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SUMMARY

Much of systems neuroscience posits the functional importance of brain activity patterns that lack natural
scales of sizes, durations, or frequencies. The field has developed prominent, and sometimes competing,
explanations for the nature of this scale-free activity. Here, we reconcile these explanations across species
and modalities. First, we link estimates of excitation-inhibition (E-1) balance with time-resolved correlation of
distributed brain activity. Second, we develop an unbiased method for sampling time series constrained by
this time-resolved correlation. Third, we use this method to show that estimates of E-| balance account for
diverse scale-free phenomena without need to attribute additional function or importance to these phenom-
ena. Collectively, our results simplify existing explanations of scale-free brain activity and provide stringent
tests on future theories that seek to transcend these explanations.

INTRODUCTION

Coordinated neuronal interactions give rise to intricate patterns
of distributed brain activity. Much of systems neuroscience
seeks to understand the organization and function of these pat-
terns. Studies in the field often do so by situating these patterns
within long-standing experimental or theoretical frameworks.

One such framework centers on the study of phenomena that
lack typical scales of size, duration, or frequency.'™ These
scale-free phenomena show up as functions or distributions
that resemble straight lines on log-log plots. Scale-free phenom-
ena in systems neuroscience include arrhythmic 1/ f power
spectra,®® long-range temporal correlations,® and heavy-tailed
avalanche distributions”~® of brain activity. Systems neurosci-
ence has developed distinct explanations for the nature and
origin of these phenomena.

One prominent explanation has proposed that slopes of scale-
free 1/f power spectra reflect the balance of neuronal excitation
and inhibition, or excitation-inhibition (E-I) balance.' E-l balance
is essential to neural function because it allows neuronal respon-
siveness but prevents runaway excitation."' On a molecular

level, this balance largely reflects the interaction of glutamatergic
excitation, mediated by fast AMPA-receptor kinetics, and
GABAergic inhibition, mediated by slow GABAa-receptor ki-
netics.'>'* Gao et al.'® presciently noted that these distinct
excitatory and inhibitory kinetics make it possible to infer E-I bal-
ance from slopes of 1/f power spectra. Specifically, increased
excitation implies preponderance of faster signaling, greater
high-frequency power, and correspondingly more positive 1/f
slopes, or flatter 1/f lines. Correspondingly, increased inhibition
implies preponderance of slower signaling, greater low-fre-
quency power, and correspondingly more negative 1/f slopes,
or steeper 1/f lines. The link between E-| balance and slopes
of 1/f spectra has been robustly observed in intracranial’>'®
and extracranial'”'® electroencephalography (EEG) recordings,
and with causal evidence based on optogenetic,'® chemoge-
netic,”® and transcranial®’ stimulation. Collectively, this literature
anchors one scale-free phenomenon to a neurobiological mech-
anism, even as it does not seek to explain the nature and origin of
scale-free phenomena more generally.

Separately, another prominent explanation has proposed that
diverse scale-free phenomena reflect critical dynamics.?*** This
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explanation posits that brain activity self-organizes®* or homeo-
statically tunes®® to a critical point on the border of stable and
unstable states.’®?” Theoretical considerations suggest that
critical dynamics show highly varying responses to perturba-
tions,”> and give rise to 1/f power spectra,”® scale-free
avalanche distributions,” long-range temporal correlations,®
and weak dynamical stability.?® Critical dynamics have many
theoretically appealing properties, including optimized detec-
tion®**! and transformation”*? of sensory input. A range of
studies have correspondingly linked these dynamics with
optimal brain function®® and deviations from these dynamics
with pathological changes, including disrupted neuronal excit-
ability,”>** loss of consciousness,* and seizures.** Collectively,
this literature explains the nature and origin of diverse scale-free
activity, even as the theoretical nature of such explanations
makes them contested and controversial.***°

