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Abstract

Wastewater surveillance has received significant attention in recent years due to the valuable
environmental and epidemiological information it reveals. Yet, limited attempts have been made in the
previous literature to determine the best locations for sample collection. In this study, we are introducing
a model to solve the sensor placement (SP) problem that considers source identification (SI) as the main
criterion for sensor placement. The objective of this study is to maximize the ability of the sensor design
to identify the characteristics of the injection source (i.e., the injection location and concentration) of any
given species of interest. To that end, we developed a python-based model that couples an SI model with
a Greedy Algorithm to determine the best locations to place water quality sensors. The developed SP
model was demonstrated on a benchmark, mid-sized sewer network. The results revealed that a clear
tradeoff exists between the overall identifiability and the detection reliability of the sensor design. In
general, placing the sensors in the downstream end of the network resulted in higher overall identifiability,
while better detection reliability was achieved by the sensors placed in the upstream section of the

network.
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INTRODUCTION

Monitoring the water quality in sewer systems is crucial for informing the operations of wastewater
treatment plants (Nourinejad et al., 2021). Water quality monitoring is particularly of significant
importance in combined sewer systems where excess untreated effluents are discharged directly to water
bodies (Banik et al., 2017a). Additionally, the identification of the sources of any unusual water
constituents (e.g., contaminants) in sewer systems is of great importance (Sambito and Freni, 2021). This
problem is formally known as the Source Identification (SI) problem, whereby the injection characteristics
of a specific constituent/contaminant in the sewer network need to be identified. The SI problem is
typically formulated as an optimization problem that aims to identify the locations and concentrations of
constituent injection into the sewer system. For instance, Banik et al., (2014) proposed an optimization
model for solving the SI problem by integrating the Storm Water Management Model (SWMM) with the
Genetic Algorithm. Later, Banik et al., 2015a aimed to reduce the complexity of the SI problem through
developing a pre-screening procedure to decrease the number of candidate junctions.

The solution to the SI problem is typically derived based on concentration data collected at one or
more observation junctions (i.e., sensors). Accordingly, accurate concentration data is key to successful
source identification. This can be achieved by optimizing the sensor placement (SP) in the network to
maximize the quality of the collected monitoring data. Several attempts have been made in previous
literature to solve the SP problem. Banik et al., 2015b proposed optimizing the sensor placement using
the Non-dominated Sorting Genetic Algorithm (NSGA-II). Additionally, Banik et al., 2017a implemented
the Greedy Algorithm (GR) to optimize sensor placement. Later, Banik et al., 2017b tested the adequacy
of the GR in solving different objective function formulations (e.g., single and multi-objective functions).
Finally, a probabilistic approach was introduced by Sambito et al., 2020 to optimize the SP.

Although the main motivation of the aforementioned studies was to develop sensor placement
strategies that can better serve source identification in sewer systems, none of these studies employed
model-based SI metrics within their SP optimization formulations. In this study, the SP problem is tackled
from a different perspective, where an SI module was integrated within the sensor placement optimization
process. The objectives of this study are to 1) show how to employ an SI module in the SP optimization to
enhance the sensors’ identification performance, ii) introduce a ranked-based approach to place multiple
sensors in the network, and iii) understand the relationship between the location of the sensor and the

information it is providing.



METHODS

In this study, a model for determining the best locations to place water quality sensors in sewer networks
is developed. The SP model aims to identify the sensor design alternative with the highest ability to
identify the source characteristics of any given species of interest. To that end, the SP model integrates
the results of an SI module (Salem and Abokifa, 2022) with a Greedy Algorithm. In this section, the SI
module and its implementation within the SP model are explained. In addition, the case study used to

show the capabilities of the proposed SP model is described.

Source Identification (SI) module

The main criterion used for assessing the quality of a specific sensor placement design is its ability to
identify the characteristics of an injection event (i.e., injection location and concentration). The
identification process is conducted based on the observed concentration data by the sensors. In this study,
we are considering multiple simultaneous continuous injections. The injection event can be identified by
minimizing the normalized root mean square error (nRMSE) between the simulated concentrations and

those observed by the sensors:
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where C°PS and CS"™ are the concentration observed and simulated at the sensor location; j is the index
of the sensor, m is the total number of sensors, i is the index of the time step, and n is the total number of
time steps. The SI module takes the observed concentrations as inputs and implements a simulation-
optimization approach to inversely search for the injection event that reproduces the concentrations

observed by the sensors. Detailed information on the SI module can be found in Salem and Abokifa, 2022.

