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Utilizing a measure of the Bitcoin network’s daily electricity load, we document a significant volatility
effect of Bitcoin mining activity in three prominent electricity markets in the U.S. The volatility effect
is found to be increasing over time, particularly with the widespread lockdowns enforced due to
the COVID-19 pandemic. The findings provide novel insight to the non-virtual side of mining and
trading of cryptocurrencies and underscore the need for establishing mechanisms to prevent possible
destabilizing effects of this growing industry, both from a power consumption and carbon emissions
perspective.
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1. Introduction

The digital gold rush into cryptocurrencies has led to an un-
precedented growth in the market value, trading and mining of
these assets, driving total market capitalization in cryptocurren-
cies from around one billion USD in early 2013 to close to two
trillion USD in September 2021.1 Not surprisingly, cryptocurren-
cies, Bitcoin (BTC) in particular, have also attracted increasing at-
tention from academics who examined these assets from various
perspectives including their portfolio diversification and hedg-
ing benefits for conventional investment portfolios (Bouri et al.,
2017; Shahzad et al., 2019; Smales, 2019), return and volatility
dynamics (Aalborg et al., 2019); price efficiency (Urquhart, 2016),
return/volatility transmissions with other asset classes (Bouri
et al., 2018), and liquidity patterns (Scharnowski, 2021), among
others. The fast growth in the mining and financial trading of
these assets, however, has been accompanied with a large carbon
footprint fueled by the vast energy consumption due to mining
activity. In fact, according to the Bitcoin Electricity Consumption
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Index project maintained by the Digital Assets Programme (DAP)
Team at the Centre for Alternative Finance at the University of
Cambridge, as of September 2021, bitcoin mining now consumes
around half as much electricity as the U.K., surpassing the total
annual electricity consumption of countries like Sweden, Ukraine
and Australia. Against this background, the goal of this paper is
to present novel perspective to the carbon footprint of bitcoin
mining by examining, for the first time in the literature, the effect
of mining activity on the price and volatility dynamics in three
prominent U.S. power markets.

Thanks to the liberalization of the power market towards a
competitive setting over the past several decades, today, electric-
ity can be traded as any other commodity at market driven rates.
However, unlike other commodities, several features of electricity
distinguish it from other tradable commodities, which in turn
lead to extreme price volatility and unanticipated spikes in prices.
Demand-driven volatility factors in this market are largely due
to the price inelastic and weather or business cycle dependent
nature for electricity demand while, on the supply side, since
electricity cannot be stored, consumption has to be balanced with
production due to lack of an inventory planning option (Weron
and Misiorek, 2008). From an investment planning perspective,
price uncertainty and extreme volatility in the electricity market
is not only a major operating risk for utility companies, but also
crucial for the real economy as electricity price forecasts have
become a fundamental input for corporate decisions (Bunn, 2004;
Eydeland and Wolyniec, 2002). In fact, recent studies show that
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industrial electricity usage growth rate carries predictive ability
over stock returns up to one year (Da et al., 2017)) where the
predictive power of industrial electricity usage is explained by
an ‘‘industry effect’’ that is transmitted via the volatility chan-
nel (Bonato et al., 2018). Not surprisingly, there is a growing
literature on the predictability of daily electricity prices with a
particular focus on the price behavior in the day-ahead spot mar-
ket.2 Surprisingly, however, despite the large number of works on
the predictability of electricity prices, the literature has not yet
examined the effect of the growing energy consumption needed
to mine and maintain Bitcoin on the price dynamics and volatility
in electricity prices.

Utilizing daily spot price data for three prominent U.S. power
markets, namely Northern Illinois hub (NI), Western Hub (West)
and New England hub (NE), and the Cambridge Bitcoin Electric-
ity Consumption Index, developed by the Centre for Alternative
Finance at the University of Cambridge, as a measure of the
Bitcoin network’s daily electricity load, we document a signifi-
cant volatility effect of bitcoin mining activity in the electricity
market. While our tests suggest insignificant price effects, we
observe significant forecasting gains over the volatility patterns in
electricity prices due to Bitcoin mining activity. Further extending
the test to a time-varying setting, we find that the impact of
the Bitcoin consumption index on electricity market volatility is
increasing over time in parallel with the unprecedented growth
in the mining and trading of these assets. The rising trend in
the volatility effect of Bitcoin mining activity indeed corresponds
to the COVID-19 pandemic period during which an increase in
trading volume and volatility in Bitcoin futures is documented,
driven by an increase in the belief dispersion due to the pandemic
related market uncertainty (Guzmán et al., 2021), Park (2022).
The findings provide novel insight to the non-virtual side of
mining and trading of cryptocurrencies and underscore the need
for establishing mechanisms to prevent possible destabilizing
effects of this growing industry, both from a power consumption
and carbon emissions perspective. The remainder of the paper is
organized as follows. Section 2 describes the data and the time-
varying Regression+ GARCHX in volatility model utilized in our
tests. Section 3 presents the empirical findings and Section 4
concludes with further discussion.

