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Many technologies and methods have been developed to capture 
time-activity trajectories, such as Geographic Information Systems 
(GIS), social media data mining, and time use survey (Allahviranloo, 
Regue, & Recker, 2017; Huang, 2021; Kwan & Neutens, 2014; Siła- 
Nowicka et al., 2016). Time-use surveys often collect data from 
computer-assisted telephone interview (CATI) technology to record in
dividual activity in 24 h. For example, Large-scale time-activity pattern 
data have been collected in North America, including the Canadian 
Human Activity Pattern Survey (CHAPS) (Matz et al., 2014), the Na
tional Human Activity Pattern Survey (NHAPS) (Klepeis et al., 2001), 
and American Time Use Survey Data (Hamermesh, Frazis, & Stewart, 
2005) conducted in the US. Geographic Information Systems (GIS), and 
social media data mining collect data from handheld GPS (Global 
Positioning System) units, GPS-enabled smartphone tracking applica
tions, or social media such as Twitter (Qi & Du, 2013). 

Compared with survey data, modern technology makes it possible to 
automatically capture geographic locations in real-time at detailed 
spatial scales through digital devices either embedded in vehicles or 
carried by people on smartphones (Kwan & Neutens, 2014). However, 
some limitations exist, such as data with only location and time cannot 
report context and cause activity ambiguities (Miller, 2021). In more 
recent years, social media mining is adopted to help gain the exact ac
tivity people are doing. However, data collected in this social media- 
based method only reflect people who used the application at a spe
cific time (Lu, 2021). In addition, it also can cause representativeness 
bias for people who are less likely to use social media (e.g., children and 
the elderly), while they can be relatively vulnerable groups. Therefore, 
many studies built their time-activity trajectories model based on peo
ple’s time use survey data, which can compensate for limitations in 
social media-based tracking methods to some degree (Allahviranloo 
et al., 2017; Hafezi, Daisy, Millward, & Liu, 2021). 

Time-activity trajectory simulation models can be categorized into 
the mechanism-identified activity model and data-driven model. 
Mechanism-identified activity models examine the underlying behav
ioral mechanisms based on theories like utility maximation and 
decision-making theory (Kitamura, Chen, Pendyala, & Narayanan, 
2000). This approach investigates how people assign time to various 
activities based on individual characteristics, environmental constraints, 
and personal/household utility (Ellegard & Vilhelmson, 2004; Zhang, 
Timmermans, & Borgers, 2002). Compared with the mechanism- 
identified model which generates the time-activity trajectory through 
analyzing the human decision-making process, the data-driven model 
often uses statistics to generate a time-activity trajectory at population 
based on the large-scale monitoring time use data (Hafezi et al., 2021). 
However, most research using this method focus on how social- 
demographic features influence people’s time-activity trajectories and 
tend to ignore the built environment. Under this method, trajectories are 
generated through clustering with the assumption that people in the 
same group keep similar trajectories. After groups are formed, re
searchers can evaluate the influence of social demographic by analyzing 
the attributes of people in different groups. However, people with the 
same social attributes may still perform different activities at the same 
time because of various built environments. For example, people 
working in the same company may leave and get home at different times 
due to traffic conditions around in their respective residential 
neighborhoods. 

To fill these research gaps, we propose a methodology to model 
community time-activity trajectory with the proportional distribution of 
people performing different activities in each time step and analyze how 
socio-demographic and built environments influence the trajectories. 
This contains two steps: the first is to use the widely used Markov chains 
to generate community trajectories based on the American Time Use 
Survey (ATUS). This method has been developed and widely used in 
many studies. However, it highly relies on the survey data, which does 
not cover all communities and only has small data samples in some 
communities that are not enough to represent the community trajectory. 

In this study, we apply this method to construct the original trajectories 
for those communities with data. The second step is to analyze how the 
community demographic attributes and built environment influence the 
communities’ trajectories and try to model the trajectories based on 
these attributes with the proposed Dirichlet regression model. 

The paper is organized as follows: The literature review part provides 
an overview of time-activity trajectory models and points out gaps in 
current modeling methods. The methodology section presents the 
Markov Chain-based activity modeling method and the Dirichlet 
Regression to analyze how social and built environments influence the 
activity trajectory. The Results & Discussion section presents the find
ings of the case study on New York City and provides model validation 
results. Finally, the conclusion section highlights the contributions of the 
study on community time-activity trajectory modeling and activity in
fluences analysis and the limitations and prospects for future study 
direction. 