These two major interpretations of scale-free phenomena
remain unreconciled. On the one hand, studies that emphasize
links between E-I balance and slopes of 1/f spectra consider
other scale-free phenomena to have distinct nature or origin.?
For example, Lendner et al.*' observed that “[scale-free] long-
range temporal correlations of neuronal oscillations or the size
and duration of neuronal avalanches [...] likely have a different
neurophysiological basis than the 1/f drop-off of the power
spectrum.” On the other hand, studies that emphasize links
between critical dynamics and diverse scale-free phenom-
ena”® do not necessarily consider that critical dynamics reflect
E-1 balance.*” For example, Tagliazucchi et al.*® observed that
“long-range temporal correlations and 1/f spectra are generic
features predicted by self-organizing criticality, a theory of col-
lective interactions that naturally accounts for many empirical
observations about brain activity at different scales [including]
the presence of long-range spatial correlations, [and] power-
law-distributed avalanches of activity.” Finally, other studies
propose that E-I balance facilitates critical dynamics** to opti-
mize brain function®® and in this way implicitly support both
interpretations. For example, Ma et al.>® observed that “criti-
cality [is] a computationally attractive network regime poised
at a phase transition between excitation and inhibition.”
Some of these studies have shown that disruptions of E-I bal-
ance—with drugs”*°°*"** or surgery®>—robustly disrupt signa-
tures of critical dynamics. However, the resulting attribution of
independent function to E-I balance and criticality risks ex-
plaining the same aspect of the data twice.”® Collectively,
this lack of consensus has resulted in an extensive literature
of intriguing but inconclusive findings.

Here, we reconciled this literature in three steps. First, we
defined a measure of time-resolved correlation between pat-
terns of distributed brain activity at adjacent points. We showed
that this simple measure accurately reflects 1/f-based estimates
of E-l balance. Second, we developed methods to sample model
time series constrained by time-resolved correlation. These
methods allowed us to go beyond statistical associations and
test the redundancy of scale-free phenomena with estimates
of E-l balance. Third, we showed that these estimates can
account for diverse scale-free phenomena across species and
modalities without the need to make additional assumptions
about the function or importance of these phenomena. Collec-
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tively, our results simplify and unify existing explanations of
scale-free phenomena in systems neuroscience.

RESULTS

We focused our analyses on recordings with intracranial EEG
modalities, namely stereotactic EEG and electrocorticography
(Table 1). These recordings are optimally suited to the study of
scale-free phenomena by their combination of millimeter-scale
spatial resolution, millisecond-scale temporal resolution, and
distributed cortical coverage.*® In practice, we analyzed and
modeled highly sampled datasets that each comprised approx-
imately 1 million time points recorded from around 100 depth
(stereotactic EEG) or grid (electrocorticography) cortical elec-
trode channels. In addition to these recordings, we also followed
the recent literature to test scale-free phenomena in light-sheet
calcium imaging of fictively swimming zebrafish.®* The spatio-
temporal resolution of light-sheet calcium imaging data provides
a unique opportunity to model brain-wide activity with cellular
resolution.*” Nonetheless, the large number of neurons, the
small number of time points, and the low temporal resolution
of these data presented unique modeling challenges, as we
discuss below.

Time-resolved correlation reflects 1/f estimates of E-I
balance

We defined a measure of time-resolved correlation as
corr(x;_x, X;), Where corr is the Pearson correlation coefficient,
X; is a vector of distributed brain activity at time point /i, and k
is an integer lag. In this section, we motivate this simple measure
as a brain-wide and time-resolved analog of 1/f-based esti-
mates of E-I balance (Figure 1A). In subsequent sections, we
leverage this relationship to sample time series constrained by
time-resolved correlation and in this way test the redundancy
of scale-free phenomena with estimates of E-I balance.

We first noted that the full autocorrelation function of individual
time series is directly related to the slope of 1/f power spectra
of these time series, as described by the celebrated Wiener-
Khinchin theorem.®?> Moreover, analytical approximations of
this relationship show that lag-k autocorrelation for individual in-
tegers k are likewise directly related to the slope of 1/f.°° At the
same time, the temporally agnostic definition of autocorrelation
cannot capture time-resolved changes in E-l balance, while its
spatially specific definition contrasts with the brain-wide nature
of some scale-free phenomena.

To overcome these shortcomings, we noted that lag-k auto-
correlation averaged over all nodes approximately equals lag-k
time-resolved correlation averaged over all time points (STAR
Methods). This approximation only holds for averaged quanti-
ties—the non-averaged versions of these quantities are incom-
mensurate because time-resolved correlation is defined on
time points, while autocorrelation is defined on nodes. Figure 1A
summarizes the links between time-resolved correlation and
1/f-based estimates of E-I balance, while Figure 1B illustrates
the dynamics of this measure in a subsampled macaque electro-
corticography recording. Figure 1C shows that lag-1 time-
resolved correlation is unimodally distributed close to its
maximal value of 1, reflecting gradual changes in distributed
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Table 1. Properties of analyzed and modeled datasets

