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Abstract

Graph query, pattern mining and knowledge discovery become challenging on
large-scale heterogeneous information networks (HINs). State-of-the-art techniques
involving path propagation mainly focus on the inference of node labels, and neigh-
borhood structures. However, entity links in the real world also contain rich hier-
archical inheritance relations. For example, the vulnerability of a product version
is likely to be inherited from its older versions. Taking advantage of the hierarchi-
cal inheritances can potentially improve the quality of query results. Motivated by
this, we explore hierarchical inheritance relations between entities and formulate the
problem of graph query on HINs with hierarchical inheritance relations. We propose
a graph query search algorithm by decomposing the original query graph into mul-
tiple star queries and applying a star query algorithm to each star query. Candidates
from each star query result are then constructed for the final top-k query answer to
the original query. To efficiently obtain the graph query result from a large-scale
HIN, we design a bound-based pruning technique by using the uniform cost search
to prune the search spaces. We implement our algorithm in Spark GraphX to test
the effectiveness and efficiency on synthetic and real-world datasets. Compared with
two state-of-the-art graph query algorithms, our algorithm can effectively obtain
more accurate results and competitive performance.
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1 Introduction

Many real-world systems, such as enterprise networks, social networks, and bio-
logical networks, can be modeled as heterogeneous information networks (HINs)
[1-4]. A HIN contains multiple types of objects and relations providing rich
semantic queries, knowledge discoveries, information fusions, recommendations,
and predictions. Graph query, as an important technique for solving these tasks,
has been extensively explored recently. It mainly explores subgraph isomorphism
algorithms to get an exact match [5, 6], and also develops subgraph matching
algorithms to do an inexact/approximate match as the potential query answers [7,
8]. Current research on graph query/matching mainly focuses on two dimensions.
The first dimension is the unary node-to-node properties mapping. The second
dimension is edge-to-edge/path similarities. Jin et al. [8, 9] consider node types
and closest path propagation to get scores of query answers. Some works [7, 8,
10, 11] consider similar nodes’ labels and their neighbors to learn the path propa-
gation to get ranked answers.

However, knowledge representation has hierarchical structures in the real-
world system. Long et al. [12] state that the knowledge structure representation
can be inherited with upward and downward inheritances. Clauset et al. [13] show
that the existing knowledge of hierarchical structure can be used to predict miss-
ing connections. In addition, Jiang et al. [14] construct the hierarchical structures
of entities for the large freebase knowledge base system based on real-world enti-
ties and relations. One visible example in an enterprise’s product databases is that
product vulnerabilities can be inherited from or passed down to different product
versions. While measuring the similarity of objects for graph matching, hierarchi-
cal inheritance relations can also play an important role in the answer ranking.
The quality of query answers is also greatly affected by hierarchical inheritance
relations. Therefore, we consider the power of hierarchical inheritances whereby
a subclass inherits the properties and constraints of its parents, and more mean-
ingful and accurate query answers are expected to be obtained.

Taking an example of an information network with a hierarchical structure,
we consider a schema of an enterprise’s product information network shown in
Fig. la. Every node represents a type of entity at the schema level. The product
type is connected by four property types: site, workgroup, technology, and vul-
nerability. Product entities have hierarchical connections with different versions
of the products shown in Fig. 1b. Some properties are inherited among different
versions of the products, such as vulnerability and technology properties (in red
bold lines in Fig. 1a).

Given the information network schema with inherited relations, we show a
user query example here. Assume a user wants to find the top-5 related products
affected with a given vulnerability V, (Cisco WebEx meetings server information
disclosure vulnerability) and employed with a given technology 7, (voice-com-
munications manager additional apps and plugins), which is constructed as a user
query graph shown in Fig. 1c. Figure 1d shows the top-5 subgraph answers of the
query in this answer graph. The given V, and T, nodes in the user query graph are
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Fig. 1 A product information network schema and a query example. a A graph schema of a product net-
work. b An example of a hierarchical connection structure for product versions. ¢ A user query graph of
top products. d An answer graph with top-5 products

exactly matched with the V| and T nodes, respectively, in the answer graph, and
there are 5 product nodes that are potential answers to the query of the product
node.

For general methods, if we consider the closest node types and shortest dis-
tance to measure the similarities of answers for matching, we obtain the fol-
lowing ranking order of answer scores, P; (Cisco WebEx meetings server ver-
sions 0.1.0), P, (Cisco WebEx meetings server versions 0.2.0), P; (Cisco WebEx
meetings server versions 1.1), P, (Cisco WebEx meetings server versions 2.1)
and P5 (Cisco Jabber for Windows), that is, the ranking order of answer scores is
s(P,) > s(P,) = s(P3) > s(P,) > s(Ps). However, the vulnerability property can be
inherited from different prior versions of products. Here P, is the prior (parent) ver-
sion of P, and P; is the parent version of P4 as the arrows indicate. Hence, P,’s vul-
nerabilities can pass down to the product P; or P,, and P,’s vulnerability can come
from the upper P or P,. With the hierarchical inheritances, the answer scores can be
obtained with a more accurate ranking order s(P,) = s(P3) & s(P,) > s(P,) > s(Ps),
which is very important for engineers’ troubleshooting and customers’ queries.

Due to the complexity and heterogeneousness of large networks, design-
ing an effective and efficient algorithm with additional hierarchical features
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is challenging. In this paper, we conquer this problem by modeling graph que-
ries with a new matching score function with hierarchical inheritance relations
for effective answers, and by proposing a bound-based technique for an efficient
query. The main contributions are as follows:

— We formulate the graph query problem with hierarchical inheritance relations to
improve the query quality.

— We propose a new graph query algorithm based on uniform cost search in the
context of a new matching score function.

— We design a bound-based method to prune the search spaces to efficiently get the
top-k best answers.

— We implement our algorithm in the Spark GraphX distributed environment for
large-scale networks. Experiments are done to evaluate the effectiveness and effi-
ciency of our matching algorithm.