2. Impact of BTC energy consumption on mean and volatility

of electricity pricing

2.1. Data

In this exposition, we choose our response variable to be the
electricity pricing returns in three different prominent U.S. mar-
kets, namely Northern Illinois hub (NI), Western Hub (West) and
New England hub (NE). Daily spot price data over the period Dec.
19, 2017–June 18, 2021 is obtained from Commodity Systems Inc.
and the Cambridge Bitcoin Electricity Consumption Index is used
to measure the Bitcoin network’s daily electricity load.3. Because
the exact electricity consumption value cannot be determined, a
hypothetical range consisting of a lower bound, upper bound and
best-guess estimate is computed where the lower (upper) bound
is based on the assumption that all miners always use the most
(least) energy-efficient equipment available on the market. The
best-guess estimate is based on the more realistic assumption
that miners use a basket of profitable hardware rather than a
single model. Understandably, the sample period is governed by
the availability of the Bitcoin consumption index series.

2 See Weron (2014) for a detailed review of this literature.
3 For further details, see: https://cbeci.org/.

2.2. Method for time-varying estimation

Let yt stand for the return on the tth day on a particular
electricity market. We wish to regress the mean and variance
of yt on three different bitcoin consumption index series (BCI
henceforth) available, i.e. max, min and guess based on the up-
per/lower bounds and the best-guess estimate, respectively. This
yields 9 different scenarios given 3 choices each for the response
and the covariate. Considering that our sample period covers the
COVID-19 pandemic and the evidence that associates pandemic
lockdowns with increasing trading activity in cryptocurrencies
including Bitcoin (e.g. Guzmán et al. (2021), Park (2022)), we uti-
lize the following time-varying Regression+ GARCHX in volatility
model (see Francq et al. (2019), Sucarrat (2021)) formulated as

yt ∼ N(µ0(t/n) + µ1(t/n)Xt , σ
2
t ) with σ 2

t

= α0(t/n) + α1(t/n)y
2
t−1 + β1(t/n)σ

2
t−1 + γ (t/n)|Xt |, (2.1)

where Xt stands for the covariate used at time-stamp t . Note that
the log-returns of the covariates are employed in the model in
order to make them stationary.

For a suitable choice of kernel K and bandwidth bn ∈ [0, 1] we
use, for the parameter estimation of θ .

θ̂bn (t) = argmin
θ∈Θ

n∑

i=1

K ((t − i/n)/bn)ℓ(yi, Xi, θ ) t ∈ [0, 1]. (2.2)

where ℓ(·) is the corresponding negative log-likelihood or quasi
log-likelihood for estimating the GARCH parameters. In particular,
we use the rectangular kernel here for the choice of K so as to be
able to use the standard lm and garchx routine. Moreover, as
we describe later, forecasting future observations even in a time-
varying model requires a stationary in-sample estimation so we
wanted to remain consistent throughout. Note that, under some
mild smoothness conditions, the final implications should not dif-
fer too much for using a specific kernel as discussed in Karmakar
et al. (2021). This reduces the estimation at time-point t with the
parameters assuming there is a stationary model for time-stamps
max{1, t − nbn} to min{n, t + nbn}.

3. Empirical findings

Towards estimating θ (·) = (µ0(·), µ1(·))
′ in the context of

(2.1), we choose the following Gaussian log-likelihood:

ℓ(yi, Xi, θ ) = (yi − µ0 − µ1Xi)
2.

Our results are robust even when we implemented a GARCH(1,1)
error specification instead of the rather simplistic homoscedastic
likelihood as above. We plot the pointwise confidence band for
all the cases in Fig. 1. In each of these cases, one can see the
horizontal line of nullity passing through the confidence bands for
both coefficients, establishing the insignificance of the covariate
in regressing electricity pricing returns. Thus, we observe largely
insignificant effects of the BTC energy consumption indices on the
mean of electricity returns.

In the light of insignificant mean effects, we proceed with sim-
ply modeling price volatility using the garchx R package. In the
context of the time-varying model in (2.1), we choose the follow-
ing likelihood function to estimate θ ′(·) = (α0(·), α1(·), β1(·), γ (·))′,

ℓ(yi, Xi, θ
′) = −

1

2
log(σ 2) + y2i /σ

2 with σ 2

= α0 + α1y
2
i−1 + β1σ

2
i−1 + γ |Xi|.

