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Abstract
We consider a class of Schrödinger operators—referred to as Schrödinger operators
over circlemaps—that generalize one-frequency quasiperiodic Schrödinger operators,
with a base dynamics given by an orientation-preserving homeomorphism of a circle
T
1 = R/Z, instead of a circle rotation. In particular, we consider Schrödinger opera-

tors over circle diffeomorphisms with a single singular point where the derivative has
a jump discontinuity (circle maps with a break) or vanishes (critical circle maps). We
show that in a two-parameter region—determined by the geometry of dynamical par-
titions and α—the spectrum of Schrödinger operators over every sufficiently smooth
such map, is purely singular continuous, for every α-Hölder-continuous potential V .
As a corollary, we obtain that for every sufficiently smooth suchmap, with an invariant
measureμ andwith rotation number in a setS depending on the class of the considered
maps, and μ-almost all x ∈ T

1, the corresponding Schrödinger operator has a purely
continuous spectrum, for every Hölder-continuous potential V . For circle maps with
a break, this set includes some Diophantine numbers with a Diophantine exponent δ,
for any δ > 1.

1 Introduction

We consider a class of Schrödinger operators H = H(T , V , x) on a space of square-
summable sequences �2(Z), defined by

(Hu)n := un−1 + un+1 + V (T n x)un, u ∈ �2(Z), (1.1)

where V : T
1 → R is a potential function, T : T

1 → T
1 is an orientation-preserving

homeomorphism of the circle T
1 = R/Z, and x ∈ T

1. For an overview of recent
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results on spectral theory of Schröedinger operators over dynamically defined poten-
tials the reader is directed, e.g., to [6] (see also [15]).

When the rotation number ρ of T is irrational, this class of operators is a natural
generalization of the one-frequency quasiperiodic Schrödinger operators for which
T = Rρ , where Rρ : x �→ x + ρ mod 1 is the rigid rotation. When T is transitive, it
is topologically conjugate to the rotation, i.e., there is a homeomorphismϕ : T

1 → T
1,

such that T ◦ ϕ = ϕ ◦ Rρ . Hence, in that case, T n ◦ ϕ = ϕ ◦ Rn
ρ , for every n ∈ N, and

we have H(T , V , x) = H(Rρ, V ◦ ϕ, y), where x = ϕ(y), y ∈ T
1.

In some cases, the spectral properties of H(T , V , x) can be deduced directly from
the spectral properties of the corresponding Schrödinger operator over Rρ , using this
identity. In particular, if T is an analytic circle diffeomorphism with rotation number
satisfying Yoccoz’sH arithmetic condition [27], it follows from the theory of Herman
[12] and Yoccoz [27] that ϕ is analytic, and the spectral properties of H(T , V , x), with
V analytic [14] follow directly from Avila’s global theory of one-frequency quasiperi-
odic Schrödinger operators over rotations [1]. Although for circle diffeomorphisms
T with Liouville rotation numbers the conjugacy to the corresponding rotation can
even be singular, certain spectral properties of H(T , V , x), with potentials of the same
regularity, are still analogous to those of the one-frequency quasiperiodic Schrödinger
operators over rotations with the same rotation numbers [14].

In this paper, we initiate the study of Schrödinger operators over more general circle
maps. We are interested in rigidity properties of these systems, i.e., properties of these
systems that are the same in a large class. We are interested in the spectral phase
diagram of Schrödinger operators over circle maps and, in particular, the singular
continuous phase. Such a phase diagram emerges in one of most studied examples—
the almost Mathieu family—which corresponds to T = Rρ and V (x) = λ cos(2πx).
It was conjectured by Jitomirskaya [13] (Problem 8 therein), and proved by Avila,
You and Zhou [2], that the almost Mathieu operator has a purely singular continuous
spectrum in the region 0 < L(E) < β and that L(E) = β is the boundary between
continuous andpure point spectrum, for almost all x ∈ T

1,where L(E) is theLyapunov
exponent and

β = β(ρ) := lim sup
n→∞

ln kn+1

qn
, (1.2)

with kn and pn
qn
, n ∈ N, being the partial quotients and rational convergents of ρ ∈

(0, 1)\Q (see Sect. 2.2). It was shown in [14] that, in the same region, the spectrum is
singular continuous for Schrödinger operators H(T , V , x) with Lipschitz continuous
potentials V over C1+BV -smooth circle diffeomorphisms T , for almost all x ∈ T

1,
suggesting that L(E) = β could be the boundary between continuous and pure point
spectrum, in this case as well. A natural question to ask is if the latter holds for
Schrödinger operators over general circle maps, for sufficiently regular potentials.
The main result of this paper provides a negative answer to that question.

Here, we focus on spectral properties of Schrödinger operators over circle dif-
feomorphisms with a singularity, i.e., smooth circle diffeomorphisms with a single
singular point where the derivative vanishes (critical circle maps) or has a jump dis-
continuity (circle maps with a break). Over the last couple of decades, these maps
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played a central role in the rigidity theory of circle maps—an extension of Herman’s
theory on the linearization of circle diffeomorphisms [4, 5, 11, 16, 17, 20].

In the case of circle maps with a break at xbr, the type of singularity is characterized
by the size of the break

c :=
√

T ′−(xbr)

T ′+(xbr)
�= 1. (1.3)

In the case of critical circle maps, in some open neighborhood of the critical point xc,
the derivative of the map is of the order |x − xc|γ−1, i.e., T ′(x) = �(|x − xc|γ−1), for
some γ > 1, and the type of singularity is characterized by the order of the critical
point γ . We call an orientation-preserving homeomorphism with such a critical point,
or with a break point, a diffeomorphism with a singularity. A diffeomorphism with a
singularity is said to be Cr -smooth if it is a Cr -smooth local diffeomorphism outside
the singularity point.

We begin with a few more definitions. A number ρ ∈ R\Q is called Diophantine
of class D(δ), for some δ ≥ 0, if there exists C > 0 such that |ρ − p/q| > C/q2+δ ,
for every p ∈ Z and q ∈ N. The set of all Diophantine numbers is denoted by
D := ∪δ≥0D(δ) and the complement of this set inR\Q is the set of Liouville numbers.
If ρ ∈ D(δ) ∩ (0, 1), then lim supn→∞

ln kn+1
ln qn

≤ δ and, thus, β(ρ) = 0. We call a
Liouville number ρ ∈ (0, 1) exponentially Liouville if β(ρ) > 0 and super Liouville
if β(ρ) = ∞. The set of all super Liouville numbers will be denoted by SL.

Let

βe = βe(ρ) := lim sup
n→∞

k2n+1

q2n
, and βo = βo(ρ) := lim sup

n→∞
k2n

q2n−1
. (1.4)

The following theorem, which is a corollary of the main results of this paper, holds
for r > 2 and S = Sbr ∪ SL, in the case of circle maps with break, and for r ≥ 3
and S = SL, in the case of critical circle maps. Here, Sbr is the set of ρ ∈ (0, 1)\Q

such that βbr = ∞, where βbr = βbr(ρ) := βe if the size of the break c < 1, and
βbr = βbr(ρ) := βo if the size of the break c > 1. Since the rotation number ρ of
T is irrational, T is uniquely ergodic [9]. We will denote by μ the unique invariant
probability measure of T .

Theorem 1.1 For every Cr -smooth circle diffeomorphism with a singularity T , with
rotation number ρ ∈ S and the invariant measure μ, and μ-almost all x ∈ T

1, the
corresponding Schrödinger operator H(T , V , x) has a purely continuous spectrum,
for every Hölder-continuous potential V : T

1 → R.

Remark 1 ForC1+BV -smooth circle diffeomorphisms and a setS = SL, an analogous
claim was proved in [14]. Here, a map is said to be C1+BV -smooth if it is C1-smooth
with the logarithm of the derivative of bounded variation.

Remark 2 The set S = Sbr ∪ SL of rotation numbers for which the theorem holds
in the case of circle maps with a break contains not only Liouville numbers but also
some Diophantine numbers of class D(δ), for any δ > 1.
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Ergodic Schrödinger operators are intimately related to a family of cocycles—
dynamical systems associated with each eigen-equation Hu = Eu. In the case of
Schrödinger operators over circle maps with irrational rotation numbers, the cocycle
is given by

(T , A) : (x, y) �→ (T x, A(x, E)y), (1.5)

where A ∈ SL(2, R), x ∈ T
1, y ∈ R

2. If u = (un)n∈Z is a sequence satisfying
Hu = Eu, then

(
un+1
un

)
= An(x, E)

(
un

un−1

)
, where An(x, E) :=

(
E − V (T n x) −1

1 0

)
(1.6)

is the transfer matrix. Thus,

(
un

un−1

)
= Pn(x, E)

(
u0

u−1

)
, (1.7)

where Pn(x, E) := ∏0
i=n−1 Ai (x, E) = An−1(x, E) . . . A0(x, E).

We define the Lyapunov exponent

L(E) := lim
n→∞

∫
Ln(x, E) dμ, where Ln(x, E) := 1

n
ln ‖Pn(x, E)‖. (1.8)

Due to submultiplicativity of Pn(x, E), L(E) exists. Since T is ergodic, by Kingman’s
ergodic theorem, for almost every x ,

L(E) = L(x, E) := lim
n→∞

1

n
ln ‖Pn(x, E)‖. (1.9)

Different components of the spectrumof an operator H(T , V , x) are denoted by σac

(absolutely continuous),σsc (singular continuous) andσpp (pure point).Wealso denote
by Spp(x) the set of eigenvalues of H(T , V , x), with σpp(x) = Spp(x). Finally, we
set H = �2(Z), Hsc(x) the corresponding singular continuous subspace, and PA(x)

the operator of spectral projection on a Borel set A, corresponding to H(T , V , x).
For circle maps with a break, we have the following claim.

