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Abstract: Motivated by the valuable epidemiological information it reveals, wastewater surveillance has received significant attention in
recent years. Furthermore, monitoring the water quality in sewer systems has been shown to provide useful information to support wastewater
treatment operations. Yet, a critical need still exists for developing novel approaches for rapid and efficient source identification of chemical
and biological species of interest in sewer systems. A limited number of source identification approaches have been proposed in previous
literature, and the majority of these approaches employed various simplifying assumptions that limit their usage in real-life applications. In
this study, a machine learning–based simulation-optimization framework was developed to determine the characteristics (i.e., concentration
and loading pattern) of multiple simultaneous injection sources in sewer systems. The simulation was conducted using a surrogate model in
the form of a multilayer perceptron neural network, which was trained using simulation results derived from the Storm Water Management
Model (SWMM). The simulation model was then coupled with a genetic algorithm to reveal the characteristics of multiple sources that
reproduce the concentration patterns observed at one or more monitoring locations in the sewer system. The proposed framework was applied
to a range of injection scenarios and was able to identify the characteristics of multiple simultaneous injection sources under different
conditions. The results showed that the residence time plays a significant role in the identifiability of the injection source location. The
proposed framework is applicable to a wide number of source identification applications, including contamination source identification
and wastewater-based epidemiology. DOI: 10.1061/JWRMD5.WRENG-6050. © 2023 American Society of Civil Engineers.
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Introduction

Both combined and separate sewer networks are vulnerable to con-
tamination, whether intentionally or unintentionally. Contamina-
tion in combined sewer networks usually takes place due to the
wash-up of contaminants from different land uses after a rain event
(Gromaire et al. 2001). In separate sewer networks, contamination
can take place due to an intrusion of chemical and/or biological
species into one of the junctions discharging to the network, such
as underground tanks, gas stations, and parking lots, or through
overflows and illicit connections (Panasiuk et al. 2015). Such con-
tamination events could have a significant impact on the perfor-
mance of wastewater treatment plants (WWTPs) and the quality
of the final recipient water body (Diaz-Fierros et al. 2002). For
instance, the price of wastewater services in some countries takes
into account the quality of the wastewater (Banik et al. 2017).
Furthermore, the US and European Union require that operators
get a permit before discharging to the sewer networks to protect
sewer systems from the intrusion of illicit contaminants (Banik
et al. 2017). Thus, there is a crucial need for reliable approaches
to identify the sources of various constituents in sewer systems to

help in the detection and elimination of contaminants from the
network.

In addition to contamination detection, source identification (SI)
in sewer systems can provide valuable information to support
wastewater-based epidemiology (WBE), which has gained signifi-
cant attention in recent years (Sangkham 2021), especially in the
wake of the COVID-19 pandemic. Several studies confirmed
the presence of viral SARS-CoV-2 RNA in the stool samples of
patients (Dhama et al. 2021). This triggered a widescale effort
to collect wastewater samples from WWTPs around the world
(Ahmad et al. 2021), which were shown to provide valuable infor-
mation for tracking infection trends (Suthar et al. 2021), and thus
may act as an early warning for new outbreaks (Zhu et al. 2021). In
addition to tracking viral concentrations in wastewater, several
countries have been utilizing wastewater sampling to quantitatively
measure the trends of illicit drug consumption (Yuan et al. 2020).

To support the aforementioned contamination response and
WBE applications, novel source identification algorithms need
to be developed. The objective of SI is to determine the character-
istics of the source junction(s) of a certain species of interest (e.g., a
contaminant or a biomarker) that is discharged into the system. The
input to the SI problem is a set of time series concentrations of the
constituent observed at one or more sampling locations (e.g., online
sensors or grab samples). The accuracy and reliability of the mea-
sured concentrations are key to accurate source identification.
For contamination events, SI constitutes an integral component of
contamination response strategies that start after the detection of
a contaminant trace or any other species of interest at a sampling
location (e.g., WWTP), and is typically followed by a plan to
remove the contaminant from the system. For wastewater-based
epidemiology, SI can help identify hot spots of viral infections
and quickly reveal the locations of new outbreaks within the sewer
shed.
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In drinking water distribution systems (WDSs), SI has been a
concern for a long time for the sake of protecting public health
against drinking water contamination (Di Cristo and Leopardi
2008; Yang et al. 2009). As a result, it has been extensively studied
by the WDS analysis research community, and different approaches
were developed and investigated to identify contamination sources
in WDSs (Adedoja et al. 2018). Simulation-optimization ap-
proaches, in which a species transport simulation model is coupled
with an optimization algorithm, were commonly adopted in the
majority of these studies. For instance, Liu et al. (2011) and Preis
and Ostfeld (2007) coupled EPANET (Rossman et al. 2000) with
an optimization technique to solve the SI problem. Various prob-
abilistic approaches were also proposed in previous literature.
For example, Perelman and Ostfeld (2013), Wang and Zhou (2017),
and Wang and Harrison (2014) implemented Bayesian methods to
find the most probable solution for the SI problem. Additionally,
parametric uncertainty and its effect on the SI problem solution
were investigated in other studies (Preis and Ostfeld 2011;
Vankayala et al. 2009). In addition to WDSs, the SI problem
has also been extensively investigated in other water systems,
including groundwater (Li and Mao 2011; Li et al. 2021; Sun
et al. 2006) and river networks (Lee et al. 2018; Lugão et al. 2022;
Wu et al. 2020), with the aim of protecting water resources and
supporting environmental remediation.

