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ABSTRACT

Administrative data collected by homeless service providers
offer a unique opportunity to understand how homeless indi-
viduals navigate the homeless system towards securing sta-
ble housing. However, the literature on predictive models in
the context of homeless service provision has neglected the
sequential nature of services that an individual receives over
time. Our work addresses this gap by learning, from adminis-
trative data, a Bayesian network, which in turn can be used to
accurately predict whether an individual will exit the system,
or alternatively, the service she would be assigned to the next
time she experiences homelessness. Experimental evaluation
shows that the proposed approach outperforms prior art not
only at predicting exit, but also the less frequent services (and
thus more challenging to predict).

Index Terms— Complex systems, Bayesian network, hu-
man behavior, probabilistic modeling, trajectory prediction

1. INTRODUCTION

Homelessness is defined by the U.S. Department of Hous-
ing and Urban Development (HUD) as a situation where an
individual experiences lack of fixed, regular, and adequate
nighttime residence [1]. According to the U.S. Department of
Housing and Urban Development (HUD), more than 326, 000
people experience homelessness on a given night [2]. Un-
fortunately, the number of homeless individuals typically ex-
ceeds available resources used to assist them, necessitating
identifying the most vulnerable or in—need individuals, and
matching them to appropriate housing resources. With this
goal in mind, [3] explored the feasibility of an automated rec-
ommendation system designed to match individuals to home-
lessness services, when they first experience homelessness.
On the other hand, numerous methods have been proposed
to predict the potential of individuals to experience repeated
episodes of homelessness [4, 5, 6] and/or their risk of becom-
ing chronically homeless [7, 8]. Most such works are for-
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mulated as a binary—classification task, oversimplifying the
complexities of the homeless service provision system.

In this work, we begin by modeling the homeless ser-
vice provision task as a multi—class classification problem.
Building on the literature of Bayesian learning, we propose a
methodology that uses administrative data collected by home-
less service providers, to learn a Bayesian network that can be
used to accurately predict whether an individual will exit the
system, or alternatively, predict the service she would be as-
signed to the next time she experiences homelessness. We
demonstrate the effectiveness of our approach using a one—
of—a—kind longitudinal dataset that spans 6 years. Our results
show the ability of our approach to predict well not only exit
or high frequency services (which are most probable, but least
actionable), but also less frequent (and therefore more chal-
lenging to predict).

The rest of the paper is organized as follows. Section 2
delineates the problem statement. Section 3 introduces the
proposed approach. Section 4 describes the data, metrics, and
baselines used for evaluation, whereas Section 5 discusses the
experimental results. Section 6 concludes with contributions,
future work, and limitations of this study.

2. PROBLEM STATEMENT

Homeless service providers offer services that are organized
by type (e.g., emergency shelters, transitional housing) [9].
We denote the set of types as P, and the set of individuals as
C, each assigned to such services multiple times (i.e., reenter-
ing the homeless system more than once). Specifically, each
¢ € C is associated with a temporally ordered sequence of
services, of which we focus on the K most recent services,
Te = {Ptys Pty s Dty 1» Where c is assigned to p;, € P at
timestamp ¢;. Given 7, our goal is to first predict whether,
at timestamp ¢ x 1, individual c is likely to exit (£ = 1) or
reenter (£ = 0) the homeless system. When the individual
is predicted to reenter, the goal is to additionally predict the
service py .., she is to be assigned to at {1 1.
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Fig. 1. Bayesian network model of K—length sequences.

3. PROPOSED APPROACH

The timeline of services provided to each individual, includ-
ing the start and end date of specific services, and the tran-
sition between services, offers a unique opportunity to study
how individuals navigate through the homeless system over
time. To gain insights into the dynamics of this complex sys-
tem, we propose PREVISE, a method that PRedicts Exit and
serVice assIgnment using BayeSian nEtwork.