Theorem 1.2 Let T : T
1 → T

1 be a C2+ε-smooth (ε > 0) circle diffeomorphism
with a break of size c �= 1, a rotation number ρ ∈ (0, 1)\Q, and an invariant measure
μ. For μ-almost all x ∈ T

1, and any α-Hölder-continuous potential V : T
1 → R,

α ∈ (0, 1], we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αmax{ 12βbr| ln c|, 2β}} = ∅,
(ii) P{E :0<L(E)<αmax{ 12βbr | ln c|,2β}}(x)H ⊂ Hsc(x).

For critical circle maps, we have the following claim.
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Theorem 1.3 Let T : T
1 → T

1 be any Cr -smooth critical circle map, r ≥ 3, with a
rotation number ρ ∈ (0, 1)\Q, and an invariant measure μ. For μ-almost all x ∈ T

1,
and any α-Hölder-continuous potential V : T

1 → R, α ∈ (0, 1], we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < 2αβ} = ∅,
(ii) P{E :0<L(E)<2αβ}(x)H ⊂ Hsc(x).

Remark 3 The regions in the (β, L(E)) plane with purely singular continuous spec-
trum in Theorems 1.2 and 1.3 extend beyond the corresponding region in Theorem 1.5
of [14] for circle diffeomorphisms and, for α = 1, beyond the corresponding region
for the almost Mathieu family (Theorem 1.1 of [2]).

Theorems 1.2 and 1.3 can be stated in a unified way, and the main result of this
paper can be formulated as follows. Let

δmax := lim sup
n→∞

| ln �n|
qn

, (1.10)

where �n = min
I∈Pn+1,I⊂�

(n−1)
0

|τn(I )| is the length of the smallest renormalized

interval of partition Pn+1 inside the fundamental interval �(n−1)
0 of partition Pn (see

Sect. 2.2). This holds with r > 2, in the case of circle maps with a break, and with
r ≥ 3, in the case of critical circle maps.

Theorem 1.4 Let T : T
1 → T

1 be any Cr -smooth circle diffeomorphism with a
singularity, with an irrational rotation number ρ ∈ (0, 1), and an invariant measure
μ. For μ-almost all x ∈ T

1, and any α-Hölder-continuous potential V : T
1 → R,

α ∈ (0, 1], we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αδmax} = ∅,
(ii) P{E :0<L(E)<αδmax}(x)H ⊂ Hsc(x).

Remark 4 This theorem can be extended to a large class of circle maps including circle
diffeomorphisms with finitely many critical or break points.

Remark 5 It seems reasonable to expect that for Schrödinger operators over sufficiently
smooth circle maps, in a large class of maps including circle diffeomorphisms with
singularities, forμ-almost all x ∈ T

1, and sufficiently regular potentials, the boundary
between the continuous and pure point spectrum is given by L(E) = δmax, i.e., that the
spectrum is pure point with exponentially decaying eigenfunctions for L(E) > δmax.

The proofs of these theorems use tools of both spectral theory of Schrödinger opera-
tors and one-dimensional circle dynamics. In the next section, we state a sharp version
of Gordon’s theorem, and introduce dynamical partitions of a circle and renormal-
izations of circle maps that play an important role in our analysis. For each x ∈ T

1,
Theorem 2.3 determines a region without the eigenvalues of H(T , V , x) in terms of
the quantity β̂ = β̂(x) (see Sect. 2.1), that measures the distance of points xi = T i (x),
i = −qn, . . . , qn −1, on the orbit of x , and their dynamical convergents (see Sect. 2.2).

In Sects. 3 and 4, we construct some sets of points on the circle of full invariant
measure for circle maps with a break and critical circle maps, respectively, such that
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for points x in these sets we have an appropriate control on these distances. In the
case of circle maps with a break, asymptotically, renormalizations alternate between
concave and convex, while in the case of maps with breaks, they are asymptotically
convex, near a point of almost-tangency. We exploit concave and convex properties of
the renormalizations to construct two sets of full invariantmeasure for circlemapswith
a break in Sects. 3.2 and 3.4, respectively, and convex properties of renormalizations
to construct a set of full invariant measure for critical circle maps in Sect. 4.2. The
construction of these sets, for circle maps with a break and critical circle maps, in
the convex case, is similar, but estimating the distances between points on an orbit
and their dynamical convergents in Sects. 3.3 and 4.3 is different, as the distortion of
ratios is not bounded in the case of critical circle maps. The construction of a set in
the concave case is different, as the shortest renormalized intervals of the next level
dynamical partition appear near the end points of the renormalization interval, while in
the convex case they appear near a point of almost-tangency, somewhere in its interior.
The structure of the accumulation of these intervals near a point of almost-tangency
can be obtained from a lemma whose proof is given in the Appendix. The main results
of Sects. 3 and 4 are the proofs of Theorems 1.2 and 1.3, given in Sects. 3.5 and 4.4,
respectively.

In Sect. 5, we give a proof of Theorem 1.4 stating the main result of this paper by
making use of a quantity δmax (see (1.10)) characterizing the geometry of dynamical
partitions.

2 Preliminaries

2.1 A criterion for the absence of eigenvalues

In this section, we state a sharp version [14] of a theorem of Gordon [10] that has
been used to prove absence of point spectra of one-dimensional operators since the
pioneering work of Avron and Simon [3]. Such a sharp version was used in [2] to
establish the singular continuous phase for the almost Mathieu operator.

Consider a Schrödinger operator H on �2(Z) given by the action on u ∈ �2(Z), as

(Hu)n = un+1 + un−1 + V (n)un . (2.1)

As in (1.6), we can define the transfer matrix An(E) and, as in (1.7), the n-step
transfer-matrix Pn(E) = ∏0

i=n−1 Ai (E). Let also P−n(E) = ∏−1
i=−n (Ai (E))−1. Let

�(E) := lim sup
|n|→∞

ln ‖Pn(E)‖
n

. (2.2)

Clearly, for bounded V , �(E) < ∞, for every E .

Theorem 2.1 ([14]) Assume that there exists β > 0, and an increasing sequence of
positive integers qn diverging to infinity, such that the sequence {V (n)}n∈Z in (2.1)
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satisfies

max
0≤ j<qn

|V ( j) − V ( j ± qn)| ≤ e−βqn . (2.3)

If β > �(E), then E is not an eigenvalue of operator (2.1).

Proof We give the proof of Theorem 2.1 for completeness of the presentation. Since
E is fixed, we will suppress it from the notation. Taking into account that P−qn =∏qn−1

i=0 A−1
i−qn

= (
∏0

i=qn−1 Ai−qn )
−1 = (P(−qn)

qn )−1, and P2qn = ∏0
i=2qn−1 Ai =

(
∏0

i=qn−1 Ai+qn )Pqn = P(qn)
qn Pqn , where P(k)

n := ∏0
i=n−1 Ai+k , and applying the

telescoping identity1, to P−1
qn

and (P(−qn)
qn )−1, and Pqn and P(qn)

qn , respectively, we
obtain that, for any ε > 0, and sufficiently large n, we have

‖P−qn − P−1
qn

‖ < e(�−β+ε)qn , (2.4)

‖P2qn v − P2
qn

v‖ < e(�−β+ε)qn ‖Pqn v‖. (2.5)

Assume there is a decaying u such that Hu = Eu. Let v = (u0, u−1)
T and assume

‖v‖ = 1. Then, for sufficiently large n we have max{‖Pqn v‖, ‖P−qn v‖, ‖P2qn v‖} <

1/2. Since, by the characteristic equation, Pqn − Tr Pqn Id + P−1
qn

= 0, using (2.4)
(assuming ε < β − �) and applying the characteristic equation to v, we obtain
|Tr Pqn | < 1, for n large enough. Applying another form of the characteristic equation,
P2

qn
− Tr Pqn Pqn + Id = 0, again to v and using (2.5), we obtain, for large enough n,

‖P2qn v‖ > 1/2, which leads to a contradiction. ��
Consider the Schrödinger operator (2.1) with Vn = V (T n x) where V : T

1 → R

is a bounded real-valued function on the circle and T is an orientation-preserving
homeomorphism of a circle with an irrational rotation number ρ. Let the Lyapunov
exponent L(E) be defined as in (1.8). We then have

Theorem 2.2 Assume that for some x ∈ T
1, C > 0 and β̄ > 0, there is a sequence of

positive integers qn → ∞ such that

sup
0≤i<qn

|Vi±qn (x) − Vi (x)| < Ce−β̄qn . (2.6)

If L(E) < β̄, then E is not an eigenvalue of the Schrödinger operator H(T , V , x).

Proof In order to apply Theorem 2.1, it suffices to prove lim sup|n|→∞
ln ‖Pn(E)‖

n ≤
L(E). This follows from a result of Furman [8]. ��

For x ∈ T
1, and a sequence qn → ∞, let

β̂ = β̂(x) := lim inf
n→∞

ln(sup0≤i<qn
|xi − xi±qn |)−1

qn
, (2.7)

1 P̂n − P̃n = ∑n−1
i=0 Ân−1 . . . Âi+1( Âi − Ãi ) Ãi−1 . . . Ã0.
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where xi = T i x .
Let σpp, PA,H,Hsc be as in Theorems 1.2 and 1.3.

Theorem 2.3 Let V : T
1 → R be a α-Hölder continuous real-valued function on the

circle, with α ∈ (0, 1). Then, we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αβ̂} = ∅,
(ii) P{E :0<L(E)<αβ̂}(x)H ⊂ Hsc(x).

Proof It suffices to prove part (i) of the claim, i.e., to exclude the point spectrum.
Part (i i) of the claim then follows from Kotani’s theory [21–23], x-independence
of the absolutely continuous spectrum [24], and the minimality of T , since the set
{E : L(E) > 0} does not support any absolutely continuous spectrum.