The rest of this paper is organized as follows. Section 2 describes the problem and
formulates graph queries with hierarchical inheritance relations. The proposed
algorithm for graph queries and its bound-based pruning technique are presented
in Sect. 3. Section 4 discusses the distributed implementation. In Sect. 5, we pre-
sent the evaluation of our algorithms. The related work and conclusion are shown in
Sects. 6 and 7, respectively.

2 Problem formulation

2.1 Data graph, hierarchical inheritance relations, query graph, and matching

Definition 1 (Data Graph) We consider a HIN that contains hierarchical inherit-
ance relations among nodes as a hierarchical heterogeneous information network
(HHIN). A HHIN is modeled as a partially directed, acyclic, labeled data graph
G(V,E,L,, H,) with a node set V, edge set E, node label set L, and hierarchical
inheritance relations H, with directions, where (1) each node v € V represents an
entity in G, (2) each edge e € E represents the relationship between two entities,
and each edge weight is considered to be 1. Only an edge between two hierarchical
entities has a direction. (3) each node v has the label information L, including at
least a node type and a keyword description, (4) for hierarchical entities, each edge
e € H, between them indicates a hierarchical inheritance relation. Each edge weight
h, between two hierarchical entities as the hierarchical level distance is defined as
Bl = 1.

Definition 2 (Hierarchical Inheritance Relations) There exist upward and downward
hierarchical inheritance relations in G. We call a node with label information that is
inherited among other hierarchical entities an “attaching” node, such as a vulnerabil-
ity node in Fig. 1a. Its label information could be inherited among product nodes. A
node with a node type that has hierarchical levels is called an “inherited” node, such
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as a product node in Fig. 1a. If an attaching node’s label information passes down to
its inherited node’s lower level entity, we call it downward inheritance. Conversely,
if an attaching node’s label information can pass up to its inherited entity’s higher
level entity, it is called upward inheritance. The attaching node and one of its inher-
ited nodes are formed as a “property inheritance pair”. For example, the vulnerabil-
ity’s label information in the vulnerability entity can be downward or upward inher-
ited from product entities in higher or lower levels as shown in the red bold line in
Fig. la. The label information of other nodes, such as workgroup and site, is not
inherited among product nodes as shown in the black line in Fig. 1a.

Given an hierarchical edge h(u,, u,) between node u, and u,, the hierarchical level
difference is 1 for upward inheritance when u, is in the higher level than u,, -1 for
downward inheritance when u, is in the lower level than u,, and O for the same
hierarchical level or non-hierarchical relations. Considering hierarchical inherit-
ance cases shown in Fig. 2, given a node pair in the query graph Q, there are pos-
sible pairs of nodes (S, V;;) in data graph G, which match with that node pair in
Q. S is an “attaching node” and V;; (i,j € 1,3 in this example) indicates different

O
NG
¢.)

(a) Score r(S,V1.1) S (b) Score 7(S,V3.2) % (c) Score r(S,V3.1) S
(S, Va.1) (8, V1.1) (S, Vi)

D o)
AYND AR

LA\ e

> (¢) Maximum hier- (f) Maximum hier-
7(“%)9 SVcor§> (8, Vi2) £ archical difference: archical difference:
sl maz(h(S,Vi.1)) = —2 maz(h(S,V3.1)) = 2

Fig. 2 Hierarchical inheritance cases and scores
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“inherited” candidate nodes. There are basically these following cases if we only
consider the matching based on hierarchical inheritance relations.

1. When S inherits upward from V; ; to V| |, the node similarity score r of Sto V, ;
is a little smaller than the score of S to V; ,, that is, 7(S, V| |) S (S, V5 ) shown in
Fig. 2a.

2. When S inherits upward from V3, to V; ; and downward from V| | to V;,, it is
expected that the node similarity score r(S, V3 ,) £ #(S, V, ;) shown in Fig. 2b.

3. When § inherits downward from V|  to V5 |, it is expected that the node similarity
score (S, V5 ) S (S, V, ;) shown in Fig. 2c.

4. When S inherits downward from V| ; to V; , and upward from V5, to V| ,, it is
expected that the node similarity score r(S, V| ,) £ r(S, V5 ) shown in Fig. 2d.

5. When S inherits upward from V| ; to V5 ;, and there are multiple shortest paths
from S to V, ; with different hierarchical level differences, the maximum hierarchi-
cal difference is defined as: max(h(S, V; ;)) = —2 shown in Fig. 2e.

6. When S inherits downward from V| | to V; ;, and there are multiple shortest paths
from S to V; | with different hierarchical level differences, the maximum hierarchi-
cal difference is defined as: max(h(S, V5 ;)) = 2 shown in Fig. 2f.

Definition 3 (Query Graph) A query graph Q(Vj, Ey,L,) is modeled as an undi-
rected and labeled graph. V,, contains a set of specific nodes Vg and a set of query
nodes Vg with types Tg , which are provided by users. A specific node is defined as
an instantiated node in Q that has a fixed node type and node label information, and
it is also matched to a node in G. A query node is defined as a node in Q that only its
node type is given, and we want to find its matched nodes in G. According to one
classification category based on query node number in Q, if the query node number
|V5| = 1, we denote the query graph Q as a star query graph. If the query node num-
ber |Vg | > 1, Q is called a general (non-star) query graph. According to another
classification category based on hierarchical inheritance relations, if every one of
the specific nodes in Vg can form a property inheritance pair with its query node in
Vg , we call Q a hierarchical query graph. If there exist no property inheritance pairs,
we call Q a non-hierarchical query graph. Otherwise, it is called a mixed hierarchi-
cal query graph. For example, Fig. 1c shows a hierarchical star query graph where
node V,; and node T, comprise specific nodes, and the node marked with the “?” in
the product type represents a query node.

