Computers, Environment and Urban Systems 100 (2023) 101933

Contents lists available at ScienceDirect
Compurters
ENVIRONMENT

AND
URBAN SYSTEMS

Computers, Environment and Urban Systems

A

ELSEVIER

journal homepage: www.elsevier.com/locate/ceus

L))

Check for
updates

Community time-activity trajectory modeling based on Markov chain
simulation and Dirichlet regression

Chen Xia® Yuging Hu®", Jianli Chen"”

@ Department of Architectural Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
® Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, United States of America

ARTICLE INFO ABSTRACT

Keywords:

Community time-activity trajectory
Markov chain

Dirichlet regression

Socio-demographic and built environment

Accurate modeling of human time-activity trajectory is essential to support community resilience and emergency
response strategies such as daily energy planning and urban seismic vulnerability assessment. However, existing
modeling of time-activity trajectory is only driven by socio-demographic information with identical activity
trajectories shared among the same group of people and neglects the influence of the environment. To further
improve human time-activity trajectory modeling, this paper constructs community time-activity trajectory and
analyzes how social-demographic and built environment influence people’s activity trajectory based on Markov
Chains and Dirichlet Regression. We use the New York area as a case study and gather data from American Time
Use Survey, Policy Map, and the New York City Energy & Water Performance Map to evaluate the proposed
method. To validate the regression model, Box’s M Test and t-test are performed with 80% data training the
model and the left 20% as the test sample. The modeling results align well with the actual human behavior
trajectories, demonstrating the effectiveness of the proposed method. It also shows that both social-demographic
and built environment factors will significantly impact a community’s time-activity trajectory. Specifically: 1)
Diversity and median age both have a significant influence on the proportion of time people assign to education
activity. 2) Transportation condition affects people’s activity trajectory in the way that longer commute time
decreases the proportion of biological activity (eg. sleeping and eating) and increases people’s working time. 3)
Residential density affects almost all activities with a significant p-value for all biological needs, household
management, working, education, and personal preference.

1. Introduction

People’s time-activity trajectory is defined as a sequence of activities
performed by individuals at various places during the twenty-four hours
of day and night to satisfy biological needs, institutional, personal ob-
ligations, and personal preferences (Drummond, 1995; Hagerstrand,
1974). While the goal of urban management is driven by a desire to
improve human life in settlements (Mattingly, 1994), sudden events
such as natural disasters, power outages, fire hazards, and man-made
events often threaten the fulfillment of those needs, disrupting normal
routines and household comfort. On some occasions, people’s time-
activity trajectory impacts the vulnerability of people exposed to these
events and contributes to how the community responds and assigns re-
sources when unexpected events hit (Debnath, 2013). For example, as an
important clue of personal exposure to air pollution, the time-activity
trajectory is often incorporated into the stochastic exposure model to
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evaluate how urban environment contaminants influence citizen life
(Matz et al., 2014). On the other hand, people’s activity trajectories are
also closely related to energy consumption in buildings, especially in the
residential sector, and thus play an important role in community energy
pattern analysis (Karatasou, Laskari, & Santamouris, 2014). Due to a
lack of detailed activity trajectory data, current community energy
analysis often uses simplified predefined occupancy values to run the
model, which leads to discrepancies between the simulated energy
shape and the actual consumed energy. However, for occupancy
schedules, studies have pointed out that people in different communities
hold different schedules, and these differences can greatly influence the
final building stock energy simulation results compared with those using
national average schedules (Buttitta, Turner, Neu, & Finn, 2019). This
makes accurate modeling of people’s time-activity trajectory crucial to
support community resilience management and emergency response
strategies.
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Many technologies and methods have been developed to capture
time-activity trajectories, such as Geographic Information Systems
(GIS), social media data mining, and time use survey (Allahviranloo,
Regue, & Recker, 2017; Huang, 2021; Kwan & Neutens, 2014; Sita-
Nowicka et al., 2016). Time-use surveys often collect data from
computer-assisted telephone interview (CATI) technology to record in-
dividual activity in 24 h. For example, Large-scale time-activity pattern
data have been collected in North America, including the Canadian
Human Activity Pattern Survey (CHAPS) (Matz et al., 2014), the Na-
tional Human Activity Pattern Survey (NHAPS) (Klepeis et al., 2001),
and American Time Use Survey Data (Hamermesh, Frazis, & Stewart,
2005) conducted in the US. Geographic Information Systems (GIS), and
social media data mining collect data from handheld GPS (Global
Positioning System) units, GPS-enabled smartphone tracking applica-
tions, or social media such as Twitter (Qi & Du, 2013).

Compared with survey data, modern technology makes it possible to
automatically capture geographic locations in real-time at detailed
spatial scales through digital devices either embedded in vehicles or
carried by people on smartphones (Kwan & Neutens, 2014). However,
some limitations exist, such as data with only location and time cannot
report context and cause activity ambiguities (Miller, 2021). In more
recent years, social media mining is adopted to help gain the exact ac-
tivity people are doing. However, data collected in this social media-
based method only reflect people who used the application at a spe-
cific time (Lu, 2021). In addition, it also can cause representativeness
bias for people who are less likely to use social media (e.g., children and
the elderly), while they can be relatively vulnerable groups. Therefore,
many studies built their time-activity trajectories model based on peo-
ple’s time use survey data, which can compensate for limitations in
social media-based tracking methods to some degree (Allahviranloo
et al., 2017; Hafezi, Daisy, Millward, & Liu, 2021).

