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Abstract

We consider a class of Schrodinger operators—referred to as Schrodinger operators
over circle maps—that generalize one-frequency quasiperiodic Schrodinger operators,
with a base dynamics given by an orientation-preserving homeomorphism of a circle
T! = R/Z, instead of a circle rotation. In particular, we consider Schrodinger opera-
tors over circle diffeomorphisms with a single singular point where the derivative has
a jump discontinuity (circle maps with a break) or vanishes (critical circle maps). We
show that in a two-parameter region—determined by the geometry of dynamical par-
titions and o—the spectrum of Schrodinger operators over every sufficiently smooth
such map, is purely singular continuous, for every c-Holder-continuous potential V.
As a corollary, we obtain that for every sufficiently smooth such map, with an invariant
measure u and with rotation number in a set S depending on the class of the considered
maps, and p-almost all x € T!, the corresponding Schrodinger operator has a purely
continuous spectrum, for every Holder-continuous potential V. For circle maps with
a break, this set includes some Diophantine numbers with a Diophantine exponent §,
for any § > 1.

1 Introduction

We consider a class of Schrodinger operators H = H (T, V, x) on a space of square-
summable sequences £%(Z), defined by

(Hu)y = tty—1 + tty1 + V(" X)u,,  u € 3(2), (1.1)

where V : T! — R s a potential function, 7 : T' — T! is an orientation-preserving
homeomorphism of the circle T! = R/Z, and x € T'. For an overview of recent
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results on spectral theory of Schroedinger operators over dynamically defined poten-
tials the reader is directed, e.g., to [6] (see also [15]).

When the rotation number p of T is irrational, this class of operators is a natural
generalization of the one-frequency quasiperiodic Schrodinger operators for which
T = R,, where R, : x — x 4+ p mod 1 is the rigid rotation. When 7 is transitive, it
is topologically conjugate to the rotation, i.e., there is ahomeomorphism ¢ : T! — T!,
such that T o ¢ = ¢ o R,,. Hence, in that case, 7" o ¢ = ¢ o R, forevery n € N, and
we have H(T,V,x) = H(R,, V og,y), where x = ¢(y),y € T!.

In some cases, the spectral properties of H(7, V, x) can be deduced directly from
the spectral properties of the corresponding Schrédinger operator over R, using this
identity. In particular, if 7 is an analytic circle diffeomorphism with rotation number
satisfying Yoccoz’s ‘H arithmetic condition [27], it follows from the theory of Herman
[12] and Yoccoz [27] that ¢ is analytic, and the spectral properties of H(T, V, x), with
V analytic [14] follow directly from Avila’s global theory of one-frequency quasiperi-
odic Schrodinger operators over rotations [1]. Although for circle diffeomorphisms
T with Liouville rotation numbers the conjugacy to the corresponding rotation can
even be singular, certain spectral properties of H(T', V, x), with potentials of the same
regularity, are still analogous to those of the one-frequency quasiperiodic Schrodinger
operators over rotations with the same rotation numbers [14].

In this paper, we initiate the study of Schrodinger operators over more general circle
maps. We are interested in rigidity properties of these systems, i.e., properties of these
systems that are the same in a large class. We are interested in the spectral phase
diagram of Schrodinger operators over circle maps and, in particular, the singular
continuous phase. Such a phase diagram emerges in one of most studied examples—
the almost Mathieu family—which corresponds to ' = R, and V (x) = A cos(2m x).
It was conjectured by Jitomirskaya [13] (Problem 8 therein), and proved by Avila,
You and Zhou [2], that the almost Mathieu operator has a purely singular continuous
spectrum in the region 0 < L(E) < B and that L(E) = B is the boundary between
continuous and pure point spectrum, for almostall x € T!, where L (E) is the Lyapunov
exponent and

. Ink, 11
B = B(p) :=limsup ——, (1.2)

n—00 qn

with k,, and 22, n € N, being the partial quotients and rational convergents of p €
(0, D\Q (see Sect. 2.2). It was shown in [14] that, in the same region, the spectrum is
singular continuous for Schrodinger operators H (T, V, x) with Lipschitz continuous
potentials V over C 1+BV _smooth circle diffeomorphisms 7, for almost all x € T!,
suggesting that L(E) = B could be the boundary between continuous and pure point
spectrum, in this case as well. A natural question to ask is if the latter holds for
Schrodinger operators over general circle maps, for sufficiently regular potentials.
The main result of this paper provides a negative answer to that question.

Here, we focus on spectral properties of Schrodinger operators over circle dif-
feomorphisms with a singularity, i.e., smooth circle diffeomorphisms with a single
singular point where the derivative vanishes (critical circle maps) or has a jump dis-
continuity (circle maps with a break). Over the last couple of decades, these maps
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played a central role in the rigidity theory of circle maps—an extension of Herman’s
theory on the linearization of circle diffeomorphisms [4, 5, 11, 16, 17, 20].
In the case of circle maps with a break at xy,, the type of singularity is characterized

by the size of the break
T” (xpr)
c:= | 1. (1.3)
TJ/r (xbr) #

In the case of critical circle maps, in some open neighborhood of the critical point x.,
the derivative of the map is of the order |x —x.|” !, ie., T/ (x) = O(|x —x.|7 1), for
some y > 1, and the type of singularity is characterized by the order of the critical
point y. We call an orientation-preserving homeomorphism with such a critical point,
or with a break point, a diffeomorphism with a singularity. A diffeomorphism with a
singularity is said to be C”"-smooth if it is a C”-smooth local diffeomorphism outside
the singularity point.

We begin with a few more definitions. A number p € R\Q is called Diophantine
of class D(8), for some 8 > 0, if there exists C > 0 such that |p — p/q| > C/q**?,
for every p € Z and g € N. The set of all Diophantine numbers is denoted by
D := Us=0D(8) and the complement of this set in R\Q is the set of Liouville numbers.
If p € D() N (0, 1), then limsup,,_, o, h;:%tl < § and, thus, B(p) = 0. We call a
Liouville number p € (0, 1) exponentially Liouville if 8(p) > 0 and super Liouville
if B(p) = oco. The set of all super Liouville numbers will be denoted by S,.

Let

k
Be = Be(p) := lim sup Z"H, and B, = B,(p) := lim sup

n—oo  {2n n—o00 {q2n—1

k2n

(1.4)

The following theorem, which is a corollary of the main results of this paper, holds
forr > 2and § = Sy U Sz, in the case of circle maps with break, and for r > 3
and § = S, in the case of critical circle maps. Here, Sy, is the set of p € (0, 1)\Q
such that By, = oo, where By = P () := Be if the size of the break ¢ < 1, and
Bor = Bor(p) := P, if the size of the break ¢ > 1. Since the rotation number p of
T is irrational, T is uniquely ergodic [9]. We will denote by p the unique invariant
probability measure of 7.

Theorem 1.1 For every C"-smooth circle diffeomorphism with a singularity T, with
rotation number p € S and the invariant measure i, and p-almost all x € T, the
corresponding Schrodinger operator H(T, V, x) has a purely continuous spectrum,
for every Holder-continuous potential V : T' — R.

Remark 1 For C'*BV _smooth circle diffeomorphisms and a set S = S, an analogous
claim was proved in [14]. Here, a map is said to be C'*8V -smooth if it is C'-smooth
with the logarithm of the derivative of bounded variation.

Remark 2 The set S = Spr U S, of rotation numbers for which the theorem holds
in the case of circle maps with a break contains not only Liouville numbers but also
some Diophantine numbers of class D(8), for any 6 > 1.
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Ergodic Schrodinger operators are intimately related to a family of cocycles—
dynamical systems associated with each eigen-equation Hu = Eu. In the case of
Schrodinger operators over circle maps with irrational rotation numbers, the cocycle
is given by

(T,A): (x,y)— (Tx, A(x, E)y), (1.5)

where A € SL2,R), x € T!, y € R%. If u = (up)nez is a sequence satisfying
Hu = Eu, then

Upt1) Up _(E-=V(T"x) -1
< ", > =A,(x,E) (Mn—1> , Where A,(x,E):= < | 0 )

(1.6)

is the transfer matrix. Thus,

Un _ uo
(#0) = re oo (). 0

where P, (x, E) =[], Ai(x, E) = Ay_1(x, E) ... Ag(x, E).

i=n—1

We define the Lyapunov exponent
1
L(E) := lim /L,,(x, E)dw, where L,(x,E):=—In|P,(x, E)|. (1.8)
n—oo n

Due to submultiplicativity of P, (x, E), L(E) exists. Since T is ergodic, by Kingman’s
ergodic theorem, for almost every x,

L(E) = L(x, E) := lim i | Pa(x, E)]l. (1.9)
n—oon

Different components of the spectrum of an operator H(T', V, x) are denoted by o,
(absolutely continuous), oy (singular continuous) and o, (pure point). We also denote
by S, (x) the set of eigenvalues of H(T', V, x), with 0, (x) = Sp,(x). Finally, we
set H = (2(Z), Hye(x) the corresponding singular continuous subspace, and Py (x)
the operator of spectral projection on a Borel set A, corresponding to H(T', V, x).