Despite extensive efforts to develop SI methods for various
water systems, the SI problem has not been well studied in the con-
text of sewer networks, with only a handful of studies that aimed to
define the problem and propose approaches for its solution. In these
studies, the Storm Water Management Model (SWMM) (Rossman
2015) was typically used for performing hydraulic and transport
simulations. Banik et al. (2014) developed an ad hoc toolkit that
was integrated with SWMM to automate the simulation process.
In this study, the SI problem was formulated as an optimization
problem and solved using the genetic algorithm (GA). In a later
study, a prescreening procedure was implemented to reduce the
computational burden of the simulation-optimization framework
(Banik et al. 2015). This was done using a pollution matrix concept
that was first introduced by Kessler et al. (1998) for WDSs to re-
duce the number of candidate junctions. Later, Banik et al. (2017)
implemented the same approach to identify illicit intrusion in sewer
networks under dry and wet weather conditions. They performed
sensitivity analysis on the GA parameters, flow variabilities, and
sensor measurement errors. The results showed that the model
was able to identify the source characteristics in both conditions,
and it also showed that it is highly dependent on the input data
quality.

In all of the aforementioned studies, several assumptions were
made to simplify the SI problem. First, the constituent of interest
was assumed to be nonreactive. This was mainly done to avoid the
confusion resulting from the combined effects of the residence time
and reaction rate, which increases the uncertainty and complexity
of the SI problem (Sambito and Freni 2021). Nevertheless, various
chemical and biological species (e.g., viral RNA or illicit drugs)
are known to undergo decay reactions in sewer systems (Sambito
et al. 2020), and thus ignoring such kinetics severely limits the
applicability of the SI frameworks developed in previous studies.
More importantly, previous studies generally assumed the presence
of only a single source in the sewer network. However, in practical
applications, the exact number of sources is typically unknown, and
in many cases multiple sources might simultaneously exist. Addi-
tionally, considering more than one source complicates the problem
because the spatial variation of the source locations relative to the
observation locations will considerably affect the results.

Another significant limitation in existing SI simulation-
optimization methods is the relatively high computational cost
needed for the optimization to converge. To reduce the computa-
tional cost of SI in WDSs, previous studies have proposed using
surrogate data-driven models in place of numerical models. In gen-
eral, surrogate models are built by utilizing a machine learning
technique (Hou et al. 2021), and they have been shown to provide
a more computationally efficient alternative to physically based
models (Majumder and Lu 2021). As a replacement to EPANET,
Broad et al. (2005) implemented artificial neural networks for
WDSs optimization, and Preis and Ostfeld (2006) employed hybrid
model trees to reduce the computational burden of the SI problem
in WDSs. Additionally, Lee et al. (2018) proposed replacing
SWMM with a random forest model to identify contamination
source locations in river networks. Nevertheless, the implementa-
tion of surrogate models for water quality simulation of sewer net-
works has not been attempted yet.

To address the aforementioned gaps in current knowledge, the
objectives of this study are to (1) develop a novel SWMM-based
simulation-optimization framework for SI in sewer networks that is
capable of revealing the characteristics of multiple sources of a
reactive species, (2) create a surrogate model to efficiently conduct
constituent transport simulations and implement it within the SI
framework, and (3) conduct a comprehensive sensitivity analysis
of the accuracy of the proposed framework under different
conditions.

Methods

The proposed framework aims to reveal the location of each injec-
tion source, along with the injection concentration, start time, and
duration. Herein, the SI problem, which is an inverse modeling
problem by definition, is solved through a forward simulation-
optimization technique that has been shown to produce better ac-
curacy compared to other SI techniques (Hu et al. 2015). In the
simulation component, two different approaches were imple-
mented, namely, a numerical model and a machine learning–based
model. In the first approach, we linked SWMM, as implemented
within the Python-based library PySWMM (McDonnell et al.
2020), directly in the optimization model. Alternatively, in the sec-
ond approach, a multilayer perceptron neural network (MLP-NN)
model was built using simulation results generated by PySWMM
for different injection events. The optimization module in both ap-
proaches was based on a GA as implemented within the Python-
based library PyGAD (Gad 2021). Fig. 1 depicts the workflow of
the two approaches within the simulation-optimization technique,
which are explained in more detail in the following sections.

Optimization Model Formulation

The objective function was formulated as a minimization problem
that aims to reduce the normalized root-mean-square error (nRMSE)
between the observed and the simulated concentrations at one or
more observation junction(s). The optimal solution to this optimiza-
tion problem is an injection event with a concentration time series

Fig. 1. Proposed SI framework.
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that matches the pattern observed at the monitoring location(s).
The objective function of the SI framework is mathematically rep-
resented as

Minimize nRMSE ¼
Xm
j¼1

hP
n
i¼1 ðCobs

ji − Csim
ji Þ2=n

i
1=2

ðPn
i¼1 C

obs
ji Þ=n ð1Þ

whereCobs = species concentration observed at the observation junc-
tion;Csim = species concentration simulated by the simulation model
(either SWMM or MLP-NN); j = index of the observation junction;
m = total number of observation junctions; i = time step index; and
n = total number of time steps.

In this study, it was assumed that the injection pattern at each
junction is a pulse-shaped pattern, where the injection concentra-
tion is constant and occurs once during the simulation period
(Fig. 2). Hence, for each injection source, the optimization varia-
bles are the injection concentration (C) the injection start time (H),
and the injection duration (P). A 24-h periodic cycle is imple-
mented for the injection patterns (e.g., the dotted line in Fig. 2).
In addition, it was assumed that the real-time sensors located at
the observation junctions are capable of measuring the species con-
centration over time (Kim et al. 2013), and that the decay rate of
that species is known.