Time-activity trajectory simulation models can be categorized into
the mechanism-identified activity model and data-driven model.
Mechanism-identified activity models examine the underlying behav-
ioral mechanisms based on theories like utility maximation and
decision-making theory (Kitamura, Chen, Pendyala, & Narayanan,
2000). This approach investigates how people assign time to various
activities based on individual characteristics, environmental constraints,
and personal/household utility (Ellegard & Vilhelmson, 2004; Zhang,
Timmermans, & Borgers, 2002). Compared with the mechanism-
identified model which generates the time-activity trajectory through
analyzing the human decision-making process, the data-driven model
often uses statistics to generate a time-activity trajectory at population
based on the large-scale monitoring time use data (Hafezi et al., 2021).
However, most research using this method focus on how social-
demographic features influence people’s time-activity trajectories and
tend to ignore the built environment. Under this method, trajectories are
generated through clustering with the assumption that people in the
same group keep similar trajectories. After groups are formed, re-
searchers can evaluate the influence of social demographic by analyzing
the attributes of people in different groups. However, people with the
same social attributes may still perform different activities at the same
time because of various built environments. For example, people
working in the same company may leave and get home at different times
due to traffic conditions around in their respective residential
neighborhoods.

To fill these research gaps, we propose a methodology to model
community time-activity trajectory with the proportional distribution of
people performing different activities in each time step and analyze how
socio-demographic and built environments influence the trajectories.
This contains two steps: the first is to use the widely used Markov chains
to generate community trajectories based on the American Time Use
Survey (ATUS). This method has been developed and widely used in
many studies. However, it highly relies on the survey data, which does
not cover all communities and only has small data samples in some
communities that are not enough to represent the community trajectory.
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In this study, we apply this method to construct the original trajectories
for those communities with data. The second step is to analyze how the
community demographic attributes and built environment influence the
communities’ trajectories and try to model the trajectories based on
these attributes with the proposed Dirichlet regression model.

The paper is organized as follows: The literature review part provides
an overview of time-activity trajectory models and points out gaps in
current modeling methods. The methodology section presents the
Markov Chain-based activity modeling method and the Dirichlet
Regression to analyze how social and built environments influence the
activity trajectory. The Results & Discussion section presents the find-
ings of the case study on New York City and provides model validation
results. Finally, the conclusion section highlights the contributions of the
study on community time-activity trajectory modeling and activity in-
fluences analysis and the limitations and prospects for future study
direction.

2. Literature review

While the time-activity trajectory represents people’s spatiotemporal
activities that occurred over time, in this study for the purpose at hand
we assume that we are dealing with an urban region and 24 h. Since the
interest in urban management is driven by a desire to improve human
life in settlements (Mattingly, 1994), people’s time-activity trajectory
constitutes an important part of urban-related research. For example, as
an important clue of personal exposure to air pollution, the time-activity
trajectory is often incorporated into the stochastic exposure model to
evaluate how urban environment contaminants influence citizen life
(Matz et al., 2014). Human time-activity is also closely related to energy
consumption in buildings, especially in the residential sector, and thus
plays an important role in energy demand simulation models (Karatasou
etal., 2014), which will impact community vulnerability when expose to
power outage. Due to these applications, the modeling of people’s time-
activity trajectory is attracting increasing attention.

A wide array of theories and methods have been developed to
generate people’s time-activity trajectory. One basic stream is to
examine the underlying mechanisms of how people assign time to
various activities. The mechanisms identified can either be based on
constraints or from the point of human utility (Janssens et al., 2004).
The core idea of the constraints-based model is that individuals face
many constraints limiting their choices. Typically, there are three types
of constraints, i.e., (1) capability constraints that limit the activities of
an individual for biological reasons, such as the necessity of sleeping a
minimum number of hours and the intervals of eating regularly; (2)
authority constraints that generally refer to the legal environment rules
such as access time restrictions to different places; (3) coupling rules that
define where, when, and for how long different people can meet for a
joint activity (Rasouli & Timmermans, 2014). Utility-based models as-
sume that individual or household allocates time to activities based on
utility-maximizing theory (Zhang et al., 2002). This approach uses
utility maximization-based equations to identify the relationships be-
tween an individual’s characteristics and their activity choices.

Mechanism-identified activity models establish the time-activity
trajectory based on analyzing factors on the individual’s choice-
making, which can consider influences from the aspects of both indi-
vidual and environment. However, some limitations have been pointed
out by previous studies (Daisy, Millward, & Liu, 2018). One is that they
assume individuals are rational without considering uncertainty in the
model, which makes it difficult to determine the statistical significance
of the factors affecting the individual’s decisions on their activity. The
other is that most decision-making models depend on predefined pa-
rameters and fail to update with dynamic data. In this case, the data-
driven model can serve as a solution, which utilizes the monitoring
data provided by time-use surveys or GIS sensors to generate people’s
time-activity trajectories. During the modeling process, data mining
techniques are often used to cluster groups with common activity
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patterns, then various statistical techniques are employed to explore the
influence of socio-demographic features on human activity trajectories.
For instance, Jiang, Ferreira, and Gonzalez (2012) used the principal
component analysis (PCA) and K-means clustering algorithm to cluster
several representative groups according to people’s activities and then
compared the social demographic differences in each cluster. Stating
that traditional principal component analysis only represents frequent
activities and disregard the infrequent ones, Liu, Janssens, Cui, Wets,
and Cools (2015) developed a novel process derived from Hidden
Markov Models (pHMMs) to quantify the occurrence probabilities and
sequence of all daily activities. To address the uncertainty in start time
and activity durations, Hafezi et al. (2021) formulate a Random-Forest
model based on people’s socio-demographic characteristics and tem-
poral features of their activities to help predict activity patterns with
specific start time and activity duration.