Given a query graph Q and a data graph G, we need to map each query node
to a data node. This transfers to a subgraph matching problem. We denote as M
an already matched subgraph in G to Q. Then a subgraph matching is a many/
one-to-one mapping function ¢: V, — V, such that, for each query node v € V,,,
¢(v) € M. The problem here is to find such top-k potential mapping functions
given a query graph Q and a data graph G.
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2.2 Matching score

If nodes are close in a query graph, their mapping nodes in a data graph are also close
based on node neighbors and hierarchical inheritance relations. Given a query graph Q
containing a node pair (4, v) € V,, that is connected, a matched subgraph M in G has
mapped nodes (¢p(u), p(v)).

To measure how close is a query node in Q to its mapping node in G, we define
“node closeness score” based on whether hierarchical inheritances exist in Q.

(1) When u and v in Q do not form a property inheritance pair, the closeness score
of (¢p(u), p(v)) is defined similar to [9]. Between two nodes, it considers their shortest
distance in the graph with an exponential function for a monotonically decreasing rela-
tionship. The shorter the distance, the higher the closeness score.

1 if =
. 2 = { o P40 Ltt?e(ruv)viseqb(v) (1)

where I(¢p(u), p(v) is the shortest distance from ¢(u) to ¢p(v). @ is a constant propaga-
tion factor in [0, 1] that controls the decreasing rate of node closeness.

(2) When u and v can form a property inheritance pair, we consider both short-
est distance and hierarchical inheritance relations. The motivation for this is that the
hierarchical inheritance level also has an important impact on the query results. The
closeness score is decreasing with the increasing length of the level, but the inherit-
ance relations have a more positive drive than the short distance. The inheritance level
difference will be deducted to some extent from the shortest distance. Therefore, we
define the closeness score of (¢(u), ¢p(v)) as:

1 if ¢p(u) = ¢(v)
(pw), p(v)) = { DD ~BHIG) H)) ;ﬂirumsf ! @

where I(¢(u), p(v)) is the shortest distance from ¢(u) to ¢(v). @ is a constant prop-
agation factor in [0, 1] that controls the decreasing rate of the node closeness. f
is defined as the hierarchical level propagation factor in (0, 1), which indicates the
importance of hierarchical level propagation when an attaching node’s label infor-
mation inherits between different hierarchical levels of an inherited node. f is
expected to be smaller than a because hierarchical inheritance is more reliable than
shortest distances when traversing long hops. h(¢(u), p(v)) indicates the hierarchical
level difference from ¢(u) to ¢p(v). Vice versa, the hierarchical level difference from
@(v) to P(u) is indicated as h(p(v), p(u)), and A(P(v), p(u)) = —h(P(w), p(v)).

Based on the node closeness score, the matching score of M is defined as the sum-
mation of mapping nodes (¢(u), ¢(v)) for all connected edges (u, v) in Q.

F@)= ) (), p() 3)

(u,v)EE,
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2.3 Problem statement

Given a query graph Q and a data graph G, we want to find the top-k subgraph
answers in G, that is, to find a set of k subgraphs M, in G, such that for any nodes
#(Vy) € M, and for all nodes ¢'(V,)) & M,, the matching score F(¢) > F(¢'). Spe-
cific nodes Vg in Q are identified for exactly one-to-one mapping to matched nodes
q,')(Vg) in G (we call them anchor nodes Vg), which are easy to be found. Therefore,
we consider the top-k sets of candidate nodes in M, for a set of query nodes based on
hierarchical inheritance relations and graph structures.

Formally, given a query graph Q(V,, E, L,), the top-k subgraphs M (V' ,E'\ L")
have the following mapping function with Q. For each v € V,, there is a one-to-one
mapping ¢(v) € V': v — ¢(v) based on the matching score F. Our problem consid-
ers exact and approximate matches to output the top-k matching answers, so each
edge e € Ey does not need to have a one-to-one mapping to the edge ¢’ € E'.

3 Graph query algorithm with hierarchical inheritance relations

It is time-consuming to get all potential subgraphs from a large-scale data graph
with a big query graph. Moreover, for a general query graph with multiple query
nodes, it is proved to be an NP-hard problem even for subgraph isomorphism [15].
Yang et al. [16] divide a query graph into star queries and then utilize the top-k star-
join method, using the similar relational database HRIN [17]. Inspired by the struc-
ture of our general query graph with multiple query nodes, we propose a general
graph query algorithm comprising three phases as follows:

Phase 1 (Query Decomposition): A general query graph contains some specific
nodes and one or more query nodes. Considering the characteristics of our query
graph, the decomposing policy of a general query graph is not as complex as the
decomposing method considered in [16], as we don’t use the join operation for final
combinations of star queries. Therefore, a simple and effective policy is to use the
number of query nodes as the number of star query graphs. Each query node is the
center query node for each star query, and every specific node that is connected to
the center query node is a specific node for its star query.

Phase 2 (Star query): We propose to use uniform cost search and bound-based
pruning to derive top-k, candidates for each star query. Selecting the top-k, candi-
dates for each star query can effectively serve the final top-k candidate results for a
general graph query (Sect. 3.1-3.4).

Phase 3 (Candidates selection): We consider the top-k, star query candidates
together and get the optimal edge/path matching scores for query node combina-
tions. Different from the top-k join strategy with a common node in [16], here query
node candidates can be 1 or more hops connected in G without a common node for
joining. Therefore, graph traversals are needed among these star query node candi-
dates to find the final top-k candidate sets for query nodes. When there are |Vg |

query nodes, this involves exponential computations of |Vg [, which is highly
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expensive if | Vg | and k, are large. We propose to use a branch and bound technique
to greatly reduce search spaces by filtering out unexpected candidate sets
(Sect. 3.5.3).

If the input query graph Q is a star query graph, then we only do phase 2 (star
query) to get the answer. If the input query graph Q is a general query graph, it
will involve the three phases. As query decomposition is easy to accomplish, we
will mainly discuss the star query algorithm and candidate selection for the general
query graph algorithm.