For circle maps with a break, we have the following claim.

Theorem 1.2 Let T : T' — T! be a C**¢-smooth (¢ > 0) circle diffeomorphism
with a break of size ¢ # 1, a rotation number p € (0, 1)\Q, and an invariant measure
w. For p-almost all x € T!, and any a-Holder-continuous potential V T! —» R,
o € (0, 1], we have

(i) Spp(x) N{E:0<L(E) < amax{%ﬁbdlncl, 28} =0,
(i) P{E:0<L(E)<oz max{} Byl In c|,2,3}}(x)H C Hse(x).

For critical circle maps, we have the following claim.
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Theorem 1.3 Let T : T! — T! be any C"-smooth critical circle map, r > 3, with a
rotation number p € (0, D\Q, and an invariant measure . For p-almost all x € T,
and any a-Hélder-continuous potential V : T' — R, a € (0, 1], we have

(i) Spp(x)N{E :0 < L(E) <2ap} =1,
(i) PiE:0<L(E)<2a8)(X)H C Hse(x).

Remark 3 The regions in the (8, L(E)) plane with purely singular continuous spec-
trum in Theorems 1.2 and 1.3 extend beyond the corresponding region in Theorem 1.5
of [14] for circle diffeomorphisms and, for « = 1, beyond the corresponding region
for the almost Mathieu family (Theorem 1.1 of [2]).

Theorems 1.2 and 1.3 can be stated in a unified way, and the main result of this
paper can be formulated as follows. Let

. [In¢,|
Omax = lim sup s
n—00 qn

(1.10)

where ¢, = min NG |t,(I)] is the length of the smallest renormalized
0

I1€Pyi1,1C
interval of partition P, inside the fundamental interval A(()n_l) of partition P, (see
Sect.2.2). This holds with r > 2, in the case of circle maps with a break, and with
r > 3, in the case of critical circle maps.

Theorem 1.4 Let T : T' — T! be any C”-smooth circle diffeomorphism with a
singularity, with an irrational rotation number p € (0, 1), and an invariant measure
w. For p-almost all x € T', and any a-Hélder-continuous potential V : T — R,
o € (0, 1], we have

(i) Spp(x) N{E :0 < L(E) < admax} = ¥,
(i1) P{E:O<L(E)<ot8mﬂx}(x)H C He(x).

Remark 4 This theorem can be extended to a large class of circle maps including circle
diffeomorphisms with finitely many critical or break points.

Remark 5 Tt seems reasonable to expect that for Schrodinger operators over sufficiently
smooth circle maps, in a large class of maps including circle diffeomorphisms with
singularities, for u-almost all x € T!, and sufficiently regular potentials, the boundary
between the continuous and pure point spectrum is given by L(E) = 8max, 1.€., that the
spectrum is pure point with exponentially decaying eigenfunctions for L(E) > Smax-

The proofs of these theorems use tools of both spectral theory of Schrodinger opera-
tors and one-dimensional circle dynamics. In the next section, we state a sharp version
of Gordon’s theorem, and introduce dynamical partitions of a circle and renormal-
izations of circle maps that play an important role in our analysis. For each x € T!,
Theorem 2.3 determines a region without the eigenvalues of H (7', V, x) in terms of
the quantity /3 ,8 (x) (see Sect. 2.1), that measures the distance of points x; = T%(x),
i =—qn, ..., qn—1,ontheorbit of x, and their dynamical convergents (see Sect.2.2).

In Sects.3 and 4, we construct some sets of points on the circle of full invariant
measure for circle maps with a break and critical circle maps, respectively, such that
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for points x in these sets we have an appropriate control on these distances. In the
case of circle maps with a break, asymptotically, renormalizations alternate between
concave and convex, while in the case of maps with breaks, they are asymptotically
convex, near a point of almost-tangency. We exploit concave and convex properties of
the renormalizations to construct two sets of full invariant measure for circle maps with
a break in Sects. 3.2 and 3.4, respectively, and convex properties of renormalizations
to construct a set of full invariant measure for critical circle maps in Sect.4.2. The
construction of these sets, for circle maps with a break and critical circle maps, in
the convex case, is similar, but estimating the distances between points on an orbit
and their dynamical convergents in Sects. 3.3 and 4.3 is different, as the distortion of
ratios is not bounded in the case of critical circle maps. The construction of a set in
the concave case is different, as the shortest renormalized intervals of the next level
dynamical partition appear near the end points of the renormalization interval, while in
the convex case they appear near a point of almost-tangency, somewhere in its interior.
The structure of the accumulation of these intervals near a point of almost-tangency
can be obtained from a lemma whose proof is given in the Appendix. The main results
of Sects.3 and 4 are the proofs of Theorems 1.2 and 1.3, given in Sects. 3.5 and 4.4,
respectively.

In Sect.5, we give a proof of Theorem 1.4 stating the main result of this paper by
making use of a quantity Spax (see (1.10)) characterizing the geometry of dynamical
partitions.

2 Preliminaries
2.1 A criterion for the absence of eigenvalues

In this section, we state a sharp version [14] of a theorem of Gordon [10] that has
been used to prove absence of point spectra of one-dimensional operators since the
pioneering work of Avron and Simon [3]. Such a sharp version was used in [2] to
establish the singular continuous phase for the almost Mathieu operator.

Consider a Schrodinger operator H on 02(7) given by the actionon u € 02(7), as

(Hu)p = tpt1 + up—1 + V()u,. 2.1

As in (1.6), we can define the transfer matrix A, (E) and, as in (1.7), the n-step
transfer-matrix P, (E) = ]_[0 A;(E).Letalso P_,(E) = ]_[_1 (A;(E)~ L Let

i=n—1 i=—n

In || P, (E
A(E) = lim sup P B

|n]— o0 n

(2.2)

Clearly, for bounded V, A(E) < oo, for every E.

Theorem 2.1 ([14]) Assume that there exists § > 0, and an increasing sequence of
positive integers q, diverging to infinity, such that the sequence {V (n)},cz in (2.1)
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satisfies

max |V(j) = V(j £gn)| < e Pin. (2.3)

0<j<qn
If B > A(E), then E is not an eigenvalue of operator (2.1).

Proof We give the proof of Theorem 2.1 for completeness of the presentation. Since
E is fixed, we will suppress it from the notation. Taking into account that P_,, =

=1, _ —gn)y—
I—[?:O Ai—lq,, = (1_[?=qn—1 Ai*fhl) ! = (Pq(n e )) 1’ and PZ(In = H?Zz%l—] Ai =
(H?=qu Airg) Py = PP, where P = 1%, | Airx, and applying the

i=n—1
telescoping identity’, to Pq;] and (Pq(n_q”) )~!, and P,, and Pq(f”) , respectively, we
obtain that, for any € > 0, and sufficiently large n, we have

1P_g, — Pyt < e FPtem, (2.4)
|1Pag,v = P vl < eFHn| Py v (2.5)

Assume there is a decaying u such that Hu = Eu. Letv = (uo, u_1)T and assume
lvll = 1. Then, for sufficiently large n we have max{|| Py, v|l, | P—g,vll, [ P2g,v]I} <
1/2. Since, by the characteristic equation, P,;, — Tr P, 1d + Pq;1 = 0, using (2.4)
(assuming € < B — A) and applying the characteristic equation to v, we obtain
|Tr P,,| < 1,forn large enough. Applying another form of the characteristic equation,
Pan —Tr Py, Py, +1d = 0, again to v and using (2.5), we obtain, for large enough 7,
| Pog,vll > 1/2, which leads to a contradiction. O

Consider the Schrodinger operator (2.1) with V,, = V(T"x) where V : T! > R
is a bounded real-valued function on the circle and 7 is an orientation-preserving
homeomorphism of a circle with an irrational rotation number p. Let the Lyapunov
exponent L(E) be defined as in (1.8). We then have

Theorem 2.2 Assume that for some x € T', C > 0 and > 0, there is a sequence of
positive integers q, — 00 such that

sup | Vig, (1) — Vi (x)| < Ce™Pan, 2.6)

0<i<qn

If L(E) < B, then E is not an eigenvalue of the Schrédinger operator H(T, V, x).