2. Literature review 

While the time-activity trajectory represents people’s spatiotemporal 
activities that occurred over time, in this study for the purpose at hand 
we assume that we are dealing with an urban region and 24 h. Since the 
interest in urban management is driven by a desire to improve human 
life in settlements (Mattingly, 1994), people’s time-activity trajectory 
constitutes an important part of urban-related research. For example, as 
an important clue of personal exposure to air pollution, the time-activity 
trajectory is often incorporated into the stochastic exposure model to 
evaluate how urban environment contaminants influence citizen life 
(Matz et al., 2014). Human time-activity is also closely related to energy 
consumption in buildings, especially in the residential sector, and thus 
plays an important role in energy demand simulation models (Karatasou 
et al., 2014), which will impact community vulnerability when expose to 
power outage. Due to these applications, the modeling of people’s time- 
activity trajectory is attracting increasing attention. 

A wide array of theories and methods have been developed to 
generate people’s time-activity trajectory. One basic stream is to 
examine the underlying mechanisms of how people assign time to 
various activities. The mechanisms identified can either be based on 
constraints or from the point of human utility (Janssens et al., 2004). 
The core idea of the constraints-based model is that individuals face 
many constraints limiting their choices. Typically, there are three types 
of constraints, i.e., (1) capability constraints that limit the activities of 
an individual for biological reasons, such as the necessity of sleeping a 
minimum number of hours and the intervals of eating regularly; (2) 
authority constraints that generally refer to the legal environment rules 
such as access time restrictions to different places; (3) coupling rules that 
define where, when, and for how long different people can meet for a 
joint activity (Rasouli & Timmermans, 2014). Utility-based models as
sume that individual or household allocates time to activities based on 
utility-maximizing theory (Zhang et al., 2002). This approach uses 
utility maximization-based equations to identify the relationships be
tween an individual’s characteristics and their activity choices. 

Mechanism-identified activity models establish the time-activity 
trajectory based on analyzing factors on the individual’s choice- 
making, which can consider influences from the aspects of both indi
vidual and environment. However, some limitations have been pointed 
out by previous studies (Daisy, Millward, & Liu, 2018). One is that they 
assume individuals are rational without considering uncertainty in the 
model, which makes it difficult to determine the statistical significance 
of the factors affecting the individual’s decisions on their activity. The 
other is that most decision-making models depend on predefined pa
rameters and fail to update with dynamic data. In this case, the data- 
driven model can serve as a solution, which utilizes the monitoring 
data provided by time-use surveys or GIS sensors to generate people’s 
time-activity trajectories. During the modeling process, data mining 
techniques are often used to cluster groups with common activity 
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patterns, then various statistical techniques are employed to explore the 
influence of socio-demographic features on human activity trajectories. 
For instance, Jiang, Ferreira, and González (2012) used the principal 
component analysis (PCA) and K-means clustering algorithm to cluster 
several representative groups according to people’s activities and then 
compared the social demographic differences in each cluster. Stating 
that traditional principal component analysis only represents frequent 
activities and disregard the infrequent ones, Liu, Janssens, Cui, Wets, 
and Cools (2015) developed a novel process derived from Hidden 
Markov Models (pHMMs) to quantify the occurrence probabilities and 
sequence of all daily activities. To address the uncertainty in start time 
and activity durations, Hafezi et al. (2021) formulate a Random-Forest 
model based on people’s socio-demographic characteristics and tem
poral features of their activities to help predict activity patterns with 
specific start time and activity duration. 

Compared with models figuring out specific activity decision 
mechanisms, a data-driven model can quickly update according to real- 
time data while reducing uncertainty underlying the human decision- 
making process with large-scale data. However, existing studies often 
ignore the built environmental influences. For example, in Allahviranloo 
et al. (2017) ‘s study on community activity profiles, they used a K-mean 
clustering algorithm to identify representative activity pattern clusters 
and then captured the correlation among individual demographic pro
files and the activity sequences using multivariate probit models. When 
doing clustering with similar activity patterns, humans are separated 
from the environment they locate. After clusters are formed, the influ
ence of social-demographic can be analyzed by studying the features of 
individuals inside different groups. The influences of the built environ
ment are often left out in current research. 