Species, experiment,

modality Nodes

Tested phenomena,
sampling rate

Datasets (nodes x
time points)

Macaque monkey, anesthesia,
electrocorticography*®

grid electrode channels distributed

) over a cortical hemisphere
Macaque monkey, resting

state, electrocorticography*®

Humans, working memory
task, intracranial EEG
(electrocorticography
and/or stereotactic EEG)*°

Humans, resting state,
stereotactic EEG™°

grid and/or depth electrode channels
distributed over parts of frontal and
temporal cortex

depth electrode channels distributed
over diverse cortical regions

neurons distributed over the
whole brain

Zebrafish, fictive swimming,
light-sheet calcium imaging®’

critical dynamics, 1,000 Hz. We followed
previous work>® that established this
sampling rate as a lower bound for
detection of critical dynamics in
empirical data

128x (1.5 million
128x (1.5 million
128x (1.5 million
128x (1.5 million

(ARG A Y —

128x (1 million)
128x (1 million)
128x (1 million)
128x (1 million)
84 x (1 million)

110x (764,000)
106x (840,000)
126 % (812,000)
148x (1 million
157x (1 million
166x (1 million,
186x (1 million
(110,000) x 7,100
(117,000) x 5,200

scale-free phenomena, 1,000 Hz.
We adopted this sampling rate for
consistency with tests of dynamical
phenomena. Our results were robust
to tests at a lower sampling rate

of 250 Hz

)
)
)
)

some scale-free phenomena, ~3 Hz.
We followed previous work®* to adopt
a modified avalanche-detection
procedure most suitable for analysis
of brain-wide light-sheet calcium
imaging data

brain activity over time. The measure gradually drops with lower
sampling rates and is considerably lower for calcium imaging
data. Figures S1-S4 show the relationship of time-resolved cor-
relation and other basic properties of the neurophysiological
signal.

We next directly tested the link between time-resolved corre-
lation and changes in E-I balance in four electrocorticography
recordings of macaque monkeys across consciousness and
propofol anesthesia. Propofol anesthesia alters E-I balance in
large part by potentiating inhibitory GABAa receptors.®* Previ-
ous analyses of this macaque dataset used it as a benchmark
to test the effects of 1/f-based estimates of E-l balance."® Other
analyses of these data have linked these changes to cortex-wide
reductions to other electrophysiological properties, including the
amplitude of alpha oscillations.*®

Figures 1D-1G shows that lag-1 time-resolved correlation
robustly tracked these estimates across all recordings. The
median [95% uncertainty interval] correlation pooled over the
four recordings was 0.987 [0.977, 0.992] in the 1-min interval pre-
ceding injection of propofol and 0.938 [0.767, 0.978] in the 1-min
interval immediately following the onset of anesthesia, based on
video observation®® (o < 10~ 1°, Wilcoxon rank-sum test). Indeed,
this metric dropped to even lower values at the peak effect time
of propofol, roughly 2 min after injection.®® These changes
strongly correlated with previously reported reductions in alpha
amplitude in this dataset.”® Moreover, the smaller relative drop
of this correlation in monkey 2 (Figures 1F and 1G) matched
previous observations that this monkey was not fully anesthe-
tized.”” These findings provide additional evidence for the link
between time-resolved correlation and 1/f-based estimates of
E-I balance.

Sampling time series constrained by time-resolved
correlation

We next tested the redundancy of scale-free phenomena with
time-resolved correlation, and by extension with estimates of
E-l balance. Studies to date have not performed this important
test. Instead, studies have typically tested the presence of
scale-free phenomena in model time series constrained by trivial
properties of brain activity, generated through simple randomi-
zation (shuffling) of empirical time series. Such tests, however,
do not constitute rigorous statistical evidence for the signifi-
cance of scale-free phenomena.®”*®

Here, we designed more rigorous tests by developing a
method for sampling time series constrained by time-resolved
correlation, variance, and mean. Our method is unbiased and
efficient: it samples data with no extraneous assumptions, and
scales to long neurophysiological recordings. We informally
describe the method here and provide extensive mathematical
detail in the STAR Methods.

