task of health risk prediction is to

predict whether the patient will suffer from the target disease

g in the future according to the historical EHR data V .

A. Model Overview

Figure 2 shows the overall architecture of the proposed

MedSkim, which consists of four major modules, i.e., code

selection, backward probing RNN (BPRNN), forward skipping

RNN (FSRNN), and risk prediction. The code selection mod-

ule aims to filter out noisy diagnosis codes by learning a code

level action am using the target embedding eg and the code

embedding em. am = 1 indicates that the code will be kept;

otherwise, it will be removed from visits. Both BPRNN and

FSRNN will take the denoised visits as inputs. The backward
probing RNN (BPRNN) module aims at learning hidden

states [hN , · · · ,h1] for denoised visits using a reversed RNN.

The forward skipping RNN (FSRNN) first learns a visit-

level action bn for each denoised visit vn using the previous

output sn−1 from FSRNN, the target embedding eg , the time

embedding rn, and the learned hidden state hn from BPRNN.

If bn = 0, then the cell of FSRNN will not be updated,

and sn = sn−1. Otherwise, FSRNN will take denoised vt as

input to generate sn. Finally, the risk prediction module uses

outputs from FSRNN to make predictions. Since MedSkim
is designed to automatically skip target-irrelevant information,

a skip rate-based regularization term is then attached to the

classification loss as the final loss function.

B. Code Selection

The main aim of this paper is to predict the target disease

g, and the design of the double RNN mechanism is to extract

key features from two directions. To enhance the probing

speed and efficiency, we only take target-related diagnosis

codes as the inputs of two RNNs. The challenge here is how

to identify target-related diagnosis codes. An easy way is

to introduce extra knowledge such as a medical knowledge

graph to select target-related diagnosis codes. However, such

an approach may miss some codes that are implicitly related

to the target. To address this problem, we propose a code

selection mechanism to automatically identify important codes

as follows.

• Code and Target Embedding. To identify target-related

codes, we first map the m-th diagnosis code in the code set

C into a high dimensional embedding em ∈ R
de . The target

disease g is also mapped to the same space, which is denoted

as eg ∈ R
de . Note that the code embeddings and the target
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embedding are shared across all the visits even for different

patients.

• Target-driven Code Selection. Based on the learned

code embeddings [e1, e2, · · · , eM ] and the target embedding

eg , MedSkim can automatically identify target-related codes

using Gumbel-Softmax [17] over a one-layer feedforward

network:

am = Binarize
( exp((log(pm[0]) + g0)/τ)∑1

j=0 exp((log(pm[j]) + gj)/τ)

)
,

pm = Softmax(Wp[em, eg] + bp),

(1)

where pm ∈ R
2 is a probability distribution indicating

the relevance of the m-th code, τ is the softmax temper-

ature, gj is i.i.d samples drawn from Gumbel distribution

Gumbel(0, 1), and [·, ·] means the operation of concatenation.

Wp ∈ R
2×(2∗de) and bp ∈ R

2 are parameters. am = 1
indicates that the m-th code is selected; otherwise, this code

will be removed from the inputs. With the reparameterization

trick of Gumbel Softmax sampling, the gradients can be

approximated using the soft value of am.

C. Backward Probing RNN (BPRNN)

The goal of MedSkim is to dynamically skip irrelevant

visits and codes to improve both the prediction performance

and efficiency. However, only using the forward RNN may

discard some key information, which may be highly related

to the future visits. To avoid this issue, we propose a novel

backward probing RNN (shorten for BPRNN) to extract key

features from the following visits. Next, we introduce the

design of BPRNN.

• Backward Visit Embedding. In Section III-B, we can

automatically learn a global selection indicator am for each

diagnosis code. When learning the embedding of each visit

vn, we only consider the selected codes as follows:

xn =
M∑

m=1

am ∗ cnm ∗ em, (2)

where xn ∈ R
de is the visit embedding.

• Backward Hidden State Updating. Based on the learned

embeddings [x1, · · · ,xN ], we can generate the hidden state

for each visit via a reversed long short-term memory (LSTM)

network [18], i.e.,

[hN , · · · ,h1] = BPRNN[xN , · · · ,x1], (3)

where hn ∈ R
dh is the hidden state of the n-th visit. Note that

to speed up the learning, we usually set dh as a small number.