3.1 Matching score for star query

Given a star query graph Q with a set of specific nodes Vg and a query node v, spe-
cific nodes Vg have mapped to anchor nodes Vé in G, so we only need to find the
top-k mapping nodes ¢(v) for v. We traverse from every anchor node ¢(v*) in Vé as
one source with uniform cost search to all other nodes in the data graph, and obtain
their node closeness score to the source. We could calculate the matching score of
one ¢(v) denoted as S(¢p(v)), which is based on the aggregated results of node close-
ness scores from all the nodes in ¢( Vg):

S(p») = Z r(@("), p(v))

seVS
% GVQ

“)

3.2 Bound-based pruning for star query

For each different anchor node, there is a propagation path to each candidate node
in G. It is time-consuming to do all node traversals if G is very large. We use the
bound-based pruning technique to effectively reduce the search space for star que-
ries. We trace the lower bound in the top-k answers and infer the upper bound of
unseen nodes to effectively filter these nodes while traversing.

3.2.1 Bounds of matching score

In the top-k answer list of query nodes, every node is maintained with an upper
bound of matching score and a lower bound of matching score for a query node. We
refine the upper bound S(¢(v)) and lower bounds S(¢(v)).

S@)= Y Fp(), p()

seVS
v EVQ

®)

Sy =Y, rd(), ¢()

seVS
v EVQ

(6)
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The matching score bound depends on the upper bound of node closeness score 7
and the lower bound of closeness score r. Next, we show how to get these bounds of
node closeness score.

3.2.2 Bounds of node closeness score

The lower bound and upper bound are obtained online while the graph traversal is
running. We show the lower and upper bound refinement in the different iterations
of graph traversal. We denote ¢ as the iteration number of uniform cost search from
an anchor node s to a candidate node u.

(1) The initial bounds are set as 7O(s, wy=1 and 1°(s,u)=0. (2) In each of
the next iterations, every node u is updated with its lower bound using the informa-
tion from its previous iteration result when it is not visited yet. The lower bound is
computed as follows:

(s, u) r(s,u) >0
3 _ I s L 1)
r (s,u) = {al—ﬂ-|h(u/,m,,u)| . r_’t‘l(s, uprev) otherwise (7)
The upper bound in iteration ¢ is computed as follows:
— r'(s, u) r(s,u)>0
rs,u) = {a"ﬂ'm“’”“ otherwise ®)

where u,,,,, is the parent node of u when traversing from s along a path to u.

3.3 Top-k selection with bounds

How to effectively update potential candidate results and select the final top-k results
during iterations is crucial for computation performance. Here we use a top-k selec-
tion policy based on the upper and lower bounds of matching scores referred to as
the top-k emergence test in [18]. We maintain the top-k candidate results in a prior-
ity queue P. Each candidate node u contains its lower bound S;(u), and upper bound
S;(u). We define S, as the smallest lower bound in P. The process for selecting and
updating P during the iterations is shown as follows:

(1) Find the top-k potential answer nodes and put in P. (2) Calculate the kth small-
est lower bounds S, , in P. (3) If the upper bound S;(u) of an incoming node 7 is less
than the S, ., we prune the node u and the nodes with bigger distance than u from
the starting source. These nodes’ matching scores are lower than any node’s match-
ing score in P, so they are not qualified for top-k final results. (5) Continue the previ-
ous steps until the convergence condition is reached, which is shown in Sect. 3.6.

3.4 Star query algorithm
As discussed before, the star query is to find the match for the star query graph in

the large data graph. The star query graph has a uniform structure, in which a small
graph Q has a set of specific nodes Vg and a query node, and specific nodes Vg con-
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?P,

Star query example Q, Star query example Q, Star query example Q,

Fig.3 Star query graph examples

nects to the query node. Figure 3 shows 3 examples of star queries, and each has a
query node p that connects to its own different number of specific nodes V; (i €).

According to the proposed star query matching score and bounding-based prun-
ing, we show our star query with hierarchical inheritance relation algorithm (SQH)
in Algorithm 1. First, we obtain anchor nodes ¢(Vg) in G for each Vg in Q, which
are specific one-to-one mappings in G (in Line 1). Then we aggregate node mes-
sages to do propagation simultaneously from each anchor node with the uniform
cost search (in Line 8). The search cost of each node in the uniform cost search is
indicated by the inverse of its matching score here. In each iteration of propagation,
the candidate node closeness and matching score, lower bounds, and upper bounds
are updated (in Line 9-10). Candidate nodes and the queue are continuously updated
(in Line 11-15). The specific top-k selection and update are shown (in Line 17-28).
Iterations continue until we find the final top-k candidate result. The worst time
complexity is O(| V| = |V5|), where |Vl is the node number of G. With the pruning of
potential unmatched nodes, the average time complexity is reduced to O(M |Vg|),
where M is the number of visited nodes with type r and M < |V/|.
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Algorithm 1 Top-k star query (SQH)

Require: Data graph G(V, E, L,, H.), Query Graph Q(Vg7 7), Top-k value
Ensure: Top-k match set Py
1: Get anchor nodes set qb(Vg ) for Vg

2: Initialize empty match set Py (size k)
3: Initialize node closeness score r(s,u),7(s,u) and r(s, u)
4: Initialize matching score (Sg(u), Sg(u), S (u))
5: Initialize L « {v|type(v) =7 & v eV}
6: t«—0
7: while L not empty and message exists do
8: Aggregate node u from each anchor nodes with uniform cost search
9: Update (r(s,w),7(s,u),r(s,u)) by equation 7 and 8
10: Update (Sg(u), Sa(u),Sq(u)) by equations 5 and 6
11: if Sg(u) — Si(u)) <=0 then
12: L—L—-u
13: else
14: P, =P, +u
15: Py, L — TOPKUPDATEBOUNDPRUNE
16: t—t+1
17: procedure TOPKUPDATEBOUNDPRUNE
18: Siin — kin smallest S (u) for u € Py
19: node n, Sktp «— kep smallest Sg(u) for u € Py
20: for all u € P, do
21: if size(Py) < k then
22: P, — P.+u
23: else if Sg(u) > S;,,(n) and Sg(u) > S, then
24: P, — P,—n
25: P, — P.+u
26: else if Sg(u) < Sy, (n) then
27: L+—L—-u
28: return Py, L