Proof In order to apply Theorem 2.1, it suffices to prove lim supj,|_, o ln”PnM <
L(E). This follows from a result of Furman [8]. O
Forx € T!, and a sequence g, — 00, let
. In(SUpg<; 1% — Xitq, )™
B = B(x) := liminf Posi <qy 1Xi ~ izta| , 2.7
n—o0

qn

U Py =Py =Y Apot o A (A — AD Ay . Ap.
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where x; = T'x.
Letopp, Pa, H, Hye be as in Theorems 1.2 and 1.3.

Theorem 2.3 Let V : T! — R be a a-Hélder continuous real-valued function on the
circle, with o € (0, 1). Then, we have

(i) Spy(xX) N{E:0<L(E) <af)=0,
(>ii) P{E:O<L(E)<a,§}(x)7'l C Hse(x).

Proof 1t suffices to prove part (i) of the claim, i.e., to exclude the point spectrum.
Part (ii) of the claim then follows from Kotani’s theory [21-23], x-independence
of the absolutely continuous spectrum [24], and the minimality of 7', since the set
{E : L(E) > 0} does not support any absolutely continuous spectrum.

If L(E) < a,@, then v; = V(T x) satisfy the assumption (2.6) of Theorem 2.2 for
any f satisfying L(E) < B < af. The claim follows. O

In order to prove Theorems 1.2, and 1.3, we need appropriate bounds on ,é(x).
2.2 Dynamical partitions of a circle and renormalization
The quantity 3 (x) involves the information about the geometry of the dynamical
partitions of a circle. These partitions are obtained by using the continued fraction

expansion of the rotation number p € (0, 1) of the circle map 7. Every irrational
p € (0, 1) can be written uniquely as

P = T 1 = [k17k27k3s .. ']7 (28)

with an infinite sequence of partial quotients k, € N. Conversely, every infinite
sequence of partial quotients defines uniquely an irrational number p as the limit of
the sequence of rational convergents p, /g, = [k1, k2, ..., k,], obtained by the finite
truncations of the continued fraction expansion (2.8). It is well-known that p, /g, form
a sequence of best rational approximations of an irrational p, i.e., there are no rational
numbers, with denominators smaller or equal to g,, that are closer to p than p,/qg,.
The rational convergents can also be defined recursively by p, = k, pn—1 + pn—2 and
qn = knqn—1 + qn—2, starting with po =0,g0 =1, p_1 =1,q9-1 = 0.

To define the dynamical partitions of an orientation-preserving homeomorphism 7 :
T! — T!, with an irrational rotation number p, we start with an arbitrary point
xo € T!, and consider the orbit x; = T'xg, with i € Z. The subsequence (xg, )neN,
indexed by the denominators g, of the sequence of rational convergents of the rotation
number p, is called the sequence of dynamical convergents. It follows from the sim-
ple arithmetic properties of the rational convergents that the sequence of dynamical
convergents (x4, )neN, for the rigid rotation R, has the property that its subsequence
with n odd approaches x( from the left and the subsequence with n even approaches
xo from the right. Since all circle homeomorphisms with the same irrational rotation
number are combinatorially equivalent, the order of the dynamical convergents of T
is the same.
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The intervals [x,, , xo], for n odd, and [xo, x4, ], for n even, will be denoted by
AE)") = A(()")(xo). We also define AE") = Ti(AE)")). Certain number of images of
A(()”_l) and A(()”), under the iterations of a map T, cover the whole circle without

intersecting each other except possibly at the end points, and form the n-th dynamical
partition of the circle

P =TI AL ™) 0<i < g} ULTHA) 10 < i < gu). (2.9)

Intervals A(()"_l) and Aé”) are called the fundamental intervals of PP,. These partitions
are nested, in the sense that intervals of partition PP, | are obtained by dividing intervals
of partition P, into finitely many intervals.

The n-th renormalization of an orientation-preserving homeomorphism 7 : T! —
T!, with rotation number p, with respect to partition-defining point xo € T!, is a
function f,, : [—1, 0] — R, obtained from the restriction of 79" to A(()"_l) ,byrescaling
the coordinates. If 7, is the affine change of coordinates that maps x,,_, to —1 and xq

to 0, then
foi=tioT4or !, (2.10)

If we identify x¢ with zero, then 7, is just multiplication by (—1)"/ |A(()"_1)|. Here,
and in what follows, | 7| denotes the length of an interval 7 on T'.

In the following, we will use the singularity point (i.e., the break point xp;, in the
case of circle maps with a break, or the critical point x., in the case of critical circle
maps) as the partition-defining point xg.

For two functions f and g of areal variable x, we use the notation f(x) = ®(g(x))
to specify that there are two constants C;, C; > O such that C;g(x) < f(x) < Crg(x).

3 Schrodinger operators over circle maps with a break

3.1 Renormalizations of circle maps with a break

A C”-smooth circle diffeomorphism (map) with a break is amap 7 : T! — T, for
which there exists xp; € T! such that T € C” ([xpr, xpr + 11); T/ (x) is bounded from

below by a positive constant on [xpy, Xpr + 1]; the one-sided derivatives of T at xp, are
such that the size of the break,

T/ (xor)
= 1. 3.1
N T T G-D

The following properties of renormalizations of C>*¢-smooth circle maps with a break,
with ¢ € (0, 1), will be crucial to prove Theorem 1.2.
Let V := Var, .1 In T’ (x) < oo.
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(A) |In(T9Y (x)| < V,forall x € T! (at points where the derivative has breaks, both
left and right derivatives are considered);

(B) There exists K1 > O such that || f,|lc, < K, foralln e N;

(C) There exists Ko > 0 such that f, (x) > K, forx € [—1,0], forall n € N;

(D) There exists K3 > 0 such that, for sufficiently large even n, if ¢ < 1, and odd n,
ife > 1, f//(x) < =Kz, forx € [—1,0];

(E) There exists K4 > 0 such that, for sufficiently large even n, if ¢ > 1, and odd =,
ifc <1, f/(x) > Ky, forx € [—1,0].

Estimate (A), that we will refer to as Denjoy’s lemma, has been proven in [19, 25].
Estimates (B), (C) and (D) have been proven in [16].
(n)
From the estimates proved in [16], we also have the following. Let a,, = %
0

and ¢, = =D,

Proposition 3.1 There exists . € (0, 1) such that f,(—1) — cn_1 = O(a, + \") and
fr;(o) —¢p = O(a, + A7),

We will also formulate and use the following lemma that can be considered an
extension of a lemma by Yoccoz [7]. Yoccoz’s lemma applies to C3-smooth negative
Schwarzian derivative diffeomorphisms (see Sect. 4.1), and does not apply to renormal-
izations of circle maps with a break, which approach fractional linear transformations.
In the following lemma, negative Schwarzian derivative condition is replaced by con-
ditions (ii) and (iii). We give a proof of this lemma in the appendix. Let k € N and let
A1, Ao, ..., Ary1 be consecutive closed intervals on an interval or a circle.

Lemma3.2 Let I = AfUAU---UArandlet f: 1 — Ay UA3U---U Ay be
a C**_smooth diffeomorphism, a € (0, 1), satisfying f(A;) = Ajy1. Assume that
there exist constants K, K', K" > 0 such that

@ I fllc2 = K;
(ii) the set Bgr :={z € I : f(2) — z < K'} is either an open interval or empty;
(i) f"(z) = K", for every z € Bg.

If |A1], |Ak| = o|I|, for some o > 0, then there exists a constant C > 1, such that

1 1 | A 1
C <—=<C .
min{i,k+1—i}2 = |I| — min{i,k+1—i)?

