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AbstractÐThis study infers the unobserved underlying net-
work of homeless services from administrative data collected by
homeless service providers. Both the structure of the inferred
network, and historical observations, are used to identify individ-
uals with similar trajectories so that their next assignments can
be predicted. Experimental evaluation shows that the proposed
approach performs well not only on predicting exit from the
system, or simply guessing high frequency services (as most
baselines), but is also successful in less frequent scenarios.

Index TermsÐComplex systems, network inference, similarity

I. INTRODUCTION

Homelessness poses a long±standing problem to the society.

The number of individuals in the U.S. alone experiencing

prolonged homelessness for at least 12 months, or repeated

homelessness over a period of three years (i.e., chronic home-

less [5]) increased by 20% [6] between 2020 and 2021. Nu-

merous methods have been proposed to predict reentry (e.g.,

[8]), as well as the risk of an individual to become chronically

homeless (e.g., [11]). Unlike such methods, this work focuses

on individuals experiencing chronic homelessness, broadly

defined here as individuals entering the homeless system two

or more times. Viewing the history of each individual as a

sequence of services and time of stay within each service,

the goal is to learn a model that can be used to accurately

estimate the next service an individual will be assigned to

within the homeless system in the future. Our proposed

approach represents the homeless system as a network of

interconnected services which individuals traverse over time.

Given the history of an individual, it identifies individuals

with similar histories, and predicts the next service the given

individual will be assigned to based on such histories and the

underlying network structure. Our key contributions can be

summarized as follows:

• We infer the network of homeless services from admin-

istrative data collected by homeless service providers.

This material is based upon work supported by the National Science
Foundation under Grant No. ECCS±1737443.
†Both authors contributed equally.

• We define a similarity score between ordered sequences

of services that the homeless are assigned to as they

traverse the network of services.

• We propose a method that, given the history of an

individual, can predict the most likely service she will

be assigned to next.

• For reproducibility, we make our source code available

at https://github.com/IDIASLab/TRACE.

II. RELATED WORK

Unlike prior art for reentry and chronic homelessness pre-

diction (e.g., [7], [9], [11]), this work addresses the more

challenging problem of determining whether an individual will

exit the homeless system, and otherwise, the exact program she

will be assigned to next. The proposed similarity score differs

from existing similarity measures for time±series data [12], in

that our study involves trails of timestamped categorical data

as opposed to numerical data such measures are applicable

to. Compared to prior art on sequence analysis, which is

often used to determine a common subsequence between two

categorical sequences (e.g., [4]) and assumes i.i.d. data points

in a sequence, the approach described here utilizes the network

that generates the observed sequences to compute similarity

between two categorical trajectories. Finally, methods for

network inference from data [2] either assume that diffusion

traces are directed acyclic graphs and that the probability of

transitioning from one node to another is fixed and same for

all edges, or infer interactions for pairs of nodes expected

to be directly connected via an edge. Instead, in this study,

the temporal chain of events is observed (leading to an easier

inference task) while at the same time, observed trajectories

may contain cycles (resulting in a harder inference problem).

III. PROBLEM STATEMENT

Homeless service providers offer services that are or-

ganized in project types (e.g., emergency shelters, transi-

tional housing) [10]. We denote the set of project types

as P = {p1, p2, . . . , pn}, and the set of individuals re-

questing services multiple times as C = {c1, c2, . . . , cm}.

Reentries can be viewed as temporally ordered sequences

of tuples (pi, ti = [si, ei]), where pi ∈ P , and si
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and ei are the times at which individual c ∈ C en-

ters to, and exits from pi, accordingly. Such a trajectory,

Tc = (p1, [s1, e1]), (p2, [s2, e2]), . . . , (pN , [sN , eN ])) for each

individual c ∈ C, where for each two consecutive tu-

ples si+1 ≥ ei, records her transitions from pi to pi+1.

Given a set of trajectories T , and query trajectory Tq =
((q1, [s1, e1]), . . . , (qN , [sN , eN ]) of an individual q ∈ C, up

to time eN , we aim at predicting the project type q̂N+1 ∈ P

that she will be assigned to immediately after qN (or exit if

she is likely to exit the system).

IV. INFERRING THE GRAPH OF HOMELESS SERVICES

The underlying connectivity of homeless services (i.e.,

potential paths an individual can take once she is admitted into

the homeless system) is neither directly observable nor known.

We thus set forth to uncover the aggregate dynamics of the

homeless system from the observed sequences of services that

it generates for each individual.

We begin by modelling the network as a directed graph

G = (P,E), where P is the set of nodes representing services

visited by individuals in C, and E is the set of edges between

nodes, such that a directed edge appears between pi and pj if

at least one trajectory in T exists, in which pj appears after

pi. We determine the weight of each edge (pi, pj) ∈ E based

on the number of steps taken before reaching pj from pi, and

the position where pi appears in the trajectory (i.e., offset).