Unlike previous studies, in which only a single injection source
was considered, the proposed SI framework considers all the net-
work junctions to simultaneously act as injection sources. Hence,
the number of optimization variables is equal to 3nJ , where nJ is
the number of junctions in the network. The proposed framework
also allows for considering a specific number of injection sources

(ni < nJ) to reduce the search domain of the SI problem. This is
because the complexity of the SI problem, represented by the
number of optimization variables, increases significantly with the
network size if all the network junctions are considered to be si-
multaneous sources (Fig. 3). Alternatively, if the number of injec-
tion junctions is known, the developed framework expands the set
of optimization variables to include the locations of the injection
sources. For this case, the number of optimization variables reduces
from 3nJ to 4ni.

In addition to the number of injection sources (ni), the com-
plexity of the SI problem also depends on the search range of
the injection characteristics. Because a 24-h periodic cycle was
considered in this study, the range of the injection time and duration
was set to be 24 h. Accordingly, the SI problem complexity will
be dependent on the number of injection sources (ni) and the range
of injection concentrations (Crange). The number of possible alter-
natives representing the complexity of the SI problem follows
Eq. (2). Furthermore, Fig. 3 shows the number of alternatives of
a 10-junction network for different values of nC and Crange. This
figure shows that the number of alternatives increases significantly
by accounting for more injection sources and concentration ranges

number of alternatives ¼ nJðnJ − 1Þni−1Cni
range24

2ni ð2Þ

Prescreening of Source Junctions
The basis of the SI problem is a time series concentration that is
observed at one or more monitoring junction(s). Thus, based on the
location of a monitoring junction within the network, the junction
may or may not be connected to potential source locations depend-
ing on whether the monitoring junction is located downstream
(i.e., receives flow) from candidate source locations. Thus, identi-
fying the connectivity status of the network junctions is crucial
to building an efficient and responsive surrogate model. Herein,
this is done by eliminating the junctions that are not connected
to any of the observation junctions from the list of possible injec-
tion locations. Thus, the total number of junctions (nJ) used here-
inafter denotes only the connected junctions. This prescreening
process is particularly important in generating the data sets required
to train and test the MLP-NN surrogate model to eliminate redun-
dancies and reduce the computational burden of building the sur-
rogate model and solving the SI problem.

Genetic Algorithm Optimization
The objective function is minimized by the GA, which is a heuristic
optimization algorithm that mimics the mechanisms of natural se-
lection and population genetics to produce powerful individuals
from weaker parents (Elbeltagi et al. 2005). GA was selected as

Fig. 2. Pulse-shaped injection pattern in the SI framework for two
injection sources: injection at Source A ends within the simulation
period, and injection at Source B after the end of the simulation period.
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Fig. 3. Relation between the number of possible alternatives in a 10-junction network and the number of injection sources for different ranges of
injection concentration.
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the optimization technique due to its superiority in dealing with
discontinuous and highly nonlinear functions (Haupt and Haupt
2003). Because the focus of this study is developing a framework
for identifying multiple injection sources, we opted for using an
optimization algorithm that has been well established in the water
and sewer network optimization literature (Pan and Kao 2009; Preis
and Ostfeld 2008; Xuesong et al. 2017).

GA starts by randomly generating a set of injection events to
form an initial population. These events are then simulated by
the MLP-NN surrogate model to evaluate the objective function of
each event. Later, GA selects the elite events (i.e., parents) and ap-
plies three different operators, namely, selection, crossover, and
mutation, to produce a new set of events (i.e., a new population).
GA then repeats this process until one of the stoppage criteria listed
in Table 1 is reached, and then the fittest event is reported. To em-
ploy the GA algorithm in the proposed SI framework, the PyGAD
package introduced by Gad (2021) was used, with the optimization
parameters shown in Table 1.

Number of Optimization Runs
In the proposed SI framework, each test scenario is performed
multiple times to overcome the randomness introduced by the pop-
ulation generation, mutation, and crossover operators of the GA.
Also, having different SI solutions for the same test scenario allows
for analyzing the accuracy and the precision of the proposed SI
framework as described in the “Results and Discussion” section.
To determine the sufficient number of optimization runs, an analy-
sis was carried out to observe the change in the objective function
(nRMSE) and the results are presented in Section S1. The analysis
showed that after 30 optimization runs, the change in the average
nRMSE falls below 1%. Hence, a number of 50 optimization runs
was conservatively selected in this study.

Forward Simulation Methods

Numerical Model
Hydraulic and transport simulations were performed using SWMM
(Rossman 2015). Because the simulation-optimization approach
typically involves a large number of simulations, SWMM simula-
tions were conducted using the PySWMM package (McDonnell

et al. 2020), which is a Python interface for SWMM developed
within the OpenWaterAnalytics (OWA) initiative. PySWMM pro-
vides several functions that allow automating the process of setting
network and simulation parameters and the extraction of the sim-
ulation results in an efficient way.

Surrogate Model
Despite their wide implementation, the key drawback of physically
based models (e.g., SWMM) is the relatively large simulation
time needed for each run. Thus, running hundreds of thousands of
simulations, as is typically needed for optimization, requires a con-
siderably long time. To overcome this limitation, an MLP-NN sur-
rogate model was developed and implemented in place of SWMM.
MLP-NN is a supervised machine learning algorithm, capable of
learning the behavior of a function by training on an input-output
data set. Given the characteristics of a set of injection events as an
input, and the corresponding SWMM simulation results as an out-
put, MLP-NN can learn the input-output relationship. This was
done by adjusting weighting factors and biases between each layer
iteratively through a back-propagation process, giving the MLP-
NN the ability to represent highly nonlinear relationships. A com-
parison between the results of the MLP-NN surrogate model and
the SWMM model, together with the computational cost reduction
achieved by the MLP-NN surrogate model is demonstrated in the
“Results and Discussion” section.

