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Abstract 

Wastewater surveillance has received significant attention in recent years due to the valuable 

environmental and epidemiological information it reveals. Yet, limited attempts have been made in the 

previous literature to determine the best locations for sample collection. In this study, we are introducing 

a model to solve the sensor placement (SP) problem that considers source identification (SI) as the main 

criterion for sensor placement. The objective of this study is to maximize the ability of the sensor design 

to identify the characteristics of the injection source (i.e., the injection location and concentration) of any 

given species of interest. To that end, we developed a python-based model that couples an SI model with 

a Greedy Algorithm to determine the best locations to place water quality sensors. The developed SP 

model was demonstrated on a benchmark, mid-sized sewer network. The results revealed that a clear 

tradeoff exists between the overall identifiability and the detection reliability of the sensor design. In 

general, placing the sensors in the downstream end of the network resulted in higher overall identifiability, 

while better detection reliability was achieved by the sensors placed in the upstream section of the 

network. 
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INTRODUCTION 

Monitoring the water quality in sewer systems is crucial for informing the operations of wastewater 

treatment plants (Nourinejad et al., 2021). Water quality monitoring is particularly of significant 

importance in combined sewer systems where excess untreated effluents are discharged directly to water 

bodies (Banik et al., 2017a). Additionally, the identification of the sources of any unusual water 

constituents (e.g., contaminants) in sewer systems is of great importance (Sambito and Freni, 2021). This 

problem is formally known as the Source Identification (SI) problem, whereby the injection characteristics 

of a specific constituent/contaminant in the sewer network need to be identified. The SI problem is 

typically formulated as an optimization problem that aims to identify the locations and concentrations of 

constituent injection into the sewer system. For instance, Banik et al., (2014) proposed an optimization 

model for solving the SI problem by integrating the Storm Water Management Model (SWMM) with the 

Genetic Algorithm. Later, Banik et al., 2015a aimed to reduce the complexity of the SI problem through 

developing a pre-screening procedure to decrease the number of candidate junctions. 

The solution to the SI problem is typically derived based on concentration data collected at one or 

more observation junctions (i.e., sensors). Accordingly, accurate concentration data is key to successful 

source identification. This can be achieved by optimizing the sensor placement (SP) in the network to 

maximize the quality of the collected monitoring data. Several attempts have been made in previous 

literature to solve the SP problem. Banik et al., 2015b proposed optimizing the sensor placement using 

the Non-dominated Sorting Genetic Algorithm (NSGA-II). Additionally, Banik et al., 2017a implemented 

the Greedy Algorithm (GR) to optimize sensor placement. Later, Banik et al., 2017b tested the adequacy 

of the GR in solving different objective function formulations (e.g., single and multi-objective functions). 

Finally, a probabilistic approach was introduced by Sambito et al., 2020 to optimize the SP. 

Although the main motivation of the aforementioned studies was to develop sensor placement 

strategies that can better serve source identification in sewer systems, none of these studies employed 

model-based SI metrics within their SP optimization formulations. In this study, the SP problem is tackled 

from a different perspective, where an SI module was integrated within the sensor placement optimization 

process. The objectives of this study are to i) show how to employ an SI module in the SP optimization to 

enhance the sensors’ identification performance, ii) introduce a ranked-based approach to place multiple 

sensors in the network, and iii) understand the relationship between the location of the sensor and the 

information it is providing.   



METHODS 

In this study, a model for determining the best locations to place water quality sensors in sewer networks 

is developed. The SP model aims to identify the sensor design alternative with the highest ability to 

identify the source characteristics of any given species of interest. To that end, the SP model integrates 

the results of an SI module (Salem and Abokifa, 2022) with a Greedy Algorithm. In this section, the SI 

module and its implementation within the SP model are explained. In addition, the case study used to 

show the capabilities of the proposed SP model is described. 