Water quality simulation

In the SI module, water quality simulations are conducted by a machine learning-based surrogate model
in the form of a multi-layer perceptron neural network (MLP-NN). Initially, a pre-processing step is
performed by running a SWMM simulation to identify the connectivity status of the network junctions to
each of the sensors within a specific sensor design. This step is important to eliminate the junctions that
do not affect the concentrations observed by any of the sensors, which helps reduce the computational

redundancy and computational complexity of the SI module.



After the determination of the junction's connectivity status, the input dataset is generated. This dataset
consists of a pre-defined number of randomly generated injection events in the form of [(L4, C;),(Lq1, Cy),

ver(Lipy 5 Cn ])], where (L;, C;) represents the injection location and concentration of an injection source.

Then, the generated injection events are then simulated by SWMM to form the output dataset. Later, the
input and output datasets are split to train and test the MLP-NN surrogate model of each sensor. Through
the training process, the MLP-NN can learn the input-output relationship between injection source
characteristics and the signal generated at the sensors, and can hence be used to simulate other injection
events. A python script was coded to perform the aforementioned tasks, with the use of the PySWMM
package (McDonnell et al., 2020) to automate the SWMM simulations, and the Sklearn package
(Pedregosa et al., 2011) to train and test the MLP-NN surrogate models.

Error minimization

To minimize the error between the simulated and the observed concentrations (Eq. (1)), the Genetic
Algorithm (GA) is utilized by the SI module. First, the GA produces several injection events (i.e.,
individuals), and sends them to the MLP-NN to be simulated. Then, the nRMSE (i.e., fitness) of each
individual is calculated according to Eq. (1) and reported back to the GA. The next generation of
individuals is then created by applying the selection, crossover, and mutation operators as explained in
Salem et al., 2022. The same cycle is then repeated until the nRMSE reaches zero, or 100 generations are

completed. The GA implemented in the SI module was done by using the PyGAD package (Gad, 2021).

Sensor Placement (SP) model

The SP model employs the result of the SI model to evaluate the performance of different sensor design
alternatives. This is done by computing a score (Sgcore) to measure the value of the information provided
by each sensor design alternative in identifying the injection characteristics for several injection scenarios
(i.e., events). To calculate the S;.,¢, the identified injection characteristics are compared to the true ones,

so that higher S, means more accurate identification. The Sy, can be mathematically represented as

follows,
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where n is the scenario index out of Ny, scenarios; o is the source index out of N, sources; D, is the

distance between the true and the identified injection source, D, ¢ is the average distance between the



true injection source and the sensors; and CS™" is the absolute percentage error between the true and the
identified injection concentration.

First, a pre-defined number of injection scenarios are randomly generated, each with a pre-defined
number of injection sources. Then, these scenarios are simulated so that the concentration results at the
sensors are identified, which are then sent to the SI module to solve the inverse SI problem and to identify
the injection characteristics of the injection scenarios. Once the SI is completed, the identification results
are linked to their corresponding sensor design alternative. Finally, the S,.,,. of each alternative is

calculated according to Eq. (2).

Greedy Algorithm

In this study, a Greedy Algorithm (GR) is used as a rank-based approach to find the best placement of
multiple sensors in the network. In this algorithm, the placement of N sensors is achieved by performing
N ranking rounds. In each round, the highest-ranking location is selected as a sensor and then fixed while
performing the following round to select the location of the next sensor. Even though the GR doesn’t
guarantee finding the optimal solution, it has proved to be an efficient and simple approach for finding
near-optimal solutions for large search domain problems with low computational cost and was hence
commonly used in various SP optimization studies (Banik et al., 2017b; Cheifetz et al., 2015; Sela and

Amin, 2018).

Case study

To demonstrate the performance of the proposed SP model, we applied it to the SWMM example 8
network, which has been repeatedly used in previous literature. The case study network data was collected
from the SWMM applications manual (Gironas et al., 2009). The SWMM example 8 network drains the
dry weather flow (DWF) of 5 sub-sewer sheds to 1 outfall through 16 conduits and 16 junctions (Figure
1). The DWF assigned to the exterior 5 junctions comes directly from the sub-sewer sheds, whereas a
direct DWF was assigned to the other intermediate junctions, the DWF assignments are summarized in
Table 1. The pattern of the DWF was assumed to follow the wastewater pattern developed by Butler et
al., 2018. In this study, two sensor placement cases were examined, one sensor was considered in the first
case (Cl), whereas two sensors were considered in the second case (C2). In both C1 and C2, it was
considered that a non-conservative constituent (i.e., contaminant) with a decay rate (k) of 17 d™?! is

injected in two junctions simultaneously.