Compared with models figuring out specific activity decision
mechanisms, a data-driven model can quickly update according to real-
time data while reducing uncertainty underlying the human decision-
making process with large-scale data. However, existing studies often
ignore the built environmental influences. For example, in Allahviranloo
etal. (2017) ‘s study on community activity profiles, they used a K-mean
clustering algorithm to identify representative activity pattern clusters
and then captured the correlation among individual demographic pro-
files and the activity sequences using multivariate probit models. When
doing clustering with similar activity patterns, humans are separated
from the environment they locate. After clusters are formed, the influ-
ence of social-demographic can be analyzed by studying the features of
individuals inside different groups. The influences of the built environ-
ment are often left out in current research.

The built environment is defined as human-made surroundings that
provide a setting for human activity, ranging in scale from personal
shelter to neighborhoods and large-scale civic surroundings (Butt,
Camilleri, Paul, & Jones, 2015). Its influence on people’s activity has
been studied from two aspects: the permanent built environment where
people reside and the context changed with people’s location mobility.
For the context changes with people’s mobility, as mechanism-identified
activity models point out, the environment is an important constraint on
people’s time-activity decisions. Empirical evidence suggests that ac-
tivities are highly related to built environments. For example, some
building types play significant roles in people’s daily life. They carry a
particular semantic meaning such as the living and working places, the
restaurant and shopping mall, etc. (Hillsdon, Coombes, Griew, & Jones,
2015). For the built environment where people reside, it has been stated
for years that the design of the community’s built environment in-
fluences some of human’s specific activities, such as health-related ac-
tivity (Kerr, Rosenberg, & Frank, 2012) and criminal activity
(MacDonald, 2015). However, limited research analyzes how the com-
munity’s built environment influenced people’s daily activity trajec-
tories based on openly accessible data. Therefore, in this study, we use
data-driven methods to generate people’s time-activity trajectories,
and then further analyze how social and built environments influence
these trajectories based on Dirichlet regression analysis.

3. Methodology
3.1. Approach overview

The common definition of a community is a group of people with
diverse characteristics who are linked by social ties, share common
perspectives, and engage in joint action in geographical locations or
settings (Al, 2001). According to the various research purpose, the range
of the geographical scale can be from small census block groups to
county, city, or even countrywide (Chi, 2012). In the United States, a
county is an administrative or political subdivision of a state that con-
sists of a geographic region with specific boundaries. Considering the
small census block groups generally contains between 250 and 550
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housing units, the built environment between nearby block groups does
not show much difference. So, this study focus on a county-level com-
munity trajectories simulation.

To construct a time-activity trajectory that could be used to analyze
both social-demographic and built environment. As Fig. 1 shows, we
first use Markov chains to generate time-activity trajectories for
different areas. Then, we gather built and socio-environment informa-
tion from different areas and use Dirichlet Regression to analyze how
these social and built environments influence the activity trajectory
distribution. Finally, we apply this regression model to perform activity
trajectory prediction based on social and built environment information.
To validate the model, we use New York City as a case study and gather
data from American Time Use Survey, Policy Map, and the New York
City Energy & Water Performance Map to test the proposed method.
During the prediction process, we use 80% data to train the regression
model and the left 20% as the test sample. In this study, each dependent
variable of the regression model is a compositional distribution of the
probability of different activity categories, which are rarely analyzed
with the usual multivariate statistical methods and do not have a stan-
dard to perform model verification. In this paper, Box’s M Test and t-test
are performed for the equality test of covariance structure and center of
test sample and modeling result. Detailed contents of each step are
further classified in the following part.

3.2. Markov chains simulation for community time-activity trajectory
modeling

The term ‘activity’ refers to various behaviors over time (Drummond,
1995). There is no standard uniform classification of personal activities
yet. The most accepted typology is in travel behavior studies proposed
by Reichman, which divides activities into three categories as subsis-
tence, maintenance, and discretionary (leisure) activities (Chung & Lee,
2017; Reichman, 1976). Yamamoto and Kitamura (1999) advocate a
simplified activity classification of two categories: mandatory (must-
engaged activity) and discretionary (individual has the choice to be
engaged). Other classifications like physiological needs, institutional
demands, personal obligations, and personal preferences are also
employed in research (Vilhelmson, 1999). This study builds activities
categories based on the original activity classes in the American Time
Use Survey, which category activities into 18 types. Because some of its
activity categories serve the same purpose according to the standards in
the literature, we further summarized detailed activity categories like
socializing, relaxing, and sports into the personal preference category
used in the literature. Finally, we have 8 classifications as follows:
essential health activity, biological needs (eating, sleeping), working,
education, household management, personal obligations (shopping,
banking, childcare, etc.), personal preference (leisure activities), and
others (outside traveling activities).