Data Set Generation

Training and testing the MLP-NN surrogate model require several
injection events to be generated and simulated by SWMM, where
for each injection event, three parameters are randomly generated
for each junction in the network. The injection concentration (C)
ranges from zero to Cmax, where zero means no injection and Cmax
is a user-defined value. The injection start time (H) and the injec-
tion duration (P) both range between 1 and 24. The injection
parameters of each junction were stacked to form the vector
representing each injection event, in the form of ½ðC1;H1;P1Þ;
ðC2;H2;P2Þ; : : : ; ðCnJ ;HnJ ;PnJ Þ�. The previous process was re-
peated to produce nsim simulation events, forming an input matrix
with the size of nsim × 3nJ . In the process of surrogate model cre-
ation, an injection was considered to occur in all network junctions;
hence, the locations of the injection sources were not included in
the training data set.

Modified SWMM input files were then generated, in which in-
formation from each injection event was added to the original input
file containing other essential parameters (e.g., layout, elevations,
and dimensions) for the network under consideration. These input
files were then passed to PySWMM, and the simulation results of
each event were extracted at one or more observation location(s).
For each observation location j, a concentration time series of size
n was obtained from the simulation. The matrix of the simulation
output is hence given by

OðSÞ ¼

2
6664

O1ðS1Þ1 : : : O1ðSnÞ1 : : : : : : OmðS1Þ1 : : : OmðSnÞ1
..
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

O1ðS1Þnsim : : : O1ðSnÞnsim : : : : : : OmðS1Þnsim : : : OmðSnÞnsim

3
7775 ð3Þ

where OjðSiÞe = simulation result at time i at the observation junction j for the eth injection event, resulting in a matrix with a size of
nsim × ðn ×mÞ. In this study, a simulation interval of 48 h was adopted, whereas the results of the last 24 h only were used to eliminate
the effect of the initial conditions. The simulation time step was set to 1 min (i.e., n ¼ 24 × 60 ¼ 1,440).

Table 1. Genetic algorithm optimization parameters

Optimization parameter Value

Number of individuals 100,000
Parents percentage 1%
Crossover probability 0.9
Mutation probability 0.1
Total generations 40
Unchanged generations 15
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The input matrix representing the injection vectors and the out-
put matrix representing the simulation results were merged and
saved in an external Pickle file (Van Rossum 2020), in which the
first 3nJ columns indicate the input of the MLP-NN, whereas the
remaining n ×m columns indicate the output. The multiprocessing
library in Python (Van Rossum 2020) was used to simultaneously
simulate multiple injection events in SWMM, aiming to increase
the efficiency of the data set generation process.

Data Set Preprocessing
The input matrix generated in the previous step was first prepro-
cessed before being fed as an input to the MLP-NN. To that end,
two transformations were implemented to convert the input matrix
into a more representative form that would allow the MLP-NN to
learn the true relationship between the input and the output matri-
ces. The first transformation was done by reshaping the injection
vector to a concentration time series with the size of nsim × 24nJ.
For instance, a subset (512,6,5) of the injection vector was reshaped
to a concentration time series as follows:

½0;0;0;0;0;512;512;512;512;512;0;0;0;0;0;0;0;0;0;0;0;0;0;0�
ð4Þ

The second transformation was done by standardizing the in-
put and output matrices by applying the Standard Scaler library
(Pedregosa et al. 2011).

MLP-NN Training and Testing
To build the MLP-NN surrogate model, 6,000 random injection
events were generated using the previously mentioned approach
and simulated using SWMM. Then the input and output matrices
were divided into training and testing data sets with a 4∶1 ratio us-
ing the traintestsplit tool. By utilizing the neural network module in
the scikit-learn package in Python (Pedregosa et al. 2011), the train-
ing data set was fed to train the surrogate model, while the testing
data set was used to verify the surrogate model’s accuracy. The
structure of the used MLP-NN model was as follows: one hidden
layer, two neurons, identity activation function, Adam solver, and
50,000 maximum iterations.

In this study, the surrogate model was meant to produce multiple
outputs, by which the simulation time series at one or more obser-
vation junctions are represented. Hence, the MLPRegressor library
(Pedregosa et al. 2011) was utilized to train an MLP-NN model for
each time step at each observation junction, whereas the Multi-
OutputRegressor library (Pedregosa et al. 2011) was used to join
these models to form a complete time series for each observation
junction. Accordingly, the number of MLP-NN models composing
the surrogate model equals the number of time steps multiplied by
the number of observation junctions (n ×m). Similar to data set
generation, the multiprocessing library was utilized to train several
MLP-NN concurrently.

MLP-NN Prediction
New predictions (i.e., simulation results) are typically retrieved
from a trained MLP-NN by applying the predict method on a
new input data point (i.e., injection vector). However, to improve
the prediction speed, weights and biases of the trained MLP-NN
models were extracted, and the calculations were conducted explic-
itly. For the case of one hidden layer, new predictions were calcu-
lated by solving the matrix shown in Eq. (5). For the Nth MLP-NN
model (N ∈ n ×m), PN is the output, wN and bN are the weights
and biases of the hidden layer, ωN and βN are these of the output
layer, and x is the injection vector. For α neurons, the sizes of ωN ,
wN , bN , and βN are 1 × α, α × 24nJ , α × 1, and 1 × 1 respectively

PN ¼ ωN ½wNxþ bN � þ βN ð5Þ

Case Study and Test Scenarios

The developed SI framework was tested on a medium-sized
benchmark combined sewer network. Different testing scenarios
with a variety of objectives, parameters, and assumptions were
examined to reveal the capabilities and limitations of the devel-
oped framework.