Table 1: DWF assignments of SWMM example 8 network

Junction N 12a 13 J13 I All others
DWF (liter/min.) | 13.6 17.0 6.8 209 212 8.5

@ Junctions
A Outfalls
= Conduits
[ Subcatchments

Figure 1: The layout of SWMM Example 8 network

Injection scenarios

To evaluate the performance of different sensor design alternatives, 100 injection scenarios were
generated randomly by using the Latin Hypercube Sampling method (Huntington and Lyrintzis, 1998).
The injection scenarios were generated considering a uniform distribution over the injection location to
ensure that all junctions have an equal opportunity to be selected as an injection source (Figure 2).

Similarly, a uniform distribution over the injection concentration is considered between 1 and 100 mg/L.
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Figure 2: The selection frequency of the junctions as an injection source



RESULTS AND DISCUSSION
Case 1 (C1): one sensor placement

To find the best location for placing one sensor in the network, the SP model was run to rank the junctions
based on their Ss.pre. In addition to the Sg.,., two other metrics were computed to help assess the
performance of different sensor design alternatives, namely the sensor coverage (Sc) and the detection
reliability (Dg). The S¢ is the percentage of the network’s junctions covered by each sensor. The higher
the value of S, the greater the ability of the sensor to observe more of the network junctions. The Dy is
the percentage of the correctly detected injection scenarios relative to the injection scenarios covered by
a sensor. The higher the value of Dy, the more reliable the sensor is in detecting the injection characteristics
of the scenarios it is observing.

In Figure 3, the x-axis represents the junction name, and the y-axis represents the 1) Sgcore, 11) S¢,
and iii) Dg. Figure 3 shows that there is a strong correlation between the sensor coverage (Sc) and the
sensor score (Ss.ore)- This indicates that, as expected, sensors observing more of the network junctions
tend to achieve higher Sg.,.. Accordingly, the network outfall was found to be the best location to place

the first sensor as it observes all the network junctions.
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Figure 3: Results of placing one sensor (Cl). The bar plots represent the Ss.ore and the S¢, and the
scatter plot represents the Dy

In general, junctions with low S, seemed to perform better in terms of Dg. These are generally
junctions located near the upstream sections of the network (e.g., J2, J7, and JI8). Even though these
junctions observe a smaller portion of the network compared to downstream junctions (i.e., lower S¢),
they receive a clearer signal from the junctions and can hence better detect their characteristics (i.e., higher

Dpg). On the other hand, junctions with high S,.,,. tend to be the ones at/near the downstream sections of



the network (e.g., the outfall, JI5, and JI4). These junctions observe more of the sewer network (i.e., higher
S¢) but at the expense of their ability to accurately detect the true injection characteristics of the distant
junctions (i.e., lower Dg). Taken together, these results highlight the trade-off between the overall
identifiability represented by the S, and the detection reliability represented by the Dp.

Case 2 (C2): two sensors placement

According to the Greedy Algorithm, a second ranking round is required to place the second sensor.
Hence, the SP model was run to find the location of the second sensor considering that a sensor already
exists at the highest-ranking location determined by the first round (i.e., the outfall). Figure 4 shows the
results of two sensors placement (C2). The x-axis represents the junction name where the second sensor
is placed. The left y-axis represents the S, of the sensor design alternative (considering another sensor
at the outfall), and the right y-axis represents the junction rank in C1 (considering only a sensor at that
junction). It can be seen from Figure 4 that JI2 was the best location to place the second sensor, although
it was ranked 5" in C1 (i.e., as the only sensor). More importantly, JI2 was selected as the second sensor
in favor of JI3 and JI8, which according to Figure 1, are also considered central junctions. Figure 4 also
shows that downstream junctions (e.g., JIS and JI4) are not good locations for the second sensor, even
though they are considered valuable in C1. The reason is that they provide similar (i.e., redundant)

information to that provided by the outfall.
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Figure 4: Results of placing two sensors (C2). The bar plot represents the Sg.,r. and corresponds to the
left y-axis, and the scatter plot represents the junction rank in C1 and corresponds to the right y-axis



CONCLUSIONS

In this study, we proposed an approach for integrating model-based source identification within the
optimization of water quality sensor placement in sewer systems. The developed SP model utilizes the
Greedy Algorithm to optimize the placement of multiple sensors with the aim of maximizing the ability
of sensors to identify the injection characteristics of water constituents of interest. The performance of the
SP model was examined by applying it on a benchmark sewer network under different injection scenarios.
The results revealed that a trade-off exists between the overall identifiability represented by the S, and
the detection reliability (Dg) of a sensor design alternative. Future studies are recommended to follow a
similar approach while tackling sensor placement optimization to ensure that the information gained from

the sensors achieves accurate source identification.