PREVISE begins by modeling the sequences of in-
dividuals in C using the Bayesian network B = (G,0)
shown in Figure 1. Specifically, G is a directed acyclic
graph (DAG) comprising a finite set of random variables,
X = {P,Ps,...,Px,Pry1,E}, where P, € P denotes
the service an individual is assigned to at timestamp ft,
and E denotes exit (or reentry). Edges represent the di-
rect influence of one variable to another, and 6 is the set
of parameters to be learned to fully represent the prior
probability Pr(P;) and the conditional probability distri-
butions Pr(P;|P;—1), fort = 2,.... K, Pr(Pk1|Pk, E),
and Pr(E|Py, P, ..., Pk).

The rationale for this particular structure of B stems from
mathematical epidemiology [10], where the goal is to obtain
the simplest possible model that can accurately replicate the
empirical data. In this context, we make the following mod-
eling assumptions:

1. To account for sequences of varying length, we model
the possibility of individuals exiting (£) the homeless
system at any point (F;).

2. An individual is assigned to a service when she first
enters, or upon reentering the system (i.e., £ = 0). We
thus model a direct influence of exit (E) on Py 1.

3. To reduce the complexity of B, we assume that P
is only influenced by P, where t = 1,2,..., K (i.e.,
Markov property).

Given B and the set of sequences 7 = {7, Ve € C},
PREVISE learns the parameters 6 that satisfy:

meaxL(G :T), (1)

where, likelihood L (6 : T) = [, [ 1. Pr(Xi[c]|Pax,q : 0),
determines how the probability of the sequences changes as a

function of 6, X; € &, and Pay,, the set of parent nodes of
Xi in B. R

Once parameters ¢ are learned, PREVISE is tasked with
making a prediction about an individual given her history
thus far. Specifically, presented with history X, = {P; =
pt,, Po = Diyy ..., Pk = pi,+ obtained from sequence
Te = {Dt,+ Dty -, Pty } Of individual ¢, PREVISE uses Max-
imum A Posteriori (MAP) to predict E and Dig, aS:

E = argmaxp Pr(FE|X,.) 2
Direry = argmaxPK+1Pr(PK+1|Xe, E=0)
The individual is predicted to exit if E= 1, or be assigned to
service type Py, otherwise.

4. EXPERIMENTAL EVALUATION

4.1. Data

An anonymized set of 18, 817 records of all services provided
by homeless service providers, in the Capital Region of the
state of New York (NY), to a total of 6,011 individuals over
the time period of 2012 and 2018 was used for evaluation pur-
poses in this study. The dataset was provided by the CARES
of NY. The history of each individual in the dataset is sampled
using a sliding window of length K. The best value of K was
experimentally determined to be 4 as discussed in Section 5.

We illustrate the sampling process in Figure 2. Specifi-
cally, each sequence is sampled backwards (i.e., starting from
the last entry before py,, ,) with the window of length K slid-
ing by one-step until it reaches p, (e.g., individual X in Fig-
ure 2 is sampled into X7, Xo, X3, X4). Intuitively, when an
individual has exited the system (i.e., £ = 1), a value may not
be available at p;,. We encode this scenario by introducing la-
bel —1. Similarly, we set p;,.., = —1if T.[K + 1] ¢ P. In
addition, we set £ = 1if T.[K + 1] = —1, and 0 otherwise.
Finally, for trajectories shorter than K, the missing values are
encoded with —1 to indicate unavailability of data for that in-
dividual (e.g., individual Z; in Figure 2).

We use D to denote our dataset after sampling, and per-
form a random 80 — 20 split to obtain Dy, and Diyes, the
training and testing sets, accordingly. We use Dy,.qiy to learn
the set of parameters 6 during training, and D;.; to predict E
and py ., during testing.

