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Abstract—The research presented in this paper aims to
establish functional mockup units (FMU) co-simulation methods
to simulate and evaluate encrypted dynamic systems using some-
what homomorphic encryption (SHE). The proposed approach
encrypts the entire dynamic system expressions, including:
model parameters, state variables, feedback gains, and sensor
signals, and perform computation in the ciphertext space to
simulate dynamic behaviors or generate motion commands to
servo systems. The developed FMU co-simulation helps analyze
the relationship between security parameters and performance.
Two illustrative examples are presented and analyzed: 1) en-
crypted Duffing oscillator and 2) encrypted teleoperation. How
the time delay due to FMU co-simulation affects the refresh
rate is also reported.

Index Terms—Encrypted control, Cybersecurity, Somewhat
homomorphic encryption, Functional mockup units

I. INTRODUCTION

Encrypted control is an emerging topic in control en-
gineering to realize secured dynamic controllers in a net-
worked control system by applying homomorphic encryp-
tion methods [1] [2]. This approach aims to ensure that
sensitive information, such as controller gains and signals
is always encrypted in the cloud. As a proactive measure
for unauthorized login and falsification, the secret key is
possessed only in the local end, not in the cloud controller;
encrypted signals and feedback gains are used to compute
motion commands in the ciphertext directly. Due to practical
limitations in existing homomorphic encryption algorithms,
which usually perform either additions or multiplications,
termed “partially homomorphic encryption” or PHE, the
majority of the existing studies used linear controllers [3]–[6].
In some cases, nonlinear plant dynamics must be evaluated
in real-time for model-based compensation, which increases
the complexity of the control scheme. Practically usable
fully homomorphic encryption (FHE) has not yet been devel-
oped. Due to this reason, expansion of homomorphic control
encryption methodologies to nonlinear and/or time-varying
control has not been well studied.

A “somewhat homomorphic encryption” (SHE) algorithm
proposed by Dyer et al. [7] has shown promise of online en-
cryption upon which this study will develop new realization
procedures. SHE is a family of algorithms that can perform
both additive and multiplicative homomorphic encryption
with a limited number of operations. Teranishi et al. showed

it possible to use this SHE algorithm for real-time control
[8]. Note that inappropriate selections of security parameters
and signal quantization levels in SHE will cause overflow and
system instability. Due to the known limitations of SHE, there
is a need for a simulation environment that can investigate the
relationship between security parameters and performance.

This paper presents a Functional Mock-up Unit (FMU)
[9] co-simulation environment to simulate and evaluate en-
crypted dynamic systems with SHE. FMUs have been chosen
as the simulation technology. Unlike commercial solutions
(e.g. Ansys, Simulink, etc.) the specification is open-source
and designed to be as widely compatible as possible. As
such, interfacing with external codes is much simpler than
commercial solutions. Furthermore, vendors are increasingly
choosing to allow their models to be exported as an FMU,
which significantly simplifies the construction of FMUs.
With this technology, users can “mix-and-match” FMUs to
construct simulations of arbitrary systems. The addition of
external cryptographic methods allows us to test the feasi-
bility of encrypted control of said systems, see Fig. 1. As
case studies, an encrypted duffing oscillator and teleoperated
robotics system are analyzed in terms of quantization and
overflow.

II. SIMULATION ENVIRONMENT

A. Functional Mock-up Interface
Functional Mock-up Interface (FMI) is a tool indepen-

dent standard for the Model Exchange (ME) and for Co-
Simulation (CS) between different tools in a standardized
format [10]. In the FMI nomenclature, a Functional Mock-up
Unit (FMU) model implements one or two of FMIs. FMU
is a promising candidate to become the industry standard
and cross-company collaboration as it allows co-simulation of
various FMUs components generated from different tools to
develop complex cyber-physical systems [11]. Compared to
Simulink (MATLAB, Mathworks) that is designed to model
dynamic systems, FMU has the advantage of supporting
more data types and language features. FMI also addresses
the disadvantage of the Simulink S-function as it is easier
to integrate with other simulators and takes less memory
overhead [9].