3.5 General graph query algorithm

The general graph query problem involves three phases described in the earlier part
of Sect. 3: decomposing query (phase 1), star query (phase 2), and candidate selec-
tion (phase 3). The previous 2 phases have been described before. For phase 3, how
to effectively and efficiently select the top matching candidate sets from star query
results involves effective candidate selections. We propose to find the top matching
scores of query node combinations by propagations. First, we obtain the matching
score of query nodes for the general graph query.
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3.5.1 Matching score of query nodes

Based on the calculation of the matching score for star queries in Sect. 3.1, we
obtain the matching score for a set of query nodes Vg as:

FoVi =D Sed+ D Egdr).¢()) ©
vevy VvEEVY)

The summation is composed of two parts. The first part is the summation of match-
ing scores of decomposed star queries. The second part is the summation of match-
ing scores of edges/paths among the candidates of query nodes.

3.5.2 Algorithm flow

We show our general query with hierarchical inheritance relations (GQH) in Algo-
rithm 2. Phase 1 for decomposing query is shown in Line 3. Phase 2 for star query is
shown in Line 5-7. The candidate selection (in Line 8—12) continues propagating by
uniform cost search from top candidates nodes and pruning with branch and bound
until the top-k candidate node set is found. The worst time complexity is
o(|V] = |V5| +|V] * |Vg %), where |V5| is the maximum number of specific nodes
for each query node in a query graph, and k; is the number of top-k, candidate results
from each star query result. In our experiment, k, € [k,2k] is a good trade-off for
efficiency and effectiveness. |VI is the number of nodes in G. With the pruning of
potential unmatched nodes for phase 2 and phase 3, the worst time complexity is
reduced to O(M = |Vg| + N * |Vg|ks), where M and N are the numbers of visited

nodes with type 7 for phase 2 and phase 3, respectively.
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Algorithm 2 Top-k general query (GQH)

Require: Data graph G(V, E, L,, H.), Query Graph Q(Vg7 7), Top-k value
Ensure: Top-k matched candidate sets Mt
: Initialize top-k matched candidate sets Mt — ¢ (size k)
Initialize star query result list stResList «— ¢
Star query graph set StarGraphSet — Query Graph Q
ks «— [k, 2k]
for all starGraph € StarGraphSet do
Top-k, candidate result starCand «— SQH (G, starCand, k) with Al-
gorithm 1
stResList < stResList + starCand
10
9: while i < len(stResList) — 1 do
10: Traverse from stResList[i] — stResList[i + 1]

® 3

11: Pruning nodes and path with bounds until top-£ candidate node sets
are found
12: 1—i+1

3.5.3 Candidate selections with branch and bound pruning

The output of a star query graph is top-k, candidate nodes for each query node. The
problem is how to efficiently connect the candidate nodes of star query results and
pick the top-k answers. If all candidate nodes are explored for each candidate combi-
nation, the time complexity would be exponential.

We consider the branch and bound pruning technique [19] while traversing
among these candidate nodes. To ensure the best quality of candidate selections, we
sort each top-k, result of star queries in Phase 2 in a non-descending order in sepa-
rate lists. Then we search through each list from the top to do the uniform cost
search and construct a search tree. Each path along the root to the leaf node is a
matched candidate set for query nodes. While searching from root to leaf, we check
the aggregated matching scores and lower and upper bounds along the path. Assume
there are top-k candidate node sets with the smallest lower bound score F K by
searching the next candidate node and getting it’s upper bound lower than F » the
node candidate and all the nodes of its subtrees can be pruned.

As shown in the example Fig. 4, we query top-3 nodes v type shown in the part
(1) query graph. The data graph has the structure shown in part (2). Initially, all the
red nodes are potential answers, when we propagate to node v,, we obtain the node
matching score S(v,, #). The matching score S(v,, u) are smaller than the matching
scores of top-3 nodes S(v;, u), S(v,, u), and S(v5, u). The node v, and its subtrees are
all smaller than S(v,, u), then we just stop propagating and prune them.
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N

(1) Query graph

Pruned

————

(2) Data graph (3) Pruning during propagation

Fig.4 An example of branch and bound pruning

3.6 Convergence of iteration propagation for graph query

The iteration propagation in essence is a graph traversal problem. The conver-
gence of this graph query is equivalently bounded by the traversal of all the
required nodes or no update of the propagation cost. Therefore, two types of iter-
ation conditions are identified to terminate the graph propagation to obtain the
final top-k answers.

(1) When all the nodes with designated query node types have been explored or
pruned by the bound-based pruning technique, all visited candidate nodes have
obtained the necessary matching scores.

(2) When no message is updated for the next propagation, that is, all the candidate
nodes’ matching scores keep the same as the last iteration.

Lemma 1 The iterative propagation algorithm of graph query is always converged.