Basic time-activity trajectory refers to the fundamental time
geographic entity representing the ordered mobility of individuals
moving in geo-space during a day cycle (Frihida, Marceau, & Thériault,
2004). For a more complex level, not only the geographic location but
also the activity performed at specific times and locations are also
included. Data used to construct time-activity trajectory can be collected
through time-use surveys, Geographic Information Systems (GIS), and
social media data mining. Since this study focuses on synthesizing chains
of activities and space-time distribution at the community level based on
information regarding all-day activity categories, social demographics
of individuals, and the building environment they locate, survey data is
preferred as a source for constructing people’s time-activity trajectory.

To generate activity schedules in each community, one way is to
directly obtain it from the sampled time-use data. However, this method
is deterministic in a certain sense that only collected individual activity
schedules can be generated, which is insufficient to fully describe the
stochastic nature of individual behaviors. Since we focus on NY as a
specific study region, the number of collected individual behavior
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Fig. 1. Community time-activity trajectory modeling framework.

schedules usable for behavior sampling and analysis is limited. This
would potentially introduce bias or incomprehensiveness in analysis.
Hence, in this study, we use Markov Chain (MC) based model, as a
stochastic modeling approach, to simulate the activity status of in-
dividuals in each time step. This method has been widely used in activity
simulation research because of its advantage to handle categorical time-
series sequences (Liu et al., 2015; Zhou, Yuan, & Yang, 2020) as well as
capturing behavior stochasticity. Markov Chain assumes that the prob-
ability of observation in any state is influenced only by the preceding
states (Geyer, 1992). When the simulation reaches a certain scale, it can
include more diverse sets of behaviors while ensuring the convergence
of behavior probability profiles with stochasticity considered. The used
MC approach makes the analyzed behavior profiles closer to the actual
human behaviors.

During the modeling process, it captures the temporal characteristics
in two aspects: transition probability between different activities and the
duration of each activity. In this study, we divide 24 h into 96-time
states. For a discrete sequence of states, given the first-order Markov
chain with an initial probability a and a transition matrix &,q, the
probability of transitions from State p to State q in Sequence i could be
calculated with the stationary transition matrix §Lq. In this study, the
transition probability matrices are trained based on existing samples.
The Bayes-based approaches can be further utilized to update transition
probabilities (Chen, Ji, & Wang, 2019; Li & Ji, 2020) with new coming
data. Once we define an initial activity in the start time step (e.g.,
Sleeping at 11 pm), we can get the probability of each activity in the
following time step sequences.). As Fig. 2 shows, for activity A, B, C, they
have separate occurrence probability for daily time steps t (1,2,3...t) as
A (ay, ag, as...ay), B (by, by, bs...by), C (cq, ¢a, €3...¢y). To transfer them to
the broken activity probability distribution in the same step t, there
should be probabilities: ay/ (a; + by + ¢¢); by/ (a¢ + by + ¢p); ¢/(a; + by +
cy). For this study, the time-activity trajectory generated will be a
96*8-dimension matrix.

Time |a |b |c Time |a b c

step step

1 0.1 (0305 - 1 0.11 033 |056

2 01]04]|04 2 0.12 (044 |0.44

3 08 (03|01 3 0.67 | 0.25 | 0.08
Activity Chains Activity distribution

Fig. 2. Time-activity pattern transformation example.

3.3. Dirichlet regression model for activity influences analysis

Activity trajectories generated in Markov Chain simulation are
groups of compositional data of activity possibility distribution in each
time step. Compositional data are a special case in the field of statistics.
They are non-negative data with the distinctive property that the sum of
their value is a constant, usually 1 (proportions) or 100% (percentages)
(Aitchison, 1994). Compared with the general data set, applying the
usual multivariate analysis for such compositions can lead to problems
ignoring their underlying sample constraints (strictly positive and sum
to a constant value). To study this type of data, there is a way to do log
ratios of the compositional data, so the traditional multivariate tech-
niques can be applied to the transformed data (Aitchison, 1994)). After
that, Campbell and Mosimann developed an alternative approach by
extending the Dirichlet distribution to a class of Dirichlet Covariate
Models (Dirichlet Regression), which can be used to analyze a set of
variables lying in a bounded interval without having to transform the
data (Hijazi, 2009). Therefore, to analyze how social and built envi-
ronments influence activity possibility distribution in each time step of
activity trajectories and mode the compositional data in each step, the
Dirichlet regression model was proposed in this study.
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Dirichlet distribution is a family of continuous multivariate proba-
bility distributions parameterized by a vector « of positive reals (Maier,
2014). As defined in Eq. (1), let Y = (y3, ...,yp) be a 1 x D positive vector
having the Dirichlet distribution. Each variable is shapely parameterized
by the vector ag, which has the same number of elements as our Y vector.
For this distribution, the parameters ag > VD, ype< (0,1),

and 3°5_,yp = 1vD must hold.