4.2. Evaluation Metrics

We evaluate the prediction capability of the proposed model
for both when the individual exits the homeless system, and
when she reenters another service in the next step using the
following metrics: (i) Accuracy (i.e., how many times pre-
dicted services (and exit) are correct), (ii) Precision (how of-
ten each predicted service type (and exit) is correct), and (iii)
Recall (how many times each service type (and exit) is iden-
tified correctly).
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Table 1. Comparison between PREVISE and the baselines with respect to Accuracy (Acc), Mean Recall (mR), and Mean

Precision (mP). For reference, K refers to window length.

Prediction | K PREVISE RF LOG-REG UNI-RNDM PA-RNDM
Acc | mR | mP | Acc | mR | mP | Acc | mR | mP | Acc | mR | mP | Acc | mR | mP
2 | 732 | 687 | 763 | 73.3 | 68.8 | 764 | 67.0 | 634 | 66.6 | 51.1 | 51.1 | 51.0 | 49.8 | 49.9 | 49.9
3 1781|776 | 782 | 71.7 | 71.6 | 72.0 | 69.8 | 69.9 | 70.0 | 50.4 | 50.4 | 50.4 | 50.9 | 51.0 | 50.9
E 4 1795|796 | 793 | 68.3 | 664 | 66.0 | 63.1 | 62.1 | 622 | 494 | 495 | 49.5 | 50.4 | 50.3 | 504
5 | 81.8 | 81.9 | 81.3 | 634 | 59.1 | 63.9 | 53.5 | 50.2 | 49.1 | 499 | 50.1 | 50.0 | 50.1 | 50.1 | 50.2
6 | 82.0 | 82.1 | 81.1 | 62.1 | 574 | 60.7 | 47.1 | 432 | 41.7 | 493 | 493 | 494 | 50.0 | 50.1 | 50.0
2 | 68.0 | 404 | 46.8 | 69.0 | 37.1 | 41.7 | 68.0 | 40.6 | 492 | 11.1 | 103 | 11.1 | 355 | 11.0 | 109
3 1741 | 46.2 | 48.0 | 674 | 32.8 | 39.6 | 66.7 | 283 | 374 | 113 | 12.1 | 11.6 | 379 | 114 | 11.2
Ptycrn 4 | 755 | 489 | 42.7 | 59.3 | 22.6 | 26.2 | 542 | 194 | 196 | 106 | 11.7 | 123 | 41.3 | 12.6 | 12.7
51775 | 506 | 45.6 | 560 | 166 | 122 | 50.8 | 17.1 | 133 | 113 | 99 | 15.6 | 44.1 | 158 | 16.0
6 | 775 | 51.5 | 45.9 | 56.0 | 173 | 11.7 | 496 | 158 | 12.6 | 135 | 10.8 | 185 | 45.7 | 185 | 184
4.3. Baselines
We compare PREVISE with the baselines described below.
Given the sequence 7 of client ¢, both p;,.., and E are:
* LOG-REG: predicted using logistic regression. The
Individual Trajectory within the homeless system sequence is one—hot encoded such that each P; is con-
X e il 3 . 12 6 verted to a vector P;[p] = {1 if P; = p or 0 otherwise},
Y 1 4 1 1 where p € P. Two logistic regression models are used
4 1 1 to predict service type and exit, accordingly. Similar to
PREVISE, the individual exits if predicted exit is 1, or
@ is assigned to the next predicted service otherwise.
Pr Pras * RF: predicted using random forest. Similar to LOG-
Individual ) | 5 I 3 . E REG, two random forest classifiers are trained with
one-hot encoded sequences obtained from D4y to
% 4 12 6 -1 ! predict service type and exit accordingly. Both classi-
X, 3 4 12 6 0 fiers comprise 100 trees each, with the maximum depth
X 11 3 4 12 0 reached when the leaves of each tree cannot be further
split. RF, like LOG-REG and PREVISE, predicts exit
X, 1 11 3 4 0 . . . . .
if predicted exit is 1, or assigns the next predicted ser-
t 1 1 1 -1 1 vice otherwise.
% 11 4 11 1 0
* RNDM: chosen randomly. We consider two variants,
4 1 1 ! -1 ! namely selecting a service uniformly at random (UNI-
® RNDM), and with a probability proportional to its fre-