Proof . The matching score for a graph query is defined as before:

Fo(VE) = Y, S((v)

vevy (10)
where
@)=Y, Hg(). () an
vSEVE2
and
r(p(u), p(v)) = PSR L L CIOR )] (12)

Therefore, we have:
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Fg(Vy) (13)
= Y Sa(¢)
veVy
= 2 X @0").40) a4)

U s yS
VEVQ v EVQ

Z Z PR ORI COR O]

U yseyS
vGVQ v‘EVQ

Here when traversing along the path in the graph with more and more depths, we

assume the shortest distance of I(¢(u), p(v)) (abbreviated as ) and |h(¢p(u), p(v))|

(abbreviated as h) would go bigger and bigger, that is, [ — oo, and & — oo.
Therefore, to prove that FG(Vg ) converges to a number e, that is,

lim  Fg(VY) — &, we have to show,
> 00,h— 00 o
Zvevg Zv“evé (.o (@), M) _; ¢
Thus,
lim Y Y alswsor-pnso|

[—00,h—>0 ' s
=%
veVQ v GVQ

Z Z lim al(¢(u),¢(v))—ﬂ>kIh(ti)(u),d)(v))|
[—00,h—00 (15)

VEVg vfeVé
lim (), () =P h((w), ()|
Y Y

U s e/S
VEVQ v EVQ

Given a path from node ¢(u) to another node ¢(v), the shortest distance of the
path is defined as I(¢(u), ¢(v)), and the hierarchical level distance is defined as
|h(p(w), p(v))|. According to the definition of the shortest distance and hierarchi-
cal level, we see that I(¢(u), p(v)) > |h(p(u), p(v))|, and g € [0, 1], we will have
Up(u), (v)) — B * [h(¢(u), p(v))| = 0. Then,

2 Z az-.grrfﬁw Up(u).p() =B | (b (). ()|

U yse S
VEVQ % EVQ

lim 0
<Y Y el

U s S
veVQ Vi EVQ

2 2!

U s /S
VEVQ % EVQ

U S
VY5 V)

(16)

IA

=¢

Therefore, we have finally obtained:
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: U
it eVo) > € a7

Our iterative propagation for graph query is proved to be converged.

4 Graph query system and implementation
4.1 System architecture

Based on the proposed graph query algorithm with hierarchical relations, we pro-
pose the graph query system shown in Fig. 5. It reads the graph data into memory
for offline processing. In online processing, given a query graph, it reads the query
and decomposes the query graph into one or more star query graphs, then it trav-
erses the data graph according to the defined matching scores and algorithms to
obtain candidate nodes for each query node. Finally, the top-k candidate nodes are
selected through the candidate selection algorithm as the top-k query result.

4.2 Distributed implementation

To support large information networks, we implement our graph query algorithm
in the framework GraphX, which is a distributed graph analytics platform built on
Apache Spark [20]. Figure 6 shows our architecture of distributed graph query sys-
tem. We define a global data structure, Global Vertex State Table (GT) for each ver-
tex stored in the Spark RDD data structure. GT is a user-defined class type which
can store the following hash mapping for each anchor node v*: node type z, short-
est distance sd, hierarchical level difference hd, node closeness score r, closeness
score lower bound r, closeness score upper bound 7, etc. GT values are updated in
each iteration of propagation to efficiently decide the bounds for effective pruning
of many useless node propagations. We use Google cloud platform [21] to run our

Offline Online
processing processindj Read query graph :> Decompose query

Read data . ll
graph with O . Query node candidate lists <: Star queries

hierarchical

relations ﬂ
° ° Candidate selection j‘> Top-k result

Fig.5 Graph query system architecture
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e
S~

: '; GraphX

Query graph/ >‘T0p k result
Candidate vertex set 2 | Matching scores 2
t

I
Candidate vertex set 1 | Matching scores 1

Vertex Id GT
0 V1 T,5d,sp,hd...
1 V2 T,sd,sp,hd...
Data graph
Iteration Distributed vertex
number state table GT

Fig. 6 Distributed graph query implementation architecture

experiment. The basic configuration for spark is composed of 4 worker nodes and
each node has 4 CPU cores and 32 G memory. For the experiment of the scalability
test, we increase the worker number from 2 to 32.

5 Experimental evaluation
The experiments are designed to answer the questions as follows:

(1) Effectiveness: How is the quality of our query algorithm for hierarchical query
graphs or mixed query graphs? how is the query with hierarchical inheritance
relations compared with state-of-the-art methods?

(2) Efficiency: How is the efficiency and scalability of our algorithm on one machine
and multiple machines?

We experiment with different parameter values of a and f for matching scores,
which show similar results below. In our experimental results, « = 0.6 and f = 0.5
are used.

5.1 Datasets

We experiment on the synthetic data graph, Cisco product data graph, and extended
DBLP data graph datasets. Table 1 shows the data statistics for our experiments.

(1) Synthetic data graph: we randomly generate a data graph and create 7 types
of nodes. There are 2 attaching node types, 2 inherited node types, and 3 other node
types. (2) Cisco data graph: we extract the data from its official and related sup-
port websites about devices, device properties, etc. The constructed graph schema
is shown in Fig. la. “Vulnerability” and “Technology” are the attaching node types.
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Table 1 Dataset statistics

Dataset V| |E| Avg. degree  No. of vertex types
(attaching + inherited +
other)

Synthetic Graph Data (Synthetic) 30M 1254 M 45 24243

Cisco Product Data (Cisco) 215,347 966,992 12 2+1+4
Extended DBLP Data (DBLP) 1.88 M 25.18M 58 14249

“Product” is the inherited node type. (3) Extended DBLP data graph: it is a DBLP
database [22] extending the topics extracted from lists of computer science con-
ferences and journal websites. “Topic” is the attaching node type that is inherited
among the conference/journal, paper, and people node types. The data graph schema
of the synthetic data graph and extended DBLP data graph are shown in Fig. 7.

5.2 Quality of our graph query

As mentioned earlier, a query graph can be classified into a hierarchical, mixed hier-
archical, or non-hierarchical query graph by inheritance relations, and a star query
or general query graph based on query node numbers.

We show the results of hierarchical star query graphs and mixed general query
graphs here. In each real dataset, one star query example and non-star query exam-
ple results are shown in Fig. 8. Figure 8a shows the hierarchical star query with all
specific nodes as attaching nodes and the query node as an inherited node, and the
top-5 query results are found in Cisco data. As seen in the results, different inherited
versions of Cisco WebEx meeting server products are queried with higher matching
scores. Figure 8b displays different authors with publication papers in a journal and
working on the same topic, which is verified to be reasonable online. As the more
complex non-star queries shown in Fig. 8c and 8d with each top-1 result, our algo-
rithm GQH can also provide the most relevant query answers.