_ e
ol =5 Hyp eh)

In the Dirichlet regression model, y~f(a) denotes a variable that is
Dirichlet -distributed with the common parametrization. For those
variables, the sum of all as—aug =3 »_,ap— can be interpreted as a
‘precision’ parameter. The higher this value, the more density is near the
expected value). The expected values are defined as E[ypl=a./ao.
Parameter estimation in the Dirichlet regression model is also based on
maximum likelihood techniques (Hijazi, 2006). Once the estimation has
been accomplished, the fitness of the Dirichlet model to the composi-
tional data needs to be assessed. Since the likelihood-based methods
depend on the parametric assumption led to inaccurate results, it is
important to check the validity of the parametric assumption. Widely
used techniques in regression model assessment such as examination of
the residuals, goodness-of-fit measures, and influence diagnostics are
also used in this study to investigate the goodness of fit of the estimated
Dirichlet models, and the importance of factors included.

For independent variables included in the Dirichlet regression
model, potential factors of social and built environments are summa-
rized from the literature. Social environments have been researched
soundly in current research, either in the mechanism-identified
modeling or data-driven model, which mainly includes demographic
information such as age, gender, and education (Dianat, Habib, & Miller,
2020; Matz, Stieb, & Brion, 2015). Therefore, this study uses these
people’s socio-demographic information to represent the social envi-
ronments. The built environment generally includes broad indicators in
terms of both indoor and outsides conditions. Studies on built-
environment indicators in the United States show most indicators fall
into three domains: land use, housing condition, and transportation
(Lynch & Mosbah, 2017). While housing condition is often linked to
specific house unit and is more related to household activity, previous
studies pointed out that land use and transportation are two important
factors that influence human activity trajectories (Bhat et al., 2013).
Therefore, this study also takes the two factors. For the transportation
environment, while peak-hour traffic often reflects the maximum ca-
pacity and availability of urban traffic (Winston, 2005), the average
travel time to work, a key index defined by the US census bureau to
represent the transportation infrastructure availability in the commu-
nity, is used as an indicator. As for the land use, we use the building type,
which is defined based on occupancy use in the International Building
Code (IBC), as the indicator.

To validate the model prediction result, part of the samples are used
as training data and the left as testing data. Since compositional data are
rarely analyzed with the usual multivariate statistical methods, Dirichlet
regression as a recently proposed method to model does not have a
standard to perform model verification. In this paper, we check whether
there is a significant difference between model prediction results and
original data to verify the model. To compare two groups of composi-
tional data, Pawlowsky-Glahn, Egozcue, and Tolosana Delgado (2007)
proposed that there is no difference between both groups if the covari-
ance structure and the centers are all the same. Box’s M Test is used to
perform the covariance structure test. The null hypothesis for this test is
that the observed covariance matrices for the dependent variables are
equal across groups. Therefore, a non-significant-test result indicates
that the covariance matrices are equal. A t-test is used to perform a
center test. The null hypothesis for the t-test is also there is no significant
difference between the two groups.
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4. Case study

We test this method in New York City areas since all its five counties
have very different environments and data on both activities and in-
fluences are available in this city. For the activity data, we use the
American Time Use Survey (ATUS), a publicly available continuous
survey on people’s time use in the United State, to perform the activity
simulation process. The major purpose of ATUS is to develop nationally
representative estimates of how people spend their time. To reach this
goal, individuals are generally interviewed through computer-assisted
telephone interview (CATI) technology about how they spent their
time on the previous day, where they were, and whom they were with.
This survey provides information on the time people spend in around
three hundred activities, such as sleeping, eating, socializing, and
relaxing. Besides activities, demographic information, such as gender,
race, age, occupation, income, marital status, and the presence of chil-
dren in the household, also is available for each respondent. The survey
is performed nationwide for a continuous year since 2003. In this study,
we collected part of the survey data from 2015 to 2019 in New York City
in weekdays, including a total of 1284 individuals. Then we derived the
city into five communities according to its county separation, which are
New York County (Manhattan), Kings County (Brooklyn), Bronx County
(The Bronx), Richmond County (Staten Island), and Queens County
(Queens) to analyze their built-environment impact.

4.1. Data process

Socio-demographic information in each community is collected from
Policy Map, an online mapping platform (http://www.policymap.com)
created by the Reinvestment Fund featuring data on demographics,
housing, mortgage loans, and FEMA (Federal Emergency Management
Agency) disaster declarations. As Table 1 shows, we collected nine socio-
demographic characteristics in the 2015-2019 period. Some informa-
tion is recorded as the data is, like median age, male to female ratio,
people with disabilities, household median income, and annual unem-
ployment rate. Others are collected through specific indexes defined in
Policy Map Data Dictionary: population density is the estimated number
of people per square mile; diversity is collected through an index ranging
from 0 to 87.5 that represents the probability that two individuals of
different races are chosen at random in the given geography; Racial
segregation is collected through Theil Index, which is a measure of how
evenly members of racial and ethnic groups are distributed within a
region, calculated by comparing the diversity of all sub-regions (Census
blocks) to the region as a whole; Education is estimated percent of
people with at least a high school diploma.