We present the time-constant estimates, the estimated four
coefficients (as function of time) and their lower intervals based
on one-sided confidence intervals in Figs. 2–4. These confidence

2

https://cbeci.org/


S. Karmakar, R. Demirer and R. Gupta Economics Letters 209 (2021) 110111

Fig. 1. Time-varying regression coefficients with pointwise confidence bands. The rows stand for the covariates Max, Min and Guess BCI, while the column stands

for the responses for NI, West and NE electricity spot markets. Each image has the horizontal line of zero passing through the 95% pointwise bands.

Fig. 2. Time-varying garchx plot for Max BCI. The rows stand for the responses for NI, West and NE electricity spot markets. The black curve represents the lower

endpoint of one-sided pointwise 95% confidence band. The blue line stands for the time-constant estimate.

intervals are constructed based on θ̂ − 1.645se(θ̂ ) following the

pointwise central limit theory from Karmakar et al. (2021) for

a time-varying specification. Further detail on the method to

compute these estimates is provided in Francq et al. (2019). It is

well-known in the GARCH literature that for GARCH(1,1) models,

the ARCH and GARCH effects are small and large, respectively.

Our confidence bands show that the volatility effects and the

covariate effects were significant in most of the time-spectrum

when it was estimated to be positive.4

4 Based on the suggestions of an anonymous referee, we also estimated

asymmetric GARCH models, and consistent with the symmetric version of

the same, we found that our basic findings are qualitatively similar, i.e., the

predictors fail to have any statistically significant effect on electricity returns,

but increases its volatility in a statistically significant fashion. Complete details

of these results are available upon request from the authors.
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Fig. 3. Time-varying garchx plot for Min BCI. The rows stand for the responses for NI, West and NE electricity spot markets. The black curve represents the lower

endpoint of one-sided pointwise 95% confidence band. The blue line stands for the time-constant estimate.

Fig. 4. Time-varying garchx plot for Guess BCI. The rows stand for the responses for NI, West and NE electricity spot markets. The black curve represents the lower

endpoint of one-sided pointwise 95% confidence band. The blue line stands for the time-constant estimate.

Towards gauging the behavior of these estimates over time, it
is clear that except for the NE market, the effect of covariates are
generally increasing from the second half of 2020 until the end
of the sample, indicating the increasing impact of covariates over
time. Thus, while the findings point to the presence of a volatility
effect of Bitcoin mining activity in the electricity market, we also
find that the effect is indeed increasing over time, particularly

starting with the second half of 2020. The rising pattern in the
volatility effect, particularly during the period when the pan-
demic has become more widespread with lockdowns enforced
globally, is in line with the evidence in several recent studies
including Guzmán et al. (2021) and Park (2022) that investors
became active participants during the COVID-19 pandemic period
and traded more bitcoins on days with low mobility associated

4
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Table 1

Forecasting gain results for m = 200. MSPE1 and MSPE2 stand for the models without the covariates and the full model respectively.

P-values correspond to the CW test. MSPE1/MSPE2 > 1 signifies the BTC covariates provide forecasting gains.

