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Abstract

We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) SN 2021zby. TESS
captured the prominent early shock-cooling peak of SN 2021zby within the first ~10 days after explosion with a 30
minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during
the shock-cooling phase. Using a multiband model fit, we find that the inferred properties of its progenitor are
consistent with a red supergiant or yellow supergiant, with an envelope mass of ~0.30-0.65 M, and an envelope
radius of ~120-300 R..,. These inferred progenitor properties are similar to those of other SNe IIb with a double-
peaked feature, such as SNe 1993J, 2011dh, 2016gkg, and 2017jgh. This study further validates the importance of
the high cadence and early coverage in resolving the shape of the shock-cooling light curve, while the multiband
observations, particularly UV, are also necessary to fully constrain the progenitor properties.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Supernovae (1668)
Supporting material: data behind figures

1. Introduction
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0 ISEF Fellowship. Type IIb supernovae (SNe IIb) are characterized by the

presence of hydrogen lines at early phases typical of Type II

@ Original content from this work may be used under the terms supernovae .(SNe H)’. which fade at la.te.r phases as helium
. - - features begin to dominate the spectra (Filippenko et al. 1993).
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This evolution can be explained by the progenitor star losing
most, but not all, of its hydrogen-rich envelope before
explosion. The exact progenitors of SNe IIb are currently not
fully understood with two leading possibilities (Ensman &
Woosley 1988; Woosley et al. 1993; Heger et al. 2003; Dessart
et al. 2011; Smith 2017; Sravan et al. 2020; Long et al. 2022):
(1) a low-mass star (<20 M) in a binary system or (2) an
isolated high-mass star (25-80 M..).

The transition from hydrogen-rich progenitors to stripped-
envelope progenitors is not fully understood, neither is the
exact mass of hydrogen (Gilkis & Arcavi 2022) as two
evolutionary pathways are possible and each scenario involves
different masses and nuclear burning instabilities (Arnett &
Meakin 2011; Arnett et al. 2018). In the low-mass binary case,
mass loss occurs through binary interactions when one of the
stars enters its red giant phase (Sana et al. 2012; Soker 2017;
Yoon et al. 2017; Gilkis et al. 2019; Lohev et al. 2019). In the
second case of a high-mass star, mass loss is believed to be as a
result of strong stellar winds. In a few cases, the progenitors of
SNe IIb have been directly identified in pre-SN images as
supergiants with radii 2200R., such as SN 1993] (Aldering
et al. 1994; Maund et al. 2004), SN 2011dh (Arcavi et al. 2011;
Maund et al. 2011; Bersten et al. 2012; Van Dyk et al. 2013;
Folatelli et al. 2014), and SN 2013df (Van Dyk et al. 2014).

In some rare cases, massive stars may lose their hydrogen-
rich envelope of a few solar masses and explode as SNe IIb
with a prominent early flux excess that precedes the main
radioactive peak (e.g., Arcavi et al. 2011; Sana et al. 2012; Gal-
Yam 2017; Fang et al. 2022). The prominent early peak in the
optical light curve can last for a few days after explosion. This
peak is believed to come from the cooling of shock-heated
ejecta after shock breakout and is thus called a shock-cooling
light curve (SCL; Gal-Yam 2017). These double-peaked
phenomena have been discovered and analyzed in a few cases
such as SN 1993] (Matheson et al. 2000; Maund et al. 2004),
SN 2011dh (Arcavi et al. 2011; Ergon et al. 2015), SN 2016gkg
(Arcavi et al. 2017a), and SN 2017jgh (Armstrong et al. 2021)
etc. SNe Ibc are also core-collapse SNe that are on occasion
double-peaked. They are stripped off their hydrogen and
helium layers and identified by no H/He lines and weak silicon
features in their optical spectra (Filippenko & Sargent 1985;
Clocchiatti et al. 1996; Woosley et al. 2002; Smith et al. 2008;
Drout et al. 2011; Prentice et al. 2016; Dessart et al. 2021;
Karamehmetoglu et al. 2022). Candidate progenitors have been
identified in images for two SNe Ib, iPTF13bvn and SN
2019yvr (Cao et al. 2013; Kilpatrick et al. 2021; Gilkis &
Arcavi 2022). For other multipeaked SNe see Foley et al.
(2007), Arcavi et al. (2017b), Gomez et al. (2021), Zenati et al.
(2022), and Chen et al. (2022).