Case Study Description

The SWMM Example 8 benchmark network (Banik et al. 2017;
Sambito et al. 2020; Sambito and Freni 2021) was used as a case
study. Network data were retrieved from the SWMM applications
manual (Gironás et al. 2009). The combined sewer network shown
in Fig. 4 serves an area of 0.117 km2 and consists of several flow
regulation units (e.g., weirs, orifices, a storage unit, and a pump),
six subcatchments, 28 junctions, 29 conduits, and two outfalls.
Outfall O1 represents the WWTP, while outfall O2 represents an
outlet for combined sewer overflows that may occur during the
wet flow condition. The observation data are assumed to be col-
lected by an observation sensor placed at the storage well upstream
of the pump.

The subcatchments collect stormwater and wastewater from res-
idential and commercial zones. The average daily inflow assigned
at each subcatchment for the dry weather flow (DWF) condition
is shown in Table 2 (Gironás et al. 2009). In this study, the
DWF pattern assigned to the subcatchments (Fig. 5) was assumed
to follow the typical wastewater inflow pattern developed by Butler
et al. (2018).

The decay of the species of interest was considered to follow
first-order kinetics described by Eq. (6), which has been routinely

Fig. 4. SWMM Example 8 network layout.

Table 2. Inflow assignments for the DWF condition

Subcatchment Outlet junction DWF (L=min)

S1 J1 13.6
S2 J2a 17.0
S3 J3 6.8
S4 J13 20.9
S5 J12 21.2
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used to describe the decay dynamics of different species in sewer
systems (Guo et al. 2022; Lin et al. 2021; Shi et al. 2022)

dC
dt

¼ −kC ð6Þ

where ðdCÞ=ðdtÞ = rate of change in the injection concentration;
k = first-order decay rate coefficient; and C = injection concentra-
tion. To use a sensible value for the decay rate coefficient (k), the
half-life time of the species of interest (t1=2) was normalized by the
average residence time (tR). To calculate tR, the residence time from
each possible source junction to the observation junction was cal-
culated by dividing the pipe lengths by the average flow velocity
(Table 3), which produced an average tR ¼ 29.36 min for the case
study network.

In this study, two species with different decay rates were tested.
The low-decay species has a half-life time (t1=2) equal to twice the
average residence time (tR) (i.e., a decay rate of k ¼ 17 days−1). In
contrast, the high-decay species has a t1=2 ¼ tR, resulting in a k
of 34 days−1.

Test Scenarios

To investigate the performance and reliability of the proposed
SI framework under different conditions, four sets of scenarios
were tested. The first set of scenarios (S1) aims to test the model’s
ability to identify a single injection source within the network. Ac-
cordingly, five injection scenarios covering all possible sources
(e.g., J1, J2a, J3, J13, and J12) were studied. In S2, the SI

framework was used to identify a pair of simultaneous injection
sources. Accordingly, 20 injection scenarios were tested, each sce-
nario representing a permutation of two of the five sources. Sim-
ilarly, the permutation of three injection sources was investigated in
sets S3 and S4, resulting in a total of 60 injection scenarios per set.
For scenarios with more than one injection source, the injection at
each source happens at a different time (Table 4). For example, in
S2, the permutation of the two sources [J1,J2] is different from
[J2,J1].

As mentioned previously, two different species were used to
study the effect of changing the decay rate on the SI framework
results. A low-decay species was used in S1-L and S2-L, and a
high-decay species was used in S1-H and S2-H. In addition to the
decay rate, the SI framework sensitivity to the definition of the ac-
tual number of injection sources was also examined. In S1, S2, and
S3, the total number of injection junctions (ni) was defined in the
model as one, two, and three sources, respectively. In S4, ni was not
defined in the model. In other words, the SI framework treated all
the network junctions as simultaneous injection sources. The goal
was to test whether the model can identify nonsource junctions as
well as source junctions. One surrogate model was used for each
decay rate because the surrogate model was created in a way that
allows it to be used for different values of ni.

Finally, the influence of the injection time during the day was
assessed. In Set S1, a species with a concentration of 50 mg=L was
injected during the morning low-loading period (low DWF period),
which starts at 1:00 a.m. and continues for 5 h (Fig. 5). In S2, an
additional injection with the same concentration was assumed to
occur during the morning high-loading period (high DWF period),
which starts at 7:00 a.m. and lasts for the same period (Fig. 5). In S3
and S4, an additional injection of 50 mg=L occurred in the after-
noon medium-loading period (medium DWF period), which starts
at 1:00 p.m. and lasts for 5 h (Fig. 5). The summary of all the testing
scenarios conducted in this study is listed in Table 4. All scenarios
were performed using a workstation computer equipped with an
Intel i7-10700 CPU (Intel’s HQ, Santa Clara, California) at
4.80 GHz, and 16 GB of RAM.

Results and Discussion

In this section, the results of the proposed SI framework are pre-
sented. First, the performance of the surrogate model is validated by
comparing its predictions to the SWMMmodel results. Then the re-
sults of the case study testing scenarios are analyzed and discussed.

Surrogate Model

Model Validation
As previously mentioned, a significant number of simulations must
be carried out to identify the correct injection event (Table 1).

Fig. 5. Diurnal variation of DWF pattern considered in SWMM
Example 8.