Building type and transportation are two important aspects of the
built environment reported in the literature that will influence human
activities. Fig. 3(a) shows the distribution of average travel time to work
in New York City. Among the five boroughs, work commuting time in
Manhattan is obvious the least than in the other four communities. This
indicates workers living in principal cities of micropolitan areas gener-
ally have a shorter average travel time than those living elsewhere in
micropolitan areas. Building type distribution information is gathered
from the NYC (New York City) Energy & Water Performance Map
developed by the New York University’s Marron Institute of Urban
Management and the NYU Urban Intelligence Lab in partnership with
the Mayor’s Office of Sustainability. As Fig. 3(b) shows, residential
building occupies most of all of the communities. While institutional
building comes second, in the Richmond community, it is highest. Of the
business building, most are located mostly in Manhattan County, though
it is geographically the smallest of the five boroughs of New York City.

Activity data are integrated into three distinct groups in each com-
munity through K-means clustering according to their different distri-
butions on active at home, sleep, and out of the home. For each cluster in
Table 2, the X-axis stands for a scaled time through a day from O h to 24
h, the Y-axis stands for data points. Different colors in visualization
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Table 1
Socio-demographic information in communities.
Social environment Bronx Queen Manhattan Kings Richmond
Population density 34,090.12 21,075.68 71,488.69 36,573.40 8135.86
Diversity 59.34 76.39 68.31 72.57 56.54
Racial segregation 0.26 0.36 0.33 0.43 0.29
Median Age 34 39 38 35 40
Male to female ratio (%) 89 94 90 90 94
People with disabilities (%) 15.23 9.61 10.28 9.98 9.83
Household income median ($) 40,088 68,666 86,553 60,231 82,783
Annual unemployment rate (%) 5.3 3.4 3.4 4 3.8
Education (%) 72.76 82.02 87.28 82.38 88.75
Number of Samples 102 116 124 151 25
Transportation Infrastructure Distribution
- E— Queen Kings
- ‘
Manhattan Richmond Bronx

= Residential

| YO R
/

= Mercantile = Business Institutional = Others

(b)

Fig. 3. Transportation infrastructure availability (a) and building type distribution (b) in New York.

denote the different activity status of each data point in each period.
Overall, there exist two obvious patterns among these clusters: most
time at home and most time away from home. For each community, the
differences are in two aspects: one is data distribution in clusters. Take
Richmond and Manhattan as an example, most data samples are in
Cluster 1 as active at home during the daytime in Richmond, while in
Manhattan, most people are away from home during the daytime at
Cluster 2. The other is that though two clusters are all most of the time
away from home, the structures inside clusters are different, which re-
flects when people begin to transfer from one state to the other. Take
Cluster 3 in Bronx and Queen as an example, people in the Bronx tend to
stay at home for some time and leave home at noon, while people in
Queen tend to leave home early and spend more time active at home in
the evening.

To make sure that the regression model is a valid one, a correlation
test was performed to deal with potential multicollinearity issues among
independent variables. In general, the more predictor variables included
in a valid model the lower the bias of the predictions, but the higher the
variance, and tend to be over-fitting. Coefficients in Table 3 shows there
is a high correlation between some variables like Diversity and Racial
Segmentation (0.81). For these highly related variables whose co-
efficients are larger than 0.75, we do filter with the Akaike information
criterion (AIC). Given a collection of models for the data, AIC and BIC
estimate the quality of each model. BIC is more useful in selecting a
correct model while the AIC is more appropriate in finding the best
model for predicting future observations (Chakrabarti & Ghosh, 2011).
Generally, the smaller AIC & BIC value, the better the model. For pre-
diction, AIC was preferred when contraction existed in this study. After
this process, variables left in the model are Time, Diversity, Med_Age,
Residential, and Trans, among which time is the predictor variable while
other variables are regarded as moderating variables.

4.2. Results & discussion

4.2.1. Community time-activity trajectory patterns

Time-activity trajectory patterns in each community are generated
through Markov Chain. Fig. 4(a) shows probability distribution through
a single day (24 h) in one community. The X-axis denotes every 15 min
as one time step, while the y-axis denotes the probability of each activity
in that time step. An obvious trend in the figure is that during the night,
biological activity(c02) occupies the most possibilities. Though there is
still some amount of people awake for personal preference at night,
there is nearly no probability for other activity. When time shifts to
daytime, other activities began to grow in possibility, especially the
activity of working. The working probabilities surges around time step
20 at 5 am. If we see the mean probability in Fig. 4(b), biological activity
(c02), working(c05), and personal preference(c07) dominants people’s
daily life, which fits with common sense.

For probability distribution of specific activity during a day, bio-
logical and working activity trajectories in different communities are
compared in Fig. 5. Since the X-axis denotes each 15 min time step and
starts from midnight, communities share a similar trajectory in the night
with a very low probability of working. During the daytime, we see that
some community like the Bronx maintains a relatively stable trajectory
with low probability varying between 0.2 and 0.3. However, in other
community, especially Manhattan, the working probability surges
around period 20 at 5 am and go a sharp down around period 65 at 4 pm.
And it hits the highest working probability during the day. If we focus on
the working lasting period, though probability shows relatively low in
the Brony, it lasts longest till around 7 pm. While in other communities,
the working trajectory follows a regular working period. If we compare
the biological pattern in the two communities with the most different
working trajectories, though in general, these two trajectories follow the



Table 2
Activity cluster in New York counties.
County Cluster 1 Data Cluster 2 Data Cluster 3 data
Bronx 39% 38% 100 - 23%
80
60
4
20
o]
Queen 100 38% 33% 100 29%
0 80
) &
0 40
2 20
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King 100 42% 33% 25%
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Richmond 100 48% 16% 36%
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20
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Manhattan 100 1 31% 44% 100 26%
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X-axis: Time; Y-axis: Data sample; Color:
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Table 3

Variables correlation matrix.
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same time pattern, biological activity in Manhattan is ahead by around
one hour more than activity in the Bronx. The difference could be caused
by both social and built environment differences such as population and
working structure, which will be explored in the following section
through the Dirichlet regression model.