Continuous, high-cadence monitoring of the early light curve
is key to capturing and analyzing the complete SCL. High-
cadence imaging from space telescopes such as the Kepler
Space Telescope (Kepler; Haas et al. 2010; Howell et al. 2014)
and the Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2014) are ideal to monitor such short-timescale transient
phenomena. Observations from these telescopes have enabled
some ground-breaking discoveries on the progenitors of
various SNe (e.g., Dimitriadis et al. 2019; Fausnaugh et al.
2021; Vallely et al. 2019; Wang et al. 2021; Pearson et al.
2022; Andrews et al. 2022). In particular, Armstrong et al.
2021 analyzed the SCL of the Type IIb SN 2017jgh that was
fully covered by Kepler/K2. With the high-cadence coverage
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of the complete SCL, the progenitor properties were estimated
with high precision. Armstrong et al. (2021) further demon-
strate that without the high-cadence Kepler/K2 light curve
during the rise, the fitting results would exhibit a systematic
offset, and the estimations for the envelope radius, offset time,
and ejecta velocity can be biased by ~15%, 20%, and 25%,
respectively, for this specific event.

Here we present the evolution of SN 2021zby during the first
~2 months after explosion with a spectrophotometric time
series in the optical and near-infrared (NIR). SN 2021zby was
discovered by the Asteroid Terrestrial-impact Last Alert
System (ATLAS; Tonry et al. 2018; Smith et al. 2020) on
2021 September 17 10:52:19.200 UTC, Modified Julian Date
(MJID) 59,474.45, in the o band with m, = 18.16 & 0.14 (Smith
et al. 2021) and was spectroscopically classified as an SN IIb
(Hinkle 2021; Fulton et al. 2021).

SN 2021zby is located in a spiral arm of NGC 1166 at
coordinates a = 03"00™35%63, § = +11°50/29” 74 (J2000.0).
Prior to SN 2021zby, two other transients, the unclassified PS1-
14abm (Huber et al. 2015) and SN II 2018htf (Berton et al.
2018; Gagliano et al. 2018), had been discovered in NGC 1166
in the past 10 years. Both of them are at least 3” away and are
not associated with SN 2021zby. We adopt a redshift of
7=0.025965 £0.00002 from HI 2lcm measurements
(Springob et al. 2005) and a distance of 106.1 Mpc, corresp-
onding to a distance modulus of ~35.12 mag. The Milky Way
extinction is relatively high toward this direction, with
E(B — V)umw =0.21 (Schlafly & Finkbeiner 2011). The early
TESS light curve of SN 2021zby starts at MJID 59,473.8 and
ends at MJD 59,498.4, shortly before the time of the main
radioactive peak. Combined with the i- and o-band measure-
ments from the Dark Energy Camera (DECam; Flaugher et al.
2015) and ATLAS with similar effective wavelengths around a
similar phase, we can infer the radioactive peak to be at
tnay = 59499 £ 1 MJD in the TESS band.

TESS coverage of SN 2021zby started shortly before
explosion with ~12 hr of nondetection with a magnitude limit
mrgss 2, 19.38 at the beginning of sector 43. As inferred from
the SCL fitting discussed in Section 3.1, the time of explosion
to is around MJID ~ 59,474.4 + 0.1, ~24 days prior tO fyax.
There was no clear detection of a short-duration shock breakout
flash in the TESS light curve around the time of explosion.
Systematic noise from scattered light and relatively low
luminosity in redder bands (Nakar & Sari 2010) like TESS
may limit the detectability of the shock breakout flash in this
case. Throughout this Letter, phases are presented relative to
the inferred time of explosion £, except for the model-fitting
section where %, is a free parameter to be constrained.