(3.2)

3.2 Concave renormalization graphs and set E of full measure

In this section, we construct a set of full invariant measure for which we have appro-
priate control on the distances of dynamical convergents, i.e, control of the quantity
,3 in (2.7), in the case of circle maps with a break. The crucial facts behind these
constructions are that the graphs of the renormalizations f; of circle maps with a
break, for sufficiently large n, alternate between being convex and concave and that,
in the concave case, the lengths of the intervals of the next level partition P, 41, inside
a fundamental interval A(()"fl) of dynamical partition P,, grow exponentially near
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the end points of this interval, as the distance from these points increases as follows
from Proposition 3.1.

Let (07,)neN, be an increasing subsequence of 2N, if ¢ < 1, or an increasing subse-
quence of 2N —1,if ¢ > 1, such that the corresponding sequence (ks +1),en of partial
quotients diverges to infinity, and the corresponding sequence of renormalizations f,
is concave. In this section, we assume that such a subsequence exists. Thus, ¢, < 1.

The following proposition provides estimates on the derivatives of the concave
renormalizations near the end points of the renormalization interval [—1, O].

Proposition 3.3 For every € > 0, and sufficiently large n € N, |f;n (x) — c;nl| <,
forx e [—1,—1 4+ O(e)], and |fén(x) — ¢, | < €, forx € [-O(e), 0].

Proof 1t follows directly from Proposition 3.1, since a,, decreases exponentially in
ko’n+1. m}

Using this proposition, we can obtain estimates on the number of iterates of renor-
malizations in constant size intervals near the end points, and the size of the smallest
interval of partition P, 11 inside P, .

Proposition 3.4 For every e > 0, if

lecard{rg”(Af]“")_Wq )=l —1+e))i=0,... ko1 — 1},

(3.3)

N2=card{t(,n(A(U" ) C (=€, 0]i =0, . kgn+1—1},

14190y,

then Ny = ko 41 + O©kg,1 — O(ne™") and N» = ko 11 + O(€)ko, 41 —
O(ne ).

Proof To be specific, let us assume that Ny > N,; the proof in the opposite case is
similar. It follows from the mean value theorem that there are points ¢; € Af{””ll +ige
such that

Ni—1
SEDE

o, (A" v )| H (L, @)™ < O(ca, +OENM),

(3.4)
and
Un+l -2
(on) _ (on) / .
TU" (A%n—l+(kr7n+1*l)(1rrn>‘ - TU” (AQU,1—1+(k(rn+1*N2)‘Iml>‘ l_[ fgll (;-l)
i=key+1—N2
> O((co, — O(N™).

3.5
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In the final inequalities, we have used Proposition 3.3 and the fact that |75,
(A;‘;:{I ihig,)l = ©() and |.ra”(A(U”)I it Nyl = ©(€). The latter esti-
mates, as follows from properties of the geometric progression and the fact that

k(rn -1 n
Yo 1T (A 0 ) =O(e) and Y21 11, (A L)) = Oe).
Since, by the Denjoy estimate (A), |7, (A’ )| = OTo, (A () ),
we have N| — Ny < O(€)kg,+1. Here, we have also used that N1 O (kg,+1). Since
N1 + Ny = O(ko, 1), and the number of intervals 7, (A" . ) ¢ [~1, -1 +
€) U (—e¢,0], fori = 0,. ko,+1 — 1, is, similarly, of order ®(In e_l), the claim
follows. O

Since the corresponding sequence of renormalizations f,, is concave, from Propo-
sition 3.3 and Proposition 3.4, we immediately have the following

Corollary 3.5 For every € > 0, and sufficiently large n € N,

O(co, — 6)%(1+®(6))kan+1)

(on)

1 —(~
qUn*l‘i‘iqan)I E ®((C(7n +6)7(1 O(E))kan‘f’l)' (36)

< min |7, (A
0<i <kg,+1—1 On

Lete > 0.Letn, € (0,1/2),n € N. Forn € N, let

Too = {1 € Poir | 1€ AP \AT™, 10, (D)] = (e, + €)1}

(3.7)
Let
Eno:= |J I. and En;i:=T(Eno), for i=1,....45,—1. (38)
IE-TM,O
We define
Gop —1
Ey:= | Eni. (3.9)
i=0
and
E:=limsupE, = (|| J E). (3.10)

n—oo .
n>1j>n

Let (7,)nen be a sequence such that the series > oo, In(2n,) diverges to —oo. It
suffices to take 1, = 1 < 1/2. In particular, n,ks,+1 — 00, as n — oo.

N(En 0) 1

Proposition 3.6 For sufficiently large n € N, u(E,), W

2ny.
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Proof We will show first that, for sufficiently large n, the number of the elements I of
partition Py, 1 inside of A(()"”fl)\A(()""H), that do not belong to E,, o is smaller than
2nnkg,+1 — 2. Otherwise, for small enough € > 0, there exists Cop = @(In 6_1) >0
such that, a ® (¢)-neighborhood of at least one of the end points of [—1, 0] contains
at least N, = n,ky,+1 — Co — 1 rescaled intervals 7., (1) with I € Py, 41 and I C
A(()U” AV (()0” D but 1 ¢ T,.0. Here, we have also used the fact that the number of such
intervals I with 7,, (1) N(—=1+©®(€), —O(€)) # Pisless than 2Cy, for some constant
Co = ©(Ine~1). By Proposition 3.3, the length of these rescaled intervals increases
exponentially in these e-neighborhoods near the end points —1 and 0, as one moves
away from the end points, with rate at least o I _ ¢. Assume, for example, that there

are N, intervals I € Py, 11 such that 7,, (I) C [=1,0()], I € A \A D,
and I ¢ 7, o. If these are intervals AquJr,'qan, fori = j,...,j+ N, — 1, by the

mean value theorem there are points ¢; € Af]a”) \igo,® such that
on— opn

j+Nn_1

Fon (A;::)_mqan)‘ l—[ o (&) (3.11)
=]

(on) —
Tg’l (Aq(rn—l+j+Nn) ) -

By Proposition 3.3,

(on) ko +1 (—1 ke, +1—Co—1
To, <Aqa,l—1+j+Nn)‘ > (an + €)/Infon (an — €)nkon

(1+ (c;! = cq,)€ — €2)Mmhon+

—1
(Can - €)C0+1

, (3.12)

and this is larger that ® (¢), for sufficiently large n. This leads to a contradiction.
Since the partition P,, consists of g, “large” intervals AE“" D _ i (Ag’"*l)), for

i =0,...,4,,—1,eachof which has invariant measure M(A(()U"_l)) and g5, —1 “small”
intervals A;G”) = Ti(Ag’”) ), fori =0,...,¢s,—1 — 1, each of which has invariant

measure M(Ag’")), and since the interval Ag’" ~D consists of the union of ko, +1 disjoint
A(UVL)
9oy —1 +i(1rry,

each of which has invariant measure M(Ag’")), and A(()O"H) C A
the invariant measure of the complement of E,, is

(except at the end points) intervals € Py +1,fori =0,...,ksp+1 — 1,

(all )

Goni1s WE have that

n n 1 n
H(ES) < Chinkoy 1 — 2)qoy WAS™) + o it (A" TD) + o1 1 (AT™),
(3.13)
and, hence,

W(ES) < 20k, +1G0, L(AY") < 200G, 11t (AF) < 200 (3.14)
Here, we have also used that g, —1 < ¢, . The first part of the claim follows.
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Similarly, since A(()a" Dy Ag’") consists of disjoint, except possibly at the endpoints,

intervals E, o, A(()G”“), and Ag’”) and at most 2n,ks,+1 — 2 intervals of measure
M(AE)U”)), we have

W(En0) = p(AG" D UAT™) = w(AT™) = (AT D) = @k, 41 — 2(AG™),
(3.15)

and since w(Ag" ") < u(AF) and w(AG" T UAT) 2 (ke + Di(AT™),
the second claim follows as well. O

Proposition3.7 w(E) = 1.

Proof Each “large” interval of partition P; is partitioned into k;4; “large” intervals

and one “small” interval of partition P; 1. Each “small” interval of partition P; is a

“large” interval of partition P; 1. This partitioning occurs in an identical way as the

partitioning of the whole circle T, which is the only interval of partition P.
Therefore, for n > m, it follows from Proposition 3.6, that

W) ES) < 2000 (Y}, ES), (3.16)
and, thus,
pUjznEp) =1 = u(Nj=n B9 = 1= [ [@nj). (3.17)
j=n

If the sequence 7 ; is such that the series Z;’O:n In(2n;) diverges to —oo, (U=, E;) =
1, for any n € N. The claim follows. O

3.3 Distance of dynamical convergents

In the following, we consider the class C'*8V of orientation-preserving homeomor-
phisms of a circle 7', C!-smooth outside a singularity point xo € T', with an irrational
rotation number and bounded variation V := Varg .1 In T'(§) < oo, for which the
Denjoy estimate (A) holds. In particular, C'-smooth circle maps with a break belong
to this class. The following proposition holds for all intervals Iy C Aé"_l) such that
Iy € P41, and the corresponding intervals I; = T'(lp), i € Z. The point that defines
the partitions P, is chosen to be the singularity point x.