The detailed activity probability distribution in each time step can be
analyzed through ternary diagrams, a widely used technique to visualize
compositional data. It can only display three parts at the same time, so
the three main activity biologicals, working, and personal preference are
displayed in Fig. 6. While each angle demotes the activity with 100%
probability, the perpendicular to the opposite side acts as an axis, on
which the intersection denotes O probability. Take Point D as an
example, it has a 0.35 probability for activity c05,0.43 probability for
activity c02, 0.22 probability for activity c07. The dotted line in this
figure is the mean proportion of each activity with time varies, accuracy
parameter controls how data is displayed around the mean. During the
modeling process of Dirichlet regression, the mean and the accuracy
parameter are estimated. In this study, variation of activity shows a
strong relationship with time. So, in the modeling process, time was
regarded as the predictor variable while the other environment variables
as moderating variables, which are variables that affect the direction
and/or the strength of the relationship between predictor and outcome
variables (Thompson, 2006).

4.2.2. Regression modeling results and discussion

Dirichlet regression results are shown in Table 4. Time as the direct
predictor variable shows significance for all activities. In this study,
instead of using time, time square is adopted as the predicted variable
because the visualization of activity sequences suggests that there is
possible a non-linear relationship with this variable. So, the coefficient
of the time variable determines how wide or narrow the related time-
activity graphs are, and whether the graph turns upward or down-
ward. A positive value causes the ends of the parabola to point upward,
while the negative caused the other direction. Results show that it is
negative for all activity but biological, which makes sense as the main
biological activity is sleeping, which reaches the highest proportion at
night, while other activity shows the least proportion. The values also
control the rate of the change. The greater the quadratic coefficient, the
narrower the parabola. The lesser the quadratic coefficient, the wider
the parabola. Which may cause different time-activity trajectories in
various communities. This Difference in values of different areas may be
caused by the moderating effect of the social and built environment.

For the social environment effect, diversity has a significant positive
effect on biological activity and education. This indicates that with di-
versity increases, the portion of people performing these activities will
increase at a specific time, especially for the education activity, which
holds the largest coefficient with the most significant p-value. For di-
versity, low diversity index values suggest more homogeneity and
higher index values suggest more heterogeneity. Racially and ethnically
homogenous areas are sometimes representative of concentrated
poverty or concentrated wealth (Parker, 2015). High heterogeneity,
therefore, contributes to more diverse activity patterns. Besides, studies
on the relationship between diversity and education reveal that racial
diversity could promote education for individuals, institutions, and the
whole society (Milem, 2003). The result in this study also reflects one
aspect of the diversity benefits from the perspective of the proportion of
educated people. Median age gives a picture of what the age distribution
looks like in a specific community. In this study, median age shows a
negative effect on education, which indicates that with the aging of a
specific population, people spend less time studying. This makes sense as
education is generally performed in the early years of people’s life. As
people get aged, though there are still opportunities for people to get
educated, it is less common than that at their young period.

For the built environment, transportation influences both biological
activity and working activity, though in opposite direction. Since
average travel time to work was used as an index for transportation
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Table 4

Dirichlet regression results.
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conditions. The negative effect on biological shows that with the in-
crease of traffic time to work, people spend less time on biological ac-
tivity, in which sleeping may occupy the most part. This result is
consistent with the 2019 American Community Survey Reports (Burd,
Burrows, & McKenzie, 2021). In their survey, they found that departure
for the workplace holds a relationship with traffic time. Generally,
workers having the longest average travel times to work leave home
during the earliest hours of the day. For example, Workers leaving home
during the earliest hours of the day from 12:00 a.m. to 4:59 a.m. had the
longest average travel times to work at 35.2 min, while workers who left
for work from 6:00 a.m. to 8:29 a.m. reported the longest average travel
time to work at 32.8 min. This also partly explains why average travel
time to work has a positive effect on working time. To reduce traffic,
some people may leave home earlier and stay office later (Hartgen,
Fields, Layzell, & Jose, 2012).

The proportion of residential buildings affects almost all activities
with a significant p-value for all biological needs, household manage-
ment, working, education, and personal preference. While high resi-
dential building proportion often points to being a more urbanized area,
studies have provided evidence that rural residents experience a health
disadvantage compared to urban residents due to their different daily
activity patterns (Matz et al., 2014). Besides, the positive effect on
personal preference indicates that as residential building increases,
people have more time for personal preference activities, such as
relaxing and doing sports. Studies on the residential environment reveal
that higher residential building density has direct effects on utilitarian
physical activity and has many benefits in terms of efficient use of
infrastructure, housing affordability, energy efficiency, and possibly
vibrant street life (Forsyth, Oakes, Schmitz, & Hearst, 2007), which
somewhat contributes to the result that people in higher residential
building density area spend less time on household activity or working
activity.