Throughout this Letter, observed times are reported in MJDs
while phases, unless noted otherwise, are reported in the rest
frame. We adopt the AB magnitude system, unless noted
otherwise, and a flat ACDM cosmological model with Hy =
73 kms ' Mpc™' (Riess et al. 2016, 2018). All the data
presented in this paper will be made public via WISeREP?'
(Yaron & Gal-Yam 2012).

2. Observations and Data Reduction

ATLAS observed SN 2021zby throughout the preexplosion
and double-peaked stage in the o band, and also in the postpeak
stage in both o and ¢ bands. We also obtained ground-based

31 https: //www.wiserep.org/object/19385
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Figure 1. Optical light curves of SN 2021zby from TESS and ground-based surveys in comparison with the Kepler light curve of SN 2017jgh (Armstrong et al. 2021).
Black ticks at the top of the plot mark the times where ground-based optical spectra were obtained for SN 2021zby; red tick marks represent the NIR spectrum taken
by IRTF. Notice that the TESS Sector 43 started ~12 hr before the time of explosion and thus there’s only one nondetection in the binned light curve in the

preexplosion phase.

(The data used to create this figure are available.)

photometric follow-up in the postpeak stage with DECam on
the Cerro Tololo Inter-American Observatory (CTIO) 4-m
Blanco telescope (DePoy et al. 2008; Flaugher et al. 2015) in
the r and i bands. Multiband light curves are plotted in
Figure 1, in comparison with the Kepler light curve of SN
2017jgh. In addition, we obtained spectra from multiple
ground-based observatories. Details of these spectra are listed
in the Appendix.

To measure significant SN flux detection at the location of
SN 2021zby, we applied several cuts on the total number of
individual as well as averaged data in order to identify and
remove bad measurements. Our first cut used the chi-square
and uncertainty values of the point-spread function (PSF)
fitting to clean out bad data. We then obtained forced
photometry of eight control light curves located in a circular
pattern around the location of the SN with a radius of 17”. The
flux of these control light curves is expected to be consistent
with zero within the uncertainties, and any deviation from that
would indicate that there are either unaccounted systematics or
underestimated uncertainties. We searched for such deviations
by calculating the 3o-clipped average of the set of control light-
curve measurements for a given epoch (for a more detailed
discussion see S. Rest et al. 2023, in preparation). This mean of
the photometric measurements is expected to be consistent with
zero and, if not, we flag and remove those epochs from the SN
light curve. We then binned the SN 2021zby light curve by
calculating a 3o-clipped average for each night, excluding the
flagged measurements from the previous step. This method has
been applied in a few other studies and proven its reliability in
successfully removing bad measurements from the SN light
curve (e.g., Jacobson-Galdn et al. 2022).

Following standard calibrations (bias correction, flat-field-
ing, and World Coordinate System (WCS)) using the NSF
NOIRLab DECam Community Pipeline (Valdes et al. 2014),

we reduced the DECam data using the Photpipe pipeline as
described in Rest et al. (2005, 2014). The images were warped
into a tangent plane of the sky using the swarp routine (Bertin
et al. 2002), after which photometry of the stellar sources was
obtained using the standard PSF-fitting software DoPHOT
(Schechter et al. 1993). We then used the PS1 catalog
(Flewelling et al. 2020) converted into the DECam natural
system as described in Scolnic et al. (2015) to obtain the
photometric zero-points. The images were then kernel- and
flux-matched to template images, subtracted, and masked using
the hotpants code (Becker 2015), which is based on the
Alard—Lupton algorithm (Alard & Lupton 1998). The 30-
clipped average position of SN 2021zby was calculated from
all of the significant detections in the difference images to
within 0.75” of the reported position. The final light curves
were then obtained by performing forced photometry on this
position for all images. The r- and i-band template images were
taken after SN 2021zby was discovered, and therefore contain
some residual SN flux. Thus, for each of these filters, we
adjusted the light curves by adding a common flux offset so
that the magnitudes match the ATLAS light curves, using an
approximate conversion from Tonry et al. (2018):

r~035c+0650,i~—039 ¢+ 1.39o. (1)