We formulated the sampling problem as a set of t — 1 under-
determined sets of equations. We solved these equations
sequentially, by using the solution of equation at time /i — k to
define the equation at time i (Figure 2A). Our problem then
reduced to the sampling of brain activity patterns at time i con-
strained by empirical correlation of these patterns to brain activ-
ity patterns attimei — k. We solved this problem by expressing it
as a system of linear equations. We computed the nullspace of
the coefficient matrix, Z, and used this nullspace to parameterize
the solution space to our problem. The schematic in Figure 2A
shows the geometry of this space in three dimensions. The
colored plane in this schematic represents the solution space,
such that each point in this plane represents a solution to our
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(A) Analytical links between time-resolved correlation and 1/f-based estimates of E-I balance. See the main text for details.
(B) Fluctuations of time-resolved correlation in a spatiotemporally subsampled macaque electrocorticography recording. Scatterplots show temporally adjacent
patterns of distributed brain activity. Numbers denote corresponding values of time-resolved correlation, and the thick gray line shows the dynamics of time-

resolved correlation over time.

(C) Distributions of lag-1 time-resolved correlation pooled across all intracranial EEG recordings (sampled at 1,000, 500, and 250 Hz), and separately for brain-

wide calcium imaging data (sampled at ~3 Hz).

(D-G) Lag-1 time-resolved correlation tracks changes between consciousness and propofol anesthesia across two electrocorticography recordings of two
macaqgue monkeys. (Left) Dark-purple intervals denote 1-min intervals immediately prior to injection of propofol. Light-purple intervals denote 1-min periods
immediately following onset of anesthesia based on video observation. (Center) Violin plots of time-resolved correlation densities within shaded light-blue and
dark-blue periods. (Right) Corresponding scatterplots of alpha amplitude and time-resolved correlation, averaged over 8-s windows.

problem. We uniformly sampled vectors x from this solution
space by expressing these vectors as the sum of two vectors:
X*, a unigue minimum-norm solution, and dZq, where q is a uni-
formly sampled weighting vector and d is a scaling parameter.
The sequential nature of this sampling made our method efficient
relative to randomization methods that require the simultaneous
solution of all constraints. Specifically, our method scaled line-
arly with the number of time points and quadratically with the
number of nodes (STAR Methods) and was therefore especially
well suited to long neurophysiological recordings we considered
in this work.

Summary of models

Our primary model was constrained by time-resolved correla-
tion, variance, and mean. We tested this model against four
competing models defined with nullspace sampling, phase
randomization, and frame-randomization methods. We now
summarize the properties of these models in turn.

4 Cell Reports 42, 112254, April 25, 2023

Nullspace-sampling models

Our primary model was constrained by lag-k time-resolved cor-
relation, variance, and mean. While our study primarily focuses
on the importance of time-resolved correlation, nullspace
sampling cannot constrain this property without also constrain-
ing the time-resolved variance and mean. Therefore, and in order
to test the effects of time-resolved correlation relative to these
more basic properties, we also considered a control model
constrained by time-resolved variance and mean but not by
time-resolved correlation. We set k = 1 for all analyses except
for analyses of calcium imaging data, as discussed below.
Phase-randomization models

We considered a popular®?%°7°°1  phase-randomization
method that constrains a large, and somewhat indiscriminate,
number of empirical features, including power spectra of each
node and lagged correlations between all pairs of nodes across
all possible integer time lags.®® Despite the many constraints, a
default version of this method is not time resolved. To circumvent
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Figure 2. Method to sample time series constrained by time-resolved correlation

(A) Flowchart and visualization of nullspace sampling. See the text for an informal description, and STAR Methods for mathematical detail.

(B) Properties of the windowed phase-randomization model, and the time-resolved correlation, variance, and mean model. Both models performed similarly well,
but time-resolved correlation, variance, and mean constraints were fewer in number and easier to interpret. These constraints also generated data that were
devoid of spatial correlations and in this way were considerably different from empirical recordings.

this problem, we also considered a windowed extension of this
method in which we segmented individual recordings into hun-
dreds of windows and used phase randomization to sample
data independently within each window.
Frame-randomization models

For completeness, we also considered a simple frame-random-
ization method that constrains exact brain activity patterns
within each individual time frame but randomizes the order of
the time frames.

