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SUMMARY
Much of systems neuroscience posits the functional importance of brain activity patterns that lack natural
scales of sizes, durations, or frequencies. The field has developed prominent, and sometimes competing,
explanations for the nature of this scale-free activity. Here, we reconcile these explanations across species
and modalities. First, we link estimates of excitation-inhibition (E-I) balance with time-resolved correlation of
distributed brain activity. Second, we develop an unbiased method for sampling time series constrained by
this time-resolved correlation. Third, we use this method to show that estimates of E-I balance account for
diverse scale-free phenomena without need to attribute additional function or importance to these phenom-
ena. Collectively, our results simplify existing explanations of scale-free brain activity and provide stringent
tests on future theories that seek to transcend these explanations.
INTRODUCTION

Coordinated neuronal interactions give rise to intricate patterns

of distributed brain activity. Much of systems neuroscience

seeks to understand the organization and function of these pat-

terns. Studies in the field often do so by situating these patterns

within long-standing experimental or theoretical frameworks.

One such framework centers on the study of phenomena that

lack typical scales of size, duration, or frequency.1–3 These

scale-free phenomena show up as functions or distributions

that resemble straight lines on log-log plots. Scale-free phenom-

ena in systems neuroscience include arrhythmic 1= f power

spectra,4,5 long-range temporal correlations,6 and heavy-tailed

avalanche distributions7–9 of brain activity. Systems neurosci-

ence has developed distinct explanations for the nature and

origin of these phenomena.

One prominent explanation has proposed that slopes of scale-

free 1=f power spectra reflect the balance of neuronal excitation

and inhibition, or excitation-inhibition (E-I) balance.10 E-I balance

is essential to neural function because it allows neuronal respon-

siveness but prevents runaway excitation.11 On a molecular
This is an open access article und
level, this balance largely reflects the interaction of glutamatergic

excitation, mediated by fast AMPA-receptor kinetics, and

GABAergic inhibition, mediated by slow GABAA-receptor ki-

netics.12–14 Gao et al.15 presciently noted that these distinct

excitatory and inhibitory kinetics make it possible to infer E-I bal-

ance from slopes of 1=f power spectra. Specifically, increased

excitation implies preponderance of faster signaling, greater

high-frequency power, and correspondingly more positive 1=f

slopes, or flatter 1=f lines. Correspondingly, increased inhibition

implies preponderance of slower signaling, greater low-fre-

quency power, and correspondingly more negative 1=f slopes,

or steeper 1=f lines. The link between E-I balance and slopes

of 1=f spectra has been robustly observed in intracranial15,16

and extracranial17,18 electroencephalography (EEG) recordings,

and with causal evidence based on optogenetic,19 chemoge-

netic,20 and transcranial21 stimulation. Collectively, this literature

anchors one scale-free phenomenon to a neurobiological mech-

anism, even as it does not seek to explain the nature and origin of

scale-free phenomena more generally.

Separately, another prominent explanation has proposed that

diverse scale-free phenomena reflect critical dynamics.22,23 This
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explanation posits that brain activity self-organizes24 or homeo-

statically tunes25 to a critical point on the border of stable and

unstable states.26,27 Theoretical considerations suggest that

critical dynamics show highly varying responses to perturba-

tions,22 and give rise to 1=f power spectra,28 scale-free

avalanche distributions,7 long-range temporal correlations,6

and weak dynamical stability.29 Critical dynamics have many

theoretically appealing properties, including optimized detec-

tion30,31 and transformation7,32 of sensory input. A range of

studies have correspondingly linked these dynamics with

optimal brain function33 and deviations from these dynamics

with pathological changes, including disrupted neuronal excit-

ability,25,34 loss of consciousness,29 and seizures.35 Collectively,

this literature explains the nature and origin of diverse scale-free

activity, even as the theoretical nature of such explanations

makes them contested and controversial.36–40

These two major interpretations of scale-free phenomena

remain unreconciled. On the one hand, studies that emphasize

links between E-I balance and slopes of 1=f spectra consider

other scale-free phenomena to have distinct nature or origin.2

For example, Lendner et al.41 observed that ‘‘[scale-free] long-

range temporal correlations of neuronal oscillations or the size

and duration of neuronal avalanches [.] likely have a different

neurophysiological basis than the 1=f drop-off of the power

spectrum.’’ On the other hand, studies that emphasize links

between critical dynamics and diverse scale-free phenom-

ena23 do not necessarily consider that critical dynamics reflect

E-I balance.42 For example, Tagliazucchi et al.43 observed that

‘‘long-range temporal correlations and 1=f spectra are generic

features predicted by self-organizing criticality, a theory of col-

lective interactions that naturally accounts for many empirical

observations about brain activity at different scales [including]

the presence of long-range spatial correlations, [and] power-

law-distributed avalanches of activity.’’ Finally, other studies

propose that E-I balance facilitates critical dynamics44 to opti-

mize brain function24 and in this way implicitly support both

interpretations. For example, Ma et al.25 observed that ‘‘criti-

cality [is] a computationally attractive network regime poised

at a phase transition between excitation and inhibition.’’

Some of these studies have shown that disruptions of E-I bal-

ance—with drugs7,29,31,34 or surgery25—robustly disrupt signa-

tures of critical dynamics. However, the resulting attribution of

independent function to E-I balance and criticality risks ex-

plaining the same aspect of the data twice.45 Collectively,

this lack of consensus has resulted in an extensive literature

of intriguing but inconclusive findings.

Here, we reconciled this literature in three steps. First, we

defined a measure of time-resolved correlation between pat-

terns of distributed brain activity at adjacent points. We showed

that this simplemeasure accurately reflects 1=f-based estimates

of E-I balance. Second, we developedmethods to samplemodel

time series constrained by time-resolved correlation. These

methods allowed us to go beyond statistical associations and

test the redundancy of scale-free phenomena with estimates

of E-I balance. Third, we showed that these estimates can

account for diverse scale-free phenomena across species and

modalities without the need to make additional assumptions

about the function or importance of these phenomena. Collec-
2 Cell Reports 42, 112254, April 25, 2023
tively, our results simplify and unify existing explanations of

scale-free phenomena in systems neuroscience.