Proposition 3.8 If T is a C'TBY orientation-preserving circle homeomorphism with
a singularity at xo € T', with an irrational rotation number, there exists C1 > 0 such

that |I;| < cn&"*‘ﬁ%,foralli =0,....qn— 1, and alln € N.
0

Proof Fori = 0,...,q, — 1, there exist ¢;—| € I;_] C Ag'fll) and &_; € AE’:I)

such that

I IT-)l T'&Gi-) il
AP @ T'E-o Al

(3.18)
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This implies the estimate

I; T'(¢i—1) =T (- Ii_
I(nz_ll) < (1+ |77 (& 1/) (i 1)I> |(zn_11|) . (3.19)
|A T'(§i-1) A"
By iterating this inequality, we obtain that, for some ¢;, §; € A;."_l),
I = T'(¢;) — T'(; I
I(nz_ll) <T1(1+ | (.Cj) /(Sj)| |(n0—|1) ' (3.20)
A" D mingeq 7(6) ) |A |
Using the obvious inequality 1 + x < ¢*, we obtain
i—1
I; — T — T i
I(nl_ll) < exp Z | (.41) /(S;)I |(n0—|l) . 321)
1A iz mingen T'E) ) |ATTY
Since, fori =0, ..., g, — 1, the intervals AE’“I) do not overlap, except possibly at

the end points, using the mean value theorem, we have

q’l_l qn—l
]2:(:) \T'¢j) —T'(EI < ;I.-I.lg?[)} T'(§) jZZ(:) IIn7T'(¢)) —InT'(&))| < V??ﬁ T ®).
(3.22)

Since T’ is bounded both from below and from above by positive constants, the claim
follows. =

Letl, = maxgcpi [T —§[. If T isa C'*BV orientation-preserving circle home-
omorphism, the Denjoy estimate (A) implies (see Lemma 2 in [25]) that, for some
C >0,

(F) I, < CA", where A =

_1
14e~2V "

Proposition 3.9 If T is a C*t¢-smooth (¢ > 0) circle diffeomorphism with a break of
size ¢ € RT\{1}, then there exists Co» > 0 such that, for all x € E, there are infinitely
many n € N such that

Tz — 3] = Col AT V(e + )Mot (3.23)

where A;U”_l) is an element of partition P, containing x.

Proof 1t follows directly from (3.10) that, for every x € E, there are infinitely many
n, such that x € E,. Furthermore, there exists an element /; of partition Py, 11

inside E, ; C AE-””J), for some j = 0,...,¢5, — 1, such that x € I;. It follows
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from the definition of E, ¢ and Proposition 3.8 that there exists x € Ej ;, such that
Ij =[x, T% x]and |1;| < C1|AY""V|(c,, + €)"ken+1. Therefore,

v — x| < 1T% x — x| = CLIAY ™V |(cq, + €)Mk, (3.24)
Since, by the mean value theorem, there exists ¢ € [; such that
T9onx = T x 4 (T9) () (x = x), (325)

using the Denjoy estimate (A) and the first inequality in (3.24), we obtain the following
estimate

T x — x| < (T9) (O)lx — x|+ T x — x|

+lx — x| = (¥ +2)|T% x — x|. (3.26)
The claim now follows using the second inequality in (3.24). O
Let x; = T'x and let [; := [xi—g,. Xi], if n is even, and I; := [x;, x;—¢,], if n is

odd. Let xo € T', xXj = T/ o, and let A;"_l)(x()) = [T91x;, x;],if n is even, and
A;."*”(XO) =[x, T x,1,if n is odd.
Proposition 3.10 If T is a C'*8V orientation-preserving circle homeomorphism with

a singularity at xo € T, with an irrational rotation number p € (0,1), and x €
A;nil)()(o), then there exists C3 > 1 such that

-1 g, ]
1151 = C31A" ™V (g —m—, (3.27)
1A (xo)l
foralli =0,...,q, — 1.
Proof Tt follows from the mean value theorem that, fori =0, ...,q, — 1,i # g, — Jj,

there exist & € Agnfl)(xj,qn) U AE")(Xj,qn) and ¢; € Agnfw(xj,q"), such that

|1 | B 1T~ (Li41)] B Ll T'@)
(n—1) - -1 (n—1) ) - (n—1) T/(E.)' ( : )
|Ai (Xj—q,,)| |T (AH—I (Xj—q,,))| |Ai+1 (Xj—q,,)| J

This implies the estimate

|1i] - i1l <1 n \T°(¢) =T (éi)l) (329

—1 = —1 .
|Al(n )(X]7QI1)| |Al(il )(X]*qn)| |T,($l)|
For i = g, — j, the same estimates hold, just that & is not necessarily a point in

A" (=g U A (- g), but just some point & € T'. Namely, if 1, —; contains
the singularity point xo, 1,4, ; and I,, ;11 can be divided into two subintervals, such
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that the ratios of lengths of the corresponding subintervals equals the values of T” at
some points in these subintervals. Therefore, the ratio |1y, j+11/[14,— ;| is between
the minimum and maximum value of 7’ and such a value is achieved at some point
&,4,—j on the circle.

By iterating the latter inequality, we obtain

n—1
|I;)| |1, T (@) = T (&)
< _ 3.30
=D ~alD ming ey [77(6)| (330
1A (=gl 1A 7 (xo)l =i £eT

Since the intervals Agn_l)(xj_qn), fori =0,...,q,— 1, belong to the same partition

of acircle, fork =i, ..., g, — 1, we obtain

| 1] |an| maxg ! |T’(§)|3 13
IA,' (Xij,,)| |Aj (x0)| £eT!

Factor 3 appears by using again the first inequality in (3.22), using the triangle
inequality taking into account all possible orderings of the points ¢ and & (e.g.
Citgnoy <& < &itg,_; < i), and estimating the term

IInT'(Cg—j) = InT" (g, )| < |InT"(Gg,—j) —InT'(5) _ )

HInT'(g; ;) —InT'(§,—))l, (3.32)
where E;r j is any point in Ag’_l) (x0). The claim follows. O

Propositions 3.9, 3.10 and Denjoy estimate (A) imply the following lemma.

Lemma3.11 If T is C*t¢-smooth (¢ > 0) circle diffeomorphism with a break of
size ¢ € RT\{1}, with an irrational rotation number p € (0, 1), then there exists
Cy4 > 0 such that, for all x € E, there are infinitely many n € N such that, for all
i=0,...,2¢5, — 1,

X — Xi—g,, | < Calo,—1(cq, + €)Mkontt, (3.33)

Proof For i = q,,, the claim holds directly from Proposition 3.9, with C4 > C».
Propositions 3.9 and 3.10 together imply (3.33) fori =0, ..., g5, — 1, with C4 >
C»C3. Using the Denjoy estimate (A), the bound (3.33) can be extended to i =
do, +1,...,2q5, — 1, with C4 > C2C3e”, since |xi1q, —xi| < e"|xi —xi_g,, |, for
i=1,...,95, — L. 0O

3.4 Convex renormalization graphs and set € of full measure
In this section, we construct another set of full invariant measure for which we have

appropriate control on the distances between points of an orbit and their dynamical
convergents, i.e, control of the quantity 8 in (2.7), for circle maps with a break.
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Let (0)nenN, be an increasing subsequence of 2N — 1, if ¢ < 1, or an increasing
subsequence of 2N, if ¢ > 1, such that the corresponding sequence ko, 4+ of partial
quotients diverges to infinity. In this section, we assume that such a subsequence
exists. Let (17,)n,en be any sequence of positive numbers converging to zero such
that the sequence 1, k,+1 diverges to infinity as well, and L converges to zero, as
n — oo. Consider partitions P, defined with the partltlons deﬁnlng point xo being
the break point x,.