4.3. Model prediction and verification

To verify the model, 80% of samples are used as training data and the
left 20% as testing data. Box’s M test and t-test are used to check the
equality of covariance structure and the centers respectively. For the
covariance structure test, the null hypothesis is that observed covariance
matrices for the dependent variables are equal across groups. Therefore,
a non-significant result indicates there is no significant difference be-
tween the two groups, which is verified in the results shown in Table 5. t-
test for center equality has a similar hypothesis as Box’s M test. How-
ever, for the test result category centers in each group, activity emer-
gency health and education show a difference with significant p values.
Analyzing the data, the absolute difference between the centers of these
two activities are smaller than other activity. The main reason for the
significant-test results lies in that the proportion of these two activities is
far smaller than other activity, which magnifies the difference.

5. Conclusion

In this paper, we present and test a method modeling community
detailed time-activity trajectory patterns consisting of both social de-
mographic and build environment. we start with generating different
time-activity trajectory patterns for different communities by using
Markov chains. To construct the activity trajectory, we divide one day
into 96 time periods with 15 min intervals. For each activity, Markov
chains were used to estimate activity chains for 24 h. Then, all activity
chains were integrated and transformed into a probability distribution of
activities in each period. With this compositional trajectory result, a
prediction model based on Dirichlet regression was built for the future
prediction of community time-activity trajectory prediction. During the
modeling process, the correlation among community environments to
the bundles of activities performed and their corresponding time
sequence has also been captured. To verify the model prediction
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Table 5
Model verification results.
Co1 C02 C03 C04 Co5 Co6 co7 Ccos

Box’M test Chi-Squared = 3886.1, df = 4656, p-value = 1
T test
p-value 3.6e-12 0.5742 0.50724 0.0323 0.2483 1.1e-6 0.1126 0.2130
Mean (Test) 0.0073 0.3487 0.0635 0.0414 0.1873 0.0115 0.2088 0.0494
Mean (Predict) 0.0183 0.3748 0.0678 0.0051 0.1661 0.0233 0.2398 0.5764

accuracy, we apply the model in New York City as a case study with 80%
of samples as training data and the left 20% as testing data. The pre-
dicted result of test data is the same as the sample in terms of the
covariance matrix and center for most activity in two groups’ activity
trajectories, which proves the robustness of the proposed method in
modeling community time-activity trajectory in detail distribution.

This paper also quantifies the influence of different environment
variables on the distribution of community activities proportion in terms
of time. While time is the main influence for community time activity
trajectory pattern, both social-demographic and build environment
could influence activity proportion’s changes over time. The result
shows that 1) Diversity and median age both have a significant influence
on education activity, though in a different direction. 2) Transportation
condition affects people’s activity trajectory in the way that longer
commute time decreases the proportion of biological activity and in-
creases people’s working time. 3) Residential building proportion affects
almost all activities with a significant p-value for all biological needs,
household management, working, education, and personal preference.
Since current models developed to generate time-activity trajectories are
often based on pure socio-demographic information with the assump-
tion that people in the same group follow the same trajectory, the
methodology presented in this paper could model community time-
activity trajectory with a detailed distribution of people performing
different activities in a specific period considering both socio-
demographic and built environment influences. This could help pro-
vide a more profound and accurate basis for the study that is based on
human activity trajectories.

The proposed community time-activity trajectory model can also
help improve the community’s resilience against sudden events, such as
natural disasters, power outages, fire hazards, and man-made events by
understanding its initial impact. The in-time activity distribution could
help related organizations evaluate potential damage severity and make
in-time response strategies. Besides that, this can also benefit daily en-
ergy planning to improve the community’s resilience. For example, the
daily load management and scheduling, especially in high-demand
times under extreme hot and cold days. If we know the in-time com-
munity activity distributions among areas in different communities, we
can make daily load management and scheduling with minimum eco-
nomic and safety risks. Also, while social demographic information
cannot be changed, the revealed influences on human activity of built
environment and infrastructure could be used by the governor to pro-
mote community wellbeing.

However, there are still some limitations to this study. At present, the
transition probabilities matrix in this study is generated based on
existing samples. To appropriately incooperate uncertainty when the
model is built with small sample size in specific communities, the
transition probability matrix can be updated when additional records
come in. Also, since there is no standardized way to validate the
Dirichlet regression model with compositional data, we use Box’s M test
and t-test to compare the equality of covariance structure and center to
test the equality of two group data. Additionally, due to some activity
features and the limitation of telephone-based survey limitation, some
acclivity occupies a small proportion, which makes it hard to perform
accurate predictions on those activities. However, these activities,
especially health emergency activities, are often related to vulnerable
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people who are most likely to be affected during the power outage
period. So, in the future, if the information on these activities could be
gathered through other sources like social media or hospital data plat-
forms and integrated into the activity simulation model, the research
will be more complete. Besides that, while the unit community selected
in this paper is at the county level, the method can be applied to com-
munities with the bigger geographic area such as cities or states as the
data used is openly accessible. When expanding the geographic area,
more built environment factors can be explored besides the typical two
built environment attributes we focused on in this study. In the time
dimension, as we modeled the community time-activity trajectories on
weekdays, weekend patterns should also be considered. However,
compared with weekday trajectories, people’s activities tend to be more
random on weekend days, so, this may rely on in-time GIS tracking
technology and can be studied in the future.
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