RESULTS

We focused our analyses on recordings with intracranial EEG

modalities, namely stereotactic EEG and electrocorticography

(Table 1). These recordings are optimally suited to the study of

scale-free phenomena by their combination of millimeter-scale

spatial resolution, millisecond-scale temporal resolution, and

distributed cortical coverage.46 In practice, we analyzed and

modeled highly sampled datasets that each comprised approx-

imately 1 million time points recorded from around 100 depth

(stereotactic EEG) or grid (electrocorticography) cortical elec-

trode channels. In addition to these recordings, we also followed

the recent literature to test scale-free phenomena in light-sheet

calcium imaging of fictively swimming zebrafish.34 The spatio-

temporal resolution of light-sheet calcium imaging data provides

a unique opportunity to model brain-wide activity with cellular

resolution.47 Nonetheless, the large number of neurons, the

small number of time points, and the low temporal resolution

of these data presented unique modeling challenges, as we

discuss below.

Time-resolved correlation reflects 1=f estimates of E-I
balance
We defined a measure of time-resolved correlation as

corrðxi�k ; xiÞ, where corr is the Pearson correlation coefficient,

xi is a vector of distributed brain activity at time point i, and k

is an integer lag. In this section, wemotivate this simple measure

as a brain-wide and time-resolved analog of 1=f-based esti-

mates of E-I balance (Figure 1A). In subsequent sections, we

leverage this relationship to sample time series constrained by

time-resolved correlation and in this way test the redundancy

of scale-free phenomena with estimates of E-I balance.

We first noted that the full autocorrelation function of individual

time series is directly related to the slope of 1=f power spectra

of these time series, as described by the celebrated Wiener-

Khinchin theorem.52 Moreover, analytical approximations of

this relationship show that lag-k autocorrelation for individual in-

tegers k are likewise directly related to the slope of 1=f.53 At the

same time, the temporally agnostic definition of autocorrelation

cannot capture time-resolved changes in E-I balance, while its

spatially specific definition contrasts with the brain-wide nature

of some scale-free phenomena.

To overcome these shortcomings, we noted that lag-k auto-

correlation averaged over all nodes approximately equals lag-k

time-resolved correlation averaged over all time points (STAR

Methods). This approximation only holds for averaged quanti-

ties—the non-averaged versions of these quantities are incom-

mensurate because time-resolved correlation is defined on

time points, while autocorrelation is defined on nodes. Figure 1A

summarizes the links between time-resolved correlation and

1=f-based estimates of E-I balance, while Figure 1B illustrates

the dynamics of this measure in a subsampledmacaque electro-

corticography recording. Figure 1C shows that lag-1 time-

resolved correlation is unimodally distributed close to its

maximal value of 1, reflecting gradual changes in distributed



Table 1. Properties of analyzed and modeled datasets

Species, experiment,

modality Nodes

Tested phenomena,

sampling rate

Datasets (nodes 3

time points)

Macaque monkey, anesthesia,

electrocorticography48

grid electrode channels distributed

over a cortical hemisphere

critical dynamics, 1,000 Hz. We followed

previous work29 that established this

sampling rate as a lower bound for

detection of critical dynamics in

empirical data

1283 (1.5 million)

1283 (1.5 million)

1283 (1.5 million)

1283 (1.5 million)

Macaque monkey, resting

state, electrocorticography48

scale-free phenomena, 1,000 Hz.

We adopted this sampling rate for

consistency with tests of dynamical

phenomena. Our results were robust

to tests at a lower sampling rate

of 250 Hz

1283 (1 million)

1283 (1 million)

1283 (1 million)

1283 (1 million)

Humans, working memory

task, intracranial EEG

(electrocorticography

and/or stereotactic EEG)49

grid and/or depth electrode channels

distributed over parts of frontal and

temporal cortex

843 (1 million)

1103 (764,000)

1063 (840,000)

1263 (812,000)

Humans, resting state,

stereotactic EEG50

depth electrode channels distributed

over diverse cortical regions

1483 (1 million)

1573 (1 million)

1663 (1 million)

1863 (1 million)

Zebrafish, fictive swimming,

light-sheet calcium imaging51
neurons distributed over the

whole brain

some scale-free phenomena, �3 Hz.

We followed previous work34 to adopt

a modified avalanche-detection

procedure most suitable for analysis

of brain-wide light-sheet calcium

imaging data

(110,000) 3 7,100

(117,000) 3 5,200
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brain activity over time. The measure gradually drops with lower

sampling rates and is considerably lower for calcium imaging

data. Figures S1–S4 show the relationship of time-resolved cor-

relation and other basic properties of the neurophysiological

signal.

We next directly tested the link between time-resolved corre-

lation and changes in E-I balance in four electrocorticography

recordings of macaque monkeys across consciousness and

propofol anesthesia. Propofol anesthesia alters E-I balance in

large part by potentiating inhibitory GABAA receptors.54 Previ-

ous analyses of this macaque dataset used it as a benchmark

to test the effects of 1=f-based estimates of E-I balance.15 Other

analyses of these data have linked these changes to cortex-wide

reductions to other electrophysiological properties, including the

amplitude of alpha oscillations.55

Figures 1D–1G shows that lag-1 time-resolved correlation

robustly tracked these estimates across all recordings. The

median [95% uncertainty interval] correlation pooled over the

four recordingswas 0.987 [0.977, 0.992] in the 1-min interval pre-

ceding injection of propofol and 0.938 [0.767, 0.978] in the 1-min

interval immediately following the onset of anesthesia, based on

video observation29 (p< 10� 10,Wilcoxon rank-sum test). Indeed,

this metric dropped to even lower values at the peak effect time

of propofol, roughly 2 min after injection.56 These changes

strongly correlated with previously reported reductions in alpha

amplitude in this dataset.55 Moreover, the smaller relative drop

of this correlation in monkey 2 (Figures 1F and 1G) matched

previous observations that this monkey was not fully anesthe-

tized.57 These findings provide additional evidence for the link

between time-resolved correlation and 1=f-based estimates of

E-I balance.
Sampling time series constrained by time-resolved
correlation
We next tested the redundancy of scale-free phenomena with

time-resolved correlation, and by extension with estimates of

E-I balance. Studies to date have not performed this important

test. Instead, studies have typically tested the presence of

scale-free phenomena in model time series constrained by trivial

properties of brain activity, generated through simple randomi-

zation (shuffling) of empirical time series. Such tests, however,

do not constitute rigorous statistical evidence for the signifi-

cance of scale-free phenomena.37,58

Here, we designed more rigorous tests by developing a

method for sampling time series constrained by time-resolved

correlation, variance, and mean. Our method is unbiased and

efficient: it samples data with no extraneous assumptions, and

scales to long neurophysiological recordings. We informally

describe the method here and provide extensive mathematical

detail in the STAR Methods.