FMU is essentially an archive (i.e. a .zip file), containing
a modelDescription.xml file in the root, and either



binary or source files. In model exchange, FMU does not
come with its numerical solver. FMU only provides functions
to set the states and inputs and compute the state derivatives.
It requires the solver in the host environment/import tool to
query the derivatives and update the states of the FMU. In
co-simulation, a specialized numerical solver is embedded in
the FMU. The host environment only sets the inputs and time
steps, and reads the outputs [12].

Since encrypted control usually requires a complex model,
the authors adopted the co-simulation option. FMU can be
run with FMPy, a free Python library, to execute FMUs
that support Co-Simulation and Model Exchange and run
on Windows and Linux [13]. Interested readers can visit the
authors’ GitHub to find relevant implementations [14].

B. FMU/Cypher Interface

1) Cypher Independent Interface: A system has been
created by which critical parts of the FMU’s calculations
can be encrypted via external codes. To achieve this, we
defined an interface to access cryptographic methods. FMUs
can be created from vendor tools such as Simulink. Co-
simulation standalone FMUs can be exported from Simulink
after setting the system target file and fixed-step. By using
the S-Function block, we can insert calls to our inter-
face methods via function pointers and system functions
(LoadLibrary on Windows, dlopen on Linux).

By separating the cryptographic routines into a standalone
.dll, the implementation of the interface is isolated from the
FMU’s internal operation. This architecture enables the user
to exchange a particular cypher.dll for a cypher.dll
that implements the same interface for testing different cryp-
tographic systems. The interface serves as a convenient test
bed for evaluating the feasibility of different encrypted cyber-
physical systems.

2) FMU plug-and-play setup: The modular structure of
FMU may be used in conjunction with the aforementioned
cypher-interface to create an encrypted cyber-physical test-
bed. A particular FMU system is paired with different imple-
mentations of cypher.dll to test which cypher/security-
parameters are best compatible with the particular system.
An example of this workflow can be seen in Fig. 1.

3) Data type constraints: FMI was designed to be widely
compatible with as many hardware architectures and operat-
ing systems as possible; as such, data is constrained to be
“standard C types” [15]. This poses challenges when trying
to pass encrypted values to FMUs, as cipher-text values
usually cannot be represented by standard types alone. To
work around these constraints, in the following case studies,
the authors have elected to move all cryptographic methods
into controller.fmu. It is usually not ideal to allow
encryption and decryption to occur in a single controller. This
particular configuration has been chosen to be acceptable as
the same computations are being performed, just by different
owning processes. As such, timing results are unlikely to be
noticeably affected.
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(a) Testbed Flow: Evaluation scheme to find successful security parame-
ters, where ε is the measured error, εT the error tolerance, τ the measured
simulation-cycle time, and τT the simulation-cycle time tolerance.
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(b) Testbed staging: Construct system from FMU composition,
and select the cypher to be tested. Here the “Test Bed” block
refers to Fig. 1a.

Fig. 1: FMU/Cypher test-bed: System simulation is con-
structed by linking FMUs chosen from a remote repository.
A cypher is then selected to be tested for compatibility with
the given FMU system.

III. CASE STUDIES

A. Limiting Equation

The primary limiting factor of Dyer’s SHE is the diver-
gence of noise introduced into the ciphertext, primarily by ho-
momorphic multiplication. As shown in Appendix, the largest
possible value among all encrypted signals, parameters, and
products should be smaller than:

M(n, d, λ, ν) :=

⌊
min

{
d
√
κ

n+ 1
,

d
√
p

n+ 1
− κ2

}⌋
(1)

where d is the degrees of polynomial, p is the λ-bit prime, κ
is the ν-bit prime–the scheme’s security parameters [8], [16].
Note the left-handed (L) and right-handed (R) arguments of
(1) are given by: L =

d
√
κ

n+1 , R =
d
√
p

n+1 − κ2.

B. Objectives

By running the simulations in FMUs, this study simulates
the systems presented in the case studies similar to a real-
world scenario. The simulations will validate the relationship
of the security parameters in (1) for different systems. Also,
the simulation will investigate the quantization and overflow
patterns as well as the choices of security parameters when
L or R of (1) dominates.