Proposition 3.12 If T is C>*¢-smooth circle map (¢ > 0) with a break of size ¢ # 1
and irrational rotation number, then there exists a constant € > 1, such that, for
sufficiently large n,

1 1
Q:_] < |t A(O'n) . < ,
min{i + 1, kg, +1 —i}% ~ 7o ( ‘70"*1"’“’“")' minf{i + 1, kg, +1 — i}?
(3.34)

fori=0,... ko1 — 1L

Proof For sufficiently large n, renormalizations f, of C2*®-smooth circle maps

with a break, and intervals fgn(A(U”) \tige,)» TOr i =0, kg, 1 — 1, satisfy the

assumptions of Lemma 3.2. Clearly rgn(A( on) I+(l+1)qq = fu(tg,( A;Jn),l-wq )
and if follows from property (C) that, for sufﬁmently large n, renormallzatlons fn
are C>*¢-smooth circle diffeomorphisms on [—1,0] D U, ""H (A(J") \+ido, ).
It follows from the Denjoy estimate (A) that there exists o > O such that the
lengths of tgn (Al ) and 75, (A(G”)

Gop—

\+ (ko 41— 1o ) are of the same order and at least
on

o| U2 "”“ ran (A(o”) \+ig,, )| due to property (E). Condition (i) follows from prop-
erty (B). Convexrty property (E) assures conditions (ii) and (iii). The claim follows

directly from the assertion of this lemma. O

Foreachn € N, let

_ 1
=1 o :={Ie7>an+1|1cA<"" NAFY g, (D) < 72}
(ﬂnkan-H)

IeJn,(l
(3.35)
and let
€ ;=T (C0), for i=1,...,q, — 1. (3.36)
We define
qgn_l
¢, = (J & (3.37)
i=0
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and

¢ :=limsup €, = ﬂ U ¢;. (3.38)

n—o0 n>1j=n
Proposition 3.13 (&) = 1.

Proof 1t follows from Proposition 3.12 that, for sufficiently large n, the number of
the elements I of partition Py, 4 inside of A(()””fl), that do not belong to &, ¢ is
bounded from above by Csn,kg,+1, for some Cs > 0. Since the invariant measure
of the intervals To_”l ([fé”_1 (-1, féﬂ (—D)]) is independent of i and equal to /L(A(()a")),
fori =1,....kp11,and AY" TV c o V([ fi-1 (=), fI (=D, fori = ke 41 + 1,
we have

C577nkgn+1[,L(A(()0")) > 1 C577
— .

¢, =100 > 1 - >
1(&n0)/ 1(7,, ([=1,0D) ko 1A 1 (AL

(3.39)

By the invariance of the measure M(Gn,,’)/,u(Afg"_l)) > 1 — Csnj,. Since

qUn_l qUn*I_I
Yo AT+ Y A = 4o, AT + g 1A = 1,
i=0 i=0
(3.40)
Gor—1 < qo, and w(AY"™) = u(ty (=1, f», (—1)])), we have
kn,,+l
1(&y) = (1 — Csny) — 2 — (3.41)

kon+1 +1 .

Since u(U;j>,€;) > u(€;), forany i > n, and u(&;) — 1asi — oo, it follows that
m(U;j>,€;) =1, for any n € N. The claim follows. O

Repeating the steps of the previous section, analogously to Lemma 3.11, we can
prove the following.

Lemma 3.14 If T is C**¢-smooth circle map with a break (¢ > 0) with an irrational
rotation number p € (0, 1), then there exists C¢ > 0 such that, for all x € €, there
are infinitely many n € N such that, foralli =0, ...,2q,, — 1,

l(rnfl

—_— 3.42
(nnkan+1)2 ¢ )

Xi = Xi—gq,| = Cé
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3.5 Singular continuous phase

Proof of Theorem 1.2 If L(E) <o max{3 S| Inc|, 2B}, theneither L(E) < JaBor| Inc|

or L(E) < 2af. Assume first that L(E) < %aﬂbd In ¢|. Then the rotation number
p is such that By, > 0, and there is an increasing sequence o, of even numbers if

¢ < 1, or of odd numbers if ¢ > 1, such that By, = lim,_, k""“ .Lete > 0 and

n < 1/2 be such that L(E) < anpy| In(min{c, c™'} + €)| and let n € (n, 1/2), for
n € N. We use this € and these sequences to construct the set E, as in Sect.3.2. By
Proposition 3.7, u(E) = 1. For every x € E, by Lemma 3.11, there are infinitely
many n, such that estimate (3.33) holds. This implies 3 > 1P| In(min{c, ¢~} +€)].
Hence, L(E) < aﬁ, and the claim follows from Theorem 2.3.

If L(E) < 2ap, then B > 0, and there is an increasing sequence (0,,),cN Of either
odd or even numbers such that 8 = lim;— o M If (0,)nen 1s a sequence of even
numbers if ¢ < 1, or of odd numbers if ¢ > 1, then Bbr = 00 and the claim holds for
the set E, as discussed above. We assume that (0;,),eN 1S an increasing sequence of
odd numbers if ¢ < 1, or of even numbers if ¢ > 1. In that case, we choose a sequence
(Nn)nen of positive numbers converging to zero such that 1, ks, 41 diverges to infinity,
and lq In converges to zero, as n — 0o0. We use these sequences to construct a set of
full measure € as in Sect.3.4. For every x € E, by Lemma 3.14, there are infinitely
many n, such that estimate (3.42) holds. This implies /3 > 28. Hence, L(E) < aﬂ,
and the claim again follows from Theorem 2.3. O

4 Schrodinger operators over critical circle maps
4.1 Renormalizations of critical circle maps

A C"-smooth critical circle maps is an orientation-preserving homeomorphism 7 :
T! — T, for which there exists a point x, € T' such that 7/(x.) = 0, T is a C’-
smooth local diffeomorphism outside of x., and in a neighborhood of x,, in a suitable
C” coordinate system, the map can be represented by x > x|x|? ! 4 a, for some real
number y > 1.

To prove Theorem 1.3, we will use some properties of critical circle maps that
follow from real a priori bounds. Let T be a C3-smooth critical circle map with an
irrational rotation number. The following estimates have been proved in [7].

(a) There exist constants »¢1, 2cp € (0, 1) such that, foralln € N,

|A(n+1)|
| = —(—— =, 0<i<gqn, 4.1
I

and s < |I|/|J| < s, for any pair I, J of adjacent intervals of partition P,;
(b) There exists Ky > 0 such that || f;|lc; < K, foralln € N;

(c) There exists K2 > 0 such that f; (x) > K182, forx € [—1, =8], forall n € N;
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(d) There exists X3 > 0 such that, for sufficiently large n, Sf,(x) < —Ks, for x €

" 4 2
[—1,0), where Sf := f - % (%) , is the Schwarzian derivative of f.

Constants 21, 20, K1, ICQ, IC3 are universal, i.e., they do not depend of the map 7,
for sufficiently large n, but only on the order of the critical point y . Estimates (a) (with
non-universal constants s and s), reflecting the bounded geometry of these maps,
follow from Swiatek’s estimates [26]. Estimate (b) follows, in part, from Denjoy’s
lemma, which was, for critical circle maps, proved by Yoccoz [28].

Proposition 4.1 If T is C3-smooth critical circle map with an irrational rotation num-
ber, for sufficiently small € > 0 and sufficiently large n € N, the set F(e) = {z €
[—1, 0], fu(z) — z < €} is either an open interval or empty. Also, there is § > 0 such
that the distances from points —1 and 0 to the set F (€) are larger than §. Furthermore,
there exists C > 1 such that, for sufficiently large n € N,

1
—1
minf{i + 1, k41 — i}
fori=0,...,ky41 — 1.

1

(n)
T A . <C ,
2 =10 By, g )1 = min{i + 1, ky1 — i}2

4.2)

Proof The first part of the claim was proved in [18], and is included for completeness
of the presentation. For sufficiently small € > 0, the constant size intervals near —1
and 0 do not belong to F(¢€), due to (a) and (b). Assume that for some small € > 0,
F(¢) is not empty. For every x € F(¢), f,(x) must be close to 1; otherwise, since by
(@) f,/ is bounded, the graph of f,, would intersect the diagonal, which is impossible,
since the rotation number of 7 is irrational. Furthermore, f,’(x) must be positive and
of order 1. Namely, if it were of order 1 and negative, the graph would again intersect
the diagonal. If it were small, then it follows from the negative Schwarzian derivative
property (d) that f;”(z) would be negative and with magnitude of order 1 and, again,
the graph would intersect the diagonal.