We formulated the sampling problem as a set of t � 1 under-

determined sets of equations. We solved these equations

sequentially, by using the solution of equation at time i � k to

define the equation at time i (Figure 2A). Our problem then

reduced to the sampling of brain activity patterns at time i con-

strained by empirical correlation of these patterns to brain activ-

ity patterns at time i � k. We solved this problem by expressing it

as a system of linear equations. We computed the nullspace of

the coefficient matrix, Z, and used this nullspace to parameterize

the solution space to our problem. The schematic in Figure 2A

shows the geometry of this space in three dimensions. The

colored plane in this schematic represents the solution space,

such that each point in this plane represents a solution to our
Cell Reports 42, 112254, April 25, 2023 3



Figure 1. Motivation for, and properties of, time-resolved correlation

(A) Analytical links between time-resolved correlation and 1=f-based estimates of E-I balance. See the main text for details.

(B) Fluctuations of time-resolved correlation in a spatiotemporally subsampled macaque electrocorticography recording. Scatterplots show temporally adjacent

patterns of distributed brain activity. Numbers denote corresponding values of time-resolved correlation, and the thick gray line shows the dynamics of time-

resolved correlation over time.

(C) Distributions of lag-1 time-resolved correlation pooled across all intracranial EEG recordings (sampled at 1,000, 500, and 250 Hz), and separately for brain-

wide calcium imaging data (sampled at �3 Hz).

(D–G) Lag-1 time-resolved correlation tracks changes between consciousness and propofol anesthesia across two electrocorticography recordings of two

macaque monkeys. (Left) Dark-purple intervals denote 1-min intervals immediately prior to injection of propofol. Light-purple intervals denote 1-min periods

immediately following onset of anesthesia based on video observation. (Center) Violin plots of time-resolved correlation densities within shaded light-blue and

dark-blue periods. (Right) Corresponding scatterplots of alpha amplitude and time-resolved correlation, averaged over 8-s windows.
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problem. We uniformly sampled vectors ~x from this solution

space by expressing these vectors as the sum of two vectors:

x�, a unique minimum-norm solution, and dZq, where q is a uni-

formly sampled weighting vector and d is a scaling parameter.

The sequential nature of this samplingmade ourmethod efficient

relative to randomization methods that require the simultaneous

solution of all constraints. Specifically, our method scaled line-

arly with the number of time points and quadratically with the

number of nodes (STAR Methods) and was therefore especially

well suited to long neurophysiological recordings we considered

in this work.

Summary of models
Our primary model was constrained by time-resolved correla-

tion, variance, and mean. We tested this model against four

competing models defined with nullspace sampling, phase

randomization, and frame-randomization methods. We now

summarize the properties of these models in turn.
4 Cell Reports 42, 112254, April 25, 2023
Nullspace-sampling models

Our primary model was constrained by lag-k time-resolved cor-

relation, variance, and mean. While our study primarily focuses

on the importance of time-resolved correlation, nullspace

sampling cannot constrain this property without also constrain-

ing the time-resolved variance andmean. Therefore, and in order

to test the effects of time-resolved correlation relative to these

more basic properties, we also considered a control model

constrained by time-resolved variance and mean but not by

time-resolved correlation. We set k = 1 for all analyses except

for analyses of calcium imaging data, as discussed below.

Phase-randomization models

We considered a popular6,29,57,59–61 phase-randomization

method that constrains a large, and somewhat indiscriminate,

number of empirical features, including power spectra of each

node and lagged correlations between all pairs of nodes across

all possible integer time lags.62 Despite the many constraints, a

default version of thismethod is not time resolved. To circumvent



Figure 2. Method to sample time series constrained by time-resolved correlation

(A) Flowchart and visualization of nullspace sampling. See the text for an informal description, and STAR Methods for mathematical detail.

(B) Properties of the windowed phase-randomization model, and the time-resolved correlation, variance, andmeanmodel. Both models performed similarly well,

but time-resolved correlation, variance, and mean constraints were fewer in number and easier to interpret. These constraints also generated data that were

devoid of spatial correlations and in this way were considerably different from empirical recordings.
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this problem, we also considered a windowed extension of this

method in which we segmented individual recordings into hun-

dreds of windows and used phase randomization to sample

data independently within each window.

Frame-randomization models

For completeness, we also considered a simple frame-random-

ization method that constrains exact brain activity patterns

within each individual time frame but randomizes the order of

the time frames.

In what follows, we found that time-resolved correlation and

windowed phase-randomization models, but not the other evalu-

ated models, accounted for diverse scale-free phenomena. Fig-

ure 2B illustrates these models relative to empirical data. Note

that windowed phase-randomization constraints amounted to

50% of data points (STAR Methods), were difficult to interpret,

andgenerateddata thatwerequite similar toempirical recordings.

By contrast, time-resolved correlation, variance, and mean con-

straints amounted to 3% of data points (STAR Methods), were

linked with 1=f estimates of E-I balance, and generated data

that were considerably different from empirical recordings. For

these reasons, much of our subsequent discussion focuses on

time-resolved correlation, variance, and mean, as well as its

control comparisons with time-resolved variance and mean.

Time-resolved correlation accounts for critical
dynamics
We first evaluated the extent to which time-resolved correlation,

variance, and mean constraints induced weak dynamical stabil-
ity, a signature of critical dynamics.63We followed previous work

to estimate dynamical stability using the eigenvalue spectrum of

a time-resolved vector autoregressive model,26,29,64 a locally

linear approximation of distributed brain activity. Theory predicts

that weakly stable dynamics balance on the edge of order and

disorder and have largest eigenvalues with magnitudes that

approach 1. Conversely, strongly stable dynamics decay quickly

and have largest eigenvalues with smaller magnitudes. Corre-

spondingly, previous stability analyses of macaque electrocorti-

cography recordings from Figures 1D–1G linked consciousness

with weakly stable dynamics and propofol anesthesia with

strongly stable dynamics.29,57,65

Figure 3 (see also Figures S5–S8) shows that time-resolved

correlation, variance, and mean constraints accounted for these

dynamical changes. We quantified dynamical stability by the

median magnitude of the 5% largest eigenvalues. Stability esti-

mates pooled across four empirical recordings showed that

this index had a median [95% uncertainty interval] of 0.996

[0.989, 0.998] during an interval of consciousness and 0.985

[0.969, 0.993] during an interval of anesthesia. Similarly, time-

resolved correlation, variance, and mean constraints accounted

for weakly stable dynamics of 0.994 [0.992, 0.996] during con-

sciousness and more strongly stable dynamics of 0.985 [0.936,

0.993] during anesthesia. This difference in stability fell within

the empirical range (p = 0:492 that the difference in stability of

model data was at least equal to the difference in stability of

empirical data). By contrast, time-resolved variance and mean

constraints alone resulted in strongly stable dynamics across
Cell Reports 42, 112254, April 25, 2023 5



Figure 3. Time-resolved correlation accounts for changes in

dynamical stability across consciousness and propofol anesthesia

(A) Fluctuations of time-resolved correlation for model data of a representative

electrocorticography recording.