C. Duffing Oscillator

This paper will apply the SHE approach to the Duffing
oscillator that includes a third degree of polynomials term.
The Duffing equation is regarded as one of the prototypes for
systems of nonlinear dynamics. In mechanics, it represents
a class of single-degree-of-freedom systems with nonlinear
stiffness.

Let the coefficients δ, α, β, γ, ω denote system damping,
linear stiffness, amount of non-linearity in the restoring force,
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Fig. 2: All parameters in the duffing equations were encrypted
and ran in FMU, where F = cos(ωt) is the forcing function,
and xk = x(kTs).

amplitude of the driving force, and angular frequency of the
force:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt). (2)

Equation (2) is discretized with a step time Ts for the
current time t = kTs(k = 0, 1, 2, · · · ) and encrypted by
using SHE, as shown in Fig. 2. The main purpose of the
encryption is to treat the parameters, α, β, γ, δ, as well as ẍ,
in ciphertext. On the other hand, we assume that the state
variables, x and ẋ, are of interest of the user and observed
in plaintext.

Enc(ẍk) = Enc(γ)⊗ Enc(cos(ωt))

⊕ Enc(−δ)⊗ Enc(ẋk)

⊕ Enc(−α)⊗ Enc(xk)

⊕ Enc(−β)⊗ Enc(x3
k)

(3)

Enc(ẋk+1) = Enc(Ts)⊗ Enc(ẍk)⊕ Enc(ẋk) (4)
Enc(xk+1) = Enc(Ts)⊗ Enc(ẋk)⊕ Enc(xk) (5)

The simulation model will then be exported into FMU and
run in FMPy by setting the time step and initial conditions.
Note that if the hardware resources permit in terms of
multiplicative depth [17], Enc(x3

k) may be replaced with
Enc(xk)⊗ Enc(xk)⊗ Enc(xk).

D. Teleoperation System

The SHE approach is also applied to an encrypted teleop-
eration system [18] where two control loops of the local and
remote plants are intertwined. Let the coefficients m, b, µ,
τ , and f denote system mass, damping, friction coefficient,
actuator force, and external force; furthermore, let the sub-
script m and s denote the local and remote system. The plant
dynamics is modeled as:

mmẍm + bmẋm + µmsign(ẋm) = τm + fm (6)
msẍs + bsẋs + µssign(ẋs) = τs − fs (7)
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Fig. 3: The teleoperation system consists of three separate
FMU: local plant, controller, and remote plant. The controller
makes calls to cypher.dll to perform cryptographic op-
erations.

Evaluation of both linear and nonlinear terms must be per-
formed in an increased number of encoding blocks. Figure 3
shows a possible configuration of an encrypted teleoperation
system. The main concept is to encrypt shared information
using a private encryption key known only to the plants.
Both the local and remote plants are responsible for system
output measurements and encryption by using the keys. The
networked controller stores encrypted system parameters, as
well as encrypted output measurements received from both
plants.

While there are a variety of control schemes to realize
bilateral teleportation, a representative symmetric control
scheme utilizing PD feedback with inertial and friction
compensation is considered in this case study:

τm = (mm −mms)ẍm + kp(xs − xm) +

kd(ẋs − ẋm) + 0.9µmsign(ẋm) (8)
τs = (ms −mms)ẍs + kp(xm − xs) +

kd(ẋm − ẋs) + 0.9µssign(ẋs) (9)

Inside the controller, the SHE algorithm encrypts the dy-
namics outputs from the local and remote plants including:
accelerations, velocities, displacements, as well as gains.
Then, the controller will do the computation in encryption
and output the decrypted forces back to the plants.

The teleoperation system consists of three separate FMUs:
local plant, controller, and remote plant. Each component is
exported from the Simulink model and run in FMPy. During
the FMU simulation, the components in the co-simulation
establish communications with each other. A component
publishes a specific output variable that is subscribed by other
components as input. Two cycles exist in the simulations:
feedback from the controller to the local plant and from the
remote plant to the controller. Therefore, both plants and
controllers have the same priority but cannot run in parallel.
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Fig. 4: Duffing’s parameter (α = δ = 1, γ = 0.1, β = 0.04).
Dyer’s encrypted signal (λ = 256, ρ = 1, ν = 35,∆ =
0.005). Frequency response overhangs to the high-frequency
side in a hardening spring oscillator.