If L(E) < αβ̂, then vi = V (T i x) satisfy the assumption (2.6) of Theorem 2.2 for
any β̄ satisfying L(E) < β̄ < αβ̂. The claim follows. ��

In order to prove Theorems 1.2, and 1.3, we need appropriate bounds on β̂(x).

2.2 Dynamical partitions of a circle and renormalization

The quantity β̂(x) involves the information about the geometry of the dynamical
partitions of a circle. These partitions are obtained by using the continued fraction
expansion of the rotation number ρ ∈ (0, 1) of the circle map T . Every irrational
ρ ∈ (0, 1) can be written uniquely as

ρ = 1

k1 + 1
k2+ 1

k3+...

=: [k1, k2, k3, . . . ], (2.8)

with an infinite sequence of partial quotients kn ∈ N. Conversely, every infinite
sequence of partial quotients defines uniquely an irrational number ρ as the limit of
the sequence of rational convergents pn/qn = [k1, k2, . . . , kn], obtained by the finite
truncations of the continued fraction expansion (2.8). It is well-known that pn/qn form
a sequence of best rational approximations of an irrational ρ, i.e., there are no rational
numbers, with denominators smaller or equal to qn , that are closer to ρ than pn/qn .
The rational convergents can also be defined recursively by pn = kn pn−1 + pn−2 and
qn = knqn−1 + qn−2, starting with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define the dynamical partitions of an orientation-preserving homeomorphism T :
T
1 → T

1, with an irrational rotation number ρ, we start with an arbitrary point
x0 ∈ T

1, and consider the orbit xi = T i x0, with i ∈ Z. The subsequence (xqn )n∈N,
indexed by the denominators qn of the sequence of rational convergents of the rotation
number ρ, is called the sequence of dynamical convergents. It follows from the sim-
ple arithmetic properties of the rational convergents that the sequence of dynamical
convergents (xqn )n∈N, for the rigid rotation Rρ has the property that its subsequence
with n odd approaches x0 from the left and the subsequence with n even approaches
x0 from the right. Since all circle homeomorphisms with the same irrational rotation
number are combinatorially equivalent, the order of the dynamical convergents of T
is the same.
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The intervals [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by

�
(n)
0 = �

(n)
0 (x0). We also define �

(n)
i = T i (�

(n)
0 ). Certain number of images of

�
(n−1)
0 and �

(n)
0 , under the iterations of a map T , cover the whole circle without

intersecting each other except possibly at the end points, and form the n-th dynamical
partition of the circle

Pn := {T i (�
(n−1)
0 ) : 0 ≤ i < qn} ∪ {T i (�

(n)
0 ) : 0 ≤ i < qn−1}. (2.9)

Intervals �
(n−1)
0 and �

(n)
0 are called the fundamental intervals of Pn . These partitions

are nested, in the sense that intervals of partitionPn+1 are obtainedbydividing intervals
of partition Pn into finitely many intervals.

The n-th renormalization of an orientation-preserving homeomorphism T : T
1 →

T
1, with rotation number ρ, with respect to partition-defining point x0 ∈ T

1, is a
function fn : [−1, 0] → R, obtained from the restriction of T qn to�

(n−1)
0 , by rescaling

the coordinates. If τn is the affine change of coordinates that maps xqn−1 to −1 and x0
to 0, then

fn := τn ◦ T qn ◦ τ−1
n . (2.10)

If we identify x0 with zero, then τn is just multiplication by (−1)n/|�(n−1)
0 |. Here,

and in what follows, |I | denotes the length of an interval I on T
1.

In the following, we will use the singularity point (i.e., the break point xbr, in the
case of circle maps with a break, or the critical point xc, in the case of critical circle
maps) as the partition-defining point x0.

For two functions f and g of a real variable x , we use the notation f (x) = �(g(x))

to specify that there are two constants C1, C2 > 0 such that C1g(x) ≤ f (x) ≤ C2g(x).

3 Schrödinger operators over circle maps with a break

3.1 Renormalizations of circle maps with a break

A Cr -smooth circle diffeomorphism (map) with a break is a map T : T
1 → T

1, for
which there exists xbr ∈ T

1 such that T ∈ Cr ([xbr, xbr + 1]); T ′(x) is bounded from
below by a positive constant on [xbr, xbr +1]; the one-sided derivatives of T at xbr are
such that the size of the break,

c :=
√

T ′−(xbr)

T ′+(xbr)
�= 1. (3.1)

The followingproperties of renormalizations ofC2+ε-smooth circlemapswith a break,
with ε ∈ (0, 1), will be crucial to prove Theorem 1.2.

Let V := Varx∈T1 ln T ′(x) < ∞.
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(A) | ln(T qn )′(x)| ≤ V , for all x ∈ T
1 (at points where the derivative has breaks, both

left and right derivatives are considered);
(B) There exists K1 > 0 such that ‖ fn‖C2 ≤ K1, for all n ∈ N;
(C) There exists K2 > 0 such that f ′

n(x) ≥ K2, for x ∈ [−1, 0], for all n ∈ N;
(D) There exists K3 > 0 such that, for sufficiently large even n, if c < 1, and odd n,

if c > 1, f ′′
n (x) ≤ −K3, for x ∈ [−1, 0];

(E) There exists K4 > 0 such that, for sufficiently large even n, if c > 1, and odd n,
if c < 1, f ′′

n (x) ≥ K4, for x ∈ [−1, 0].
Estimate (A), that we will refer to as Denjoy’s lemma, has been proven in [19, 25].
Estimates (B), (C) and (D) have been proven in [16].

From the estimates proved in [16], we also have the following. Let an = |�(n)
0 |

|�(n−1)
0 |

and cn = c(−1)n
.

Proposition 3.1 There exists λ ∈ (0, 1) such that f ′
n(−1) − c−1

n = O(an + λn) and
f ′
n(0) − cn = O(an + λn).

We will also formulate and use the following lemma that can be considered an
extension of a lemma by Yoccoz [7]. Yoccoz’s lemma applies to C3-smooth negative
Schwarzian derivative diffeomorphisms (seeSect. 4.1), anddoes not apply to renormal-
izations of circle maps with a break, which approach fractional linear transformations.
In the following lemma, negative Schwarzian derivative condition is replaced by con-
ditions (ii) and (iii). We give a proof of this lemma in the appendix. Let k ∈ N and let
�1,�2, . . . ,�k+1 be consecutive closed intervals on an interval or a circle.

Lemma 3.2 Let I = �1 ∪ �2 ∪ · · · ∪ �k and let f : I → �2 ∪ �3 ∪ · · · ∪ �k+1 be
a C2+α-smooth diffeomorphism, α ∈ (0, 1), satisfying f (�i ) = �i+1. Assume that
there exist constants K , K ′, K ′′ > 0 such that

(i) ‖ f ‖C2 ≤ K ;
(ii) the set BK ′ := {z ∈ I : f (z) − z ≤ K ′} is either an open interval or empty;
(iii) f ′′(z) ≥ K ′′, for every z ∈ BK ′ .

If |�1|, |�k | ≥ σ |I |, for some σ > 0, then there exists a constant C > 1, such that

C−1 1

min{i, k + 1 − i}2 ≤ |�i |
|I | ≤ C

1

min{i, k + 1 − i}2 . (3.2)

3.2 Concave renormalization graphs and set E of full measure

In this section, we construct a set of full invariant measure for which we have appro-
priate control on the distances of dynamical convergents, i.e, control of the quantity
β̂ in (2.7), in the case of circle maps with a break. The crucial facts behind these
constructions are that the graphs of the renormalizations fn of circle maps with a
break, for sufficiently large n, alternate between being convex and concave and that,
in the concave case, the lengths of the intervals of the next level partition Pn+1, inside
a fundamental interval �

(n−1)
0 of dynamical partition Pn , grow exponentially near
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the end points of this interval, as the distance from these points increases as follows
from Proposition 3.1.

Let (σn)n∈N, be an increasing subsequence of 2N, if c < 1, or an increasing subse-
quence of 2N−1, if c > 1, such that the corresponding sequence (kσn+1)n∈N of partial
quotients diverges to infinity, and the corresponding sequence of renormalizations fσn

is concave. In this section, we assume that such a subsequence exists. Thus, cσn < 1.
The following proposition provides estimates on the derivatives of the concave

renormalizations near the end points of the renormalization interval [−1, 0].

Proposition 3.3 For every ε > 0, and sufficiently large n ∈ N, | f ′
σn

(x) − c−1
σn

| ≤ ε,
for x ∈ [−1,−1 + �(ε)], and | f ′

σn
(x) − cσn | ≤ ε, for x ∈ [−�(ε), 0].

Proof It follows directly from Proposition 3.1, since aσn decreases exponentially in
kσn+1. ��

Using this proposition, we can obtain estimates on the number of iterates of renor-
malizations in constant size intervals near the end points, and the size of the smallest
interval of partition Pσn+1 inside Pσn .

Proposition 3.4 For every ε > 0, if

N1 = card
{
τσn (�

(σn)
qσn−1+iqσn

) ⊂ [−1,−1 + ε)|i = 0, . . . , kσn+1 − 1
}

,

N2 = card
{
τσn (�

(σn)
qσn−1+iqσn

) ⊂ (−ε, 0]|i = 0, . . . , kσn+1 − 1
}

,
(3.3)

then N1 = 1
2kσn+1 + O(ε)kσn+1 − �(ln ε−1) and N2 = 1

2kσn+1 + O(ε)kσn+1 −
�(ln ε−1).