Data nahead = 1 nahead = 5 nahead = 20

p value MSPE1/MSPE2 p value MSPE1/MSPE2 p value MSPE1/MSPE2

Max NI 0.099 0.99683 0.065 1.28024 0.816 0.04007

Max West 0.024 1.03230 0.077 3.22436 0.155 10.77268

Max NE 0.738 0.99288 0.839 0.40212 0.109 0.86348

Min NI 0.181 0.99818 0.147 9.57209 0.078 4.58211

Min West 0.040 1.03682 0.202 0.97545 0.157 165.1649

Min NE 0.714 0.99094 0.082 2.54933 0.149 25.55265

Guess NI 0.029 1.07761 0.055 1.63147 0.141 16.22775

Guess West 0.051 1.05985 0.475 0.17272 0.352 0.01990

Guess NE 0.157 1.25996 0.063 7.91852 0.156 63.98823

with lockdown mandates. While (Park, 2022) suggests that the
increase in trading volume and volatility in BTC futures is induced
by the increase in belief dispersion due to the pandemic related
market uncertainty, Divakaruni and Zimmerman (2021) show
that the wealth shock induced by the U.S. government’s economic
impact payment program in 2020 has led to a significant increase
in Bitcoin buy trades, particularly among individuals without
families and at exchanges catering to nonprofessional investors.
Nevertheless, it is interesting that the volatility effect on the
electricity market due to the Bitcoin consumption index becomes
particularly significant during the pandemic period that is asso-
ciated with herding behavior in global financial markets (Bouri
et al., 2021) and increased trading activity in cryptocurrencies.
Further extending the analysis to a forecasting context, additional
tests corroborate the importance of the choice of covariates by
providing evidence that the inclusion of the Bitcoin consumption
index provides significant forecasting gains as well. These gains
are viewed through the lens of CW tests, the statistical hypoth-
esis tests from Clark and West (2007) adapted for log-returns
variance. In particular, given that both the intercept and slope
for the covariates are found to be insignificant in Section 2, we
simply use y2t as our target forecast and the fitted variance from
two models, σ̂ 2

t and σ̂ 2
t0 (without covariate) as the two competing

forecasts.
Table 1 presents the forecasting gains for nahead days based on

the full model that includes the bitcoin indexes and the bench-
mark model that does not include the covariates. Note that m is
our in-sample length, in other words, we choose an in-sample
of yt−m+1, . . . , yt to fit a stationary GARCHX using the garchx

package in R. This allows us to use the predict routine to obtain
predictions for nahead steps. As was discussed in Karmakar et al.
(2021), a time-varying forecast remains difficult to be properly
defined given the popular in-fill asymptotics culture in the time-
varying literature and a stationary fit for the last m observations
along with rolling this window provides the best possible time-
varying estimation. The choice for nahead was made to predict the
one-day, one-week and one-month ahead forecasts. For brevity,
we present in Table 1 the results for m = 200 only, but when
we extend the analysis to other values of m such as 400 or 600,
we obtain similar results. We also report in the table the ratio
of MSPE (Mean-square prediction errors) for the two models. We
observe that most of the p-values are small and the MSPE values
for the augmented model that includes the Bitcoin consumption
index are generally smaller in most cases and almost similar in
few cases. This ascertains the predictive information captured
by the Bitcoin consumption index over the subsequent volatility
patterns in the electricity market. Considering that the literature
on the predictability of daily electricity prices generally focuses
on the price behavior in the day-ahead spot market (Weron,
2014), our finding present a novel opening on the predictive role
of Bitcoin mining proxies to improve the accuracy of electricity
forecasting models.

4. Conclusion

Utilizing the Bitcoin Electricity Consumption Index, developed
by the Digital Assets Programme Team at the Centre for Alter-
native Finance at the University of Cambridge, we document
a significant volatility effect of Bitcoin mining activity in three
prominent electricity markets in the U.S. While the results do not
yield a significant impact on mean electricity returns, we observe
an increasing volatility effect in electricity spot prices, particularly
starting with the global lockdowns enforced due to the COVID-
19 pandemic. The rising pattern in the volatility effect, partic-
ularly during the period when the pandemic has become more
widespread with lockdowns enforced globally, is in line with
the evidence in recent studies including Guzmán et al. (2021)
and Park (2022) that investors became active participants in the
cryptocurrency market during the COVID-19 pandemic period
and the evidence of herding behavior in global financial mar-
kets driven by the pandemic induced market uncertainty (Bouri
et al., 2021). Nevertheless, the evidence of significant forecast-
ing gains due to Bitcoin mining activity presents an opening to
better model and monitor price fluctuations in the power market
with significant hedging and investment planning implications.
In future research, it will be interesting to employ alternative
dynamic models including the full-fledged flexible kernel-based
time-varying fit or the Bayesian time-varying GARCH estimation
technique proposed in Karmakar and Roy (2021) in order to check
the robustness of the volatility effect observed. Nevertheless, the
findings provide novel insight to the non-virtual side of mining
and trading of cryptocurrencies and underscore the need for
establishing mechanisms to prevent possible destabilizing effects
of this growing industry, both from a power consumption and
carbon emissions perspective.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Aalborg, H.A., Molnár, P., de Vries, J.E., 2019. What can explain the price,

volatility and trading volume of bitcoin? Finance Res. Lett. 29, 255–265.
Bonato, M., Demirer, R., Gupta, R., 2018. The predictive power of industrial

electricity usage revisited: evidence from non-parametric causality tests.

OPEC Energy Rev. 42 (2), 93–106.
Bouri, E., Das, M., Gupta, R., Roubaud, D., 2018. Spillovers between bitcoin and

other assets during bear and bull markets. Appl. Econ. 50 (55), 5935–5949.
Bouri, E., Demirer, R., Gupta, R., Nel, J., 2021. COVID-19 pandemic and investor

herding in international stock markets. Risks 9 (9), 168.
Bouri, E., Molnár, P., Azzi, G., Roubaud, D., Hagfors, L.I., 2017. On the hedge and

safe haven properties of bitcoin: Is it really more than a diversifier? Finance

Res. Lett. 20, 192–198.
Bunn, D.W., 2004. Modelling Prices in Competitive Electricity Markets, Vol. 1,

1st edition Wiley Publishers, Hoboken, New Jersey, USA.