IV. RESULTS AND DISCUSSION

A. Duffing Oscillator

The nonlinear phenomenon is evident in hysteresis, which
is induced by x3 in the Duffing equation. When α and β have
the same signs, the stiffness characteristic is hardening. For a
hardening spring oscillator, the frequency response overhangs
to the high-frequency side, as shown in Fig. 4.

For encrypted signals, the time step (Ts) could not be
smaller than 10 ms since quantization with a higher reso-
lution is needed for a smaller Ts. Therefore, there was a
balance between ∆ and Ts to capture accurate data while
not overflowing. When Ts is too large, the system fails to
capture accurate data points. When Ts is too small, ∆ needs
to be smaller, resulting in numerical overflow. As shown in
Fig. 5, encryption impacted the performance compared to
the plaintext equation due to the resolution of the Duffing
equation. The percentage of error by comparing the L2-norm
of the variables was 6.93%. ν = 32 where λ = 192 was the
minimum security parameter to prevent numerical overflow,
as shown in Fig. 5c, which had a maximum velocity threshold
of 0.45.

The success of the simulation result is determined by the
largest encrypted number M . To investigate the R argument
of (1), the system was parameterised by the security param-
eter λ and ν. Pass/fail analysis was performed by comparing
the L2-norm of the encrypted data. As shown in Fig. 6, the
L argument dominates and R = M . As for a constant λ,
increasing ν results in numerical overflow and failure. d,
the degree of polynomial, equals to 3 because of the cubic
power term results from quantization. At the boundary of
pass/fail, there is a positive linear relationship between the
two parameters, and λ is about as six times as large as ν.

B. Teleoperation System

Fig. 7 shows simulated displacements of the teleoperation
system. Compared to the plaintext simulation shown in
Fig. 7a, oscillations in displacements were observed in the
encrypted simulation due to the encoder as shown in Fig. 7b.
ν = 31 and λ = 125 are the smallest security parameters to
prevent numerical overflow as shown in Fig. 7c.
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(a) Plaintext trajectory. Success phase plot
(Ts =10 ms).
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(b) SHE trajectory with security parameters:
(λ = 256, ρ = 1, ν = 35,∆ = 0.005). Success
phase plot (Ts = 10 ms).
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(c) SHE trajectory with security parameters:
(λ = 256, ρ = 1, ν = 35,∆ = 0.004). Failure
phase plot (Ts = 10 ms).

Fig. 5: FMU trajectory of duffing oscillator.

Compared to the plaintext Simulink simulation that could
run at a maximum time step of 20 ms for this particular
system, running in FMU required a time step of at most 5
ms (Fig. 7b). This is primarily caused by the delay in the
co-simulation architecture. The local solver takes one extra
time step to transfer the output of one FMU to the input of
the other FMU. For example, FMU A transfers data to FMU
B. FMU B takes the output from FMU A in the last time step
as its input, which represents a unit of time delay between
them. There is a communication delay equivalent to four time
steps between the local plant’s input and output for the signals
through the remote plant. The time delays include: one from
the local plan to the controller, from the controller to the
remote plant, from the remote plant back to the controller,
and from the controller back to the local plant. Nevertheless,
Dyer’s SHE scheme has much faster refresh rate than 200
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Fig. 6: Pass/fail results of Duffing system simulations using
Dyer’s SHE. The system was parameterised by the security
parameter λ and the encoder resolution ν. Remaining security
parameters well held constant at ρ = 1, ∆ = 0.005. The
system starts working from ν = 32 and λ = 192.

Hz to realize real-time control system.
Fig. 8 depicts that the L argument dominates and R = M .

Compared to the duffing system, d decreases from 3 to 2 in
the teleoperation system. The minimum start value of ν = 32
is decreased by one, and the minimum value of λ = 125 is
decreased by about 33%. So, the decrease of ν is due to the
increase of ∆ and the decrease of λ is mainly due to the
decrease of d. There is a linear relationship between λ and
ν. λ is about four times as large as ν, which is the product
of the number of multiplication and d.