Fig. 2. Data pre—processing illustrative example. (a) Histor-
ical data of service assignments (each row correspond to an
individual). Services are numerically encoded as in [9]. (b)
Each sequence in (a) is sampled with a sliding window of
length K = 3 to obtain D. The next service, py, . ,, received
after px when E/ = 0 is also shown, and —1 is used to encode
the fact that £ = 1 (i.e., the individual exited the system, and
was therefore not subsequently assigned to a service).

quency in the training data (PA—RNDM).

5. RESULTS AND ANALYSIS

Table 1 shows the accuracy, mean recall, and mean precision
at different values of K (the length of the historical data used
for prediction). As K increases, the accuracy of PREVISE
in predicting both the next service assignment, py,_,, and
exit, E‘ increases. This indicates that longer sequences im-
prove prediction accuracy by providing more historical data.
Nevertheless, although the mean recall and mean precision
for £ and p, w1 increases as K increases, however both
plateaus after K = 4. Overall, we find K = 4 to be the
best choice with respect to accuracy, mean recall, and mean
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Fig. 3. (a) Precision and (b) Recall plot for service prediction
at K =4.

precision. We also observe that the performance for each ser-
vice at K = 4 is relatively better than the other values of K.
Moreover, since an increase in window length K decreases
the number of samples in Dy,q;, oObtained from sequences
in 7T, the performance (accuracy, mean recall, and mean
precision) of LOG-REG and RF drops with higher values
of K. Furthermore, the change in D v\ due to changing
K causes the performance of random baselines to fluctuate.
This indicates that PREVISE performs significantly better
with lesser number of samples. Finally, compared with the
baselines, PREVISE achieves a considerable improvement
in mean recall as compared to the baselines. Specifically for
K = 4, it achieves an improvement of 116% (19.8%), 151%
(28.1%), 315% (60.6%), and 287% (58%) improvement in
service (and exit) prediction compared to RF, LOG-REG
and UNI-RNDM, and PA-RNDM respectively.

Finally, to better study how PREVISE (and the baselines)
behaves for each individual service types and exit, we plot
precision and recall for K = 4 (Figures 3 and 4). Evidently,
PREVISE outperforms the baselines in the task of next ser-
vice prediction (Figure 3) and exit prediction (Figure 4),
while predicting highest number of service types. This re-
sult demonstrates the utility of the proposed model; beyond
predicting exit and high frequency services (which would be
accurate yet meaningless), PREVISE can additionally predict
low-frequency service assignments with better precision.
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Fig. 4. (a) Precision and (b) Recall plot for exit prediction at
K =4.

6. CONCLUSION

In this study, we proposed a Bayesian network representa-
tion of individuals’ navigation of the homeless system. To
the best of our knowledge, this work is the first to bring at-
tention to the sequential nature of services that an individual
receives over time. Our experiments showed that inferring the
next service assignment, or alternatively exit out of the system
becomes possible, once the parameters of the Bayesian net-
work are learned. In future work, we plan to study alternative
Bayesian network structures to further improve prediction ac-
curacy. We also plan to explore structure learning methods
(e.g., [11]) to learn the structure of the network directly from
the data. At the same time, our model does not make use
of the rich set of features for each individual recorded in our
dataset and the time delay between services, which we plan
to include in more elaborate Bayesian models.

Finally, we wish to underscore the following crucial con-
siderations before applying our approach to the real-world.
The data is bounded to the Capital region of the New York
State, and captures only the receipt of services, but not their
availability. For instance, capacity constraints (e.g., num-
ber of available beds in an emergency shelter) are not cur-
rently recorded in the data. However, such factors may have
an impact on the next service assignment process. Further-
more, unobserved confounders between service assignments
and reentry are also not recorded, but may have caused bi-
ased estimates of service assignments, which in turn impact
the learned model.
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