Source Identification (SI) module 

The main criterion used for assessing the quality of a specific sensor placement design is its ability to 

identify the characteristics of an injection event (i.e., injection location and concentration). The 

identification process is conducted based on the observed concentration data by the sensors. In this study, 

we are considering multiple simultaneous continuous injections. The injection event can be identified by 

minimizing the normalized root mean square error (𝑛𝑅𝑀𝑆𝐸) between the simulated concentrations and 

those observed by the sensors: 
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where 𝐶𝑜𝑏𝑠 and 𝐶𝑠𝑖𝑚 are the concentration observed and simulated at the sensor location; 𝑗 is the index 

of the sensor, 𝑚 is the total number of sensors, 𝑖 is the index of the time step, and 𝑛 is the total number of 

time steps. The SI module takes the observed concentrations as inputs and implements a simulation-

optimization approach to inversely search for the injection event that reproduces the concentrations 

observed by the sensors. Detailed information on the SI module can be found in Salem and Abokifa, 2022. 

Water quality simulation 

In the SI module, water quality simulations are conducted by a machine learning-based surrogate model 

in the form of a multi-layer perceptron neural network (MLP-NN). Initially, a pre-processing step is 

performed by running a SWMM simulation to identify the connectivity status of the network junctions to 

each of the sensors within a specific sensor design. This step is important to eliminate the junctions that 

do not affect the concentrations observed by any of the sensors, which helps reduce the computational 

redundancy and computational complexity of the SI module.  



After the determination of the junction's connectivity status, the input dataset is generated. This dataset 

consists of a pre-defined number of randomly generated injection events in the form of [(𝐿1, 𝐶1),(𝐿1, 𝐶1), 

...,(𝐿𝑛𝐽
, 𝐶𝑛𝐽

)], where (𝐿𝑖, 𝐶𝑖) represents the injection location and concentration of an injection source. 

Then, the generated injection events are then simulated by SWMM to form the output dataset. Later, the 

input and output datasets are split to train and test the MLP-NN surrogate model of each sensor. Through 

the training process, the MLP-NN can learn the input-output relationship between injection source 

characteristics and the signal generated at the sensors, and can hence be used to simulate other injection 

events. A python script was coded to perform the aforementioned tasks, with the use of the PySWMM 

package (McDonnell et al., 2020) to automate the SWMM simulations, and the Sklearn package 

(Pedregosa et al., 2011) to train and test the MLP-NN surrogate models. 

Error minimization 

To minimize the error between the simulated and the observed concentrations (Eq. (1)), the Genetic 

Algorithm (GA) is utilized by the SI module. First, the GA produces several injection events (i.e., 

individuals), and sends them to the MLP-NN to be simulated. Then, the 𝑛𝑅𝑀𝑆𝐸 (i.e., fitness) of each 

individual is calculated according to Eq. (1) and reported back to the GA. The next generation of 

individuals is then created by applying the selection, crossover, and mutation operators as explained in 

Salem et al., 2022. The same cycle is then repeated until the 𝑛𝑅𝑀𝑆𝐸 reaches zero, or 100 generations are 

completed. The GA implemented in the SI module was done by using the PyGAD package (Gad, 2021). 

Sensor Placement (SP) model 

The SP model employs the result of the SI model to evaluate the performance of different sensor design 

alternatives. This is done by computing a score (𝑆𝑠𝑐𝑜𝑟𝑒) to measure the value of the information provided 

by each sensor design alternative in identifying the injection characteristics for several injection scenarios 

(i.e., events). To calculate the 𝑆𝑠𝑐𝑜𝑟𝑒, the identified injection characteristics are compared to the true ones, 

so that higher 𝑆𝑠𝑐𝑜𝑟𝑒 means more accurate identification. The 𝑆𝑠𝑐𝑜𝑟𝑒 can be mathematically represented as 

follows, 
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where 𝑛 is the scenario index out of 𝑁𝑠𝑐 scenarios; 𝑜 is the source index out of 𝑁𝑠𝑜 sources; 𝐷𝑜 is the 

distance between the true and the identified injection source, 𝐷𝑜
𝑎𝑣𝑔

 is the average distance between the 



true injection source and the sensors; and 𝐶𝑜
𝑒𝑟𝑟 is the absolute percentage error between the true and the 

identified injection concentration. 