ACKNOWLEDGEMENTS

This work was supported by funding from the University of Illinois Chicago, and the National Science
Foundation under grant number 2015603.



REFERENCES

e Banik, B.K., Alfonso, L., Di Cristo, C., Leopardi, A., Mynett, A., 2017a. Evaluation of Different
Formulations to Optimally Locate Sensors in Sewer Systems. J. Water Resour. Plan. Manag. 143,
04017026. https://doi.org/10.1061/(asce)wr.1943-5452.0000778

e Banik, B.K., Alfonso, L., Di Cristo, C., Leopardi, A., 2017b. Greedy algorithms for sensor location
in sewer systems. Water (Switzerland) 9, 1-14. https://doi.org/10.3390/w9110856

e Banik, B.K., Di Cristo, C., Leopardi, A., 2015a. A pre-screening procedure for pollution source
identification in sewer systems. Procedia Eng. 119, 360-369.
https://doi.org/10.1016/j.proeng.2015.08.896

e Banik, B.K., Alfonso, L., Torres, A.S., Mynett, A., Di Cristo, C., Leopardi, A., 2015b. Optimal
placement of water quality monitoring stations in sewer systems: An information theory approach.
Procedia Eng. 119, 1308—1317. https://doi.org/10.1016/j.proeng.2015.08.956

e Banik, B.K., Di Cristo, C., Leopardi, A., 2014. SWMMS toolkit development for pollution source
identification in sewer systems. Procedia Eng. 89, 750-757.
https://doi.org/10.1016/j.proeng.2014.11.503

e Butler, D., Digman, C.J., Makropoulos, C., Davies, J.W., 2018. Urban Drainage, Fourth Edi. ed.
CRC Press, Taylor & Francis Group. https://doi.org/10.4324/9780203351673

e Cheifetz, N., Sandraz, A.C., Féliers, C., Gilbert, D., Piller, O., Lang, A., 2015. An incremental
sensor placement optimization in a large real-world water system. Procedia Eng. 119, 947-952.
https://doi.org/10.1016/j.proeng.2015.08.977

e Gad, AF, 2021. PyGAD: An Intuitive Genetic Algorithm Python Library.

e Gironas, J., Roesner, L.A., Davis, J., Rossman, L.A., 2009. Storm Water Management Model
Applications Manual. Cincinnati, OH. National Risk Management Research Laboratory, Office of
Research and Development, U.S. Environmental Protection Agency.

e Huntington, D.E., Lyrintzis, C.S., 1998. Improvements to and limitations of Latin hypercube
sampling. Probabilistic Eng. Mech. 13, 245-253. https://doi.org/10.1016/s0266-8920(97)00013-1

e McDonnell, B., Ratliff, K., Tryby, M., Wu, J., Mullapudi, A., 2020. PySWMM: The Python
Interface to Stormwater Management Model (SWMM). J. Open Source Softw. 5, 2292.
https://doi.org/10.21105/j0ss.02292



Nourinejad, M., Berman, O., Larson, R.C., 2021. Placing sensors in sewer networks: A system to
pinpoint new cases of coronavirus. PLoS One 16, 1-25.
https://doi.org/10.1371/journal.pone.0248893

Salem, A.K., Imam, Y.E., Ghanem, A.H., Bazaraa, A.S., 2022. Genetic Algorithm Based Model
for Optimal Selection of Open Channel Design Parameters. Water Resour. Manag.
https://doi.org/10.1007/s11269-022-03323-w

Salem, A.K., Abokifa, A.A., 2022. Machine Learning-Based Source Identification in Sewer
Networks. Under review

Sambito, M., Di Cristo, C., Freni, G., Leopardi, A., 2020. Optimal water quality sensor positioning
in urban drainage systems for illicit intrusion identification. J. Hydroinformatics 22, 46—60.
https://doi.org/10.2166/hydro.2019.036

Sambito, M., Freni, G., 2021. Strategies for improving optimal positioning of quality sensors in
urban drainage systems for non-conservative contaminants. Water (Switzerland) 13.
https://doi.org/10.3390/w13070934

Sela, L., Amin, S., 2018. Robust sensor placement for pipeline monitoring: Mixed integer and
greedy optimization. Adv. Eng. Informatics 36, 55—63. https://doi.org/10.1016/j.2€1.2018.02.004
Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... others.
(2011). Scikit-learn: machine learning in python. Journal of machine learning research, 12(Oct),

2825-2830.