In what follows, we found that time-resolved correlation and
windowed phase-randomization models, but not the other evalu-
ated models, accounted for diverse scale-free phenomena. Fig-
ure 2B illustrates these models relative to empirical data. Note
that windowed phase-randomization constraints amounted to
50% of data points (STAR Methods), were difficult to interpret,
and generated data that were quite similar to empirical recordings.
By contrast, time-resolved correlation, variance, and mean con-
straints amounted to 3% of data points (STAR Methods), were
linked with 1/f estimates of E-l balance, and generated data
that were considerably different from empirical recordings. For
these reasons, much of our subsequent discussion focuses on
time-resolved correlation, variance, and mean, as well as its
control comparisons with time-resolved variance and mean.

Time-resolved correlation accounts for critical
dynamics

We first evaluated the extent to which time-resolved correlation,
variance, and mean constraints induced weak dynamical stabil-

ity, a signature of critical dynamics.®® We followed previous work
to estimate dynamical stability using the eigenvalue spectrum of
a time-resolved vector autoregressive model,”®?*%* a locally
linear approximation of distributed brain activity. Theory predicts
that weakly stable dynamics balance on the edge of order and
disorder and have largest eigenvalues with magnitudes that
approach 1. Conversely, strongly stable dynamics decay quickly
and have largest eigenvalues with smaller magnitudes. Corre-
spondingly, previous stability analyses of macaque electrocorti-
cography recordings from Figures 1D-1G linked consciousness
with weakly stable dynamics and propofol anesthesia with
strongly stable dynamics.?®-°":°

Figure 3 (see also Figures S5-S8) shows that time-resolved
correlation, variance, and mean constraints accounted for these
dynamical changes. We quantified dynamical stability by the
median magnitude of the 5% largest eigenvalues. Stability esti-
mates pooled across four empirical recordings showed that
this index had a median [95% uncertainty interval] of 0.996
[0.989, 0.998] during an interval of consciousness and 0.985
[0.969, 0.993] during an interval of anesthesia. Similarly, time-
resolved correlation, variance, and mean constraints accounted
for weakly stable dynamics of 0.994 [0.992, 0.996] during con-
sciousness and more strongly stable dynamics of 0.985 [0.936,
0.993] during anesthesia. This difference in stability fell within
the empirical range (p = 0.492 that the difference in stability of
model data was at least equal to the difference in stability of
empirical data). By contrast, time-resolved variance and mean
constraints alone resulted in strongly stable dynamics across
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Figure 3. Time-resolved correlation accounts for changes in
dynamical stability across consciousness and propofol anesthesia
(A) Fluctuations of time-resolved correlation for model data of a representative
electrocorticography recording.

(B) Dynamical stability index, the median value of the 5% largest eigenvalues,
for the same recording. Note the strong correlation of time-resolved correla-
tion with dynamical stability.
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both consciousness (0.560 [0.541, 0.586]) and anesthesia (0.612
[0.583, 0.647]), implying the importance of time-resolved corre-
lation for critical dynamics.

Separately, windowed phase-randomization constraints
accounted for weakly stable dynamics. Note, however, that
this result is somewhat trivial because these constraints are
expected to preserve the autoregressive coefficients, and there-
fore the eigenvalues, by definition. By contrast, standard (non-
windowed) phase-randomization constraints accounted for
weakly stable dynamics (0.994 [0.989, 0.998]) during conscious-
ness but showed negligible change in stability (0.994 [0.989,
0.998]) during anesthesia (p <0.001).

Time-resolved correlation accounts for scale-free
phenomena

We next evaluated the extent to which time-resolved correlation
accounted for 1/f power-frequency relationships and long-
range temporal correlations, two commonly studied scale-free
phenomena. 1/f denotes the decay of spectral power as a func-
tion of frequency. This scale-free, or arrhythmic, power-fre-
quency relationship is distinct from neuronal oscillations, which
represent narrow peaks in frequency spectra.

Figures 4A-4C show that, in line with previous observa-
tions,*®%%” we found robust 1/f scaling of spectral power in a
broad 1- to 80-Hz frequency range. Specifically, we found that
empirical data across all intracranial EEG recordings showed a
median [95% uncertainty interval] exponent values of 2.788
[1.592, 4.156]. In line with our theoretical considerations
(Figure 1A), time-resolved correlation, variance, and mean
constraints accounted for this 1/f scaling, with corresponding
exponents of 2.247 [1.885, 2.900] across all intracranial EEG re-
cordings. The values of these exponents were considerably
more uniform because time-resolved constraints are spatially
agnostic. Nevertheless, these values were in line with empirical
values (p = 0.228 that model exponents were at least equal to
corresponding empirical exponents). By contrast, time-resolved
variance and mean constraints alone did not result in 1/f scaling
(Figures 4A-4C and S9-S20), implying the importance of time-
resolved correlation for this scaling.