Hierarchic
connections
Hierarchical Hierarchical
connection connection
<> TYyPEOGENERIC () TYPELGENERIC O

i\( TYPE2GENERIC ‘ TYPEOHIER .:People A:Topic O:Paper
O TvPEIHER A TvPEoNHERIT Bl conference Q:Affiliation O : Date

B TYPELINHERIT /Journal

(a) Synthetic data graph schema (b) Extended DBLP data graph schema

Fig. 7 Data graph schemas of synthetic data graph and extended DBLP data graph
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5.3 Comparisons of query quality

Existing state-of-the-art algorithms for graph queries generally only consider the
shortest paths and neighbor propagation. Our paper proposes the query with hierar-
chical inheritance relations improving the recent query algorithm from Jin et al. [9]
(GStar query). NeMa [7] is a classical graph query method based on neighborhoods
with approximate query. Therefore, we compare the effectiveness of our query algo-
rithm with the graph query based on the GStar query and NeMa query algorithms.

5.3.1 Overall comparison of query quality

We compare GQH with GStar and NeMa Query algorithm using comprehensive
query examples on Cisco data and Extended DBLP data. Similar to other existing
research work, there is no ground truth available for query quality. We design a met-
ric called inheritance coverage rate (ICR) to measure the overall quality with hierar-
chical inheritance relations. ICR is the coverage percentage of matched nodes with
inheritance relations over the total matched nodes in [0, 1]. For example, given a
query graph, a user wants to find a top-5 result of matched nodes. If there are 3
nodes in the hierarchical relations, then ICR = 0.6. The higher the value, the more
matched nodes with inherited relations would be found. We create 100 random
query graphs to obtain the top-2, top-5, and top-10 results and then calculate the
ICR results. We show the average ICR results on the three datasets. It shows the
GQH algorithm has better ICR results all the cases on the three datasets than the
GStar and NeMA, in which the query quality has been improved to different extents
comprehensively shown in Table 2.

5.3.2 An example of query quality comparison with GStar

We compare GStar with our algorithm GQH based on the example of the query in
Fig. 8a and show the result. Table 3 shows top-5 results of comparison with GStar’s
Query algorithm. GQH shows the possible “Cisco WebEx meeting server version"
inheritances as more potential candidates than GStar’s query algorithm, with three
different numbers of matched candidates. This is because GStar’s query algorithm
only considers the node types and shortest distances as metrics for ranking.

Table2 The overall query quality comparisons on the three datasets

Synthetic Cisco Dblp

GStar NeMa GQH GStar NeMa GQH GStar NeMa GQH

Top-2 0.323 0.389 0.467 0.285 0.279 0.351 0.312 0.305 0.395
Top-5 0.415 0.432 0.533 0.351 0.326 0.416 0.335 0.323 0.458
Top-10 0.435 0.439 0.545 0.383 0.335 0.419 0.348 0.315 0.462
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Table 3 One query result of GQH and GStar in the Cisco dataset

Query result in GQH Query result in GStar

Rank Node Score  Node Score

1 Cisco WebEx meetings server versions 1.7906 Cisco WebEx meetings server versions 1.7186
0.2 1.x

2 Cisco WebEx meetings server versions 1.7100 Cisco WebEx meetings server versions 1.7186
1.x 2.X

3 Cisco WebEx meetings server versions 1.7100 Easy vpn 1.7186
2.x

4 Cisco 12000 series spa interface pro- ~ 1.7015 Cisco unified ip phone 1.7015
cessors running Cisco ios software

5 Cisco xr 12000 series engine 3 line 1.7015 Catalyst 6000 supervisor module 1.7015
cards

5.3.3 An example of query quality comparison with NeMa

NeMa in [7] uses nodes’ labels and neighborhood similarity in small hops to find
the top matched subgraphs. We compare the query quality with our algorithm
GHQ for the query in Fig. 8a and show the result in Table 4. It shows top-5 results
of comparison with GStar query algorithm. NeMa uses matching cost which
measures the cost of matched subgraphs with the query graph. The smaller the
cost, the better the matching. “—" indicates no matching result is found, and only
top-3 results are returned. It also does not return the hierarchical “Cisco WebEx
meeting server" answers. This is because it limits the maximum hops of its visits
and does not consider the hierarchical inheritance, which leads to a smaller struc-
tural difference but fewer potential matches.

5.4 Efficiency of graph query

We test the efficiency of our GQH algorithm and compare with NeMa and GStar
here.

5.4.1 Efficiency of our graph query

We evaluate the efficiency of our graph query system GQH with different top-
k values, query graph sizes, and data graph sizes. For each different test, we
keep one testing parameter varied and the other unchanged. Each experiment is
repeated 20 times and we obtain the average runtime with different parameters.
Varying k: To check how our algorithm scales with different querying k,
we examine the average runtime for different top-k values from 1, 2, 5 to 30 in
Fig. 9a—c. Three different query sizes [2, 1], [4, 2], and [6, 3] are fixed. It shows
the runtime is basically sublinear no matter the k value. This is because the com-
plexity degrees of graphs lead to more than designated top-k answered before the
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termination of iterations. We only fetch the top-k candidates from all the obtained
candidates.

Varying query graph size To check how our algorithm scales with different
query graph sizes, we examine the average runtime for different query sizes. The
query size is defined as a tuple (specific node number, query node number). We
select (2, 1), (4, 2) to (10, 10) shown in Fig. 9d—f with top-k value 2, 5, and 10 used.
It shows that the running time is basically sublinear with the increase of the query
size.

Varying data graph size: We test the query time with varying data graph sizes.
We randomly and accumulatively extract subgraphs from the original data graph for
different node numbers, covering 10%, 20%, 50%, 80%, and 100%. We measure 3
different query sizes in this scene to obtain the top-20 query time for different graph
data sizes. As shown in Fig. 9g—i, the query time also increases sublinearly with the
increase of the graph data size.