D. Forward Skipping RNN (FSRNN)

Based on the hidden states obtained by BPRNN, we further

design a Forward Skipping RNN (FSRNN) to dynamically

skip irrelevant visits and codes considering both historical and

future visits information. Additionally, time information is also

essential for identifying key information from EHR data [5],

[9], [22]. Therefore, our design of FSRNN comprehensively

analyzes the bidirectional and time information to make rea-

sonable visit-level and code-level skipping.

In particular, FSRNN first analyzes each visit information

and learns an action to decide whether this visit will be as

the input of the RNN cell or directly skipped. If the visit is

selected, then FSRNN learns an embedding for each visit by

considering code importance, target embedding, and probing

feature learned by Eq. (3). Finally, FSRNN updates the hidden

states based on the learned action and visit embeddings. Next,

we describe the details of FSRNN.

1) Time-aware Visit Selection: In EHR data, only a few

of visits are of great importance for the final prediction. In

other words, many visits can be considered as noise. Current

approaches for dealing with noisy EHR data usually apply

attention mechanism [2], [3], [9], [10], i.e., automatically

assigning lower weights for those irrelevant visits. Although

these approaches can improve the prediction performance, the

existence of irrelevant visits still affects the learning of patient

representations. Thus, to further enhance the prediction ability,

we propose to select the important visits first and then only

use the selected ones to learn patient representations.

• Time-aware Visit Embedding. Intuitively, the importance

of a visit vn is mainly determined by its embedding xn learned

by Eq. (2). However, as we mentioned before, time information

tn also plays a key role in the prediction. Thus, following [9],

we embed the time information using the time interval Δtn
between the current time tn and the last recorded time tN ,

i.e., Δtn = tN − tn, as follows:

fn = 1− tanh((Wf
Δtn
180

+ bf )
2

),

rn = Wrfn + br,

(4)

where Wf ∈ R
df , Wr ∈ R

de×df , bf ∈ R
df and br ∈ R

de

are all parameters. In this way, all the time information can be

embedded into the latent space, which is the same as that of

the visit embedding xn. Thus, the time-aware visit embedding

zn ∈ R
de can be represented by

zn = xn + rn. (5)

• Visit Selection. In addition to the time-aware visit embed-

ding zn, the target g, the following visits [vn+1, · · · , vN ], as

well as the previous visits [v1, · · · , vn−1] are also key factors

to decide whether to skip the current visit vn or not. Thus, we

need to consider them all together. Similar to Eq. (1), we use

the Gumbel-Softmax over another feedforward layer to learn

the visit selection action bn as follows:

dn = Softmax(Wd[zn, eg,hn, sn−1] + bd),

bn = Binarize
( exp((log(dn[0]) + g0)/τ)∑1

j=0 exp((log(dn[j]) + gj)/τ)

)
,

(6)

where Wd ∈ R
2×(2∗de+dh+ds) and bd ∈ R

2 are parameters to

be learned. ht ∈ R
dh is the following feature extracted from

BPRNN using Eq. (3), eg is the target embedding, and sn−1 ∈
R

ds is the previous step hidden state of FSRNN that will be

introduced in Section III-D3, respectively. A distribution dn ∈
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R
2 is obtained for each visit, indicating whether to skip the

current visit, from which we can also sample an action bn.

bn = 0 indicates that the current visit vn will be skipped, and

bn = 1 means FSRNN will take vn as an input. In such a way,

the gating module considers bidirectional context information

and also the global target disease so that it can make the most

reasonable decision.
2) Forward Visit Embedding: After making the visit-level

skip decision, as long as the decision is to keep the current

visit (i.e., bn = 1), FSRNN will take vn as the input to update

the hidden state. An easy way is to directly use zn learned by

Eq. (5) as the visit embedding. However, it treats each selected

diagnosis code equally. However, previous work [10] shows

that assigning different weights to diagnosis codes can improve

the prediction performance. Thus, we propose a query-based

attention mechanism to assign weights to diagnosis codes

within each visit. In particular, upon the global code selection

introduced in Section III-B, we also conduct visit-level or local

code selection again. Based on the learned attention weights

and the selected codes, we can obtain the visit embedding.