First, a pre-defined number of injection scenarios are randomly generated, each with a pre-defined 

number of injection sources. Then, these scenarios are simulated so that the concentration results at the 

sensors are identified, which are then sent to the SI module to solve the inverse SI problem and to identify 

the injection characteristics of the injection scenarios. Once the SI is completed, the identification results 

are linked to their corresponding sensor design alternative. Finally, the 𝑆𝑠𝑐𝑜𝑟𝑒 of each alternative is 

calculated according to Eq. (2). 

Greedy Algorithm 

In this study, a Greedy Algorithm (GR) is used as a rank-based approach to find the best placement of 

multiple sensors in the network. In this algorithm, the placement of 𝑁 sensors is achieved by performing 

𝑁 ranking rounds. In each round, the highest-ranking location is selected as a sensor and then fixed while 

performing the following round to select the location of the next sensor. Even though the GR doesn’t 

guarantee finding the optimal solution, it has proved to be an efficient and simple approach for finding 

near-optimal solutions for large search domain problems with low computational cost and was hence 

commonly used in various SP optimization studies (Banik et al., 2017b; Cheifetz et al., 2015; Sela and 

Amin, 2018). 

Case study 

To demonstrate the performance of the proposed SP model, we applied it to the SWMM example 8 

network, which has been repeatedly used in previous literature. The case study network data was collected 

from the SWMM applications manual (Gironás et al., 2009). The SWMM example 8 network drains the 

dry weather flow (DWF) of 5 sub-sewer sheds to 1 outfall through 16 conduits and 16 junctions (Figure 

1). The DWF assigned to the exterior 5 junctions comes directly from the sub-sewer sheds, whereas a 

direct DWF was assigned to the other intermediate junctions, the DWF assignments are summarized in 

Table 1. The pattern of the DWF was assumed to follow the wastewater pattern developed by Butler et 

al., 2018. In this study, two sensor placement cases were examined, one sensor was considered in the first 

case (C1), whereas two sensors were considered in the second case (C2). In both C1 and C2, it was 

considered that a non-conservative constituent (i.e., contaminant) with a decay rate (𝑘) of 17 𝑑−1 is 

injected in two junctions simultaneously. 

 



Table 1: DWF assignments of SWMM example 8 network 

Junction J1 J2a J3 J13 J12 All others 

DWF (liter/min.) 13.6 17.0 6.8 20.9 21.2 8.5 

 

 

Figure 1: The layout of SWMM Example 8 network 

Injection scenarios 

To evaluate the performance of different sensor design alternatives, 100 injection scenarios were 

generated randomly by using the Latin Hypercube Sampling method (Huntington and Lyrintzis, 1998). 

The injection scenarios were generated considering a uniform distribution over the injection location to 

ensure that all junctions have an equal opportunity to be selected as an injection source (Figure 2). 

Similarly, a uniform distribution over the injection concentration is considered between 1 and 100 mg/L.  

 

Figure 2: The selection frequency of the junctions as an injection source 



RESULTS AND DISCUSSION 

Case 1 (C1): one sensor placement 

To find the best location for placing one sensor in the network, the SP model was run to rank the junctions 

based on their 𝑆𝑠𝑐𝑜𝑟𝑒. In addition to the 𝑆𝑠𝑐𝑜𝑟𝑒, two other metrics were computed to help assess the 

performance of different sensor design alternatives, namely the sensor coverage (𝑆𝐶) and the detection 

reliability (𝐷𝑅). The 𝑆𝐶 is the percentage of the network’s junctions covered by each sensor. The higher 

the value of 𝑆𝐶, the greater the ability of the sensor to observe more of the network junctions. The 𝐷𝑅 is 

the percentage of the correctly detected injection scenarios relative to the injection scenarios covered by 

a sensor. The higher the value of 𝐷𝑅, the more reliable the sensor is in detecting the injection characteristics 

of the scenarios it is observing.  