Table 3. Residence time from each junction to the observation junction

Junction Residence time (min)

J1 29.94
J2a 15.05
J3 63.47
J13 26.58
J12 11.79

Table 4. Summary of testing scenarios

Scenario set ni Tested decay rates (days−1) Number of scenarios Injection characteristics ni definition

S1 1 17 5 C ¼ 50 mg=L Defined
34 5 H ¼ 1 a:m:

P ¼ 5 h
S2 2 17 20 C ¼ 50 mg=L Defined

34 20 H ¼ 1 and 7 a.m.
P ¼ 5 h

S3 3 17 60 C ¼ 50 mg=L Defined
S4 60 H ¼ 1 a:m:, 7 a.m., and 1 p.m. Undefined

P ¼ 5 h
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To enhance the efficiency of the SI framework, an MLP-NN sur-
rogate model was proposed as a simulation tool in place of the
SWMM model. Accordingly, comparing the MLP-NN model
results with those of the SWMM model is an important step to
validate the accuracy of the proposed surrogate model. To that
end, 20% of the 6,000 generated injection events were used as a
testing data set. The surrogate model displayed remarkable accu-
racy (R2 ≅ 1), which can be clearly seen from Fig. 6. This figure
shows the concentration profiles simulated by MLP-NN and
SWMM models for the low- and high-decay species. In this figure,
the x-axis denotes the time in minutes, the y-axis denotes the
observed concentration at the monitoring location, the solid line
represents the SWMMmodel results, and the dotted line represents
the MLP-NN model predictions.

Computational Cost Reduction
A single SWMM simulation of the case study network takes 1=15 s
on average. Accordingly, the computational cost of generating the
6,000 injection events required for training and testing the surrogate
model was ∼400 s, while that of training the surrogate model was
∼250 s. Thus, the total overhead time needed to generate the data
set and train the surrogate model was ∼10.8 min. For the GA
parameters selected in this study (Table 1) a maximum of 4 million
simulations need to be conducted. For the surrogate model, these
take approximately 25 min, while for SWMM, the 4 million

simulations would take 74 h (neglecting the time taken to perform
the GA operators).

Fig. 7 compares the run time performance of the SWMM
model-based and surrogate model-based optimization models. The
x-axis represents the run time corresponding to the number of sim-
ulations on the y-axis. This run time difference highlights the
effectiveness of the proposed surrogate-modeling approach. Due
to the huge run time reduction and the significant accuracy
achieved by the surrogate model, it was used as the simulation tool
for the remainder of this study. Similar results were also achieved
when both the surrogate model and SWMM were applied to a
real-world network three times larger than the case study network
(Section S2).

To test whether the computational cost of the SI framework
could be further reduced by eliminating the need for the GA
optimization module, two backward machine learning–based SI
methods were investigated in addition to the forward simulation-
optimization approaches presented in this paper. The first inverse
approach involved inversely solving the equations of the trained
forward MLP-NN to produce the inputs from the outputs, while in
the other approach, an MLP-NN model was trained to predict the
injection characteristics directly from the observed concentrations.
As described in Section S3, these two methods failed to produce
satisfactory SI results, and hence only the forward simulation-
optimization approaches are featured in this study.
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Fig. 6. SWMM model simulation results compared with MLP-NN surrogate model predictions for the surrogate models of (a) low-decay; and
(b) high-decay species for a random event.
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Test Scenarios Results

In this study, four sets of scenarios were conducted to test the SI
framework performance (Table 4). In each set, the SI framework
was used to identify the location and the characteristics of a differ-
ent number of simultaneous injection sources under different con-
ditions. In the first set of scenarios (S1), the injection was assumed
to take place at one source, whereas Sets S2 and S3 featured two
and three simultaneous injection sources, respectively. In S1, S2,
and S3, the number of injection sources (ni) was defined in the
model, while for S4, the number of sources was unknown to the
model (i.e., the model assumes that all junctions are sources
ni ¼ nJ). In Sets S1 and S2, two different cases were examined,
namely, low-decay species (k ¼ 17 days−1) and high-decay species
(k ¼ 34 days−1).

Test Scenarios Set 1 (S1)
In S1, the SI framework was able to identify the correct injection
source characteristics (i.e., location and pattern) in all 50 optimi-
zation runs for all injection scenarios. Thus, the true identification
rate (TIR), which represents the percentage of correctly identified
sources out of the 50 optimization runs, was equal to 100% for all
five injection scenarios. The response produced at the observation
location from injecting at each of the possible sources is shown in
Fig. 8. In this figure, each panel depicts a different injection loca-
tion, where the x-axis represents the time, and the y-axis represents
the injection concentration for both low- and high-decay species.
For all five injection locations, the optimization process success-
fully converged to the correct injection characteristics, rendering
a response at the observation location that exactly matches the
observed pattern.

Test Scenarios Set 2 (S2)
In S2, 20 injection scenarios were tested for both the high- and low-
decay species. In each scenario, the injection took place at two
locations simultaneously (i.e., a source pair). Herein, the TIR refers
to the correct identification percentage of the source pair location
(i.e., the percentage of the optimization runs in which the location
of both injection sources is correctly identified).
Influence of Decay Rate and Injection Time. Figs. 9(a and b)
depict the TIR for each source pair for the low-decay species
[Fig. 9(a)] and the high-decay species [Fig. 9(b)]. In these figures,
the x- and y-axes represent the location of the injection source
during the high- and low-loading periods, respectively. For the

low-decay species [Fig. 9(a)], the SI framework was able to identify
the correct source pair with a TIR ≥50% for 17 out of 20 injection
scenarios. Similarly, 19 out of 20 injection scenarios were correctly
identified with a TIR ≥50% for the high-decay species [Fig. 9(b)].
In addition, the average TIR of the low-decay species was 82.5%
compared with 86.5% for the high-decay species. These results in-
dicate that the SI mode performance in identifying the high-decay
species is slightly better than the low-decay species. Although this
might be counterintuitive, it can be attributed to the fact that the
increased decay enhances the uniqueness of the signal produced
by the injection sources, and hence improves the detection ability
of the SI framework.