(B) Dynamical stability index, the median value of the 5% largest eigenvalues,

for the same recording. Note the strong correlation of time-resolved correla-

tion with dynamical stability.

6 Cell Reports 42, 112254, April 25, 2023
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both consciousness (0.560 [0.541, 0.586]) and anesthesia (0.612

[0.583, 0.647]), implying the importance of time-resolved corre-

lation for critical dynamics.

Separately, windowed phase-randomization constraints

accounted for weakly stable dynamics. Note, however, that

this result is somewhat trivial because these constraints are

expected to preserve the autoregressive coefficients, and there-

fore the eigenvalues, by definition. By contrast, standard (non-

windowed) phase-randomization constraints accounted for

weakly stable dynamics (0.994 [0.989, 0.998]) during conscious-

ness but showed negligible change in stability (0.994 [0.989,

0.998]) during anesthesia ðp < 0:001Þ.
Time-resolved correlation accounts for scale-free
phenomena
We next evaluated the extent to which time-resolved correlation

accounted for 1=f power-frequency relationships and long-

range temporal correlations, two commonly studied scale-free

phenomena. 1=f denotes the decay of spectral power as a func-

tion of frequency. This scale-free, or arrhythmic, power-fre-

quency relationship is distinct from neuronal oscillations, which

represent narrow peaks in frequency spectra.

Figures 4A–4C show that, in line with previous observa-

tions,4,66,67 we found robust 1=f scaling of spectral power in a

broad 1- to 80-Hz frequency range. Specifically, we found that

empirical data across all intracranial EEG recordings showed a

median [95% uncertainty interval] exponent values of 2.788

[1.592, 4.156]. In line with our theoretical considerations

(Figure 1A), time-resolved correlation, variance, and mean

constraints accounted for this 1=f scaling, with corresponding

exponents of 2.247 [1.885, 2.900] across all intracranial EEG re-

cordings. The values of these exponents were considerably

more uniform because time-resolved constraints are spatially

agnostic. Nevertheless, these values were in line with empirical

values (p = 0:228 that model exponents were at least equal to

corresponding empirical exponents). By contrast, time-resolved

variance and mean constraints alone did not result in 1=f scaling

(Figures 4A–4C and S9–S20), implying the importance of time-

resolved correlation for this scaling.

We next considered long-range temporal correlations, scale-

free phenomena that track the statistical self-similarity of long

time series. Typically, these correlations are defined by the

scaling exponent of mean fluctuations in the amplitude envelope

in alpha or beta frequency bands, using detrended fluctuation

analysis, a method especially suitable to analysis of non-station-

ary time series.68 The scaling exponent between window sizes
(C and D) Phase and magnitude of eigenvalues of a vector autoregressive

model fit to a single window from periods of consciousness and anesthesia

(shaded intervals in B, equivalent to intervals in Figures 1D–1G). Note the

anesthesia-associated drop of dynamical stability in model data constrained

by time-resolved correlation.

(E and F) Dynamical stability index across all empirical andmodel data, pooled

over all recordings and averaged over all windows denoting periods of con-

sciousness (E) and anesthesia (F).

Results for model data were derived using 50 samples for each model of each

dataset. For completeness, Figures S5–S8 show individual results for all model

datasets.



Figure 4. Time-resolved correlation accounts for

empirical 1=f scaling and long-range temporal

correlations

(A–C) Top two panels show 1=f scaling of spectral power

as a function of frequency for two channels of represen-

tative intracranial EEG recordings. Insets show violin plots

of 1=f slope exponents benchmarked against empirical

exponents (solid black lines). Bottom panels show violin

plots of exponents pooled across all channels and all

empirical and model datasets.

(D–F) Top panels show scaling of time-resolved amplitude

as a function of window for two representative channels.

Insets show violin plots of scaling exponents, bench-

marked against empirical exponents (solid black lines).

Bottom panels show violin plots of all exponents pooled

across all channels and all empirical and model datasets.

Results on model time series were derived using 50

samples for each model of each dataset. For complete-

ness, Figures S9–S20 show individual results for all

empirical and model datasets. SEEG, stereotactic EEG;

IEEG, intracranial EEG; ECoG, electrocorticography.
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and mean fluctuations indexes the presence of statistical self-

similarity. Values of this exponent considerably larger than 0.5

denote scale-free (fractal-like) structure. By contrast, values

close to 0.5 denote random (white-noise-like) structure.6

Figures 4D–4F and S9–S19 show robust power-law scaling for

mean fluctuations in amplitude for all empirical datasets in the

alpha frequency band (results were similar for the beta frequency

band, Figure S20). The scaling exponents for empirical datasets

were within the range previously reported in the literature. Spe-

cifically, we found that empirical recordings across all intracra-

nial EEG modalities showed a median [95% uncertainty interval]

exponent value of 0.691 [0.549, 0.884].

Time-resolved correlation, variance, and mean constraints

accounted for similar exponents across all intracranial EEG re-

cordings (0.671 [0.544, 0.825], p = 0:430 that model exponents

were at least equal to corresponding empirical exponents). In

this case, however, time-resolved variance and mean con-

straints alone also resulted in similar exponents (0.711 [0.559,

0.914], p = 0:632), implying that time-resolved correlation was

not important for this result.

Time-resolved correlation accounts for avalanche
statistics
Neural avalanches are transient periods of coordinated activity

between groups of neurons or brain regions. The study of

avalanche dynamics plays a prominent role in the theory of neu-

ral criticality. One commonly studied phenomenon in this litera-

ture is the power-law scaling of avalanche size and duration

distributions. Recent work has also emphasized more specific

signatures of criticality, including power-law relationships be-

tween size and duration exponents,69 as well as shape collapse,

a universal scaling relationship of avalanche phase with activ-

ity.34,69,70 Shape collapse, in particular, is a strict criterion of neu-

ral criticality, obtained through averaging hundreds or thousands

of individual avalanches. Theory predicts that, at criticality,

collapsed temporal profiles of avalanches will converge to a uni-

versal shape independent of avalanche duration.38,69,70

We first evaluated the presence of avalanche phenomena in all

intracranial EEG datasets. Figure 5 shows robust signatures of

power-law scaling for avalanche sizes, durations, and size-dura-

tion relationships. Specifically, across all intracranial EEG data-

sets, avalanche sizes decayed with a median [95% uncertainty

interval] power-law exponent of 1.310 [1.100, 1.390].