Scalability on multiple machines: To test the scalability of our GQH algorithm
on multiple machines, we test it on Google Cloud Platform (each instance is 4 CPU
cores with 32GB memory) to see the average runtime trends with different worker
machines deployed. We use 3 different query sizes, with one master and increasing
worker machines from 2, 4, to 32 for the top-10 query. Figure 9(j) shows that the
running average time decreases sublinearly with the increasing number of workers.

5.4.2 Comparison of efficiency

Here we show some comparisons of efficiency with NeMa and GStar algorithms
with different top-k values. We randomly run 100 queries with query graph size
= (4, 2) and show the average runtime on the three datasets, which are shown in
Fig. 10a—c. Moreover, different query sizes (2, 1), (4, 2) to (10, 10) are compared
on the three datasets shown in Fig. 10d—e. It shows that our algorithm has a com-
petitive performance with the other two algorithms. This is because our GQH uses
graph traversal and propagation similar to state-of-the-art algorithms. However, our
graph query improves the graph query quality with competitive performance.

6 Related work

There exist several classification categories for graph queries. Based on user inputs,
it can be classified as keyword query and structured query [7, 23-26]. Based on
query answers, it includes exact match and inexact match [15, 27, 28]. Based on
matching techniques, it mainly contains indexing-based queries and graph-traversal-
based queries for distance, neighbor and random walk [5, 29-33]. Our algorithm
focuses on the top-k inexact match for structured graph queries with hierarchical
inheritance relations.

Exact graph matching: The early graph matching/query focuses more on the
exact match using subgraph isomorphism matching for exact matching. The sub-
graph isomorphism matching identifies all the exactly same occurrences in the
big graph as the input query subgraph. Most of subgraph isomorphism matching
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Fig.8 Graph queries and their results a Hierarchical star query graph in Cisco—Query a product with p
Vulnerability V, and used Technology T, and its top-5 results in order. b Mixed star query graph in
DBLP — Query an author that works on Topic T, and cooperates with Person Pp, and its top-5 results in
order. ¢ Mixed general query graph in Cisco—Query a product that has Vulnerability V, and V,, another
product that belongs to a workgroup W, and their common technology also used in a product P,, and the
top-1 result. (d) Mixed general query graph in DBLP — Query an author that works on Topic T and T,,
cooperates with another person that works on Topic 75 and published a paper coauthored with Person Pp,
in the year D,, and its top-1 result

methods use sub-structures-based indexing techniques for efficient searching [34-36,
36-39]. Some of the impactful methods are Ullmann’s backtracking method [34],
VF and VF2 method [36, 40] and SwiftIndex [41]. Ullmann’s backtracking method
is one of the earliest algorithms to explore subgraph isomorphism and utilizes the
backtracking to inferentially eliminate successor nodes in the tree search. Without
using the topology of the large graph and making the query in the large graph appli-
cable, VF and VF2 method [36, 40] reduce the search space and store the informa-
tion of the state space search in more effective data structures to significantly reduce
the matching time and the memory requirements. The SwiftIndex method [41] tries
to reduce the search space for large query graphs with bounding and frequencies of
features and a new feature-based index technique for the filtering stage.

Inexact graph matching: In addition to considering graph query with exact
matches, various techniques have been proposed for structured graph queries to
obtain inexact matches for large graph applications [7, 7, 8, 10, 10, 27, 28, 42—-44].
Indexing-based propagation techniques are mostly utilized to find the inexact match
in a graph for a query graph. In the era of big data, recent work allows users to
express their own input query as a structured query graph and to do the graph tra-
versal based on node and path similarity for matching. Ness [27] finds the inexact
graph match with the neighborhood similarity search. It converts a large graph net-
work into a set of multidimensional vectors based on available sophisticated index-
ing and similarity search algorithms. NeMa [7] and SLQ [10] consider different
similarity transformations for node to match the query graph and subgraphs in a
data graph. Su et al. [44] consider the graph query based on user relevance to fur-
ther improve the query quality. Some other research [25, 45] considers the multiple
attributes of nodes for graph query. Jin et al. [8, 9] propose a specified ranking func-
tion for a structured graph query with specific nodes to find answer nodes. Most of
them use indexing which takes large spaces, or graph traversal with only two dimen-
sions of node and edge similarities. We consider one more dimension of hierarchical
inheritance relations for effective queries.

Top-k graph query: Top-k graph query tries to obtain top-k matched answers
for the graph query. The common practice for top-k search is to use threshold
algorithms to find the top matches by traversing a sorted node/edge list [16,
46-51]. They mostly require precomputed and sorted lists to derive the bounds
with indexing and relevance functions to get top interesting results [47, 52, 53].
Gupta et al. [53] optimize the time-consuming ranking-after-match for obtaining
the top-k query. They introduce topology index and graph maximum meta-path
weight index structures for the network, which are both computed offline. Then,
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Fig. 9 Efficiency and scalability of GQH on three datasets
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Fig. 10 Efficiency comparisons on three datasets with different top-k values and query sizes

these indexes are utilized for answering interesting subgraph queries online effi-
ciently for the top-k answers. Yang et al. [16] consider the STAR-query struc-
ture and top-k ranked join for general graph queries, but the matches are limited
to answer subgraphs with paths of bounded length. Jin et al. [8, 9] consider the
shortest path propagation with a specified matching score function for structured
graph query to find top-k answer nodes. Our algorithm extends the work and
considers the top-k general graph with an efficient ranking score and bounded-
based solution without the limitation of path lengths for hierarchical relation
inheritance.
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7 Conclusion

We consider an additional dimension of hierarchical inheritance relations on real-
world heterogeneous information networks for graph query. The problem is refor-
mulated with hierarchical inheritance relations, and we propose a graph query
algorithm based on that for star query and general graph query. With the bound-
ing-based techniques, our algorithm can effectively capture hierarchical inherit-
ance relations on information networks for better query answers, and competitive
performances are also achieved.
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