TESS observed SN 2021zby in full-frame images (FFIs) for
sectors 42, 43, and 44 (hereafter S42, S43, and S44), at a 10
minute cadence.’” These three sectors covered preexplosion
(S42), double-peaked rise (S43), and decline (S44), which
gives excellent coverage of the event outside of the 1 day mid-
sector and inter-sector gaps. We reduced all sectors of TESS
data using the TESSreduce python package, which aligns
images, subtracts the variable background, and provides a flux

32 The original calibrated TESS FFIs can be found in the the Mikulski Archive
for Space Telescopes (MAST): doi:10.17909/0cp4-2j79.
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calibration from field stars (Ridden-Harper et al. 2021). One
alteration was made to the default TESSreduce reduction
where we included the nearby bad column 1167 in S43 data
into the automatically determined strap mask. This inclusion
rescaled the column producing a clean background subtraction
for the nearby pixels that were used in the 3 x 3 aperture for
SN 2021zby. Since TESSreduce produced difference-imaged
light curves, we must add an offset to the light curves for S43
and S44 as the flux from SN 2021zby was included in the
reference images. We estimated the offsets by calculating
synthetic photometry in the TESS bandpass from spectra and
photometry in other bands that were covered by TESS
observations. Since the spectra do not cover the full TESS
wavelength range 5802.57-11171.45 A, we extrapolated the
spectra by assuming blackbody emission with temperature
~83,000 K estimated from the optical spectrum™ when
calculating synthetic photometry. During S43 scattered light
from the Earth and Moon in the detector reached saturation,
making the photometry unreliable from MJD 59,499 to 59,524.
The reduced TESS light curve was further binned with 6 hr bin
to improve the signal-to-noise ratio (S/N), as shown in
Figure 1.

We obtained optical spectra with instruments including the
Wide-Field Spectrograph (WiFeS; Dopita et al. 2007) on the
2.3 m telescope at Siding Spring Observatory (SSO), the IDS
long-slit spectrograph on the 2.5 m Isaac Newton Telescope
(INT), the Kast spectrograph on the 3 m Shane Telescope at
Lick Observatory, the ESO Faint Object Spectrograph and
Camera (EFOSC2; Buzzoni et al. 1984) on the ESO New
Technology Telescope (NTT, as part of the ePESSTO+
survey; Smartt et al. 2015), the Spectrograph for the Rapid
Acquisition of Transients (SPRAT; Piascik et al. 2014) on the
Liverpool Telescope, and the Las Cumbres Observatory
FLOYDS spectrographs mounted on the 2-meter Faulkes
Telescope North (FTN) and South (FTS) at Haleakala
Observatory and SSO, respectively, through the Global Super-
nova Project.

The IDS spectrum was reduced and flux-calibrated appro-
priately using the standard the Image Reduction and Analysis
Facility (IRAF; Tody 1986) specred routines. The EFOSC2
spectra were reduced in a similar manner, with the aid of the
PESSTO pipeline.** The KAST spectra were reduced using a
custom data reduction pipeline based on IRAF.”> One-
dimensional FLOYDS spectra from FTN and FTS were
extracted, and flux and wavelength calibrated using the
floyds_pipeline’® (Valenti et al. 2013). The WiFeS data
were processed with the PyWiFeS pipeline’” (Childress et al.
2014).

We obtained an NIR spectrum of SN 2021zby on 2021
September 25 using the SpeX spectrograph (Rayner et al. 2003)
on the NASA InfraRed Telescope Facility IRTF). We used the
low-resolution prism mode with the 0”8 slit, providing a
resolving power of R~ 75 with a simultaneous coverage
between 0.7 and 2.5 ym. We observed an AOV star HIP16095

33 Note that this estimation can be biased because the optical and NIR spectra
only cover the Rayleigh—Jeans tail and thus may not reflect the true temperature
of photosphere.

* hitps: //github.com/svalenti/pessto

35 The pipeline is publicly accessible at hitps://github.com/msiebertl/
UCSC_spectral_pipeline.

36 https://github.com/LCOGT/floyds_pipeline

37 https: //www.mso.anu.edu.au/pywifes /doku.php
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immediately after the SN for telluric correction and flux
calibration. We reduced the data using spextool (Cushing
et al. 2004), which performed flat-field correction, wavelength
calibration, and spectral extraction. Telluric correction was
performed using xtellcor (Vacca et al. 2003). The optical
and NIR spectral series of SN 2021zby are shown in Figure 2.