Correspondingly, avalanche durations decayed with an expo-

nent of 1.280 [1.000, 1.390]. Finally, avalanche sizes scaled as

a function of avalanche durations with an exponent of 1.487

[1.144, 1.863].

Time-resolved correlation, variance, andmean constraints ac-

counted for similar avalanches with exponents of 1.290 [1.050,
Figure 5. Time-resolved correlation accounts for avalanche statistics

(A–D) Avalanche size probability distributions.

(E–H) Avalanche duration probability distributions.

(I–L) Scaling of avalanche size and duration exponents.

Inset violin plots show normalized distributions of model exponents, benchmark

plots of all empirical andmodel exponents pooled across all empirical andmodel

of each dataset. For completeness, Figures S21–S33 show individual results for

EEG; ECoG, electrocorticography; Ca, calcium imaging.
1.377] (p = 0:465 that model exponents were at least equal to

corresponding empirical exponents) for avalanche sizes, 1.260

[1.000, 1.360] ðp = 0:515Þ for avalanche durations, and 1.519

[1.397, 1.823] ðp = 0:620Þ for scaling of size as a function of

duration. By contrast, time-resolved variance and mean

constraints resulted in exponents that were considerably

different from observed empirical values of avalanche sizes

(1.830 [1.790, 1.890], p> 0:999) and durations (2.030 [1.990,

2.090], p> 0:999), but not for scaling of size as a function of dura-

tion (1.569 [1.512, 1.787], p = 0:758). This implies the impor-

tance of time-resolved correlation for a substantial part of this

result.

Figure 6 shows that empirical data exhibited avalanche shape

collapses indicative of universal scaling. Time-resolved correla-

tion, variance, andmean constraints accounted for similar shape

collapses. The mean avalanche temporal profiles in these model

data all peaked at similar times. Indeed, the variance between re-

scaled avalanche shapes had a median [95% uncertainty inter-

val] of 0.447 [0.187, 0.747] for empirical data and 0.516 [0.228,

0.777] (p = 0:631 that model variance was at least equal to cor-

responding empirical variance) for model data constrained by

time-resolved correlation. Time-resolved variance and mean

constraints produced a similar result (1.569 [1.512, 1.787] p =

0:758) although, as Figure 6 shows, shape collapses were

more variable in human EEG recordings.

Time-resolved correlation of brain-wide calcium
imaging data
Finally, we sought to evaluate scale-free phenomena in calcium

imaging recordings of fictively swimming zebrafish. These data

provide an unmatched spatiotemporal resolution of brain-wide

cellular activity.47 At the same time, the distinct nature of these

data (Table 1) present several methodological challenges.

Specifically, in contrast to intracranial EEG recordings, brain-

wide calcium imaging recordings had many more nodes

(approximately 100,000), many fewer time points (approximately

6,000), and were imaged at a relatively low frequency (approxi-

mately 3 Hz). The large number of nodes imposed memory re-

quirements which precluded the use of nullspace sampling

and required the adoption of memory efficient but slower con-

strained randomization methods.71,72 The small number of time

points limited our evaluation to avalanche phenomena, in line

with recent work.34 The low-frequency imaging resulted in

considerably lower values of time-resolved correlation (Fig-

ure 1C). We compensated for this drop in correlation by con-

straining time-resolved correlation between a single frame and

its four adjacent neighbors. Finally, standard avalanche-detec-

tion methods in these data resulted in a trivial detection of a sin-

gle never-ending brain-wide avalanche. We compensated for
ed against empirical exponents (solid black lines). Bottom panels show violin

datasets. Results on model data were derived using 50 samples for eachmodel

all empirical and model datasets. SEEG, stereotactic EEG; IEEG, intracranial
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Figure 6. Time-resolved constraints ac-

count for universal shape collapse

(A–D) Shape collapses: scaling of mean temporal

profiles with avalanche activity. Bottom panels

show violin plots of all empirical and model vari-

ance between avalanche scaling profiles (lower is

better). Results on model data were derived using

50 samples for each model of each dataset. For

completeness, Figures S21–S33 show individual

results for all empirical andmodel datasets. SEEG,

stereotactic EEG; IEEG, intracranial EEG; ECoG,

electrocorticography; Ca, calcium imaging.
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this problem by adopting a spatially contiguous definition

of avalanches,34 which penalizes spatially non-specific con-

straints, such as time-resolved correlation.

These caveats aside, our modeling results on these datasets

were generally in line with results on intracranial EEG data. Fig-

ures 5, S32, and S33 show that empirical calcium imaging

avalanche sizes decayed as power laws with exponents 2.110

and 2.000, avalanche durations decayed as power laws with ex-

ponents 2.720 and 2.600, and avalanche sizes scaled as a func-

tion of durations with power-law exponents of 1.706 and 1.678.

Time-resolved correlation, variance, and mean constraints ac-

counted for similar median [95% uncertainty interval] values of

these exponents. Specifically, they resulted in an avalanche

size exponent of 2.105 [1.990, 2.220], a duration exponent of

2.445 [2.160, 2.720], and a size-duration scaling exponent of

1.893 [1.460, 2.947] (we do not report p values here because

we only have two values of empirical exponents). Likewise,

shape-collapse results were largely in line with those observed

on intracranial EEG datasets (Figures 6, S32, and S33).
10 Cell Reports 42, 112254, April 25, 2023
DISCUSSION

An extensive literature in systems neuro-

science has probed the origin, nature,

and function of scale-free phenomena.

One part of this literature has narrowly in-

terpreted one scale-free phenomenon,

the slope of 1=f spectrum, in terms of

E-I balance. Another part has broadly in-

terpreted diverse scale-free phenomena

in terms of critical dynamics. Other parts

of the literature have attributed distinct

or complementary functions to E-I bal-

ance and critical dynamics.

Here we reconciled these distinct in-

terpretations in three ways. First, we

analytically and numerically linked

1=f-based estimates of E-I balance

with time-resolved correlation. Second,

we developed methods to sample time

series constrained by time-resolved

correlation and in this way tested the

redundancy of scale-free phenomena

with estimates of E-I balance. Third,

we showed that these estimates ac-
counted for diverse scale-free phenomena across modalities

and species.