Proof To be specific, let us assume that N1 > N2; the proof in the opposite case is
similar. It follows from the mean value theorem that there are points ζi ∈ �

(σn)
qσn−1+iqσn

such that

∣∣∣τσn

(
�(σn)

qσn−1

)∣∣∣ =
∣∣∣τσn

(
�

(σn)
qσn−1+N1qσn

)∣∣∣ N1−1∏
i=0

( f ′
σn

(ζi ))
−1 ≤ �((cσn + �(ε))N1),

(3.4)

and

∣∣∣τσn

(
�

(σn)
qσn−1+(kσn+1−1)qσn

)∣∣∣ =
∣∣∣τσn

(
�

(σn)
qσn−1+(kσn+1−N2)qσn

)∣∣∣ kσn+1−2∏
i=kσn+1−N2

f ′
σn

(ζi )

≥ �((cσn − �(ε))N2).

(3.5)
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In the final inequalities, we have used Proposition 3.3 and the fact that |τσn

(�
(σn)
qσn−1+N1qσn

)| = �(ε) and |τσn (�
(σn)
qσn−1+i(kσn+1−N2)

)| = �(ε). The latter esti-
mates, as follows from properties of the geometric progression and the fact that∑N1

i=0 |τσn (�
(σn)
qσn−1+iqσn

)| = �(ε) and
∑kσn+1−1

i=kσn+1−N2
|τσn (�

(σn)
qσn−1+iqσn

)| = �(ε).

Since, by the Denjoy estimate (A), |τσn (�
(σn)
qσn−1)| = �(|τσn (�

(σn)
qσn−1+(kσn+1−1)qσn

)|),
we have N1 − N2 ≤ �(ε)kσn+1. Here, we have also used that N1 = �(kσn+1). Since

N1 + N2 = �(kσn+1), and the number of intervals τσn (�
(σn)
qσn−1+iqσn

) �⊂ [−1,−1 +
ε) ∪ (−ε, 0], for i = 0, . . . , kσn+1 − 1, is, similarly, of order �(ln ε−1), the claim
follows. ��

Since the corresponding sequence of renormalizations fσn is concave, from Propo-
sition 3.3 and Proposition 3.4, we immediately have the following

Corollary 3.5 For every ε > 0, and sufficiently large n ∈ N,

�((cσn − ε)
1
2 (1+�(ε))kσn+1)

≤ min
0≤i≤kσn+1−1

|τσn (�
(σn)
qσn−1+iqσn

)| ≤ �((cσn + ε)
1
2 (1−�(ε))kσn+1). (3.6)

Let ε > 0. Let ηn ∈ (0, 1/2), n ∈ N. For n ∈ N, let

In,0 :=
{

I ∈ Pσn+1 | I ⊂ �
(σn−1)
0 \�(σn+1)

0 , |τσn (I )| ≤ (cσn + ε)ηnkσn+1
}

.

(3.7)

Let

En,0 :=
⋃

I∈In,0

I , and En,i := T i (En,0), f or i = 1, . . . , qσn − 1. (3.8)

We define

En :=
qσn −1⋃

i=0

En,i , (3.9)

and

E := lim sup
n→∞

En =
⋂
n≥1

⋃
j≥n

E j . (3.10)

Let (ηn)n∈N be a sequence such that the series
∑∞

n=1 ln(2ηn) diverges to −∞. It
suffices to take ηn = η < 1/2. In particular, ηnkσn+1 → ∞, as n → ∞.

Proposition 3.6 For sufficiently large n ∈ N, μ(En),
μ(En,0)

μ(�
(σn−1)
0 ∪�

(σn )
0 )

≥ 1 − 2ηn.
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Proof We will show first that, for sufficiently large n, the number of the elements I of
partition Pσn+1 inside of �

(σn−1)
0 \�(σn+1)

0 , that do not belong to En,0 is smaller than
2ηnkσn+1 − 2. Otherwise, for small enough ε > 0, there exists C0 = �(ln ε−1) > 0
such that, a �(ε)-neighborhood of at least one of the end points of [−1, 0] contains
at least Nn = ηnkσn+1 − C0 − 1 rescaled intervals τσn (I ) with I ∈ Pσn+1 and I ⊂
�

(σn−1)
0 \�(σn+1)

0 , but I /∈ In,0.Here,we have also used the fact that the number of such
intervals I with τσn (I )∩(−1+�(ε),−�(ε)) �= ∅ is less than 2C0, for some constant
C0 = �(ln ε−1). By Proposition 3.3, the length of these rescaled intervals increases
exponentially in these ε-neighborhoods near the end points −1 and 0, as one moves
away from the end points, with rate at least c−1

σn
− ε. Assume, for example, that there

are Nn intervals I ∈ Pσn+1 such that τσn (I ) ⊂ [−1,�(ε)], I ⊂ �
(σn−1)
0 \�(σn+1)

0 ,
and I /∈ In,0. If these are intervals �qσn−1+iqσn

, for i = j, . . . , j + Nn − 1, by the

mean value theorem there are points ζi ∈ �
(σn)
qσn−1+iqσn

, such that

∣∣∣τσn

(
�

(σn)
qσn−1+ j+Nn

)∣∣∣ =
∣∣∣τσn

(
�

(σn)
qσn−1+ jqσn

)∣∣∣ j+Nn−1∏
i= j

f ′
σn

(ζi ). (3.11)

By Proposition 3.3,

∣∣∣τσn

(
�

(σn)
qσn−1+ j+Nn

)∣∣∣ ≥ (cσn + ε)ηnkσn+1(c−1
σn

− ε)ηnkσn+1−C0−1

= (1 + (c−1
σn

− cσn )ε − ε2)ηnkσn+1

(c−1
σn − ε)C0+1

, (3.12)

and this is larger that �(ε), for sufficiently large n. This leads to a contradiction.
Since the partitionPσn consists of qσn “large” intervals�

(σn−1)
i = T i (�

(σn−1)
0 ), for

i = 0, . . . , qσn −1, each ofwhich has invariantmeasureμ(�
(σn−1)
0 ) and qσn−1 “small”

intervals �
(σn)
i = T i (�

(σn)
0 ), for i = 0, . . . , qσn−1 − 1, each of which has invariant

measureμ(�
(σn)
0 ), and since the interval�(σn−1)

0 consists of the union of kσn+1 disjoint

(except at the end points) intervals �
(σn)
qσn−1+iqσn

∈ Pσn+1, for i = 0, . . . , kσn+1 − 1,

each of which has invariant measure μ(�
(σn)
0 ), and �

(σn+1)
0 ⊂ �

(σn)
qσn+1 , we have that

the invariant measure of the complement of En is

μ(Ec
n) ≤ (2ηnkσn+1 − 2)qσn μ(�

(σn)
0 ) + qσn μ(�

(σn+1)
0 ) + qσn−1μ(�

(σn)
0 ),

(3.13)

and, hence,

μ(Ec
n) ≤ 2ηnkσn+1qσn μ(�

(σn)
0 ) ≤ 2ηnqσn+1μ(�

(σn)
0 ) ≤ 2ηn . (3.14)

Here, we have also used that qσn−1 ≤ qσn . The first part of the claim follows.
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Similarly, since�
(σn−1)
0 ∪�

(σn)
0 consists of disjoint, except possibly at the endpoints,

intervals En,0, �
(σn+1)

0 , and �
(σn)
0 and at most 2ηnkσn+1 − 2 intervals of measure

μ(�
(σn)
0 ), we have

μ(En,0) ≥ μ(�
(σn−1)
0 ∪ �

(σn)
0 ) − μ(�

(σn)
0 ) − μ(�

(σn+1)
0 ) − (2ηnkσn+1 − 2)μ(�

(σn)
0 ),

(3.15)

and since μ(�
(σn+1)
0 ) ≤ μ(�

(σn)
0 ) and μ(�

(σn−1)
0 ∪ �

(σn)
0 ) ≥ (kσn+1 + 1)μ(�

(σn)
0 ),

the second claim follows as well. ��
Proposition 3.7 μ(E) = 1.

Proof Each “large” interval of partition Pi is partitioned into ki+1 “large” intervals
and one “small” interval of partition Pi+1. Each “small” interval of partition Pi is a
“large” interval of partition Pi+1. This partitioning occurs in an identical way as the
partitioning of the whole circle T

1, which is the only interval of partition P0.
Therefore, for n > m, it follows from Proposition 3.6, that

μ(∩n
j=m Ec

j ) ≤ 2ηnμ(∩n−1
j=m Ec

j ), (3.16)

and, thus,

μ(∪ j≥n E j ) = 1 − μ(∩ j≥n Ec
j ) ≥ 1 −

∏
j≥n

(2η j ). (3.17)

If the sequence η j is such that the series
∑∞

j=n ln(2η j ) diverges to−∞,μ(∪ j≥n E j ) =
1, for any n ∈ N. The claim follows. ��

3.3 Distance of dynamical convergents

In the following, we consider the class C1+BV of orientation-preserving homeomor-
phisms of a circle T ,C1-smooth outside a singularity point χ0 ∈ T

1, with an irrational
rotation number and bounded variation V := Varξ∈T1 ln T ′(ξ) < ∞, for which the
Denjoy estimate (A) holds. In particular, C1-smooth circle maps with a break belong
to this class. The following proposition holds for all intervals I0 ⊂ �

(n−1)
0 such that

I0 ∈ Pn+1, and the corresponding intervals Ii = T i (I0), i ∈ Z. The point that defines
the partitions Pn is chosen to be the singularity point χ0.

Proposition 3.8 If T is a C1+BV orientation-preserving circle homeomorphism with
a singularity at χ0 ∈ T

1, with an irrational rotation number, there exists C1 > 0 such
that |Ii | ≤ C1|�(n−1)

i | |I0|
|�(n−1)

0 | , for all i = 0, . . . , qn − 1, and all n ∈ N.