• Code Query Generation. The query used for learning the

importance of each diagnosis code should contain contextual

information of the whole visits and the target information.

Thus, we choose to concatenate the previous hidden state of

the FSRNN cell sn−1, the following features extracted by

BPRNN hn along with the target embedding eg , and apply

a linear projection to the concatenated features as follows:

qn = ReLU(Wq[sn−1,hn, eg] + bq), (7)

where qn ∈ R
de is the contextualized query, and Wq ∈

R
de×(ds+dh+de), bq ∈ R

de are both parameters of the linear

projection. We also use an ReLU activation function here to

keep the positive values.

• Query-based Code Attention. Using the learned query

qn, we can assign attention scores to diagnosis codes to get

the importance of them as follows:

αn = Softmax(
q�
n [c

n
1 ∗ e1; cn2 ∗ e2; · · · ; cnM ∗ eM ]√

de
), (8)

where αn ∈ R
M is a distribution over all the diagnosis codes.

If cnm = 0, then the corresponding weight will be 0. [·; ·]
denotes the column-wise stack operation.

• Attention-based Visit Embedding. Based on the learned

attention weights αn using Eq. (8), we can directly learn the

visit embedding by applying weighted summation on all the

code embeddings. However, as we discussed in Section III-B,

only a few diagnosis codes are highly related to the final

prediction. The global code action am can help us to filter out

a subset of target-irrelevant codes, which should be considered

when learning the visit embedding. Besides, the time embed-

ding rn associated with each visit is an essential factor. Based

on these embeddings, we can obtain the final visit embedding

vn ∈ R
de as follows:

vn = rn +

M∑
m=1

αn
m ∗ am ∗ cnm ∗ em. (9)

3) Forward Hidden State Updating: As mentioned in Sec-

tion III-D1, the visit vn may be skipped if bn = 0 estimated

by Eq. (6). In such a way, FSRNN does not need to update

the hidden state for vn and directly uses the previous sn−1.

Otherwise, it will update the hidden state sn based on the

previous hidden states [s1, · · · , sn−1] and the visit embedding

vn learned by Eq. (9), i.e.,

sn =

{
FSRNN([s1, · · · , sn−1],vn), if bn = 1;

sn−1, if bn = 0.
(10)

Next, we introduce how to learn the hidden state sn when

bn = 1. Intuitively, we can directly follow the standard RNN

model to generate sn using the FSRNN cell taking sn−1 and

vn as the input. However, existing work [3] points out that

the key information may be forgotten especially when the

number of visits is large. To address this issue, similar to

Eq. (8), we propose to use query-based attention again to

assign an attention score to each previous hidden state sj
(j = 1, · · · , n − 1). We then aggregate all the hidden states

with their attention weights to generate the current hidden state

sn.

• State Query Generation. To generate the hidden state

query kn ∈ R
ds , we propose to only use the current visit

embedding vn and sn−1, i.e.,

kn = FSRNNCell(sn−1,vn). (11)

• Query-based State Attention. Similar to query-based

code attention mechanism, we can generate the attention

weight γn
j for each previous hidden state sj as follows:

γn = Softmax(
k�
n [s1; s2; · · · ; sn−1]√

ds
). (12)

• Forward Hidden State Generation. Based on the learned

attention weights in Eq. (12) and the query vector kn in

Eq. (11), we can finally generate the hidden state as follows:

sn = Ws(ReLU(Wks
′
n + bk)) + bs,

s′n = kn +
n−1∑
j=1

γn
j ∗ sj , (13)

where Wk ∈ R
(4∗ds)×ds , bk ∈ R

4∗ds , Ws ∈ R
ds×(4∗ds), and

bs ∈ R
ds are all parameters.