Our results imply that diverse scale-free phenomena can arise

as a byproduct of aspects of E-I balance. E-I balance plays an

essential role in survival, much like core body temperature and

many other homeostatic mechanisms. By contrast, scale-free

phenomena have an uncertain function that is difficult to resolve

through experimental manipulation, in large part because

such manipulation primarily perturbs changes in E-I bal-

ance.7,25,29,31,34 These considerations suggest that the attribu-

tion of function to scale-free phenomena, without additional

evidence for this function, is premature because it violates the

principle of scientific parsimony.73 At the same time, our

methods offer a natural future way to probe this question in

more detail. Specifically, future high-resolution recordings in

behaving animals can falsify our interpretation by discovering

E-I regimes compatible with healthy function but not with

scale-free phenomena. The discovery of such a regime would

imply that scale-free phenomena occur independently of E-I
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balance and in this way support an independent function for

these phenomena.

Similarly, our results offer to simplify existing theoretical

frameworks in systems neuroscience. First, these results pro-

vide a roadmap for future neurobiological explanations of

scale-free phenomena. Specifically, we propose that ongoing

discovery of molecular, cellular, or circuit mechanisms of E-I bal-

ance will automatically shed light on similar mechanisms of

scale-free phenomena.11,13,74 Second, our results provide an

additional perspective on regional variation of scale-free activ-

ity.4,15,41 This variation is related, although not equivalent, to

the notion of hierarchy of cortical time scales.75–79 Our results

help explain this regional variation by noting that global, and

spatially agnostic, changes in time-resolved correlation auto-

matically give rise to scale-free regional activity. These findings

suggest that the focus on the regional contribution to these

changes may be equally judicious, and more parsimonious, in

the investigation of this activity. Third, our results have consider-

able implications for translational literature that centers on the

study of scale-free phenomena.80,81Much of this literature seeks

to find alterations in scale-free phenomena across healthy and

diseased brain states.29,34,35 Our findings show that time-

resolved correlation can offer a unified interpretation of these

outwardly distinct biomarkers.

Finally, our results were made possible by the development of

an efficient method to sample model data with time-resolved

constraints. As systems neuroscientists come up against bigger

and more highly resolved neurophysiological datasets, the

development of similar methods will become increasingly impor-

tant for rigorous analysis and modeling of these data. Ultimately,

we consider that widespread adoption of such methods will be

necessary to enable unified and cohesive explanations of distrib-

uted brain activity.

Limitations of the study
Our study has three main limitations. First, our sampling method

constrains time-resolved correlation, variance, and mean.

Therefore, by definition, the method also constrains time-

resolved covariance, cosine similarity, and dot product. Future

studies should evaluate the relationship of these related, yet

distinct, measures of similarity with estimates of E-I balance

and scale-free phenomena. Second, time-resolved correlation

varies with the temporal and spatial resolution of individual re-

cordings. Future studies should test our results across a range

of spatial and temporal resolutions. Third, the slope of 1= f spec-

trum is an indirect estimate of E-I balance. Future studies should

test the relationship between time-resolved correlation andmore

direct estimates of E-I balance, ideally excitatory and inhibitory

currents in circuit recordings from model organisms.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB The Mathworks www.mathworks.com

Python Python Software www.python.org

Custom software This study github.com/AdityaNanda/time_resolved_correlation

https://doi.org/10.5281/zenodo.7604194

FieldTrip Toolbox Oostenveld et al., 201182 github.com/fieldtrip/fieldtrip

FOOOF Donoghue et al., 20205 github.com/fooof-tools/fooof

ARfit Schneider et al., 200183 github.com/tapios/arfit

Voluseg Mu et al.51 github.com/mikarubi/voluseg
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to Mika Rubinov (mika.rubinov@vanderbilt.edu).

Materials availability
No new materials were generated as part of this project.

Data and code availability
d Data from this study are available upon request.

d The main analysis code is publicly available (key resources table).

d Any additional information is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macaque electrocorticography (neurotycho)
Data were collected at the Laboratory for Adaptive Intelligence, Brain Science Institute, RIKEN.48,84 Electrocorticography record-

ings were made from two male macaque monkeys before, during, and after administration of propofol anesthesia. Grid electrodes

were implanted on the frontal, parietal, temporal, and occipital lobes. These data are publicly available from http://www.

neurotycho.org.

Human intracranial EEG
Data were acquired at the University of California Irvine Hospital.49 Intracranial EEG recordings were made from adult patients with

epilepsy performing a visuospatial workingmemory task. Grid and/or depth electrodes were implanted in frontal andmedial temporal

lobes. These data are publicly available from http://www.crcns.org.85

Human stereotactic EEG
Data were acquired at Vanderbilt University Medical Center.50 Stereotactic EEG recordings were made from adult patients with ep-

ilepsy, one day after electrode implantation and before medication wean. The patients were instructed to keep their eyes closed and

remain awake for 20 min. Depth electrodes were implanted in cortical regions, depending on suspected seizure origin.

Zebrafish calcium imaging
Data were acquired at Janelia Research Campus, Howard Hughes Medical Institute.51 Light-sheet calcium imaging recordings were

made from fictively swimming larval zebrafish embedded in agarose. The fish swam against a fixed-velocity one-dimensional moving

stripe pattern, which represented virtual water flow. The imaging spanned almost all brain neurons expressing a genetically encoded

calcium indicator (GCaMP6f).
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Data preprocessing
Electrophysiology

We analyzed all recordings at their original sampling frequency of 1000Hz. Dynamical stability analyses necessitated this high sam-

pling rate.29,57 All recordings were highpass filtered with a cutoff of 0.5Hz using the bandpassfilter function from Fieldtrip toolbox.82 In

addition, macaque electrocorticography data were notch-filtered at 50Hz and 100Hz to remove line noise. Likewise, human stereo-

tactic EEG and intracranial EEG data were notch-filtered at 60Hz and 120Hz to remove line noise.

Calcium imaging

All images were motion corrected, and cells were segmented in contiguous and overlapping three-dimensional blocks, using non-

negative matrix factorization with sparseness constraints.51 The resulting demixed and denoised cell segmentations showed higher

signal-to-noise ratio relative to raw pixel time series. Our segmentation software is publicly available (key resources table).

METHOD DETAILS

Definition of time-resolved correlation
All our analyses used mean-centered (demeaned) node time series. We defined lag-k time-resolved correlation ri;k at timepoint i as

ri;k =
ðxi� k � Cxi� kDÞuðxi � CxiDÞ
kxi� k � Cxi� kDkkxi � CxiDk

where xi ˛Rn31 denotes the n-dimensional activity of all nodes at timepoint i; CxiD and kxik denote the mean and norm of this activity,

and k is an integer lag. Note that lag-k time-resolved correlation averaged over all timepoints relates to lag-k autocorrelation averaged

over all nodes, as follows,

1

t

Xt

i = 1

ri;kz
1

n

Xn

j = 1

sj;k ; (Equation 1)

where sj;k is lag-k autocorrelation of node j. This approximation holds because both quantities in Equation 1 represent averaged dot

products, normalized either over the activity of all nodes at a single timepoint (time-resolved correlation), or over the activity of a single

node at all timepoints (node autocorrelation). However, this relationship holds only for the averaged quantities — the non-averaged

versions of these quantities are incommensurate because time-resolved correlation is defined on timepoints, while autocorrelation is

defined on nodes.