3. Analysis
3.1. Fitting Light Curve with Models

There are a number of semianalytical shock-cooling light-
curve models available, including Piro (2015, hereafter P15),
Piro et al. (2021, hereafter P21), and Sapir & Waxman (2017,
hereafter SW17). P15 is the simplest of these, making no
assumption about the density profile of the progenitor and
assuming a simple expanding photosphere. P21 is a revision of
the P15 model, which improves upon P15 by employing a two-
component velocity model. P21 model the progenitor with
outer material, which has a steep velocity gradient, and inner
material with a shallow velocity gradient. SW17 assume the
progenitor has a polytropic density profile. This is characterized
by the polytropic index n that is equal to 3/2 for progenitors
with a convective envelope, such as red supergiants (RSGs) or
yellow supergiants (YSGs), and is equal to 3 for progenitors
with a radiative envelope, such as blue supergiants (BSGs).
Each model is parameterized by envelope mass (M,), envelope
radius (R,), ejecta velocity (v), and start time (f), which is
relative to the peak of the radioactive portion of the light curve.

Each of these models assume that the progenitor radiates as a
blackbody and uses an analytical description of the luminosity,
radius, and temperature of the progenitor over time in order to
derive the flux of the shock-cooling light curve. Full details of
these analytical models can be found in Armstrong et al.
(2021), who we closely follow.

Following Armstrong et al. (2021), we fit the shock-cooling
models using an affine-invariant Markov Chain Monte Carlo
method (ShockCooling jI°®). This algorithm produces an
approximate posterior for a model, given data, priors, and a
likelihood function. Our data consist of the ATLAS-o0 and the 6
hr binned TESS light curve, up to ~7 days after explosion, the
time when the shock-cooling light curve transitions into the
radioactive light curve. Our likelihood function is chosen to be
the reduced y? between the models and our data. Both bands
are fitted simultaneously, and the combined reduced X2 is then
minimized. The reduced x?, defined as x* divided by the
degrees of freedom of each band, allows us to weight each
reduced x* by the number of data points, accounting for the
larger sample of TESS data. Due to the degeneracy inherent in
the models, the models are very sensitive to choice of prior. As
such, we used an iterative approach to defining the priors,
starting with large uniform priors with 0 < R,/R. < 5000 and
0<M,/M. <5000, and then shrunk the prior until the
posterior contained the complete 95% contour, without the
prior extending too far from the 95% contour. The prior of
ejecta velocity is constrained to be 12500 +800 kms ',
determined by the FWHM of the 1.1 um feature around the
shock-cooling peak as discussed in the following section. Our
final priors for each parameter are listed in Table 1. The best-fit
values of SWI17 models satisfy the validity range of
temperature 7 > 0.7 eV within the fitting range.

38 https: //github.com/OmegaLambdal998 /ShockCooling
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Figure 2. Top: optical spectral series of SN 2021zby with phases and
telescopes labeled above. Spectra taken with different telescopes are plotted
with different colors. Bottom: NIR spectrum of SN 2021zby taken by IRTF
around the shock-cooling peak, in comparison with SN 2011dh (Ergon
et al. 2015) and SN 2016gkg (Tartaglia et al. 2017) around a similar phase.
The phases relative to the peak and relevant lines are labeled on the spectra.
The telluric line in between 7170 and 7350 A in the observer frame has been
marked as the gray region. All the spectra have been normalized and shifted
vertically for display purposes.

(The data used to create this figure are available.)

Wang et al.