From Eq. (13), we can observe that all the historical hidden

states are stored into a dynamic memory. At each step, we

generate a query kn to perform attention operation over the

history hidden states and retrieve important information from

the stored memory. Then, we apply a feed forward network

to further transform the features. In this way, we can get a

comprehensive hidden state representation sn that contains

all the important historical information. Eventually, we attend

sn to the memory [s1, s2, · · · , sn], which can be dynamically

maintained at every step and provide more comprehensive visit

features for the prediction.
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E. Risk Prediction

The outputs from the FSRNN are a sequence of hidden

states from the stored memory [s1, s2, · · · , sN ]. They are used

to generate a comprehensive representation for the patient,

which is further used to make final prediction.

Towards this goal, we first use the target embedding eg
and time encoding to determine the importance of each visit

feature and fuse them together effectively. We achieve this by

using a softmax function over a feedforward layer to generate

the weights for each visit as follows:

[φ1, φ2, · · · , φN ] = Softmax(l1, l2, · · · , lN ),

ln = W�
φ [sn, rn, eg] + bφ, ∀n ∈ [1, · · · , N ],

(14)

where Wφ ∈ R
ds+2∗de and bφ ∈ R are parameters. After ob-

taining the attention weight for each visit feature, we can fuse

them together to get the comprehensive feature representation

u ∈ R
ds for the whole EHR as follows:

u =
N∑

n=1

φnsn, (15)

We further apply an output classifier to get the final prediction,

i.e.,

ŷ = Softmax(Wyu+ by), (16)

where ŷ ∈ R
2 is the output classification distribution, Wy ∈

R
2×ds and by ∈ R

2 are parameters.

F. Loss Function

To train the proposed MedSkim, we can directly use

traditional cross entropy function. However, this simple loss

function cannot handle the skip rate, i.e., the ratio of how many

diagnosis codes and visits that will be skipped. To explicitly

control the skip rate, we follow the previous work [30] to add

a regularization term with regard to the skip rate.

Let θ′ be a hyperparameter that represents the desired skip

rate, and θ be the actual skip rate, which is the percentage of

skipped codes among all the visits, i.e.,

θ =

∑N
n=1

∑M
m=1[bn ∗ (cnm − am) + (1− bn) ∗ cnm]∑N

n=1

∑M
m=1 c

n
m

=

∑N
n=1

∑M
m=1(c

n
m − bn ∗ am)∑N

n=1

∑M
m=1 c

n
m

,

(17)

where am is the global code selection via Eq. (1), and bn is

the visit selection action from Eq. (6). We can observe that if

bn = 0, all the codes within the n-th visit will be accounted.

When bn = 1, only the codes filtered by global code selection

(i.e., am = 0) will be accounted. Finally, we define our loss

function as follows:

L = CrossEntropy(y, ŷ) + λ(θ′ − θ)2, (18)

where y is the ground truth vector, and λ is a predefined

hyperparameter to control the weight of the regularization

term.

TABLE I: Statistics of the used claim datasets.

Dataset Heart Failure COPD Amnesia

Positive Cases 3,080 7,314 2,982
Negative Cases 9,240 21,942 8,946
Average Visits per Patient 38.74 30.39 72.52
Average Codes per Visit 4.24 3.50 2.53
Unique ICD-9 Codes 8,692 10,053 9032

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: In our experiments, we conduct retrospective

analysis on three common chronic and progressive health

conditions, which are Heart Failure, Chronic Obstructive Pul-

monary Disease (COPD), and Amnesia. The corresponding

EHR data including positive cases and negative/control cases

are extracted from a real-world claims database, with the

guidance of clinicians. When extracting the data for positive

cases, we identify the first disease diagnosis date and then only

keep the EHR data before six months of that date. For each

positive case, we extract three control cases based on gender,

age, race, and underlying diseases. We keep the whole EHR

data for negative/control cases. The statistics of these datasets

are shown in Table I.

2) Baselines: We consider both state-of-the-art health risk

prediction models and selective RNNs as baselines. Risk
prediction models include:

• LSTM [18] is the basic baseline, which first embeds visits

and then feeds them to the LSTM cell to generate hidden

states for making predictions.

• Dipole [3] is an RNN-based risk prediction model that

apply attention mechanism to perform visit analysis on

top of bidirectional GRU, which can use attention weights

to determine the importance of each visit.