Nullspace sampling: General formulation
Our method uses insights from linear algebra to uniformly sample the solution space of an underdetermined linear system. This

method allows us to constrain time-resolved correlation, variance, and mean by encoding these constraints in systems of linear

equations. We first describe the general formulation of nullspace sampling and then describe specific algorithms for generating

time-resolved constraints for the models in this study.

Consider a linear system

Ax = b; (Equation 2)

where x˛Rn31 is an empirical data vector, A˛Rm3n is a matrix that encodesm features of interest, and b˛Rm31 denotes empirical

values of these features. Let us assume, without loss of generality, that them features of interest are linearly independent or, equiv-

alently, that the matrix A has rank m.

Our method samples vectors ~x that match empirical features of interest, such that

A~x = b;

where the ~: operator denotes model (rather than empirical) vectors.

Note that the number of featuresm will in general be much smaller than the number of elements n. This implies that the system in

Equation 2 has infinitely many solutions. The space of these solutions is affinely spanned by orthonormal unit vectors that form the

basis of the nullspace of the matrix A;Z˛Rn3ðn�mÞ, such that ZuZ = I and AZ = 0, where I is the identity matrix and 0 is a matrix of

zeros.86 Let us now define ~x as points on this solution space,

~x = x� +dZq; (Equation 3)

where x� is the unique minimum-norm solution, d is a scaling constant, and q˛Rðn�mÞ31 is a unit-norm weighting vector.

Here, we sampled ~x in two steps. First, we computed the nullspace matrix Z, and the minimum-norm solution x� = Ayb where $y

denotes the Moore-Penrose pseudoinverse.86 We also computed the scaling parameter d to restrict our sampling to all ~xwith empir-

ical norm, k~xk = kxk. Note that, by the fundamental theorem of linear algebra, the minimum norm solution x� is orthogonal to all

column vectors in Z. Because the additive components in Equation 3 are orthogonal, and because kqk = 1, we used Pythagoras

theorem to set d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxk2 �kx�k2

q
and thereby ensure that k~xk = kxk.
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Second, we uniformly sampled weighting vectors q from the n � m dimensional standard normal distribution, and rescaled these

vectors to have unit norm. This sampling guarantees to produce uniformly distributed random samples of q.87

Nullspace sampling: Time-resolved correlation
We used a sequential variant of nullspace sampling to efficiently sample data constrained by lag-k time-resolved correlation, vari-

ance, andmean. For k = 1, we first sampled ~x1 to have empirical mean and norm.We then sampled ~xi ði = 2;.tÞ, to have empirical

mean, norm, and dot product with ~xi� 1. We encoded these constraints as,

h
1 x

�
i� 1

iu
x
�
i =

h
nCxiD x

�
i� 1$x

�
i

i
and kx�ik = kxik (Equation 4)

where 1 denotes a vector of ones.

In practice, this sequential generation ofmodel time series required nullspacematriceswith approximately n2 elements, and scaled

linearly with the number of timepoints t. We computed these nullspaces using the singular value decomposition, with computational

complexity of Oðn2Þ. Since we iteratively solved t � 1 equations, the computational complexity for our algorithm is Oðn2tÞ. In prac-

tice, this approach was feasible for intracranial EEG data ðn � 100Þ, where it outperformed constrained randomization methods. On

the other hand, the approach was not feasible for brain-wide cellular calcium imaging datasets ðn � 105Þ, which required the use of

constrained randomization methods.71,72,88

Nullspace sampling: Time-resolved variance and mean
To constrain variance and mean alone, we sampled ~xi such that

1u~xi = nCxiD and k~xik = kxik (Equation 5)

In this special case, we derived an analytical expression for the nullspace Z˛Rn3ðn� 1Þ,

Z =

0
BBBBBB@

�g �g �g . �g

b �a �a . �a

�a b �a . �a

�a �a b . �a

« « « « «
�a �a . �a b

1
CCCCCCA
;

where a; b and g denote solutions to the following set of equations:

�ðn� 2Þa+ b� g = 0;
ðn� 2Þa2 + b2 +g2 � 1 = 0; and
ðn� 3Þa2 � 2ab+g2 = 0:

One can directly verify that this linear system has a unique solution which ensures that Z is an orthonormal nullspace of

A = 1u. Specifically, the first equation above ensures that AZ = 0, while the second and third equations ensure that

ZuZ = I.

Phase randomization
Wegenerated phase-randomizedmodel data using awell-known algorithm from the physics and neuroscience literature.60,62 Briefly,

we first used the Fourier transform to compute the phase and amplitude of each time series. We then rotated the phase of all nodes at

each frequency by a random complex variable ei4 with 4 uniformly distributed in ½ � p;p�. Finally, we obtained model time series by

computing the inverse Fourier transform of these phase-randomized data. This method is guaranteed to generate maximally random

data that preserve nodal power spectra and full cross-correlation structure.

For the windowed phase-randomized model, we first partitioned each time series into non-overlapping windows of length 500

timepoints ðtwin = 500msÞ. We chose this window length for consistency with dynamical stability analyses (below). We then applied

the phase randomization algorithm to each windowed section of the time series. For zebrafish calcium imaging data, the low fre-

quency of calcium imaging required us to adopt a different window length of 50 timepoints ðtwin � 17sÞ.