Proof For i = 0, . . . , qn − 1, there exist ζi−1 ∈ Ii−1 ⊂ �
(n−1)
i−1 and ξi−1 ∈ �

(n−1)
i−1

such that

|Ii |
|�(n−1)

i |
= |T (Ii−1)|

|T (�
(n−1)
i−1 )|

= T ′(ζi−1)

T ′(ξi−1)

|Ii−1|
|�(n−1)

i−1 |
. (3.18)
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This implies the estimate

|Ii |
|�(n−1)

i |
≤

(
1 + |T ′(ζi−1) − T ′(ξi−1)|

T ′(ξi−1)

) |Ii−1|
|�(n−1)

i−1 |
. (3.19)

By iterating this inequality, we obtain that, for some ζ j , ξ j ∈ �
(n−1)
j ,

|Ii |
|�(n−1)

i |
≤

i−1∏
j=0

(
1 + |T ′(ζ j ) − T ′(ξ j )|

minξ∈T1 T ′(ξ)

)
|I0|

|�(n−1)
0 |

. (3.20)

Using the obvious inequality 1 + x ≤ ex , we obtain

|Ii |
|�(n−1)

i |
≤ exp

⎛
⎝ i−1∑

j=0

|T ′(ζ j ) − T ′(ξ j )|
minξ∈T1 T ′(ξ)

⎞
⎠ |I0|

|�(n−1)
i−1 |

. (3.21)

Since, for i = 0, . . . , qn − 1, the intervals �
(n−1)
i do not overlap, except possibly at

the end points, using the mean value theorem, we have

qn−1∑
j=0

|T ′(ζ j ) − T ′(ξ j )| ≤ max
ξ∈T1

T ′(ξ)

qn−1∑
j=0

| ln T ′(ζ j ) − ln T ′(ξ j )| ≤ V max
ξ∈T1

T ′(ξ).

(3.22)

Since T ′ is bounded both from below and from above by positive constants, the claim
follows. ��

Let ln = maxξ∈T1 |T qn ξ − ξ |. If T is a C1+BV orientation-preserving circle home-
omorphism, the Denjoy estimate (A) implies (see Lemma 2 in [25]) that, for some
C̄ > 0,

(F) ln ≤ C̄ λ̄n , where λ̄ = 1
1+e−2V .

Proposition 3.9 If T is a C2+ε-smooth (ε > 0) circle diffeomorphism with a break of
size c ∈ R

+\{1}, then there exists C2 > 0 such that, for all x ∈ E, there are infinitely
many n ∈ N such that

|T qσn x − x | ≤ C2|�(σn−1)
j |(cσn + ε)ηnkσn+1 , (3.23)

where �
(σn−1)
j is an element of partition Pσn containing x.

Proof It follows directly from (3.10) that, for every x ∈ E , there are infinitely many
n, such that x ∈ En . Furthermore, there exists an element I j of partition Pσn+1

inside En, j ⊂ �
(σn−1)
j , for some j = 0, . . . , qσn − 1, such that x ∈ I j . It follows

123



S. Kocić

from the definition of En,0 and Proposition 3.8 that there exists χ ∈ En, j , such that

I j = [χ, T qσn χ ] and |I j | ≤ C1|�(σn−1)
j |(cσn + ε)ηnkσn+1 . Therefore,

|x − χ | ≤ |T qσn χ − χ | ≤ C1|�(σn−1)
j |(cσn + ε)ηnkσn+1 . (3.24)

Since, by the mean value theorem, there exists ζ ∈ I j such that

T qσn x = T qσn χ + (T qσn )′(ζ )(x − χ), (3.25)

using theDenjoy estimate (A) and the first inequality in (3.24), we obtain the following
estimate

|T qσn x − x | ≤ (T qσn )′(ζ )|x − χ | + |T qσn χ − χ |
+|x − χ | ≤ (eV + 2)|T qσn χ − χ |. (3.26)

The claim now follows using the second inequality in (3.24). ��
Let xi = T i x and let Ii := [xi−qn , xi ], if n is even, and Ii := [xi , xi−qn ], if n is

odd. Let χ0 ∈ T
1, χ j = T jχ0, and let �

(n−1)
j (χ0) := [T qn−1χ j , χ j ], if n is even, and

�
(n−1)
j (χ0) := [χ j , T qn−1χ j ], if n is odd.

Proposition 3.10 If T is a C1+BV orientation-preserving circle homeomorphism with
a singularity at χ0 ∈ T

1, with an irrational rotation number ρ ∈ (0, 1), and x ∈
�

(n−1)
j (χ0), then there exists C3 ≥ 1 such that

|Ii | ≤ C3|�(n−1)
i (χ j−qn )|

|Iqn |
|�(n−1)

j (χ0)|
, (3.27)

for all i = 0, . . . , qn − 1.

Proof It follows from the mean value theorem that, for i = 0, . . . , qn −1, i �= qn − j ,
there exist ξi ∈ �

(n−1)
i (χ j−qn ) ∪ �

(n)
i (χ j−qn ) and ζi ∈ �

(n−1)
i (χ j−qn ), such that

|Ii |
|�(n−1)

i (χ j−qn )|
= |T −1(Ii+1)|

|T −1(�
(n−1)
i+1 (χ j−qn ))|

= |Ii+1|
|�(n−1)

i+1 (χ j−qn )|
T ′(ζi )

T ′(ξi )
. (3.28)

This implies the estimate

|Ii |
|�(n−1)

i (χ j−qn )|
≤ |Ii+1|

|�(n−1)
i+1 (χ j−qn )|

(
1 + |T ′(ζi ) − T ′(ξi )|

|T ′(ξi )|
)

. (3.29)

For i = qn − j , the same estimates hold, just that ξi is not necessarily a point in
�

(n−1)
i (χ j−qn )∪�

(n)
i (χ j−qn ), but just some point ξi ∈ T

1. Namely, if Iqn− j contains
the singularity point χ0, Iqn− j and Iqn− j+1 can be divided into two subintervals, such
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that the ratios of lengths of the corresponding subintervals equals the values of T ′ at
some points in these subintervals. Therefore, the ratio |Iqn− j+1|/|Iqn− j | is between
the minimum and maximum value of T ′ and such a value is achieved at some point
ξqn− j on the circle.

By iterating the latter inequality, we obtain

|Ii |
|�(n−1)

i (χ j−qn )|
≤ |Iqn |

|�(n−1)
j (χ0)|

exp

⎛
⎝qn−1∑

k=i

|T ′(ζk) − T ′(ξk)|
minξ∈T1 |T ′(ξ)|

⎞
⎠ . (3.30)

Since the intervals �
(n−1)
i (χ j−qn ), for i = 0, . . . , qn −1, belong to the same partition

of a circle, for k = i, . . . , qn − 1, we obtain

|Ii |
|�(n−1)

i (χ j−qn )|
≤ |Iqn |

|�(n−1)
j (χ0)|

exp

(
maxξ∈T1 |T ′(ξ)|
minξ∈T1 |T ′(ξ)| 3V

)
. (3.31)

Factor 3 appears by using again the first inequality in (3.22), using the triangle
inequality taking into account all possible orderings of the points ζk and ξk (e.g.
ζi+qn−1 < ξi < ξi+qn−1 < ζi ), and estimating the term

| ln T ′(ζqn− j ) − ln T ′(ξqn− j )| ≤ | ln T ′(ζqn− j ) − ln T ′(ξ�
qn− j )|

+| ln T ′(ξ�
qn− j ) − ln T ′(ξqn− j )|, (3.32)

where ξ�
qn− j is any point in �

(n−1)
0 (χ0). The claim follows. ��

Propositions 3.9, 3.10 and Denjoy estimate (A) imply the following lemma.

Lemma 3.11 If T is C2+ε-smooth (ε > 0) circle diffeomorphism with a break of
size c ∈ R

+\{1}, with an irrational rotation number ρ ∈ (0, 1), then there exists
C4 > 0 such that, for all x ∈ E, there are infinitely many n ∈ N such that, for all
i = 0, . . . , 2qσn − 1,

|xi − xi−qσn
| ≤ C4lσn−1(cσn + ε)ηnkσn+1 . (3.33)

Proof For i = qσn , the claim holds directly from Proposition 3.9, with C4 ≥ C2.
Propositions 3.9 and 3.10 together imply (3.33) for i = 0, . . . , qσn − 1, with C4 ≥
C2C3. Using the Denjoy estimate (A), the bound (3.33) can be extended to i =
qσn + 1, . . . , 2qσn − 1, with C4 ≥ C2C3eV , since |xi+qσn

− xi | ≤ eV |xi − xi−qσn
|, for

i = 1, . . . , qσn − 1. ��

3.4 Convex renormalization graphs and setE of full measure

In this section, we construct another set of full invariant measure for which we have
appropriate control on the distances between points of an orbit and their dynamical
convergents, i.e, control of the quantity β̂ in (2.7), for circle maps with a break.
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Let (σn)n∈N, be an increasing subsequence of 2N − 1, if c < 1, or an increasing
subsequence of 2N, if c > 1, such that the corresponding sequence kσn+1 of partial
quotients diverges to infinity. In this section, we assume that such a subsequence
exists. Let (ηn)n∈N be any sequence of positive numbers converging to zero such
that the sequence ηnkσn+1 diverges to infinity as well, and ln ηn

qσn
converges to zero, as

n → ∞. Consider partitions Pn defined with the partitions defining point χ0 being
the break point xbr.

Proposition 3.12 If T is C2+ε-smooth circle map (ε > 0) with a break of size c �= 1
and irrational rotation number, then there exists a constant C > 1, such that, for
sufficiently large n,

C−1 1

min{i + 1, kσn+1 − i}2 ≤ |τσn (�
(σn)
qσn−1+iqσn

)| ≤ C
1

min{i + 1, kσn+1 − i}2 ,

(3.34)

for i = 0, . . . , kσn+1 − 1.