The built environment is defined as human-made surroundings that 
provide a setting for human activity, ranging in scale from personal 
shelter to neighborhoods and large-scale civic surroundings (Butt, 
Camilleri, Paul, & Jones, 2015). Its influence on people’s activity has 
been studied from two aspects: the permanent built environment where 
people reside and the context changed with people’s location mobility. 
For the context changes with people’s mobility, as mechanism-identified 
activity models point out, the environment is an important constraint on 
people’s time-activity decisions. Empirical evidence suggests that ac
tivities are highly related to built environments. For example, some 
building types play significant roles in people’s daily life. They carry a 
particular semantic meaning such as the living and working places, the 
restaurant and shopping mall, etc. (Hillsdon, Coombes, Griew, & Jones, 
2015). For the built environment where people reside, it has been stated 
for years that the design of the community’s built environment in
fluences some of human’s specific activities, such as health-related ac
tivity (Kerr, Rosenberg, & Frank, 2012) and criminal activity 
(MacDonald, 2015). However, limited research analyzes how the com
munity’s built environment influenced people’s daily activity trajec
tories based on openly accessible data. Therefore, in this study, we use 
data-driven methods to generate people’s time-activity trajectories, 
and then further analyze how social and built environments influence 
these trajectories based on Dirichlet regression analysis. 

3. Methodology 

3.1. Approach overview 

The common definition of a community is a group of people with 
diverse characteristics who are linked by social ties, share common 
perspectives, and engage in joint action in geographical locations or 
settings (Al, 2001). According to the various research purpose, the range 
of the geographical scale can be from small census block groups to 
county, city, or even countrywide (Chi, 2012). In the United States, a 
county is an administrative or political subdivision of a state that con
sists of a geographic region with specific boundaries. Considering the 
small census block groups generally contains between 250 and 550 

housing units, the built environment between nearby block groups does 
not show much difference. So, this study focus on a county-level com
munity trajectories simulation. 

To construct a time-activity trajectory that could be used to analyze 
both social-demographic and built environment. As Fig. 1 shows, we 
first use Markov chains to generate time-activity trajectories for 
different areas. Then, we gather built and socio-environment informa
tion from different areas and use Dirichlet Regression to analyze how 
these social and built environments influence the activity trajectory 
distribution. Finally, we apply this regression model to perform activity 
trajectory prediction based on social and built environment information. 
To validate the model, we use New York City as a case study and gather 
data from American Time Use Survey, Policy Map, and the New York 
City Energy & Water Performance Map to test the proposed method. 
During the prediction process, we use 80% data to train the regression 
model and the left 20% as the test sample. In this study, each dependent 
variable of the regression model is a compositional distribution of the 
probability of different activity categories, which are rarely analyzed 
with the usual multivariate statistical methods and do not have a stan
dard to perform model verification. In this paper, Box’s M Test and t-test 
are performed for the equality test of covariance structure and center of 
test sample and modeling result. Detailed contents of each step are 
further classified in the following part. 

3.2. Markov chains simulation for community time-activity trajectory 
modeling 

The term ‘activity’ refers to various behaviors over time (Drummond, 
1995). There is no standard uniform classification of personal activities 
yet. The most accepted typology is in travel behavior studies proposed 
by Reichman, which divides activities into three categories as subsis
tence, maintenance, and discretionary (leisure) activities (Chung & Lee, 
2017; Reichman, 1976). Yamamoto and Kitamura (1999) advocate a 
simplified activity classification of two categories: mandatory (must- 
engaged activity) and discretionary (individual has the choice to be 
engaged). Other classifications like physiological needs, institutional 
demands, personal obligations, and personal preferences are also 
employed in research (Vilhelmson, 1999). This study builds activities 
categories based on the original activity classes in the American Time 
Use Survey, which category activities into 18 types. Because some of its 
activity categories serve the same purpose according to the standards in 
the literature, we further summarized detailed activity categories like 
socializing, relaxing, and sports into the personal preference category 
used in the literature. Finally, we have 8 classifications as follows: 
essential health activity, biological needs (eating, sleeping), working, 
education, household management, personal obligations (shopping, 
banking, childcare, etc.), personal preference (leisure activities), and 
others (outside traveling activities). 