Number of model constraints
We estimated the number of constraints in nullspace-based and phase-randomization based models. For this estimation, we

assumed that each dataset has n nodes and t timepoints. Nullspace-based models constrain the mean, variance, and optionally

the covariance, at each timepoint. This results in 2=n or 3=n, or at most 2 � 3% of all data points. By contrast, phase-randomization

based models constrained t=2 amplitudes for each node, and therefore 50% of all data points.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Dynamical stability analysis
We performed linearized dynamical stability analysis within temporally local time windows. We first divided the time series X˛ Rn3t,

into non-overlapping windows of length twin = 500 ms.29 We then fitted a time-invariant vector autoregressive model, representing a

linear dynamical system, separately for time series at each window k, Xk =
h
xk1 ; xk2 ;.xktwin

i
˛Rn3twin . The vector autoregressive

model is defined as,

xki + 1
= Akxki for i = 1;2;.twin

For each window, we first estimated the systemmatrixAk ˛Rn3n using least squares,89 and then computed the eigenvalues of this

matrix, lk ˛ Cn31. These eigenvalues tracked the dynamical stability of this system. Specifically, the presence of all eigenvalues

strictly inside the complex unit circle (kljkk< 1, for j = 1;2;.n) implies that the system is asymptotically stable, such that external

perturbations will decay exponentially. In contrast, the presence of some eigenvalues outside the complex unit circle
�
klj

kk> 1
�
im-

plies that the system is unstable and that external perturbations will grow exponentially. Finally, the presence of eigenvalues on the

complex unit circle
�
klj

kk � 1
�
, implies that the system is weakly stable and external perturbations will produce diverse responses.29

Amplitude of alpha oscillations
We estimated the amplitude of alpha oscillations in each region of the macaque dataset as follows. First, we normalized the regional

time series to have zero mean and unit standard deviation. Second, we divided this time series into 8 s non-overlapping windows.

Third, we filtered the signal used 1 s Hanning windows and a bandpass finite-impulse-response filter with frequencies 8 and 12Hz

(implemented in Fieldtrip toolbox). Finally, we computed the Hilbert transform of the filtered signal and derived the mean amplitude

over all regions within each window.

Power spectral analysis
We used Welch’s method to characterize the power spectral density over a relatively large frequency range between 1 and 80Hz. In

brief, power spectra were computed for each channel separately, using windowed time series convolved with Hanning windows of

length 6 s and then averaged over all windows.

There has been significant recent progress in the development of methods for estimating slopes of neural power spectra. Unlike

earlier methods, such as coarse grained spectral analysis,4 which were strictly applicable only to completely aperiodic signals,90

more recent methods, such as IRASA90 and Fitting Oscillations and One Over f (FOOOF),5 are able to estimate both periodic and

aperiodic signal components.

Here, we adopted FOOOF to estimate the spectral exponent of empirical and model time series. Formally, the algorithm estimates

PðfÞ =
10foffset

ðf + fkneeÞe

where P is the power spectrum, f is the frequency of interest, e is the scaling exponent, foffset is the offset frequency, and fknee is the

knee frequency.5 More details about the application of this method to the study of neural spectra is provided in a recent study.18 In

this study, we set the maximum number of peaks to 6, and the minimum peak height to 0.15.

Long-range temporal correlation analysis
Following initial preprocessing, we used the Fieldtrip toolbox to bandpass filter the data in the alpha (8–12Hz) frequency band, and

applied the Hilbert transform to extract time-resolved amplitude at each electrode. We then used detrended fluctuation analysis to

estimate amplitude scaling coefficients from these time-resolved amplitude time series.68 Detrended fluctuation analysis is especially

suitable for analysis of neurophysiological time series because it is unaffected by nonstationary structure. In practice, given a time

series yj ˛R13t, we first defined the cumulative sum Yj as follows,

Yj
i =

Xt

i = 1

�
yji � tyj

�
:

where yj denotes the mean activity of node j. We then segmented the time series into non-overlapping segments of varying lengths

Dt. We considered a broad range of temporal windows, from 1 s to 3min, in order to robustly capture scaling behavior acrossmultiple

timescales.

For each timescale Dt, we computed FðDtÞ, the root-mean-square of the detrended cumulative signal Yj within each segment,

averaged over segments.
18 Cell Reports 42, 112254, April 25, 2023
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Finally, we fitted a power law of the form FðDtÞ = hDta. The value of the exponent a denotes the presence or absence of long-range

temporal correlations. A value between 0.5 and 1.0 is indicative of long range temporal correlations, while values close to 0.5 denote

an uncorrelated process.

For very long recordings, the DFA algorithm can be extremely slow. To overcome this problem, we implemented the DFA on

randomly chosen 120s segments of model and empirical datasets.

Avalanche analysis
Avalanche detection in electrophysiological datasets

In linewith previous studies, we binarized electrophysiological imaging datasets by setting to 1 deflections in local field potentials that

exceeded three standard deviations below the mean.64,91,92 We then detected, at each timepoint, bursts of temporally contiguous

coordinated activity in these binarized time series. Specifically, a new avalanche is instantiated if at least one of the constituent el-

ements becomes active. The avalanche propagates until none of the constituent elements are active. The size of an avalanche is

defined by the number of active constituent elements, and the duration of an avalanche is defined by the period of its activity.

Avalanche detection in calcium imaging datasets

In line with previous studies, we binarized calcium imaging datasets by setting to 1 deflections in calcium concentration that

exceeded three standard deviations above themean.34 The standardmethod for avalanche detection fails for brain-wide cellular res-

olution data because the large number of cells produce a single never-ending avalanche. In line with recent work, we used a method

to detect spatially contiguous avalanches from binarized zebrafish calcium imaging time series.34 More specifically, we detected

clusters of simultaneously active and spatially contiguous neurons. We used the MATLAB function bwconncomp to find these

clusters. We then formed neuronal avalanches by detecting clusters that shared cells at adjacent timepoints. In this way, we followed

the spatiotemporal structure of each avalanche as it started, propagated, and ended.

Power law fitting to avalanche distributions

Weassessed the presence of power-law scaling in avalanche distributions, by adopting themethods of Clauset et al.,58 implemented

by Rubinov et al.93 Specifically, we denoted the probability density function of avalanche size as pðNÞ,

pðNÞ =
N� t

zðt;NminÞ � zðt;Nmax + 1Þ
with a cumulative distribution function

PðNÞ =
zðt;NÞ � zðt;Nmax + 1Þ

zðt;NminÞ � zðt;Nmax + 1Þ
whereN is avalanche size, t is the scaling exponent,Nmin andNmax are the lower and upper cut-off sizes and zðt;NÞ = PN

i = 0ði +NÞt is
the generalized Hurwitz zeta function. The functions incorporate an upper cut-off Nmax because all empirical distributions are neces-

sarily bounded by system size.7 We defined the probability distributions for avalanche durations in exactly the same way. We then

estimated the exponents of avalanche sizes and durations using the method of maximum likelihood.58,93

Exponent scaling and shape collapses

We quantified power-law exponents between mean avalanche size for a given avalanche duration. We estimated the slope of this

power law using linear regression in log-log coordinates.69 Finally, we quantified avalanche shape collapses by averaging all

avalanches of a given duration in a single recording. We rescaled collapsed avalanche shapes to have unit area and avalanche

durations to have unit length.
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