We next considered long-range temporal correlations, scale-
free phenomena that track the statistical self-similarity of long
time series. Typically, these correlations are defined by the
scaling exponent of mean fluctuations in the amplitude envelope
in alpha or beta frequency bands, using detrended fluctuation
analysis, a method especially suitable to analysis of non-station-
ary time series.®® The scaling exponent between window sizes

(C and D) Phase and magnitude of eigenvalues of a vector autoregressive
model fit to a single window from periods of consciousness and anesthesia
(shaded intervals in B, equivalent to intervals in Figures 1D-1G). Note the
anesthesia-associated drop of dynamical stability in model data constrained
by time-resolved correlation.

(E and F) Dynamical stability index across all empirical and model data, pooled
over all recordings and averaged over all windows denoting periods of con-
sciousness (E) and anesthesia (F).

Results for model data were derived using 50 samples for each model of each
dataset. For completeness, Figures S5-S8 show individual results for all model
datasets.
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A Human SEEG B Human IEEG C Macaque ECoG Figure 4. Time-resolved correlation accounts for
empirical 1/f scaling and long-range temporal
correlations

(A-C) Top two panels show 1/f scaling of spectral power
as a function of frequency for two channels of represen-
tative intracranial EEG recordings. Insets show violin plots
of 1/f slope exponents benchmarked against empirical
exponents (solid black lines). Bottom panels show violin
plots of exponents pooled across all channels and all
empirical and model datasets.

(D-F) Top panels show scaling of time-resolved amplitude
as a function of window for two representative channels.
Insets show violin plots of scaling exponents, bench-

& marked against empirical exponents (solid black lines).
>1 Bottom panels show violin plots of all exponents pooled
= across all channels and all empirical and model datasets.
g Results on model time series were derived using 50
n? samples for each model of each dataset. For complete-

ness, Figures S9-S20 show individual results for all
10-4 . . . empirical and model datasets. SEEG, stereotactic EEG;
1 0O 1 01 1021 00 Freq. (HZ) 1 021 00 1 01 102 IEEG, intracranial EEG; ECoG, electrocorticography.
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and mean fluctuations indexes the presence of statistical self-
similarity. Values of this exponent considerably larger than 0.5
denote scale-free (fractal-like) structure. By contrast, values
close to 0.5 denote random (white-noise-like) structure.®

Figures 4D-4F and S9-S19 show robust power-law scaling for
mean fluctuations in amplitude for all empirical datasets in the
alpha frequency band (results were similar for the beta frequency
band, Figure S20). The scaling exponents for empirical datasets
were within the range previously reported in the literature. Spe-
cifically, we found that empirical recordings across all intracra-
nial EEG modalities showed a median [95% uncertainty interval]
exponent value of 0.691 [0.549, 0.884].

Time-resolved correlation, variance, and mean constraints
accounted for similar exponents across all intracranial EEG re-
cordings (0.671 [0.544, 0.825], p = 0.430 that model exponents
were at least equal to corresponding empirical exponents). In
this case, however, time-resolved variance and mean con-
straints alone also resulted in similar exponents (0.711 [0.559,
0.914], p = 0.632), implying that time-resolved correlation was
not important for this result.

Time-resolved correlation accounts for avalanche
statistics
Neural avalanches are transient periods of coordinated activity
between groups of neurons or brain regions. The study of
avalanche dynamics plays a prominent role in the theory of neu-
ral criticality. One commonly studied phenomenon in this litera-
ture is the power-law scaling of avalanche size and duration
distributions. Recent work has also emphasized more specific
signatures of criticality, including power-law relationships be-
tween size and duration exponents,® as well as shape collapse,
a universal scaling relationship of avalanche phase with activ-
ity.>*®%7° Shape collapse, in particular, is a strict criterion of neu-
ral criticality, obtained through averaging hundreds or thousands
of individual avalanches. Theory predicts that, at criticality,
collapsed temporal profiles of avalanches will converge to a uni-
versal shape independent of avalanche duration.®®%%7°

We first evaluated the presence of avalanche phenomenain all
intracranial EEG datasets. Figure 5 shows robust signatures of
power-law scaling for avalanche sizes, durations, and size-dura-
tion relationships. Specifically, across all intracranial EEG data-
sets, avalanche sizes decayed with a median [95% uncertainty
intervall] power-law exponent of 1.310 [1.100, 1.390].
Correspondingly, avalanche durations decayed with an expo-
nent of 1.280 [1.000, 1.390]. Finally, avalanche sizes scaled as
a function of avalanche durations with an exponent of 1.487
[1.144,1.863].