Basic time-activity trajectory refers to the fundamental time 
geographic entity representing the ordered mobility of individuals 
moving in geo-space during a day cycle (Frihida, Marceau, & Thériault, 
2004). For a more complex level, not only the geographic location but 
also the activity performed at specific times and locations are also 
included. Data used to construct time-activity trajectory can be collected 
through time-use surveys, Geographic Information Systems (GIS), and 
social media data mining. Since this study focuses on synthesizing chains 
of activities and space-time distribution at the community level based on 
information regarding all-day activity categories, social demographics 
of individuals, and the building environment they locate, survey data is 
preferred as a source for constructing people’s time-activity trajectory. 

To generate activity schedules in each community, one way is to 
directly obtain it from the sampled time-use data. However, this method 
is deterministic in a certain sense that only collected individual activity 
schedules can be generated, which is insufficient to fully describe the 
stochastic nature of individual behaviors. Since we focus on NY as a 
specific study region, the number of collected individual behavior 
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accuracy, we apply the model in New York City as a case study with 80% 
of samples as training data and the left 20% as testing data. The pre
dicted result of test data is the same as the sample in terms of the 
covariance matrix and center for most activity in two groups’ activity 
trajectories, which proves the robustness of the proposed method in 
modeling community time-activity trajectory in detail distribution. 

This paper also quantifies the influence of different environment 
variables on the distribution of community activities proportion in terms 
of time. While time is the main influence for community time activity 
trajectory pattern, both social-demographic and build environment 
could influence activity proportion’s changes over time. The result 
shows that 1) Diversity and median age both have a significant influence 
on education activity, though in a different direction. 2) Transportation 
condition affects people’s activity trajectory in the way that longer 
commute time decreases the proportion of biological activity and in
creases people’s working time. 3) Residential building proportion affects 
almost all activities with a significant p-value for all biological needs, 
household management, working, education, and personal preference. 
Since current models developed to generate time-activity trajectories are 
often based on pure socio-demographic information with the assump
tion that people in the same group follow the same trajectory, the 
methodology presented in this paper could model community time- 
activity trajectory with a detailed distribution of people performing 
different activities in a specific period considering both socio- 
demographic and built environment influences. This could help pro
vide a more profound and accurate basis for the study that is based on 
human activity trajectories. 

The proposed community time-activity trajectory model can also 
help improve the community’s resilience against sudden events, such as 
natural disasters, power outages, fire hazards, and man-made events by 
understanding its initial impact. The in-time activity distribution could 
help related organizations evaluate potential damage severity and make 
in-time response strategies. Besides that, this can also benefit daily en
ergy planning to improve the community’s resilience. For example, the 
daily load management and scheduling, especially in high-demand 
times under extreme hot and cold days. If we know the in-time com
munity activity distributions among areas in different communities, we 
can make daily load management and scheduling with minimum eco
nomic and safety risks. Also, while social demographic information 
cannot be changed, the revealed influences on human activity of built 
environment and infrastructure could be used by the governor to pro
mote community wellbeing. 

However, there are still some limitations to this study. At present, the 
transition probabilities matrix in this study is generated based on 
existing samples. To appropriately incooperate uncertainty when the 
model is built with small sample size in specific communities, the 
transition probability matrix can be updated when additional records 
come in. Also, since there is no standardized way to validate the 
Dirichlet regression model with compositional data, we use Box’s M test 
and t-test to compare the equality of covariance structure and center to 
test the equality of two group data. Additionally, due to some activity 
features and the limitation of telephone-based survey limitation, some 
acclivity occupies a small proportion, which makes it hard to perform 
accurate predictions on those activities. However, these activities, 
especially health emergency activities, are often related to vulnerable 

people who are most likely to be affected during the power outage 
period. So, in the future, if the information on these activities could be 
gathered through other sources like social media or hospital data plat
forms and integrated into the activity simulation model, the research 
will be more complete. Besides that, while the unit community selected 
in this paper is at the county level, the method can be applied to com
munities with the bigger geographic area such as cities or states as the 
data used is openly accessible. When expanding the geographic area, 
more built environment factors can be explored besides the typical two 
built environment attributes we focused on in this study. In the time 
dimension, as we modeled the community time-activity trajectories on 
weekdays, weekend patterns should also be considered. However, 
compared with weekday trajectories, people’s activities tend to be more 
random on weekend days, so, this may rely on in-time GIS tracking 
technology and can be studied in the future. 
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