Proof For sufficiently large n, renormalizations fn of C2+ε-smooth circle maps
with a break, and intervals τσn (�

(σn)
qσn−1+iqσn

), for i = 0, . . . , kσn+1 − 1, satisfy the

assumptions of Lemma 3.2. Clearly τσn (�
(σn)
qσn−1+(i+1)qσn

) = fn(τσn (�
(σn)
qσn−1+iqσn

)

and if follows from property (C) that, for sufficiently large n, renormalizations fn

are C2+ε-smooth circle diffeomorphisms on [−1, 0] ⊃ ∪kσn+1−1
i=0 τσn (�

(σn)
qσn−1+iqσn

).
It follows from the Denjoy estimate (A) that there exists σ > 0 such that the
lengths of τσn (�

(σn)
qσn−1) and τσn (�

(σn)
qσn−1+(kσn+1−1)qσn

) are of the same order and at least

σ | ∪kσn+1−1
i=0 τσn (�

(σn)
qσn−1+iqσn

)|, due to property (E). Condition (i) follows from prop-
erty (B). Convexity property (E) assures conditions (ii) and (iii). The claim follows
directly from the assertion of this lemma. ��

For each n ∈ N, let

En,0 :=
⋃

I∈Jn,0

I , Jn,0 :=
{

I ∈ Pσn+1|I ⊂ �
(σn−1)
0 \�(σn+1)

0 , |τσn (I )| ≤ 1

(ηnkσn+1)2

}
,

(3.35)

and let

En,i := T i (En,0), for i = 1, . . . , qσn − 1. (3.36)

We define

En :=
qσn −1⋃

i=0

En,i , (3.37)
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and

E := lim sup
n→∞

En =
⋂
n≥1

⋃
j≥n

E j . (3.38)

Proposition 3.13 μ(E) = 1.

Proof It follows from Proposition 3.12 that, for sufficiently large n, the number of
the elements I of partition Pσn+1 inside of �

(σn−1)
0 , that do not belong to En,0 is

bounded from above by C5ηnkσn+1, for some C5 > 0. Since the invariant measure
of the intervals τ−1

σn
([ f i−1

σn
(−1), f i

σn
(−1)]) is independent of i and equal to μ(�

(σn)
0 ),

for i = 1, . . . , kσn+1, and �
(σn+1)
0 ⊂ τ−1

σn
([ f i−1

σn
(−1), f i

σn
(−1)]), for i = kσn+1 + 1,

we have

μ(En,0)/μ(τ−1
σn

([−1, 0])) ≥ 1 − C5ηnkσn+1μ(�
(σn)
0 )

kσn+1μ(�
(σn)
0 ) + μ(�

(σn+1)
0 )

≥ 1 − C5ηn .

(3.39)

By the invariance of the measure μ, μ(En,i )/μ(�
(σn−1)
i ) ≥ 1 − C5ηn . Since

qσn −1∑
i=0

μ(�
(σn−1)
i ) +

qσn−1−1∑
i=0

μ(�
(σn)
i ) = qσn μ(�

(σn−1)
0 ) + qσn−1μ(�

(σn)
0 ) = 1,

(3.40)

qσn−1 ≤ qσn and μ(�
(σn)
0 ) = μ(τ−1

σn
([−1, fσn (−1)])), we have

μ(En) ≥ (1 − C5ηn)
kσn+1

kσn+1 + 1
. (3.41)

Since μ(∪ j≥nE j ) ≥ μ(Ei ), for any i ≥ n, and μ(Ei ) → 1 as i → ∞, it follows that
μ(∪ j≥nE j ) = 1, for any n ∈ N. The claim follows. ��

Repeating the steps of the previous section, analogously to Lemma 3.11, we can
prove the following.

Lemma 3.14 If T is C2+ε-smooth circle map with a break (ε > 0) with an irrational
rotation number ρ ∈ (0, 1), then there exists C6 > 0 such that, for all x ∈ E, there
are infinitely many n ∈ N such that, for all i = 0, . . . , 2qσn − 1,

|xi − xi−qσn
| ≤ C6

lσn−1

(ηnkσn+1)2
. (3.42)
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3.5 Singular continuous phase

Proof of Theorem 1.2 If L(E)<αmax{ 12βbr| ln c|, 2β}, then either L(E)< 1
2αβbr| ln c|

or L(E) < 2αβ. Assume first that L(E) < 1
2αβbr| ln c|. Then the rotation number

ρ is such that βbr > 0, and there is an increasing sequence σn , of even numbers if
c < 1, or of odd numbers if c > 1, such that βbr = limn→∞ kσn+1

qσn
. Let ε > 0 and

η < 1/2 be such that L(E) < αηβbr| ln(min{c, c−1} + ε)| and let ηn ∈ (η, 1/2), for
n ∈ N. We use this ε and these sequences to construct the set E , as in Sect. 3.2. By
Proposition 3.7, μ(E) = 1. For every x ∈ E , by Lemma 3.11, there are infinitely
many n, such that estimate (3.33) holds. This implies β̂ ≥ ηβbr| ln(min{c, c−1} + ε)|.
Hence, L(E) < αβ̂, and the claim follows from Theorem 2.3.

If L(E) < 2αβ, then β > 0, and there is an increasing sequence (σn)n∈N of either
odd or even numbers such that β = limn→∞ ln kσn+1

qσn
. If (σn)n∈N is a sequence of even

numbers if c < 1, or of odd numbers if c > 1, then βbr = ∞ and the claim holds for
the set E , as discussed above. We assume that (σn)n∈N is an increasing sequence of
odd numbers if c < 1, or of even numbers if c > 1. In that case, we choose a sequence
(ηn)n∈N of positive numbers converging to zero such that ηnkσn+1 diverges to infinity,
and ln ηn

qσn
converges to zero, as n → ∞. We use these sequences to construct a set of

full measure E as in Sect. 3.4. For every x ∈ E , by Lemma 3.14, there are infinitely
many n, such that estimate (3.42) holds. This implies β̂ ≥ 2β. Hence, L(E) < αβ̂,
and the claim again follows from Theorem 2.3. ��

4 Schrödinger operators over critical circle maps

4.1 Renormalizations of critical circle maps

A Cr -smooth critical circle maps is an orientation-preserving homeomorphism T :
T
1 → T

1, for which there exists a point xc ∈ T
1 such that T ′(xc) = 0, T is a Cr -

smooth local diffeomorphism outside of xc, and in a neighborhood of xc, in a suitable
Cr coordinate system, the map can be represented by x �→ x |x |γ−1 +a, for some real
number γ > 1.

To prove Theorem 1.3, we will use some properties of critical circle maps that
follow from real a priori bounds. Let T be a C3-smooth critical circle map with an
irrational rotation number. The following estimates have been proved in [7].

(a) There exist constants κ1, κ2 ∈ (0, 1) such that, for all n ∈ N,

κ1 ≤ |�(n+1)
i |

|�(n−1)
i |

≤ κ2, 0 ≤ i < qn, (4.1)

and κ1 ≤ |I |/|J | ≤ κ2, for any pair I , J of adjacent intervals of partition Pn ;
(b) There exists K1 > 0 such that ‖ fn‖C3 ≤ K1, for all n ∈ N;
(c) There exists K2 > 0 such that f ′

n(x) ≥ K2δ
2, for x ∈ [−1,−δ], for all n ∈ N;
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(d) There exists K3 > 0 such that, for sufficiently large n, S fn(x) ≤ −K3, for x ∈
[−1, 0), where S f := f ′′′

f ′ − 3
2

(
f ′′
f ′

)2
, is the Schwarzian derivative of f .

Constants κ1, κ2,K1,K2,K3 are universal, i.e., they do not depend of the map T ,
for sufficiently large n, but only on the order of the critical point γ . Estimates (a) (with
non-universal constants κ1 and κ2), reflecting the bounded geometry of these maps,
follow from Swiatek’s estimates [26]. Estimate (b) follows, in part, from Denjoy’s
lemma, which was, for critical circle maps, proved by Yoccoz [28].

Proposition 4.1 If T is C3-smooth critical circle map with an irrational rotation num-
ber, for sufficiently small ε > 0 and sufficiently large n ∈ N, the set F(ε) = {z ∈
[−1, 0], fn(z) − z < ε} is either an open interval or empty. Also, there is δ > 0 such
that the distances from points −1 and 0 to the set F(ε) are larger than δ. Furthermore,
there exists C > 1 such that, for sufficiently large n ∈ N,

C−1 1

min{i + 1, kn+1 − i}2 ≤|τσn (�
(n)
qn−1+iqn

)|≤C 1

min{i + 1, kn+1 − i}2 , (4.2)

for i = 0, . . . , kn+1 − 1.

Proof The first part of the claim was proved in [18], and is included for completeness
of the presentation. For sufficiently small ε > 0, the constant size intervals near −1
and 0 do not belong to F(ε), due to (a) and (b). Assume that for some small ε > 0,
F(ε) is not empty. For every x ∈ F(ε), f ′

n(x) must be close to 1; otherwise, since by
(a) f ′′

n is bounded, the graph of fn would intersect the diagonal, which is impossible,
since the rotation number of T is irrational. Furthermore, f ′′

n (x) must be positive and
of order 1. Namely, if it were of order 1 and negative, the graph would again intersect
the diagonal. If it were small, then it follows from the negative Schwarzian derivative
property (d) that f ′′′

n (z) would be negative and with magnitude of order 1 and, again,
the graph would intersect the diagonal.