Specifically, a path from pi to pj in a trajectory T involves

j − i+ 1 steps starting from offset i. Therefore:

wij =
N∑

k=1

M−1∑

l=0

αk−1+lfij,kl, (1)

where N is the maximum number of steps, and M the largest

offset, α ∈ [0, 1] is some attenuation factor, and fij,kl denotes

the number of times a transition from pi to pj appears in any

path across all trajectories in T with k steps at offset l. Finally,

we normalize the weights of outgoing edges at each node to

sum to 1. Edge weights satisfy the following properties: wij >

0, ∀pi, pj ∈ P , wij is undefined if no path ∃ from pi to pj ,

wij ≈ 0 if path from pi to pj is long, and
∑

j∈V wij =
1, ∀pi ∈ P .

In summary, inference proceeds as follows. First, for each

trajectory, all possible unique paths are extracted. The value

of fij,kl is then computed by counting the frequency of each

path across all trajectories. To avoid double counting, only

unique paths at each number of steps are included in the

computation of fij,kl. Next, edge weights are calculated using

Eq.(1), number of steps, and offset of each path appearing in

the trajectories.

V. TRAJECTORY SIMILARITY

To compare a given individual’s trajectory with historical

trajectories, we wish to measure similarity σ, between a query

trajectory Tq , and a historical trajectory Tc given graph G,

while taking into account the distance between nodes in G
appearing in Tq and Tc respectively, the temporal overlap

between the trajectories, and the time intervals individuals

stayed on each node in the corresponding trajectories.

Let the distance between two nodes qi, pj ∈ P that appear in

Tq and T respectively, be the weighted shortest path distance,

d(qi, pj), between them in G. The distance between qi ∈ Tq

and T within time interval tq can then be computed as:

d(qi, T, tq) =
min(pj ,tj)∈T [tq ] max|tj∩tq| d(qi, pj)

DG
, (2)

where DG is the maximum weighted distance between any

two nodes in G, and T [tq] denotes the sequence of nodes in

T visited during tq . Intuitively, this distance is minimized for

(pj , tj) ∈ T [tq] that can be reached quickly from qi in G,

and for which the interval tj significantly overlaps with tq .

By definition, 0 ≤ d(qi, T, tq) ≤ 1. The similarity between

trajectories Tq and T for time interval t, is therefore:

σ(Tq, T, t) =

∑
(q,tq)∈Tq [t]

|tq ∩ tj | × e−d(q,T,tq)

∑
|tq|

, (3)

where |.| denotes the length of a time interval, and tj is

the time interval in T corresponding to the node that min-

imizes d(q, T, tq). By definition, 0 ≤ σ(Tq, T, t) ≤ 1, with

σ(Tq, Tq, t) = 1 for any time interval t, and σ(Tq, T, t) = 0
for any two trajectories Tq and T with no temporal overlap.

VI. TRAJECTORY SIMILARITY ESTIMATION AND

PROBABILISTIC PREDICTION

In this section, we describe TRACE, a novel

approach for Trajectory SimilaRity EstimAtion and

ProbabilistiC PrEdiction. Specifically, given the history

Tq = ((q1, [s1, e1]), . . . , (qN , [sN , eN ]) of an individual, and

time interval t = [sN−γ , eN ], where γ is the number of

prior services received in the past, as well as the set T of

trajectories of other individuals, TRACE begins by calculating

the effective length λ of Tq . Then, TRACE identifies the

most similar trajectory Tc ∈ T to Tq within t, using graphs

Gλ and Gλ+1. The rationale for this design choice is that

the next node may either be a node already visited in the

past (in which case the effective length of Tq will remain

unchanged) or a new node (in which case the effective length

of Tq will increase by 1). The project type q̂N+1 that q is

expected to be assigned to next is therefore estimated to be

the one that maximizes the transition probability from pc, the

last matching project type in trajectory Tc that maximizes

σ(Tq, Tc, t) over either Gλ or Gλ+1. Therefore, q̂N+1 is

obtained by maximizing the following objective:

1(qN ,pi)∈E×1(pc,pi)∈E×P (pi ∈ NB(qN )∩NB(pc)|pc), (4)

where 1 is the indicator function. To ensure the predicted

node is reachable from qN , pi is constrained to be in the out±

neighborhood of both pc and qN . If no such node can be

found within Tc, the search over trajectories continues until

a trajectory is identified that satisfies this constraint, or if no

further trajectories are left to be examined. Furthermore, only

those trajectories temporally overlapping with t are considered.
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