The fitting results for four models discussed are also
included in Table 1 and plotted in Figure 3. Figure 4 shows
the corner plots of posterior distributions of each parameter.
This plot shows the marginalized maximum likelihood, the
68% isolikelihood levels of the marginalized maximum
likelihood, as well as the total maximum-likelihood point
in the four-dimensional parameter space. Among these
models, SW17 n=3/2 models have significantly smaller
residuals and larger log-likelihood than the other models.
Additionally, although the P15 and P21 models are able to fit
the light curve, they have significant systematic changes in
their residuals. Thus, from the light-curve fit alone, the SW17
n=3/2 models are preferable in general. This is also reflected
in the maximum-likelihood points of the P15 and P21 models,
both of which have R, > 1500R., the upper limit of stellar
radius according to current stellar evolution theories (Levesque
et al. 2005). Constraining the fit to smaller radii produces a
much poorer quality fit that cannot constrain the rise of the
SCL. Note that the one-dimensional posterior is the integration
of the four-dimensional posterior and unavoidably lost
information, so the marginal maximum-likelihood point can
deviate from the maximum-likelihood point, but they still agree
with each other within the uncertainty range in general.

3.2. Spectroscopic Features

As shown in Figure 2, the optical spectra around the shock-
cooling phase are dominated by blackbody continuum with
T 2 10* K with few line features except the narrow Ha
emission from the host. In Figure 5, we further include the
optical spectra from other SNe IIb with SCL around the shock-
cooling phase and the late phase. Around the shock-cooling
peak, there is no detection of broad Ho emission in the spectra
of SN 2021zby, which is a prominent feature in SN 2011dh and
SN 2016gkg at a similar phase (Arcavi et al. 2011; Tartaglia
et al. 2017). Benetti et al. (1994) reported the discovery of
narrow lines with v < 1000kms™" in SN 1993J around the
shock-cooling phase, including Ha, He 1I, [Fe X], and [Fe
XIV], and claimed that those narrow emission lines are signals
of circumstellar medium (CSM) interaction. Such features are
not seen in the early spectra of SN 2021zby, possibly due to the
relatively low S/N and spectral resolution. As shown in
Figures 2 and 5, the optical spectra after the shock-cooling
phase during the radioactive peak start to resemble the spectral
evolution of a typical SN IIb.

The weak Ha feature of SN 2021zby is persistent and still
observable even at 43 days after the radioactive peak. This is
different from SN 1993J for which the Ha feature significantly
weakened at a similar phase (Matheson et al. 2000). This may
indicate a sizeable mass of hydrogen in the progenitor of
SN 2021zby.

The NIR spectrum taken by IRTF around the shock-cooling
peak is plotted in the bottom panel of Figure 2 in comparison
with NIR spectra of SN2016gkg and SN2011dh around a
similar phase. The only significant feature is the broad emission
line at around 10800 A, which may come from Pavy, He I
1.083 um, C I 1.0693 pum, or Mg IT 1.0927 um as discussed in
Shahbandeh et al. (2022). Unlike SN 2011dh and SN 2016gkg,
there is no detection of a Pa 31.2818 um feature. On the other
hand, a weak emission feature is present around He I
2.0581 pm, while there are no detections of Mg II 2.1369 ym
in the NIR or any other H I or C I features in the optical
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Figure 3. Model fits for the TESS and ATLAS-o light curve of SN 2021zby during the shock-cooling phase. Solid lines show the maximum-likelihood best fit, while
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Table 1

Priors and Results of Shock-cooling Models fit to the Shock-cooling Light Curve of SN 2021zby
Parameter M, (M) R, (R2) v (kms") t (days) Log-likelihood
SW17 n = 3/2 Prior Uniform [0, 2] Uniform [0, 500] Normal 12500 + 800 Normal —24 + 0.1
SW17 n = 3/2 Marginal Max Likelihood 0.317934, 127.51735%%7 12499.48771653 —24.00+0:084 —14.00
SW17 n = 3/2 Max Likelihood 0.258 430.80 12514.33 —23.98
SW17 n = 3 Prior Uniform [0, 10] Uniform [0, 750] Normal 12500 + 800 Normal —24 + 0.1
SW17 n = 3 Marginal Max Likelihood 2457331 125.02+3%! 1235078470 —24.0070988 —16.04
SW17 n = 3 Max Likelihood 2.18 732.53 12404.25 —23.98
P15 Prior Uniform [0, 0.15] Uniform [0, 2500] Normal 12500 + 800 Normal —24 + 0.1
P15 Marginal Max Likelihood 0.061+3:3%2 1524.99+32833 12250.067 73492 —24.015+09% —15.14
P15 Max Likelihood 0.062 1633.45 12230.0 —24.01
P21 Prior Uniform [0, 0.25] Uniform [0, 5000] Normal 12500 + 800 Normal —24 + 0.1
P21 Marginal Max Likelihood 0.073799% 26254139010 127497853147 —24.045+0983 —18.19
P21 Max Likelihood 0.069 3988.67 12605.93 —24.068