Almost all the injection scenarios featuring Junction J3 were
easily detected by the SI framework (average TIR ≥98%) for both
low- and high-decay species. This can be attributed to the unique-
ness of the signal produced by J3 due to its long residence time
compared to the other junctions (Table 3). Generally, the residence
time appeared to play a significant role in the SI framework’s ability
to identify the injection location [Figs. 9(c and d)]. Furthermore, the
asymmetry of the TIR matrix [Figs. 9(a and b)] indicates that the
correct identification of the injection location depends on the injec-
tion time within the day (i.e., during the high- or the low-loading
period). For example, injection scenarios featuring J1 in the high-
loading period generally experienced lower TIRs than those featur-
ing J1 in the low-loading period. Conversely, the TIR for injection
scenarios including J12 in the high-loading period were higher than
those including J12 in the low-loading period.
Influence of Injection Source Location. To further investigate the
performance of the SI framework, we assessed its ability to identify
the location of an injection source within a source pair separately
(i.e., regardless of the other source). To that end, two identification
percentages were calculated: (1) the junction true identification rate
(JTIR), which indicates the rate a certain junction is correctly
identified regardless of whether its pair was correctly identified
or not; and (2) the junction wrong identification rate (JWIR), which
represents the rate a certain junction is misidentified with another
junction. The summation of the JWIR does not necessarily comple-
ment the JTIR to reach 100% because for some injection scenarios
neither of the two source junctions is correctly identified.

Figs. 9(c and d) illustrate both the JTIR and JWIR for the low-
and high-decay species, where the x- and y-axes denote the actual
and the identified source junction as detected by the SI framework,
respectively. The diagonal of the identification matrix represents
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the JTIR, while the off-diagonals represent the JWIR. The analysis
showed that J3 was the most correctly identified junction (highest
JTIR) for both high- and low-decay species. As explained previ-
ously, this can be attributed to the distinct residence time of J3 com-
pared to the other junctions.

On the other hand, J13 was found to be the most misidentified
junction (highest JWIR). This is mainly attributed to its consistent
confusion with J1, whose residence time is very close to J13 (3.36-
min difference). These results further highlight the significance of
the residence time as the main driver of the signature induced at the
observation junction. In addition, this supports the conclusion that
the more unique the residence time from the injection location to
the observation location, the more likely the injection junction to be
correctly identified.
Objective Function as an Indicator. Typically, the value of the
objective function reflects the goodness of the solution. For the
presented SI problem, this means that the smaller the value of
the objective function, the closer the identified injection character-
istics are to the true ones. Herein, we test this hypothesis by exam-
ining the relationship between the value of the objective function
and the error in the identified injection characteristics (i.e., the SI
error). As mentioned previously, the objective function represents
the nRMSE between the observed and simulated concentrations at

the observation junction. Similarly, the SI error is calculated as the
nRMSE between the actual and simulated concentration patterns at
the true injection sources.

In Fig. 10, the x-axis denotes the value of the objective func-
tion, while the y-axis denotes the value of the SI error (log scale).
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The comparison is limited to the nonconverged optimization runs,
because the converged runs would yield zero values for the objec-
tive function and the SI error. Fig. 10 shows no clear relationship
between the value of the objective function and the SI error. For
instance, the optimization runs in the top left corner feature small
objective function values (0.01–0.03) and large SI errors (30–110).
More importantly, the runs featuring the lowest objective function
values did not necessarily result in the lowest SI error. For instance,
for the pair [J13, J12] represented by squares in Fig. 10, the two
runs with the least objective function values had some of the highest
SI errors among all runs. A deeper look at these instances revealed
that they represent the cases where the injection patterns were
correctly identified but for misidentified injection locations.

Taken together, these results highlight the key challenge of the
SI problem, which is that different source locations can produce
very similar signals at the monitoring location. This means that, for
the same observed pattern, there is no one unique solution to the SI
problem. Additionally, the signal generated at the observation junc-
tion appears to be more sensitive to the injection pattern than the
injection location. These results have significant implications for
the design of sensor networks. It is crucial to include source iden-
tifiability in the criteria used for optimizing sensor placement or the
selection of sampling locations.
Injection Pattern Identification. Focusing on the injection con-
centration of the correctly identified source pairs, the range of the
detected concentration by the SI framework was examined for in-
jections during the low- and high-loading periods. The detected
concentration was normalized by the actual injection concentration
(50 mg=L) and then used to draw the box plot with outliers for
S2-L and S2-H (Fig. 11). In this figure, the x-axis represents the
injection junction, while the y-axis shows the normalized concen-
tration detected by the SI framework for this junction for all cor-
rectly identified source pairs where this junction was featured.
Fig. 11 shows that for both S2-L and S2-H, the median of the nor-
malized concentration of both loading periods is equal to 1 for all
junctions. This highlights the high accuracy of the SI framework in

correctly identifying the injection concentration. Similar results
with comparable accuracy and even higher precision (a smaller
number of outliers) were retrieved for the injection start time and
duration (results not shown).

Test Scenarios Set 3 (S3)
In S3, the SI framework was able to identify the location of all three
injection sources at least once in the 50 optimization runs for all 60
injection scenarios. The average TIR over all 60 scenarios was
47%, compared with 82.5% in S2-L, and the TIR exceeded 50%
in 26 of the 60 injection scenarios (i.e., 43% of the scenarios).
These results highlight the robustness of the SI framework in iden-
tifying multiple injection sources but also demonstrate the difficulty
introduced by increasing the number of injection sources. Due to its
unique residence time, J3 was featured in 9 out of 10 injection sce-
narios with the best TIR, generally scoring a TIR between 84% and
100%. This again can be attributed to the unique residence time of
J3, which makes it easier to identify compared with other candidate
junctions.
Detection Frequency as an Indicator. For 26 out of the 60 injec-
tion scenarios in S3, at least one of the 50 optimization runs con-
verged completely to a zero value for the objective function. For 21
of the remaining 34 scenarios, the optimization run with the least
objective function value represented the solution with correctly
identified source locations.