In Figure 3, the x-axis represents the junction name, and the y-axis represents the i) 𝑆𝑠𝑐𝑜𝑟𝑒, ii) 𝑆𝐶, 

and iii) 𝐷𝑅. Figure 3 shows that there is a strong correlation between the sensor coverage (𝑆𝐶) and the 

sensor score (𝑆𝑠𝑐𝑜𝑟𝑒). This indicates that, as expected, sensors observing more of the network junctions 

tend to achieve higher 𝑆𝑠𝑐𝑜𝑟𝑒. Accordingly, the network outfall was found to be the best location to place 

the first sensor as it observes all the network junctions.  

 

Figure 3: Results of placing one sensor (C1). The bar plots represent the 𝑆𝑠𝑐𝑜𝑟𝑒 and the 𝑆𝐶, and the 

scatter plot represents the 𝐷𝑅 

In general, junctions with low 𝑆𝑠𝑐𝑜𝑟𝑒 seemed to perform better in terms of 𝐷𝑅. These are generally 

junctions located near the upstream sections of the network (e.g., J2, J7, and JI8). Even though these 

junctions observe a smaller portion of the network compared to downstream junctions (i.e., lower 𝑆𝐶), 

they receive a clearer signal from the junctions and can hence better detect their characteristics (i.e., higher 

𝐷𝑅). On the other hand, junctions with high 𝑆𝑠𝑐𝑜𝑟𝑒 tend to be the ones at/near the downstream sections of 



the network (e.g., the outfall, JI5, and JI4). These junctions observe more of the sewer network (i.e., higher 

𝑆𝐶) but at the expense of their ability to accurately detect the true injection characteristics of the distant 

junctions (i.e., lower 𝐷𝑅). Taken together, these results highlight the trade-off between the overall 

identifiability represented by the 𝑆𝑠𝑐𝑜𝑟𝑒 and the detection reliability represented by the 𝐷𝑅. 

Case 2 (C2): two sensors placement 

According to the Greedy Algorithm, a second ranking round is required to place the second sensor. 

Hence, the SP model was run to find the location of the second sensor considering that a sensor already 

exists at the highest-ranking location determined by the first round (i.e., the outfall). Figure 4 shows the 

results of two sensors placement (C2). The x-axis represents the junction name where the second sensor 

is placed. The left y-axis represents the 𝑆𝑠𝑐𝑜𝑟𝑒 of the sensor design alternative (considering another sensor 

at the outfall), and the right y-axis represents the junction rank in C1 (considering only a sensor at that 

junction). It can be seen from Figure 4 that JI2 was the best location to place the second sensor, although 

it was ranked 5th in C1 (i.e., as the only sensor). More importantly, JI2 was selected as the second sensor 

in favor of JI3 and JI8, which according to Figure 1, are also considered central junctions. Figure 4 also 

shows that downstream junctions (e.g., JI5 and JI4) are not good locations for the second sensor, even 

though they are considered valuable in C1. The reason is that they provide similar (i.e., redundant) 

information to that provided by the outfall. 

 

Figure 4: Results of placing two sensors (C2). The bar plot represents the 𝑆𝑠𝑐𝑜𝑟𝑒 and corresponds to the 

left y-axis, and the scatter plot represents the junction rank in C1 and corresponds to the right y-axis  

 



CONCLUSIONS 

In this study, we proposed an approach for integrating model-based source identification within the 

optimization of water quality sensor placement in sewer systems. The developed SP model utilizes the 

Greedy Algorithm to optimize the placement of multiple sensors with the aim of maximizing the ability 

of sensors to identify the injection characteristics of water constituents of interest. The performance of the 

SP model was examined by applying it on a benchmark sewer network under different injection scenarios. 

The results revealed that a trade-off exists between the overall identifiability represented by the 𝑆𝑠𝑐𝑜𝑟𝑒 and 

the detection reliability (𝐷𝑅) of a sensor design alternative. Future studies are recommended to follow a 

similar approach while tackling sensor placement optimization to ensure that the information gained from 

the sensors achieves accurate source identification. 
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