Note. The analytical models used are highly degenerate so are very sensitive to choice of prior. Each model was initially given a large M, and R, prior (0-5000 in each
respective unit). These priors were then iteratively shrunk until the M, and R, posteriors were complete, i.e., the 95% contours were not cut off, nor did the prior extend
far beyond the 95% contour. The v prior was chosen from constraints calculated via a Gaussian fit to He I 10830 A around the shock-cooling peak. Finally the
constraint on ¢ was chosen from the position of the first TESS observation. We include both the maximum-likelihood point without uncertainty, and the one-
dimensional, marginalized maximum likelihood with uncertainty. We calculate the uncertainty by finding the 68% isolikelihood levels. The log-likelihood of each

model fit is also listed.

spectrum at a similar phase. We therefore conclude that this
1.1 ym feature most likely comes from He 1 1.083 ym. We
measure the FWHM of this 1.1 um feature with a simple
Gaussian fit and use it as the prior of the ejecta velocity in the
light-curve fitting (see Table 1).

4. Discussion and Conclusion

The progenitor of SN 2021zby is likely to have a moderately
extended envelope to produce a clear shock-cooling peak, but
not as extended as those of SNIIP progenitors as the peak is
not blended with the radioactive peak. With the high-cadence
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Figure 4. Corner plots of our light-curve fit to SN 2021zby. The blue contours show the 68% probability density contour, and the purple contours show the 95%
probability density contour. The solid black line in the contour plots show the point of maximum likelihood, while the marginalized histograms show the maximum
marginalized likelihood, as well as the 68% isolikelihood levels. Note that since we have four parameters, our contour plots are also marginalized so the maximum-
likelihood point is not guaranteed to agree with the 2D maximum likelihood.

SN 2016gkg 35d
M SN 2016gkg 4d ®
@)
+
< SN 1993] 61d
E 0
= SN 1993] 4d
o SN 2021zby 67d
N
T
=i SN 2021zby 3d
et
o ( 7d
Z
N 2011dh 3 | |
| | I | (cam Call
Ha Hel Hel Hel
3000 4000 5000 6000 7000 8000 9000 4000 5000 6000 7000 8000 9000
Rest-Frame Wavelength (4) Rest-Frame Wavelength (4)
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TESS and ATLAS —o light curves covering the full
shock-cooling phase of SN 2021zby, we are able to constrain
the progenitor’s properties with relatively high precision
compared to ground-based observations alone. We fit the
multiband light curves following the fitting scheme described in
Armstrong et al. (2021), and the results are summarized as below:

1. The SW17 n=3/2 model (convective envelope, i.e.,
similar to those of RSGs or YSGs) is the best fit among
the four models, indicating a progenitor with an envelope
mass of ~0.30-0.65M; and an envelope radius of
~120-300 R.

2. The n=3 (radiative envelope, i.e., similar to that of
BSG) models have relatively larger log-likelihood and
indicate an envelope mass of ~2.0-5.0M. and an
envelope radius of ~120-450R.. However, such an
envelope radius is significantly larger than the expected
radii of BSGs, which are in the range of 40-80 R
(Underhill et al. 1979). This implies that it is physically
inconsistent with observations of the structure of BSGs.

3. The P15 and P21 models have similar performance
as SW17 n = 3 model, though they fail to fully reproduce
the rapid rise. They are less preferable as both models
indicate a progenitor radius of R, = 1500 R, the upper
limit of stellar radius according to current stellar
evolution theories.