• Retain [2] applies reversed RNN model to conduct at-

tentional analysis in both visit level and variable level

by mimicking the physicians’ diagnosis, which typically

focuses more on recent visits.

• SAnD [8] is an early Transformer based risk prediction

model that uses dense interpolation strategies to fuse

visits information by incorporating temporal order.

• AdaCare [6] applies dilated convolutional neural network

to extract the visit features from EHR data in multiple

scales and further uses a GRU model to conduct risk

prediction.

• RetainEx [4] is an extension work of Retain, which

incorporates time information into the visit feature inputs

of retain, which can enhance the original model to achieve

better performance.

• Timeline [5] is also an RNN based model that designs

a time-aware mechanism by modeling the time decaying

factor of each diagnosis code to improve the representa-

tion learning of EHR data.

• T-LSTM [22] designs a time-aware mechanism based on

LSTM that is able to handle irregular time intervals in

longitudinal patient records.
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• LSAN [10] is a recent Transformer based model that

develops a hierarchical attention mechanism to jointly

consider the long term and short term dependencies of

EHR data.

• HiTANet [9] is the state-of-the-art Transformer-based

risk prediction model that designs a time-aware attention

mechanism to capture the dynamic disease progression

patterns from EHR data.

We also choose two representative selective RNNs as

baselines, we first transform the EHR data into a sequence

of visit embedding and then feed it into these models:

• Leap-LSTM [30] is a step-wise selective RNN that uses a

gating module to extract messages from preceding texts,

following texts and the current word, and then determines

whether to skip the current word.

• Skim-RNN [27] designs a partial updating mechanism for

the RNN cell. It has an additional small RNN and could

only update partial hidden states using the small RNN at

unimportant steps.

Note that there are two commonly-used selective RNNs, which

are LSTM-Jump [28] and Skip RNN [29]. However, they are

not suitable as baselines for the risk prediction task because

they design mechanisms to skip multiple consecutive steps at

one time. For EHR data, skipping multiple visits would cause

the training process to be unstable, since there are no strong

associations among consecutive visits (i.e. a patient happened

to go the hospital for an irrelevant disease among his multiple

visits about an important disease) for those models to make

reasonable jumping.

3) Implementation: We implement the proposed model by

the PyTorch framework and run it on an NVIDIA RTX A6000

GPU. The parameters are trained by Adam optimizer [31] with

the learning rate of 10−4 and weight decay of 10−3, and the

mini-batch size is set to 64. In MedSkim, the EHR embedding

de and hidden state dimensions of the forward skipping RNN

ds are all set to 256. For the Back Probing RNN, the hidden

state size dh is set to 32. The temperature for Gumble Softmax

sampling τ is set to 1.0. We set the weight of skip rate

regularization term λ as 0.1, For the desired skip rate θ′, we

set different values on different datasets. θ′ = 0.5 on the heart

failure dataset, θ′ = 0.3 on both COPD and Amnsia datasets.

We will discuss the effect of λ and θ′ on the performance in

the following experiments. We implement the baselines on the

same platform with the proposed model and apply the same

optimization settings. We use standard cross-entropy loss for

all baselines. The numbers of hidden state of baselines are all

256 no matter for RNN or Transformer based models.

Moreover, we randomly partition the datasets into training

set, validation set, and test set in the ratio of 0.75:0.10:0.15.

We select the best model based on the performance on the

validation set, and we run the algorithms five times and report

the mean results for performance evaluation.

4) Evaluation Metrics: To fairly compare the proposed

model with baselines, we use PR-AUC (area under the

precision-recall curve), F1 score, and Cohen’s Kappa as the

evaluation metrics. The reason of choosing these metrics is

that our datasets have imbalanced class distributions as shown

in Table I. All three metrics could take class imbalance

into consideration and provide more reasonable performance

measurements for this task.

B. Performance Evaluation

In Table II, we show the experimental results of all base-

lines and the proposed model on three datasets under three

evaluation metrics. All the results are average results of

five-round experiments. We can observe that the proposed

MedSkim achieves the best performance on three datasets in

terms of three metrics. Additionally, we conduct significance
testing (t-test) to justify that our model can bring significant

improvement over the best baseline (i.e., HiTANet), and all

p-values are less than 0.01.