Clearly, F(e) cannot be a union of more than one interval. Namely, if this were
the case, there would be some region between such two intervals where the f;'(x)
is negative and consequently, there would be a point y such that f,/(y) = 0 and

"(y) > 0 (since f,/ (x) changes sign from negative to positive at y). Since y;, (y) > 0,
due to (c), this would violate property (d).

For sufficiently large n, renormalizations f;, of C3-smooth critical circle maps, and
intervals rn(A () -G+ ) = fa (rn(A(”) \+ign ), fori = 0,...,k,4+1 — 1, satisfy
the assumptlons of Lemma 3.2. We have already verified conditions (ii) and (iii).
Property (b) verifies assumption (i). Properties (a) and (b) also assure that tn(A(") »

and t,,(A qn Vo1 = 1) ) are of length at least 0. Bounds (4.2) follow directly from
this lemma. O

4.2 Set £ of full measure
In this section, we construct a set of full invariant measure £ for which Theorem 1.3
holds, i.e., we have an appropriate control on the distances between points of an orbit

and their dynamical convergents, for critical circle maps.
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Set £ is defined analogously to set & for circle maps with a break, introduced in
Sect. 3.4, with a sequence (0;,),en chosen as follows. Let (0;,),¢N, be any increasing
subsequence of N such that the corresponding sequence ko, 1 of partial quotients
diverges to infinity. We will assume that such a subsequence exists since if the sequence
of partial quotients is bounded, then § = 0. Let n,, be any sequence of positive numbers

converging to zero such that 1,k 41 diverges to infinity as well and the sequence

l;i converges to zero, as n — oo. Consider partitions P, defined with the partitions
defining point y¢ being the critical point x,.

Foreachn € N, let

gn,o = U I, (43)
IE‘Z,V()
where,
_ 1
T = {1 € Po,sill € AT NATHY |10, (D) < —2} @.4)
(nnkan—&-l)
and let
Eni =T (o), for i=1,...,q5 — 1. (4.5)
We define
9on —1
&= & (4.6)
i=0
and
£ :=limsup&, = ﬂ U & 4.7
n—oo n=1j>n
Proposition 4.2 (&) = 1.
Proof The proof is analogous to that of Proposition 3.13. O

4.3 Distance of dynamical convergents

To estimate the distance between points on an orbit and their dynamical convergents
for critical circle maps, we cannot apply directly the procedure of Sect.3.3 for maps
with breaks, since the distortion is not bounded in this case.

Let ¢ > 0 be the half-width of the neighborhood around the critical point x., where
T has the given power law behavior (see the beginning of Sect.4). We consider two
classes of intervals

Fii={A CTHAN (xc — &/2, xc +8/2) = 0},

. (4.8)
Fr:={A CT|AC (xc —&,xc+¢)}.
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Since the length of the intervals of partitions P, decrease exponentially with n (due
to (a)), for sufficiently large n, every interval of partition P, belongs either to F or
to F>.

In what follows, we will need an estimate on the number of intervals of partition
P, of class F». For ¢ > 0, let I, C T be an interval of length ¢ > 0, with one of the
end points being the partitions defining point x.

Proposition 4.3 There is § = 5(¢) > 0, approaching zero, as ¢ — 0, such that for
every n € N, the cardinality

card{A" ™V C L] i=0,...,q, — 1} < 8qn. (4.9)

Proof Let N € N be the largest number such that I, C AEN_I) . Since the partitioning

of each of the gy intervals AENfl) by the higher level partitions follows the same
pattern—a “large” interval of partition P; is divided into k;; “large” intervals and a
“small” interval of partition P;41; a small interval of partition 7; becomes a “large”
interval of partition P;—it is not difficult to see that, for each n > N, the number
of intervals Agnfl) of partition P, inside of I is less than g, /gy . Since gy — 00, as
& — 0, the claim follows. O

The following proposition holds for all intervals Io C A(()"_l)\A(()"H) such that
Iy € P41, and the corresponding intervals I; = T'(ly), i € Z.

Let Vi = Vi(e) := Vargepi\(r,—s/2,x.+es2) N T'(§). Notice that V; — o0, as
e — 0.

Proposition 4.4 If T is a C3-smooth critical circle map with an irrational rotation
number, there exists C7 > 0 and §1 = 61(¢) > 0, satisfying 51 — 0 as e — 0, such
that

|1;] ol | _ Vi 4 Co8 410
(n—1) - n—1) = 1+ 7014n, ( . )
1A ] VAV
foralln e Nandalli =0, ...,q, — 1.
Proof Fori =0, ..., g, — 1, by the mean value theorem, there exist {;_; € [;_| C
AEYS]) and & € Ag’:l) such that
1l ATl T'Gi-) il @.11)

A" TG A
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(n—1)

By iterating this inequality, we obtain that, for some {; € Ij and §; € A i

i—1 i—1 i—1

i _ Vol @) ol i T'(¢)) 0 T'(¢))
AP Ay TED Ayt Gy T'ED Ly TI6ED
A;n71)€f1 A§n71)€f2
(4.12)
By taking the logarithm of this identity, we obtain
14 ol -
1
—In < ) InT'E)-IWnT'E)
—1 —1 — J J
A" Al =
A;’lil)ef—l
= (%)
+|In o (4.13)
U T'(§))
j=0
A;nil)efz
Since, fori =0, ..., g, — 1, the intervals A;"il) do not overlap, except possibly at
the end points, we have
|1i] o]
=1 - =1 <Vi+ C751q;17 (414)
A7 1Ay I

where C7, 81 > 0,and §; — 0 as ¢ — 0. Here, we have used that, for some C7 > 0,
and all j such that A;”fl) € F,

T'(¢))
T'())

(4.15)

‘ln

To prove (4.15), notice first that the interval [y is a constant fraction of |A(()”_1) | away
from x., as follows from property (a), and so is ¢y. Due to the power-law behavior
of T in (x. — &, x. + ¢), T' (&) = O(|& — xclV_l), and the middle value point &g
is at least a constant fraction of |A(()"_l)| away from each of its end points (and x., in
particular), as T/ (&) = ®(|A(()"_1)|7’_1). So, ¢o and &y are comparable.

Every other interval AD € Fp,for j =1,...,q9, — 1, is at least a constant
fraction of its length away from x.. This follows from the bounded geometry of
critical circle maps (second estimate in (a)). So, although the distortion of ratio is not
necessarily bounded and we have no estimate on the position of ¢; inside of Ag."_l),
forall j =0,..., g, — 1, the points {; and &; are comparable distances away from the
critical point, i.e., there is a constant Cg > 0, such that | In(|¢; — x¢|/]&; — xc])| < Cs.

Estimate (4.15) now follows from the power-law behavior of T near x,. ]
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Lemma 4.5 If T is a C3-smooth critical circle map with an irrational rotation number
p € (0, 1), then there exists C9 > 0,V = V(e) > 0and § = §(¢) > 0, satisfying
YV — ocoand § — 0, as ¢ — 0, such that, for all x € &, there are infinitely many
n € Nsuch that, foralli =0, ...,2qs, — 1,

lo,—1
P — Xi_g, | < Coe¥Toon " 4.16
N i S o ) (410

Proof Foreveryx € &, thereareinfinitely many n, suchthatx € &,. Furthermore, there
exists an element /; of partition Py, 41 inside of &, ; ¢ A "\AYTY for some
Jj=0,...,95, — 1, such that x € I;. It follows from the definition of &, ; that there
exists x € &, j and an interval Iy C &, 0 C A(G” 1)\A("”H) of partition P, 4| such
that and I; = TJ(Ip) = [x. T% x] and |2, (T < (nukoy1)~2. 1F I; = T (Ip). for
sufficiently large n, the intervals I, , I, . Iz, » are also subsets of A(()""_l) \A(()""H)
and belong to P,, 1. This follows from Proposition 4.1 and the fact that n,ks, +1 —
00, as n — 00, using e.g., the bounded geometry of critical circle maps (second
estimate in (a)). The same property implies that there exists Cj9 > 0, such that