In the previous study on SN?2017jgh, a similar fitting
schemes was applied to its Kepler light curve (Armstrong et al.
2021), and they also found that the SW17 n = 3/2 model is the
best-fit model, while the SW17 n =3 model performs margin-
ally worse. The best-fit result of SN 2017jgh indicates its
progenitor to be most likely a YSG with an envelope radius
R, ~50-290R., and an envelope mass M, < 1.7M,. A few
other SNe IIb have progenitors discovered in pre-SN images,
enabling another approach to constrain progenitor properties.
Aldering et al. (1994) identify the progenitor of SN 1993] as a
YSG of type KO Ia with SED and luminosity and estimated the
radius to be ~500R.,. For SN 2016gkg, Kilpatrick et al. (2022)
constrained the progenitor to be a YSG as well, with radius
~70 R, which matches the 40—150R, estimate from the light-
curve fit by Arcavi et al. (2017a). For SN 2011dh, Bersten et al.
(2012) compared its g light curve with models and also found a
YSG with R~ 200R, to be the best match for its progenitor,
which is confirmed by the pre- and postexplosion images (Van
Dyk et al. 2013). The progenitor radius of SN 2021zby
estimated from the best-fit SW17 n=3/2 model lies in
between these SNe IIb confirmed with YSG progenitors,
indicating that SN 2021zby may have a YSG progenitor as
well, though the possibility of an RSG progenitor cannot be
excluded by current light-curve fitting alone.

The early spectra of SN2021zby during SCL show clear
differences compared to the other SNe IIb with similar SCLs.
Unlike SN 2011dh and SN 2016gkg, SN 2021zby lacks H
features in the shock-cooling phase. Such a phenomenon might
be a consequence of high ionization around the shock-cooling
phase (Dessart et al. 2018). This argument is further supported
by the blue continuum of the early spectra. On the other hand,
the presence of broad He 110830 at early times and a relatively
strong Ha feature after 43 days postpeak indicates that the
progenitor still had a sizable amount of H and He.

The high cadences of Kepler and TESS are crucial to
sufficiently constrain the progenitor properties with the model
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fitting of the SCL. However, even with such exquisite data, it is
still challenging to fully break the degeneracy between the RSG
and YSG progenitors, which could be distinguished either
through observations in the UV band, where the signal is most
prominent, or by constraining the wind speed with the flash
ionized features with high-resolution spectra. Improving
modeling on the spectroscopic evolution will be another key
to breaking the degeneracy. With improving cadence and
receiving earlier alerts from, for example, Rubin Observatory
(Ivezi¢ et al. 2019) in the near future, we can expect to have
better time and wavelength coverage in bluer bands. In the
longer term, the next generation of MIDEX space-based UV
telescopes, e.g., UVEX (Kulkarni et al. 2021) and STAR-X
(Saha et al. 2017), will allow us to monitor SCLs in the UV.
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Appendix

A log of the spectroscopic observations is provided in
Table 2.

Table 2
Log of Spectroscopic Observations of SN 2021zby

MID Phase Relative to ¢, Phase Relative to fpeax Telescope/Instrument Wavelength Range
(days) (days) (A)

59,476.745 2.29 —21.69 SSO 2.3 m/WiFeS 3500-9000
59,482.491 7.89 —16.09 IRTF/SpeX 6848-25,378
59,483.466 8.84 —15.14 Shane /KAST 3506-10094
59,496.114 21.16 —2.81 LT/SPRAT 4020-7994
59,501.265 26.18 221 NTT/EFOSC2 3652-9248
59,503.594 28.45 4.48 Shane /KAST 3256-10,896
59,504.653 29.48 5.51 SSO 2.3 m/WiFeS 3500-9000
59,511.619 36.28 12.30 FTS/FLOYDS 3500-10,000
59,515.092 39.66 15.68 INT/IDS 3855-8627
59,515.300 39.86 15.89 NTT/EFOSC2 3651-9245
59,520.520 44.95 20.98 FTN/FLOYDS 3500-10,000
59,527.470 51.73 27.75 FIN/FLOYDS 3500-10,000
59,543.206 67.06 43.08 NTT/EFOSC2 3652-9248
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