We first analyze the results of the selective RNNs. From

the result we can find that compared to the naive LSTM,

only the Skim-RNN achieves a positive improvement on the

experiment results. Compared to the Leap-LSTM, the Skim-

RNN does not skip visits, but it uses a partial mechanism to

update the unimportant visits. It is a softer method compared to

the directly skipping. As a result, it has a better generalization

ability on the medical risk prediction task. However, both

methods do not take into account the special features of

the EHR data, and hence, they can only achieve limited

improvements.

For attention-based risk prediction methods that do not

include the time information, the performance is similar and

with relative low scores, including Dipole, Retain, and SAnD.

Adacare, RetainEx, Timeline, T-LSTM, LSAN and HiTANet

are much better compared to non-time information models.

Among them, LSAN and HiTANet are both designed with

more advanced hierarchical attention mechanisms based on

Transformer and could achieve better results than others.

However, they only use soft attention weights to lower the

unimportant visits and codes, which is not effective enough to

rule out the noisy information.

As for MedSkim, it achieves the best performance on these

three datasets measured by these three metrics. With the mod-

eling of time information, we can find significant improvement

on the final performance. MedSkim can dynamically perform

visit skipping and code skipping, which could explicitly select

important visits and codes from original EHR. Thus, our model

could outperform the two strong baselines.

C. Ablation Study

Since the proposed MedSkim contains several key and

effective components, to thoroughly validate the influence of

each component for the final predictions, we conduct the

following ablation studies:

• Skip-rate Regularization: we remove the second term

in Eq. (18) and only use the cross entropy loss to train

the model.
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TABLE II: Performance comparison in terms of PR-AUC, F1 score, and Cohen’s Kappa. Statistical significance of pairwise

differences of MedSkim against the best baseline (*) is determined by the t-test (p < 0.01).

Dataset Heart Failure COPD Amnesia

Metrics PR-AUC F1 Kappa PR-AUC F1 Kappa PR-AUC F1 Kappa

Plain and
Selective RNNs

LSTM 0.5498 0.5958 0.4392 0.5534 0.5596 0.4178 0.5536 0.6114 0.4838
Leap-LSTM 0.5845 0.5580 0.4001 0.5227 0.5368 0.3916 0.4932 0.5596 0.4178
Skim-RNN 0.6309 0.6100 0.4536 0.6265 0.5792 0.4492 0.6024 0.5978 0.4612

Attention based
Models

Dipole 0.5680 0.5884 0.4302 0.5870 0.5618 0.4218 0.5804 0.6016 0.4646
Retain 0.5390 0.4996 0.3488 0.5356 0.5096 0.3746 0.5604 0.5506 0.4348
SAnD 0.5374 0.5538 0.3942 0.5170 0.5212 0.3766 0.5250 0.5638 0.4168

Time-aware
Models

Adacare 0.6074 0.5746 0.4298 0.6050 0.5508 0.4234 0.5968 0.6068 0.4784
LSAN 0.6824 0.6010 0.4638 0.6384 0.5498 0.4352 0.6816 0.6412 0.5288
RetainEx 0.6246 0.5406 0.4108 0.6052 0.5404 0.4344 0.6344 0.5892 0.4906
Timeline 0.6018 0.5708 0.4210 0.5486 0.4902 0.3640 0.5646 0.5824 0.4552
T-LSTM 0.6466 0.6240 0.4889 0.6862 0.6292 0.5155 0.6319 0.6291 0.5108
HiTANet 0.6756 0.6470 0.5219 0.6846 0.6370 0.5178 0.7080 0.6540 0.5328
MedSkim 0.7238* 0.6717* 0.5433* 0.6932* 0.6372* 0.5201* 0.7309* 0.6685* 0.5507*

TABLE III: Ablation study results in term of PR-AUC when

removing each component from MedSkim.