Clearly, F(ε) cannot be a union of more than one interval. Namely, if this were
the case, there would be some region between such two intervals where the f ′′

n (x)

is negative and consequently, there would be a point y such that f ′′
n (y) = 0 and

f ′′′
n (y) > 0 (since f ′′

n (x) changes sign fromnegative to positive at y). Since y′
n(y) > 0,

due to (c), this would violate property (d).
For sufficiently large n, renormalizations fn of C3-smooth critical circle maps, and

intervals τn(�
(n)
qn−1+(i+1)qn

) = fn(τn(�
(n)
qn−1+iqn

), for i = 0, . . . , kn+1 − 1, satisfy
the assumptions of Lemma 3.2. We have already verified conditions (ii) and (iii).
Property (b) verifies assumption (i). Properties (a) and (b) also assure that τn(�

(n)
qn−1)

and τn(�
(n)
qn−1+(kn+1−1)qn

) are of length at least σ . Bounds (4.2) follow directly from
this lemma. ��

4.2 Set E of full measure

In this section, we construct a set of full invariant measure E for which Theorem 1.3
holds, i.e., we have an appropriate control on the distances between points of an orbit
and their dynamical convergents, for critical circle maps.
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Set E is defined analogously to set E for circle maps with a break, introduced in
Sect. 3.4, with a sequence (σn)n∈N chosen as follows. Let (σn)n∈N, be any increasing
subsequence of N such that the corresponding sequence kσn+1 of partial quotients
diverges to infinity.Wewill assume that such a subsequence exists since if the sequence
of partial quotients is bounded, thenβ = 0. Let ηn be any sequence of positive numbers
converging to zero such that ηnkσn+1 diverges to infinity as well and the sequence
ln ηn
qσn

converges to zero, as n → ∞. Consider partitions Pn defined with the partitions
defining point χ0 being the critical point xc.

For each n ∈ N, let

En,0 :=
⋃

I∈Jn,0

I , (4.3)

where,

Jn,0 :=
{

I ∈ Pσn+1|I ⊂ �
(σn−1)
0 \�(σn+1)

0 , |τσn (I )| ≤ 1

(ηnkσn+1)2

}
, (4.4)

and let

En,i := T i (En,0), for i = 1, . . . , qσn − 1. (4.5)

We define

En :=
qσn −1⋃

i=0

En,i , (4.6)

and

E := lim sup
n→∞

En =
⋂
n≥1

⋃
j≥n

E j . (4.7)

Proposition 4.2 μ(E) = 1.

Proof The proof is analogous to that of Proposition 3.13. ��

4.3 Distance of dynamical convergents

To estimate the distance between points on an orbit and their dynamical convergents
for critical circle maps, we cannot apply directly the procedure of Sect. 3.3 for maps
with breaks, since the distortion is not bounded in this case.

Let ε > 0 be the half-width of the neighborhood around the critical point xc, where
T has the given power law behavior (see the beginning of Sect. 4). We consider two
classes of intervals

F1 := {� ⊂ T
1|� ∩ (xc − ε/2, xc + ε/2) = ∅},

F2 := {� ⊂ T
1|� ⊂ (xc − ε, xc + ε)}. (4.8)
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Since the length of the intervals of partitions Pn decrease exponentially with n (due
to (a)), for sufficiently large n, every interval of partition Pn belongs either to F1 or
to F2.

In what follows, we will need an estimate on the number of intervals of partition
Pn of class F2. For ε > 0, let Iε ⊂ T

1 be an interval of length ε > 0, with one of the
end points being the partitions defining point x0.

Proposition 4.3 There is δ = δ(ε) > 0, approaching zero, as ε → 0, such that for
every n ∈ N, the cardinality

card{�(n−1)
i ⊂ Iε| i = 0, . . . , qn − 1} ≤ δqn . (4.9)

Proof Let N ∈ N be the largest number such that Iε ⊂ �
(N−1)
0 . Since the partitioning

of each of the qN intervals �
(N−1)
i by the higher level partitions follows the same

pattern—a “large” interval of partition Pi is divided into ki+1 “large” intervals and a
“small” interval of partition Pi+1; a small interval of partition Pi becomes a “large”
interval of partition Pi+1—it is not difficult to see that, for each n > N , the number
of intervals �

(n−1)
i of partition Pn inside of Iε is less than qn/qN . Since qN → ∞, as

ε → 0, the claim follows. ��

The following proposition holds for all intervals I0 ⊂ �
(n−1)
0 \�(n+1)

0 such that
I0 ∈ Pn+1, and the corresponding intervals Ii = T i (I0), i ∈ Z.

Let V1 = V1(ε) := Varξ∈T1\(xc−ε/2,xc+ε/2) ln T ′(ξ). Notice that V1 → ∞, as
ε → 0.

Proposition 4.4 If T is a C3-smooth critical circle map with an irrational rotation
number, there exists C7 > 0 and δ1 = δ1(ε) > 0, satisfying δ1 → 0 as ε → 0, such
that

∣∣∣∣∣ln |Ii |
|�(n−1)

i |
− ln

|I0|
|�(n−1)

0 |

∣∣∣∣∣ ≤ V1 + C7δ1qn, (4.10)

for all n ∈ N and all i = 0, . . . , qn − 1.

Proof For i = 0, . . . , qn − 1, by the mean value theorem, there exist ζi−1 ∈ Ii−1 ⊂
�

(n−1)
i−1 and ξi−1 ∈ �

(n−1)
i−1 such that

|Ii |
|�(n−1)

i |
= |T (Ii−1)|

|T (�
(n−1)
i−1 )|

= T ′(ζi−1)

T ′(ξi−1)

|Ii−1|
|�(n−1)

i−1 |
. (4.11)
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By iterating this inequality, we obtain that, for some ζ j ∈ I j and ξ j ∈ �
(n−1)
j ,

|Ii |
|�(n−1)

i |
= |I0|

|�(n−1)
0 |

i−1∏
j=0

T ′(ζ j )

T ′(ξ j )
= |I0|

|�(n−1)
0 |

i−1∏
j=0

�
(n−1)
j ∈F1

T ′(ζ j )

T ′(ξ j )

i−1∏
j=0

�
(n−1)
j ∈F2

T ′(ζ j )

T ′(ξ j )
.

(4.12)

By taking the logarithm of this identity, we obtain

∣∣∣∣∣ln |Ii |
|�(n−1)

i |
− ln

|I0|
|�(n−1)

0 |

∣∣∣∣∣ ≤
i−1∑
j=0

�
(n−1)
j ∈F1

| ln T ′(ζ j ) − ln T ′(ξ j )|

+

∣∣∣∣∣∣∣∣∣∣
ln

i−1∏
j=0

�
(n−1)
j ∈F2

T ′(ζ j )

T ′(ξ j )

∣∣∣∣∣∣∣∣∣∣
. (4.13)

Since, for i = 0, . . . , qn − 1, the intervals �
(n−1)
j do not overlap, except possibly at

the end points, we have∣∣∣∣∣ln |Ii |
|�(n−1)

i |
− ln

|I0|
|�(n−1)

0 |

∣∣∣∣∣ ≤ V1 + C7δ1qn, (4.14)

where C7, δ1 > 0, and δ1 → 0 as ε → 0. Here, we have used that, for some C7 > 0,
and all j such that �(n−1)

j ∈ F2,

∣∣∣∣ln T ′(ζ j )

T ′(ξ j )

∣∣∣∣ ≤ C7. (4.15)

To prove (4.15), notice first that the interval I0 is a constant fraction of |�(n−1)
0 | away

from xc, as follows from property (a), and so is ζ0. Due to the power-law behavior
of T in (xc − ε, xc + ε), T ′(ξ0) = �(|ξ0 − xc|γ−1), and the middle value point ξ0

is at least a constant fraction of |�(n−1)
0 | away from each of its end points (and xc, in

particular), as T ′(ξ0) = �(|�(n−1)
0 |γ−1). So, ζ0 and ξ0 are comparable.

Every other interval �
(n−1)
j ∈ F2, for j = 1, . . . , qn − 1, is at least a constant

fraction of its length away from xc. This follows from the bounded geometry of
critical circle maps (second estimate in (a)). So, although the distortion of ratio is not
necessarily bounded and we have no estimate on the position of ζ j inside of �

(n−1)
j ,

for all j = 0, . . . , qn −1, the points ζ j and ξ j are comparable distances away from the
critical point, i.e., there is a constant C8 > 0, such that | ln(|ζ j − xc|/|ξ j − xc|)| ≤ C8.

Estimate (4.15) now follows from the power-law behavior of T near xc. ��
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Lemma 4.5 If T is a C3-smooth critical circle map with an irrational rotation number
ρ ∈ (0, 1), then there exists C9 > 0, V = V(ε) > 0 and δ = δ(ε) > 0, satisfying
V → ∞ and δ → 0, as ε → 0, such that, for all x ∈ E , there are infinitely many
n ∈ N such that, for all i = 0, . . . , 2qσn − 1,

|xi − xi−qσn
| ≤ C9eV+δqσn

lσn−1

(ηnkσn+1)2
. (4.16)

Proof For every x ∈ E , there are infinitelymanyn, such that x ∈ En . Furthermore, there
exists an element I j of partition Pσn+1 inside of En, j ⊂ �

(σn−1)
j \�(σn+1)

j , for some
j = 0, . . . , qσn − 1, such that x ∈ I j . It follows from the definition of En, j that there

exists χ ∈ En, j and an interval I0 ⊂ En,0 ⊂ �
(σn−1)
0 \�(σn+1)

0 of partition Pσn+1 such
that and I j = T j (I0) = [χ, T qσn χ ] and |τσn (I0)| ≤ (ηnkσn+1)

−2. If Ii = T i (I0), for

sufficiently large n, the intervals I−qσn
, Iqσn

, I2qσn
, are also subsets of�(σn−1)

0 \�(σn+1)
0

and belong to Pσn+1. This follows from Proposition 4.1 and the fact that ηnkσn+1 →
∞, as n → ∞, using e.g., the bounded geometry of critical circle maps (second
estimate in (a)). The same property implies that there exists C10 > 0, such that
|τσn (I−qσn