5

http://refhub.elsevier.com/S0165-1765(21)00388-8/sb1
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb1
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb1
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb2
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb2
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb2
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb2
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb2
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb3
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb3
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb3
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb4
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb4
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb4
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb5
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb5
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb5
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb5
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb5
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb6
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb6
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb6


S. Karmakar, R. Demirer and R. Gupta Economics Letters 209 (2021) 110111

Clark, T.E., West, K.D., 2007. Approximately normal tests for equal predictive

accuracy in nested models. J. Econometrics 138 (1), 291–311.

Da, Z., Huang, D., Yun, H., 2017. Industrial electricity usage and stock returns. J.

Financ. Quant. Anal. 52 (1), 37–69.

Divakaruni, A., Zimmerman, P., 2021. Uncovering retail trading in bitcoin: The

impact of COVID-19 stimulus checks, Federal Reserve Bank of Cleveland

Working Papers, WP 21-13.

Eydeland, A., Wolyniec, K., 2002. Energy and Power Risk Management: New

Developments in Modeling, Pricing, and Hedging, Vol. 97. John Wiley & Sons.

Francq, C., et al., 2019. Qml inference for volatility models with covariates.

Econom. Theory 35 (1), 37–72.

Guzmán, A., Pinto-Gutiérrez, C., Trujillo, M.-A., 2021. Trading cryptocurrencies as

a pandemic pastime: COVID-19 lockdowns and bitcoin volume. Mathematics

9 (15), 1771.

Karmakar, S., Richter, S., Wu, W.B., 2021. Simultaneous inference for time-

varying models. J. Econometrics http://dx.doi.org/10.1016/j.jeconom.2021.03.

002.

Karmakar, S., Roy, A., 2021. BayesIan modelling of time-varying conditional

heteroscedasticity. Bayesian Anal. 1 (1), 1–29.

Park, B., 2022. The COVID-19 pandemic, volatility, and trading behavior in the

bitcoin futures market. Res. Int. Bus. Finance 101519.

Scharnowski, S., 2021. Understanding bitcoin liquidity. Finance Res. Lett. 38,

101477.

Shahzad, S.J.H., Bouri, E., Roubaud, D., Kristoufek, L., Lucey, B., 2019. Is bitcoin a

better safe-haven investment than gold and commodities? Int. Rev. Financ.

Anal. 63, 322–330.

Smales, L.A., 2019. Bitcoin as a safe haven: Is it even worth considering? Finance

Res. Lett. 30, 385–393.

Sucarrat, G., 2021. Garchx: Flexible and robust GARCH-X modeling. R Journal 13

(1), 276–291. http://dx.doi.org/10.32614/RJ-2021-057.

Urquhart, A., 2016. The inefficiency of bitcoin. Econom. Lett. 148, 80–82.

Weron, R., 2014. Electricity price forecasting: A review of the state-of-the-art

with a look into the future. Int. J. Forecast. 30 (4), 1030–1081.

Weron, R., Misiorek, A., 2008. Forecasting spot electricity prices: A comparison

of parametric and semiparametric time series models. Int. J. Forecast. 24 (4),

744–763.

6

http://refhub.elsevier.com/S0165-1765(21)00388-8/sb7
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb7
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb7
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb8
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb8
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb8
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb10
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb10
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb10
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb11
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb11
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb11
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb12
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb12
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb12
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb12
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb12
http://dx.doi.org/10.1016/j.jeconom.2021.03.002
http://dx.doi.org/10.1016/j.jeconom.2021.03.002
http://dx.doi.org/10.1016/j.jeconom.2021.03.002
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb14
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb14
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb14
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb15
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb15
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb15
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb16
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb16
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb16
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb17
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb17
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb17
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb17
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb17
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb18
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb18
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb18
http://dx.doi.org/10.32614/RJ-2021-057
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb20
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb21
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb21
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb21
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb22
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb22
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb22
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb22
http://refhub.elsevier.com/S0165-1765(21)00388-8/sb22

	Bitcoin mining activity and volatility dynamics in the power market
	Introduction
	Impact of BTC energy consumption on mean and volatility of electricity pricing
	Data
	Method for time-varying estimation

	Empirical findings
	Conclusion 
	Declaration of competing interest
	References