In addition to the objective function value, we examined
whether the frequency of the detected injection sources through all
50 optimization runs can serve as a good indicator for selecting the
best optimization run. In Fig. 12, the x-axis denotes the 34 noncon-
verged injection scenarios, and the y-axis denotes the detected in-
jection junctions. By analyzing the three most frequently detected
junctions, we found that they indeed match the actual injection
locations in 15 of 34 nonconverged injection scenarios (marked
arrows in Fig. 12).

These results show that both the frequency analysis and the
objective function value can be used to judge the quality of the
solution obtained by the SI framework, with the objective function
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Fig. 11. Normalized concentration results for low- and high-loading periods in (a) S2-L; and (b) S2-H.
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being a slightly better metric even though it may mislead in some
cases (Fig. 10).
Injection Pattern Identification. Similar to S2, the range of the
normalized concentrations detected by the SI framework was

examined for the correctly identified injection scenarios. Fig. 13
shows a box plot of the normalized detected concentration, where
the x-axis represents the injection junction and the y-axis shows the
corresponding normalized concentration, and unlike S2, the load-
ing period was dropped in this figure. By comparing Figs. 11–13, it
can be seen that the detection range is much larger in S3. Also, the
outliers are more spread out in S3. These results highlight the dif-
ficulty faced by the SI framework that resulted from increasing the
injection sources to three instead of two. Similar results were re-
trieved for the injection start time and duration.

Test Scenarios Set 4 (S4)
Surprisingly, in S4, none of the 50 optimization runs completely
converged to a zero objective function in all the injection scenarios.
In other words, hiding the actual number of injection sources from
the model prevented it from converging to the correct solution to
the SI problem in all the injection scenarios. Although the actual
number of injection sources is the same as S3 (i.e., three sources),
the SI framework failed to identify the location and characteristics
of the injection sources because it was forced to consider all five
junctions as simultaneous injection sources. This can be clearly
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Fig. 14.Average injection concentration at each junction in the network for each injection scenario in S4, where the white cells represent the injection
junctions.
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Fig. 12. Junctions’ detection frequency for the injection scenarios in S3.

© ASCE 04023034-11 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(8): 04023034 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f I
lli

no
is

 a
t C

hi
ca

go
 o

n 
08

/3
0/

23
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial
http://ascelibrary.org/doi/10.1061/JWRMD5.WRENG-6050#supplMaterial


seen in Fig. 14, which visualizes the results of S4 in terms of the
location of the injection sources. In this figure, the x-axis represents
the injection scenarios, and the y-axis shows the detected injection
junctions. In Fig. 14, the white cells denote the actual injection
junctions, and the number inside each cell represents the average
concentration detected by the SI framework. Fig. 14 shows that
only seven injection scenarios were identified with low injection
concentration error (<10 mg=L) at noninjection junctions (scenar-
ios marked with arrows in Fig. 14).

Taken together, these results highlight the significant challenge
of identifying an unknown number of sources. Such scenarios are
particularly relevant to WBE applications, where all of the sewer
shed junctions must be considered as potential simultaneous sour-
ces. In such cases, it may not be enough to collect samples from a
single observation location (e.g., WWTP), and additional samples
should also be collected from various locations throughout the
sewer shed to enhance source identifiability. Furthermore, the pro-
posed source identification algorithm can aid in the selection of
the locations for additional sample collection. The latter can be
done by designing a sensor placement algorithm that uses source
identifiability (i.e., minimizing source identification errors) as an
optimization objective.

Conclusions

In this study, a machine learning framework was proposed to solve
the source identification problem in sewer systems. Unlike previous
studies, the developed framework is capable of identifying multiple
simultaneous sources in the sewer shed, as well as accounting for
the decay of the species of interest during its transport through the
sewer network. The SI problem was formulated as a simulation-
optimization problem. To conduct water quality simulations, two
different approaches were investigated and compared: SWMM
and an MLP-NN surrogate model. The accuracy and computational
efficiency of the surrogate MPL-NN model were demonstrated
through several comparisons with the SWMM model.

The SI framework was applied to a range of injection scenarios
within a case study featuring a midsize combined sewer network.
We examined the performance of the proposed framework in iden-
tifying the characteristics of different numbers of simultaneous
injection sources. In addition, the effect of the species decay rate
and the injection period was assessed, along with the impact of
identifying the number of injection sources in the framework.

The results of the testing scenarios showed that the proposed
framework was able to identify the characteristics of multiple in-
jection sources with remarkable accuracy when the number of sour-
ces is defined in the model. In contrast, the proposed framework
struggled in detecting the correct injection characteristics when
the number of injection sources was unknown, effectively forcing
the model to consider all the network junctions as simultaneous
sources. Additionally, the results showed that the decay rate and
the injection period have a moderate impact on the detectability
of the injection sources. On the other hand, the residence time ap-
peared to play a significant role in identifying the correct injection
sources, where the source locations possessing the most unique res-
idence time were the most accurately identified by the framework.
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Notation

The following symbols are used in this paper:
bN = biases of the hidden layer;
C = injection concentration;

Cobs = species concentration observed at the observation
junction;

Crange = range of injection concentrations;
Csim = species concentration simulated by the simulation

model (either SWMM or MLP-NN);
ðdCÞ=ðdtÞ = rate of change in the injection concentration;

i = time step index;
j = index of the observation junction;
k = first-order decay rate coefficient;
m = total number of observation junctions;
n = total number of time steps;
ni = number of injection sources;
nJ = number of junctions in the network;

nsim = total number of simulation events;
OjðSiÞe = simulation result at time i at the observation junction j

for the eth simulation event;
PN = output of the Nth MLP-NN model (N∈n×m);
wN = weights of the hidden layer;
x = injection vector;

βN = biases of the output layer; and
ωN = weights of the output layer.
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