)|, |τσn (Iqσn
)|, |τσn (I2qσn

)| ≤ C10(ηnkσn+1)
−2. By Proposition 4.4,

|Ii−qσn
|, |I j |, |Ii+qσn

|, |Ii+2qσn
| ≤ C10eV1+C7δ1qσn

|�(σn−1)
j |

(ηnkσn+1)2
, (4.17)

for all i = 0, . . . , qσn −1. Since x ∈ I j , the interval [xi , T qσn xi ] ⊂ I j+i ∪T qσn (I j+i ),
for i = −qσn , . . . , qσn , the claim follows directly from the latter inequalities. ��

4.4 Singular continuous phase

Proof of Theorem 1.3 If L(E) < 2αβ, then β > 0, and there is an increasing sequence
(σn)n∈N such that β = limn→∞ ln kσn+1

qσn
. Furthermore, there exist δ̂ > 0 such that

L(E) < α(2β − δ̂) as well. Let ηn be any sequence of positive numbers converging to
zero such that ηnkσn+1 diverges to infinity and

ln ηn
qσn

converges to zero, as n → ∞. We
use these sequences to construct the setE , as in Sect. 4.2. ByProposition 4.2,μ(E) = 1.
For ε > 0, by Lemma 4.5, there exist C9 > 0, δ = δ(ε) > 0 and V = V(ε) > 0
such that, for every x ∈ E , there are infinitely many n, such that estimate (4.16) holds.
We assume that ε > 0 has been chosen such that δ ≤ δ̂. This implies β̂ ≥ (2β − δ).
Hence, L(E) < αβ̂, and the claim follows from Theorem 2.3. ��

5 Proof of Theorem 1.4

For C2+ε-smooth circle diffeomorphisms with a break, the claim follows from The-
orem 1.2, taking into account Corollary 3.5 and Proposition 3.12. If L(E) < αδmax,
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then, there exists δ > 0 such that, for every ε > 0,

L(E) < α

(
lim sup

n→∞
| ln�((cσn − ε)

1
2 (1+�(ε))kσn+1)|

qσn

− δ

)
, (5.1)

where σn is a sequence of even numbers, if c < 1, or odd numbers, if c > 1, or

L(E) < α(lim supn→∞
| ln�(k−2

σn+1)|
qσn

− δ), where σn is a sequence of odd numbers, if

c < 1, or even numbers, if c > 1. For sufficiently small ε > 0, either L(E) < 1
2αβbr

or L(E) < 2αβ. The claim now follows from Theorem 1.2.
For C3-smooth critical circle maps, the claim follows from Theorem 1.3, taking

into account Proposition 4.1. If L(E) < αδmax, then L < α lim supn→∞
| ln�(k−2

n+1)|
qn

.
Hence, L(E) < 2αβ, and the claim follows from Theorem 1.3. ��
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A Proof of Lemma 3.2

Let ζ ∗ be a point such that f ′(ζ ∗) = 1. Such a point exists, for sufficiently large k,
since, by assumption, the first and the last intervals are of the same order, and on the
interval BK ′ (which is non-empty for sufficiently large k), the function is convex. We
will perform an affine orientation-preserving change of variables

y = h(z) = 1

2
f ′′(ζ ∗)(z − ζ ∗) (A.1)

that maps ζ ∗ into 0 and normalizes the second derivative of f there. Under this
change of variables f is transformed into g = h ◦ f ◦ h−1 which satisfies g′(0) = 1
and g′′(0) = 2. Let κ := g(0) = miny{g(y) − y}. Since f is C2+α-smooth, so is g,
and from (A.1), we have

|g(y) − (κ + y + y2)| ≤ C|y|2+α, y ∈ h[−1, 0], (A.2)

where C > 0.
Proof of Lemma 3.2 uses some estimates proved in [18].

Lemma A.1 ([18]) Suppose that, for a sequence of real numbers {si }i≥0, there exist
C1 > 0 and α ∈ (0, 1) such that |si+1 − (si − s2i )| ≤ C1|si |2+α , for every i ≥ 0. Then,
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there exist constants D1 > 0 and d1 ∈ (0, 1) such that, as long as s0 ∈ (0, d1], the
estimate ∣∣∣∣∣si − 1

i + s−1
0

∣∣∣∣∣ ≤ D1

(i + s−1
0 )1+α

(A.3)

holds, for every i ≥ 0. Moreover, there exists D2 > 0 such that

si − si+1 = 1

(i + s−1
0 )2

(1 + δi ), (A.4)

where |δi | ≤ D2sα
0 , for all i ≥ 0, as long as s0 ∈ (0, d1].

Lemma A.2 ([18]) Suppose that, for a sequence of real numbers {si }i≥0, there exist
C2,C3 > 0 and κ, α ∈ (0, 1) such that

1. |s0| ≤ C2κ ,
2. |si+1 − (κ + si + s2i )| ≤ C3|si |2+α , for every i ≥ 0.

Fix arbitrary C4 > 0 and define N = κ−1/2 tan−1(C4κ
− α

2(2+α) ). Then, there exist
constants D3 > 0 and d2 ∈ (0, 1) such that, as long as κ ∈ (0, d2], the following
estimate holds for every 0 ≤ i ≤ N,

|si − √
κ tan(

√
κi + a0)| ≤ D3(

√
κ tan

√
κi)1+

α(α+1)
2 , (A.5)

where a0 = tan−1(s0/
√

κ). Moreover, there exists D4 > 0 such that

si+1 − si = κ

(cos
√

κi)2
(1 + δi ), (A.6)

where |δi | ≤ D4κ
α(α+1)
2(2+α) , for all 0 ≤ i < N, as long as κ ∈ (0, d2].

Proof of Lemma 3.2 Let a and b be the left and right end points of I . Let t0 = h(a)

and ti = gi (t0), i.e., ti = h( f i (a)).
Since κ = g(0), there exists a unique number ic satisfying 0 < ic < k such that

tic ∈ [0, κ). Let il = ic −[κ−1/2 tan−1 κ
− α

2(2+α) ] and ir = ic +[κ−1/2 tan−1 κ
− α

2(2+α) ].
Combining tan−1 1

x = π
2 − tan−1 x with tan−1 x = x + O(x3), x → 0, it is easy to

derive the following asymptotic formula

κ− 1
2 tan−1 κ

− α
2(2+α) = π

2
κ− 1

2 − κ− 1
2+α + O(κ

−1+α
2+α ), κ → 0. (A.7)

To obtain the desired estimates for il ≤ i ≤ ir , we can apply Lemma A.2. To obtain
the estimates for il ≤ i < ic, we can apply this lemma to si = −(tic−i − κ), where
0 ≤ i ≤ ic − il . It immediately follows from this lemma that, for il ≤ i < ic,

ti+1 − ti = sic−i − sic−i−1 = κi2

i2(cos(
√

κ(ic − i − 1)))2
(1 + δic−i−1). (A.8)

123



S. Kocić

It is not difficult to check that the function χ(
√

κi) =
√

κi
cos(

√
κ(ic−i−1))

is monotonically

increasing on il ≤ i < ic. This follows from the fact that the function
√

κi tan(
√

κ(ic−
i) − 1) has maximum when

√
κi = tan(

√
κ(ic−i−1))

1+tan2(
√

κ(ic−i)−1)
and, therefore, χ ′(

√
κi) =

1−√
κi tan(

√
κ(ic−i−1))

cos(
√

κ(ic−i−1))
≥ (cos(

√
κ(ic − i − 1)))−1(1 + tan2(

√
κ(ic − i − 1))−1 > 0,

for il ≤ i < ic. Since ic = k
2 + O(κ− 1−α

2 ) = π
2 κ− 1

2 + O(κ− 1−α
2 ) as κ → 0 (Lemma

3.19 in [17]) and, from asymptotic formula (A.7), il = κ− 1
2+α + O(κ− 1−α

2 ) and

κi2l
cos(

√
κ(ic − il − 1))

→ 1, as κ → 0, (A.9)

the function κi2

i2(cos(
√

κ(ic−i−1)))2
is bounded and the claim follows for il ≤ i < ic.

Here, we have also used the fact that, since the second derivative of f is bounded
both from above and from below by positive constants, the lengths of the intervals
[ti−1, ti ] and �i are of the same order. Similarly, we can obtain the desired estimates
for ic ≤ i ≤ ir , by applying Lemma A.2 to si = tic+i , where 0 ≤ i ≤ ir − ic.

For 0 ≤ i ≤ il and ir < i ≤ k, we can obtain the desired estimates by applying
Lemma A.1. This is a consequence of the convexity and the fact that it follows from

(A.5), using the (A.7), that til = κ
1

2+α +O(κ
1

2+α
+ α(α+1)

2(2+α) ) and, similarly, tir = κ
1

2+α +
O(κ

1
2+α

+ α(α+1)
2(2+α) ). We first obtain the estimates for 0 ≤ i < il . For 0 ≤ i < il − j ,

let si = −ti+ j . For sufficiently large k, and some fixed large j , s0 ∈ (0, d1]. Since,
for such i’s, κ < const.|ti+ j |2+α , it follows from (A.2) that si satisfy the assumptions
of Lemma A.1. We can apply this lemma for 0 ≤ i < il − j . The estimate (A.4)
immediately gives us the desired bounds for 1 ≤ i < il . Similarly, by defining
si = tk− j−i , for 0 ≤ i ≤ ir − j , for some large j , we again have s0 ∈ (0, d1], for
sufficiently large k. Since κ < const.|tk− j−i |2+α , it again follows from (A.2) that si

satisfy the assumptions of LemmaA.1. The estimate (A.4) of LemmaA.1 immediately
gives us the desired estimates for k − jr < i ≤ k. ��
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