To investigate the L argument of (1), the system was
parameterised by the security parameter λ and the encoder
resolution ∆, as shown in Fig. 9. When ∆ becomes smaller,
the size of the encoded number and M increases. As shown
in Fig. 9, increases ν can increase M while ν is smaller than
36. Increasing ν can increase the L argument of (1) while
significantly decreasing R. Therefore, for λ = 256, the R
argument dominates and L = M while ν is smaller than 36.
Otherwise, the L argument dominates and R = M .

To sum up, the FMU simulations find the quantization
and overflow pattern of encrypted control using Dyer’s SHE
scheme: if ν ≥ λ

2d , the system fails; if λ
3d ≤ ν ≤ λ

2d , the L
argument dominates and R = M ; if ν ≤ λ

3d , then the R
argument dominates and L = M . These inequality relation-
ships are observed patterns found from the simulations and
may not hold in general.

V. CONCLUSION

This paper presented a FMU co-simulation environment
for various components in an encrypted dynamic system
using SHE. The architecture consists of external codes that
implement the encrypted calculations and FMU’s dynamic
systems. The feasibility of performing the co-simulation in
FMU was demonstrated in two case studies. The FMU
co-simulation presented the success/fail scenarios for both
systems and showed the choices of security parameters when
L or R of (1) dominates. This paper discussed how the
relationship among the security parameters and time delay
in co-simulation impacts the simulation performance. The
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(a) Plaintext control (Ts = 20 ms)
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(b) SHE control (λ = 128, ρ = 1, ρ′ =
32,∆ = 0.005, Ts = 4 ms). Oscillations are
shown due to encoder.
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(c) SHE control (λ = 128, ρ = 1, ρ′ = 32,∆ =
0.005, Ts = 20 ms). The step size is not small
enough to permit correct computations.

Fig. 7: FMU teleoperation results.

developed interface may serve as a convenient test bed for
evaluating the numerical stability of different cryptographic
systems.
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This study adopts the SHE algorithm proposed in [16] that
can be summarized as follows:

Gen: Set security parameters λ, ρ, ρ′. Let:

ν = ρ′ − ρ (10)

η =
λ2

ρ′
− λ (11)

Randomly choose a λ-bit prime p, a ν-bit prime κ,
and an η-bit prime q. Generate a key k = (κ, p) and
publish N = pq. Within a range of plaintext integer
numbers: M = {0, 1, 2, ...,M − 1}, to compute
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Fig. 8: Pass/fail results of teleoperated control simulations
using Dyer’s SHE. The system was parameterised by the
security parameter λ and the encoder resolution ν. Remaining
security parameters well held constant at ρ = 1, δ = 0.01.
The system starts working from ν = 31 and λ = 125.
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Fig. 9: Pass/fail results of teleoperated control simulations
using Dyer’s SHE. The system was parameterised by the se-
curity parameter ν and the encoder resolution ∆. Remaining
security parameters well held constant at ρ = 1, λ = 256.

any polynomial expression: P (m1,m2, ...,mn) and
P (m1 + s1κ,m2 + s2κ, ...,mn + snκ) up to the
degree of d, key lengths κ and p are lower-bounded
by the power of d given by:

κ > (n+ 1)dMd (12)

p > (n+ 1)d(M + κ2)d (13)

where si ∈ {0, 1, ..., κ−1}(i = 1, ..., n) are random
integers.

Enc: Plaintext m ∈ M is encrypted by:

c = m+ sκ+ rp mod N (14)

where s ∈ {0, 1, ..., κ− 1} and r ∈ {0, 1, ..., q− 1}
are random noise.

Dec: Ciphertext c ∈ C is decrypted by:

m = (c mod p) mod κ (15)

Add: Additive homomorphism Enc(m) ⊕ Enc(m′)
mod N = Enc(m +m′), ∀m,m′ ∈ M is realized
if:

m+m′ < κ (16)
(m+ s) + (m′ + s′)κ < p (17)

where s′ is random noise corresponding to m′.
Mult: Multiplicative homomorphism Enc(m) ⊗ Enc(m′)

mod N = Enc(mm′), ∀m,m′ ∈ M is realized if:

mm′ < κ (18)
mm′ + (ms′ +m′s+ ss′κ)κ < p (19)

Equations (12), (13), (16), (17), (18), and (19) are conditions
that must be satisfied at all times.
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