Dataset Heart Failure COPD Amnesia

MedSkim 0.7238 0.6932 0.7309

without Skip-rate Regularization 0.7136 0.6845 0.7115
without Backward Probing RNN 0.7082 0.6607 0.7101
without Code Selection 0.6847 0.6825 0.7034
without Visit Selection 0.6786 0.6573 0.7052
without State Query Attention 0.6821 0.6547 0.7065

• Backward Probing RNN: when we conduct visit-level

selection and code query, we do not consider the features

outputted by Eq. (3) in BPRNN anymore.

• Target-Driven Code Selection: we remove this module

by setting am = 1 in Eq. (1) for all diagnosis codes.

• Visit Selection: at each visit, we set all actions as 1, i.e.,

bn = 1 in Eq. (6). In such a way, we can use all visits to

conduct risk prediction.

• State Query Attention: we remove the state query

attention in Eq. (12), (13) and directly use the output

hidden state of FSRNN cell kn without aggregating from

all historical visits.

Table III shows the results of ablation study. We can ob-

serve that removing any these components from the proposed

MedSkim will lead to the drop of performance. These results

clearly show the effectiveness and reasonableness of each

designed component. In the meanwhile, we can find that the

contribution of different modules to different tasks are variant.

Without using the skip-rate regularization term, the per-

formance slightly drops, but it is still better than that of

baselines as shown in Table II. The use of this regularization

term is to control the skip rate. Even discarding this term,

the proposed MedSkim can still automatically skip target-

unrelated codes and visits. Under this scenario, the actual

skip rates are 0.2625, 0.4395 and 0.2818 for heart failure,

COPD and Amnesia, respectively. We also can observe that

the designed backward probing RNN is helpful to enhance

the performance since it can extract some useful information

from the future visits. The designed state query attention also

improve the performance for its ability to memorize important

information from historical visits.

The main hypothesis of this work is that filtering out target-

irrelevant information in EHR can improve the performance

for the risk prediction task. The results of the two ablation

studies, including without code selection and without visit

selection, clearly validate our hypothesis. We can see that

removing these key components from MedSkim makes the

performance drops a lot. Thus, our design is reasonable, and

each component has its own contributions for the performance

improvement.

D. Case Study

In this section, we conduct further analysis of the proposed

model. In order to show the interpretability of the proposed

model and its internal mechanisms, we use a case study to

analyse how the visit skipping and code skipping modules

could infer about the possible causes of the target disease.

We draw a positive example from the Heart Failure dataset

where the model successfully predicts the future condition of

the patient and show the complete visit records in Table IV. At

each visit, the model could obtain a visit selection action score

bn using Eq. (6) that indicates whether to skip the current visit,

where bn = 1 means to keep the current visit and 0 means

to skip it. We can see that the model only keeps the first

visit, since all of the codes from the remaining visits have

weak associations with the target heart failure. Besides, for

the selected visit, the model only keeps four ICD codes (i.e.,

Shortness of breath, Screening for diabetes mellitus, Morbid

obesity, Edema) that have strong relations to heart failure,

which have been reported by the Centers for Disease Control

and Prevention (CDC)7 and Mayo Clinic8. This case study

also proves that our model is effective in filtering unrelated

codes, and more importantly, this feature can improve the

interpretabilty of the model on both visit and code level.

7https://www.cdc.gov/diabetes/library/features/diabetes-and-heart.html
8https://www.mayoclinic.org/diseases-conditions/edema/symptoms-causes/

syc-20366493
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(a) Heart Failure (b) COPD (c) Amnesia

Fig. 3: Performance on three datasets when trying different skip rates.

(a) Heart Failure (b) COPD (c) Amnesia

Fig. 4: Performance on three datasets when trying different penalty weight.