Time-resolved correlation, variance, and mean constraints ac-
counted for similar avalanches with exponents of 1.290 [1.050,

¢? CellPress
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1.377] (p = 0.465 that model exponents were at least equal to
corresponding empirical exponents) for avalanche sizes, 1.260
[1.000, 1.360] (p = 0.515) for avalanche durations, and 1.519
[1.397, 1.823] (p = 0.620) for scaling of size as a function of
duration. By contrast, time-resolved variance and mean
constraints resulted in exponents that were considerably
different from observed empirical values of avalanche sizes
(1.830 [1.790, 1.890], p>0.999) and durations (2.030 [1.990,
2.090], p>0.999), but not for scaling of size as a function of dura-
tion (1.569 [1.512, 1.787], p = 0.758). This implies the impor-
tance of time-resolved correlation for a substantial part of this
result.

Figure 6 shows that empirical data exhibited avalanche shape
collapses indicative of universal scaling. Time-resolved correla-
tion, variance, and mean constraints accounted for similar shape
collapses. The mean avalanche temporal profiles in these model
data all peaked at similar times. Indeed, the variance between re-
scaled avalanche shapes had a median [95% uncertainty inter-
val] of 0.447 [0.187, 0.747] for empirical data and 0.516 [0.228,
0.777] (p = 0.631 that model variance was at least equal to cor-
responding empirical variance) for model data constrained by
time-resolved correlation. Time-resolved variance and mean
constraints produced a similar result (1.569 [1.512, 1.787] p =
0.758) although, as Figure 6 shows, shape collapses were
more variable in human EEG recordings.

Time-resolved correlation of brain-wide calcium

imaging data

Finally, we sought to evaluate scale-free phenomena in calcium
imaging recordings of fictively swimming zebrafish. These data
provide an unmatched spatiotemporal resolution of brain-wide
cellular activity.*” At the same time, the distinct nature of these
data (Table 1) present several methodological challenges.
Specifically, in contrast to intracranial EEG recordings, brain-
wide calcium imaging recordings had many more nodes
(approximately 100,000), many fewer time points (approximately
6,000), and were imaged at a relatively low frequency (approxi-
mately 3 Hz). The large number of nodes imposed memory re-
quirements which precluded the use of nullspace sampling
and required the adoption of memory efficient but slower con-
strained randomization methods.”""> The small number of time
points limited our evaluation to avalanche phenomena, in line
with recent work.** The low-frequency imaging resulted in
considerably lower values of time-resolved correlation (Fig-
ure 1C). We compensated for this drop in correlation by con-
straining time-resolved correlation between a single frame and
its four adjacent neighbors. Finally, standard avalanche-detec-
tion methods in these data resulted in a trivial detection of a sin-
gle never-ending brain-wide avalanche. We compensated for

Figure 5. Time-resolved correlation accounts for avalanche statistics

(A-D) Avalanche size probability distributions.
(E-H) Avalanche duration probability distributions.
(I-L) Scaling of avalanche size and duration exponents.

Inset violin plots show normalized distributions of model exponents, benchmarked against empirical exponents (solid black lines). Bottom panels show violin
plots of all empirical and model exponents pooled across all empirical and model datasets. Results on model data were derived using 50 samples for each model
of each dataset. For completeness, Figures S21-S33 show individual results for all empirical and model datasets. SEEG, stereotactic EEG; IEEG, intracranial

EEG; ECoG, electrocorticography; Ca, calcium imaging.
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Figure 6. Time-resolved constraints ac-
count for universal shape collapse

(A-D) Shape collapses: scaling of mean temporal
profiles with avalanche activity. Bottom panels
show violin plots of all empirical and model vari-
ance between avalanche scaling profiles (lower is

better). Results on model data were derived using
50 samples for each model of each dataset. For
completeness, Figures S21-S33 show individual
results for all empirical and model datasets. SEEG,

stereotactic EEG; IEEG, intracranial EEG; ECoG,
electrocorticography; Ca, calcium imaging.