%o (g1 1T, (I, )5 T, (T2g,, )| < C1r0(inks, +1) 2. By Proposition 4.4,

|A(‘Un*1)|
= | 1 i, |+ 425, | < Croe¥ T2 — 5 (4.17)
T T e (ke +1)?
foralli =0, ..., gy, —1.Since x € I}, theinterval [x;, T9%nx;] C I;41; UT%n (1;4;),
fori = —qo,, ..., qs,, the claim follows directly from the latter inequalities. O

4.4 Singular continuous phase

Proof of Theorem 1.3 If L(E) < 2af, then 8 > 0, and there is an increasing sequence
(0n)nen such that B = lim,—, o lnl;”T”“ Furthermore, there exist 8 > 0 such that

L(E) <a2B— §) as well. Let N, be any sequence of positive numbers converging to
zero such that 0, ks, 41 diverges to infinity an

use these sequences to construct the set £, as in Sect 4.2.By Prop051t10n4 2,u(€) = 1.
For ¢ > 0, by Lemma 4.5, there exist C9 > 0,5 = 8(¢) > Oand V = V(e) > 0
such that, for every x € &, there are infinitely many n, such that estimate (4.16) holds.
We assume that ¢ > 0 has been chosen such that § < §. This implies /§ > (28 — ).
Hence, L(E) < oz,é, and the claim follows from Theorem 2.3. |

5 Proof of Theorem 1.4

For C**¢-smooth circle diffeomorphisms with a break, the claim follows from The-
orem 1.2, taking into account Corollary 3.5 and Proposition 3.12. If L(E) < ®dmax,
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then, there exists § > 0 such that, for every € > 0,

1
IO — )3+, 11
L(E) <« limsupI (¢, ) )
n—00 9o,

-3, 5.1)

where o, is a sequence of even numbers, if ¢ < 1, or odd numbers, if ¢ > 1, or

lIn©k, 2, )|
an

¢ < 1, or even numbers, if ¢ > 1. For sufficiently small € > 0, either L(E) < %aﬁbr

or L(E) < 2ap. The claim now follows from Theorem 1.2.

For C3-smooth critical circle maps, the claim follows from Theorem 1.3, taking

. . . Ok,
into account Proposition 4.1. If L(E) < admax, then L < «limsup,,_, o, ‘n;—n"“)l

Hence, L(E) < 2ap, and the claim follows from Theorem 1.3. |

L(E) < a(limsup,_, o, — §), where o, is a sequence of odd numbers, if

Acknowledgements I am grateful to Svetlana Jitomirskaya for sparking my interest in the spectral theory
of Schrodinger operators and for her hospitality during my visit to the University of California Irvine. This
material is based upon work supported in part by the National Science Foundation EPSCoR RII Track-4 #
1738834 and the University of Mississippi College of Liberal Arts Summer Research Grant.

Data Availability This article uses no data.

Declarations

Conflict of interest The author states that there is no conflict of interest.

A Proof of Lemma 3.2

Let £* be a point such that f/(¢*) = 1. Such a point exists, for sufficiently large k,
since, by assumption, the first and the last intervals are of the same order, and on the
interval Bk (which is non-empty for sufficiently large k), the function is convex. We
will perform an affine orientation-preserving change of variables

1
y=h(z)=§f”(§*)(z—c*) (A.D)

that maps ¢* into 0 and normalizes the second derivative of f there. Under this
change of variables f is transformed into g = h o f o h~! which satisfies g’(0) = 1
and g”(0) = 2. Let k := g(0) = miny{g(y) — y}. Since f is C***-smooth, so is g,
and from (A.1), we have

lg() — (k +y+y) < €ly*™,  yeh[-1,0], (A2)

where € > 0.
Proof of Lemma 3.2 uses some estimates proved in [18].

Lemma A.1 ([18]) Suppose that, for a sequence of real numbers {s;};>o, there exist
¢ > 0anda € (0, 1) such that |s;+1 — (s; —si2)| < ¢ |si|2+0‘,f0r everyi > 0. Then,

@ Springer



Singular continuous phase for Schrodinger operators. ..

there exist constants D1 > 0 and d| € (0, 1) such that, as long as sy € (0, d1], the
estimate

1 D,
Si — 1| =7 ma (A.3)
i+, (i + 55 )it
holds, for every i > 0. Moreover, there exists D> > 0 such that
Si = Si+1 = — (I+6), (A.4)

(i +s51)2
where |8;| < Dasg, forall i > 0, as long as sy € (0, dy].

LemmaA.2 ([18]) Suppose that, for a sequence of real numbers {s;};>o, there exist
¢, 8 > 0andk,a € (0, 1) such that

1. |S()| < &k,
2. |siz) — (k +5; + si2)| < C3|s; %1%, for everyi > 0.

Fix arbitrary €4 > 0 and define N = x~'/? tan_1(€4/(_2<2u+a>). Then, there exist
constants D3 > 0 and d» € (0, 1) such that, as long as k € (0, dz], the following
estimate holds for every ) <i < N,

ala+1)

lsi — Vi tan(v/ki + ao)| < D3(v/ tan ki)' T 7 (A.5)

where ag = tan_l(so /). Moreover, there exists Dy > 0 such that

K
Sit] — 8§ = W(l + 6;), (A.6)

a(a+1)
where |6;| < D4k 22+ forall0 <i < N, as long as k € (0, da].

Proof of Lemma 3.2 Let a and b be the left and right end points of 1. Let rp = h(a)
and 1; = g' (1), i.e., t; = h(f(a)).

Since k = g(0), there exists a unique number i, satisfying 0 < i, < k such that
ti, € [0, k). Leti; = i — [k~ /2 tan~! k"5 Jand iy = ic+ [k~ tan~! k2@ |,
Combining tan~! )lc =5 - tan~! x with tan~! x = x + O(x?), x — 0, it is easy to
derive the following asymptotic formula

1 1

11— T 1 _ 1 —lta
K22 = 7 I —k 2 + O 2Fe ), Kk — 0. (A7)

_1 _
K 2 tan

To obtain the desired estimates for i; < i < i,, we can apply Lemma A.2. To obtain
the estimates for i; < i < i., we can apply this lemma to s; = —(t;,—; — «), where
0 <i <i. —i;. It immediately follows from this lemma that, for i; <i < i,

Kki?

i2(cos(y/k(ic —i —1)))2

ligl — b = Sip—i — Si—i—1 = (I +38i,—i—1). (A8)
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It is not difficult to check that the function x (\/ki) = % is monotonically

increasingoni; <i < i.. This follows from the fact that the function /ki tan(\/k (i —

i) — 1) has maximum when /ki = M%—CJ:;)_)I) and, therefore, x'(\/xi) =

Ly > (cos(y/R(ie — i — D)7 (1 + tan(YiGie =i = 1) > 0,

fori; <i < i.. Since i, = ]% + O(K_I%a) = %K_% + O(K_I%a) as k — 0 (Lemma

3.19in [17]) and, from asymptotic formula (A.7), i; = K_H% + O(K_I%a) and

-2
Kll

cos(Vlic —ij — 1))

1, as Kk — 0, (A.9)

the function m is bounded and the claim follows for i; < i < i..

Here, we have also used the fact that, since the second derivative of f is bounded
both from above and from below by positive constants, the lengths of the intervals
[ti—1,t;] and A; are of the same order. Similarly, we can obtain the desired estimates
fori. <i <i,, by applying Lemma A.2tos; =t;,4+;, where 0 <i <i, —i..

For 0 <i <ijandi, < i < k, we can obtain the desired estimates by applying
Lemma A.1. This is a consequence of the convexity and the fact that it follows from

1 elatD) 1
(A.5), using the (A.7), thatt;, = KH% + O(k 2+« 30t ) and, similarly, #;, = « 2 4

O(Kﬁ+%). We first obtain the estimates for 0 < i < i;. For0 <i < i — J,
let s; = —t;4;. For sufficiently large k, and some fixed large j, so € (0, d1]. Since,
for suchi’s, k < const.|tj |2t it follows from (A.2) that s; satisfy the assumptions
of Lemma A.l. We can apply this lemma for 0 < i < i; — j. The estimate (A.4)
immediately gives us the desired bounds for 1 < i < i;. Similarly, by defining
Si = li—j—i» for0 <i < i, — j, for some large j, we again have 5o € (0, d;], for
sufficiently large k. Since k < const. |ty ; |2t gt again follows from (A.2) that s;
satisfy the assumptions of Lemma A.1. The estimate (A.4) of Lemma A.1 immediately

gives us the desired estimates for k — j, <i <k. O
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