TABLE IV: Case study on the heart failure dataset.
Visit Skipping Code Skipping

Visit 1: 1

[0.335] Shortness of breath (786.05)
[0] Other abnormal blood chemistry (790.6)
[0.113] Screening for diabetes mellitus (V77.1)
[0] Other specified counseling (V65.49)
[0] Other nonspecific abnormal findings (796.9)
[0.106] Morbid obesity (278.01)
[0.149] Edema (782.3)
[0] Sprain of medial collateral ligament of knee (844.1)

Visit 2: 0
[0.278] Care involving other physical therapy (V57.1)
[0.339] Old disruption of medial collateral ligament (717.82)

Visit 3: 0
[0.300] Care involving other physical therapy (V57.1)
[0.371] Old disruption of medial collateral ligament (717.82)

Visit 4: 0 [0.592] Sprain of medial collateral ligament of knee (844.1)

Visit 5: 0 [0.536] Sprain of medial collateral ligament of knee (844.1)

E. Effect of Hyperparemeters

In this section, we conduct experiments to survey the

effect of hyperparameters of MedSkim. There are two key

hyperparameters in our model: The first is the skip rate θ′ that

controls how many visits and codes should be skipped; and the

second is the weight of regularization term λ for punishing the

model if the model does not follow the desired skip rate θ′. We

first set the weight λ to be a fixed value and then try different

values of skip rate θ′. After finding the optimal skip rate for

each dataset, we fix the value of θ′ and test different values

of λ. We report the performance of the model in terms of PR-

AUC and the actual skip rate θ under all the hyperparameter

settings.

We show the results of MedSkim by testing for different

skip rate on three datasets in Figure 3. The weight of regu-

larization term λ is set to 0.1. We try five candidate target

skip rates {0.1, 0.3, 0.5, 0.7, 0.9}. On all three datasets, we

run our algorithm under these five target skip rates and record

the actual skip rates that the model achieve. In addition, we

also report the model’s performance under different settings of

skip rates. Based on these results, we can obtain the optimal

skip rate for each dataset. From these results, we can find

that for the heart failure dataset, the optimal skip rate is 0.5,

while for the other two datasets, the optimal skip rate is 0.3.

Generally speaking, increasing the skip rate would force the

model to discard more visits and codes, which will cause the

decrease of model performance (e.g., the case when the skip

rates are set to 0.7 and 0.9). However, we can see that small

skip rates that are lower than the optimal skip rates would also

cause the performance to decrease. In this case, too much noisy

information is included in the model’s input data, which has

negative effects on the learning process of MedSkim. Hence,

the choosing of the skip rate is a cautious process requiring

careful validation using the development sets.

Moreover, we show the results of testing different regu-

larization weights λ under the optimal skip rates discovered

above on three datasets in Figure 4. We use four candidate

values of λ: {0.0, 0.1, 0.5, 1.0}, and as above, we also run our

algorithm on three datasets and report the model performance

in terms of PR-AUC and actual skip rate under these settings.

We first focus on the case when λ = 0.0, and the model is

solely supervised by the standard cross-entropy loss. We can

observe that the performance decreases on all three datasets

since the actual skip rates of the model cannot be controlled,

which indicates that the extra regularization term that we

introduce is helpful for training the model and enables us to

control the actual behaviors of the model. We can also pick

an optimal value of λ on each dataset (0.5 for heart failure,
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0.1 for COPD and Amnesia). We can also observe that the

variation of the model performance are not very large under

different settings of λ on Heart Failure and COPD datasets,

which means that MedSkim is not very sensitive to the value

of λ. However, the effect of λ becomes larger on the Amnesia

dataset. This is because the number of visits per EHR within

Amnesia dataset is much longer than that of Heart Failure and

COPD datasets, which makes the model more sensitive to the

extra skip rate regularization term. In this way, we should tune

the values of λ based on the datasets that we use.

V. CONCLUSIONS

In this paper, we propose a novel risk prediction model

named MedSkim, which dynamically selects important visits

and codes during processing the EHR. MedSkim first con-

ducts global code selection to remove the target-irrelevant

codes from the input visits. Then MedSkim applies two

RNNs (BPRNN and FSRNN) to process the EHR data in

two directions, which enables the proposed model to fully

consider the historical and future information when making

skipping decisions. The FSRNN makes visit-level skipping

operation at each visit based on time information and target

information, and outputs hidden states eventually. Finally, the

risk prediction module fuses the sequence of hidden states

together to make predictions. We evaluate MedSkim on three

real-world datasets and show that it outperforms existing state-

of-the-art deep learning baselines steadily and robustly. Also,

the experimental results can demonstrate that the explicit

selection of visits and codes provides highly interpretable

results.
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