DISCUSSION

An extensive literature in systems neuro-
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science has probed the origin, nature,
and function of scale-free phenomena.
One part of this literature has narrowly in-
terpreted one scale-free phenomenon,
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E-I balance. Another part has broadly in-
terpreted diverse scale-free phenomena
in terms of critical dynamics. Other parts
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of the literature have attributed distinct
or complementary functions to E-l bal-
ance and critical dynamics.

Here we reconciled these distinct in-
terpretations in three ways. First, we
analytically and numerically linked

Variance of
shape collapse

® empirical
time-resolved corr/var/mean
® windowed phase rand

this problem by adopting a spatially contiguous definition
of avalanches,®* which penalizes spatially non-specific con-
straints, such as time-resolved correlation.

These caveats aside, our modeling results on these datasets
were generally in line with results on intracranial EEG data. Fig-
ures 5, S32, and S33 show that empirical calcium imaging
avalanche sizes decayed as power laws with exponents 2.110
and 2.000, avalanche durations decayed as power laws with ex-
ponents 2.720 and 2.600, and avalanche sizes scaled as a func-
tion of durations with power-law exponents of 1.706 and 1.678.
Time-resolved correlation, variance, and mean constraints ac-
counted for similar median [95% uncertainty interval] values of
these exponents. Specifically, they resulted in an avalanche
size exponent of 2.105 [1.990, 2.220], a duration exponent of
2.445 [2.160, 2.720], and a size-duration scaling exponent of
1.893 [1.460, 2.947] (we do not report p values here because
we only have two values of empirical exponents). Likewise,
shape-collapse results were largely in line with those observed
on intracranial EEG datasets (Figures 6, S32, and S33).
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1/f-based estimates of E-I balance
with time-resolved correlation. Second,
we developed methods to sample time
series constrained by time-resolved
correlation and in this way tested the
redundancy of scale-free phenomena
with estimates of E-l balance. Third,
we showed that these estimates ac-
counted for diverse scale-free phenomena across modalities
and species.

Our results imply that diverse scale-free phenomena can arise
as a byproduct of aspects of E-I balance. E-l balance plays an
essential role in survival, much like core body temperature and
many other homeostatic mechanisms. By contrast, scale-free
phenomena have an uncertain function that is difficult to resolve
through experimental manipulation, in large part because
such manipulation primarily perturbs changes in E-lI bal-
ance.”?52931:34 These considerations suggest that the attribu-
tion of function to scale-free phenomena, without additional
evidence for this function, is premature because it violates the
principle of scientific parsimony.”® At the same time, our
methods offer a natural future way to probe this question in
more detail. Specifically, future high-resolution recordings in
behaving animals can falsify our interpretation by discovering
E-l regimes compatible with healthy function but not with
scale-free phenomena. The discovery of such a regime would
imply that scale-free phenomena occur independently of E-I
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balance and in this way support an independent function for
these phenomena.

Similarly, our results offer to simplify existing theoretical
frameworks in systems neuroscience. First, these results pro-
vide a roadmap for future neurobiological explanations of
scale-free phenomena. Specifically, we propose that ongoing
discovery of molecular, cellular, or circuit mechanisms of E-I bal-
ance will automatically shed light on similar mechanisms of
scale-free phenomena.'’"'®"* Second, our results provide an
additional perspective on regional variation of scale-free activ-
ity.4'15’41 This variation is related, although not equivalent, to
the notion of hierarchy of cortical time scales.”>~"® Our results
help explain this regional variation by noting that global, and
spatially agnostic, changes in time-resolved correlation auto-
matically give rise to scale-free regional activity. These findings
suggest that the focus on the regional contribution to these
changes may be equally judicious, and more parsimonious, in
the investigation of this activity. Third, our results have consider-
able implications for translational literature that centers on the
study of scale-free phenomena.?%®" Much of this literature seeks
to find alterations in scale-free phenomena across healthy and
diseased brain states.?®***> Qur findings show that time-
resolved correlation can offer a unified interpretation of these
outwardly distinct biomarkers.

Finally, our results were made possible by the development of
an efficient method to sample model data with time-resolved
constraints. As systems neuroscientists come up against bigger
and more highly resolved neurophysiological datasets, the
development of similar methods will become increasingly impor-
tant for rigorous analysis and modeling of these data. Ultimately,
we consider that widespread adoption of such methods will be
necessary to enable unified and cohesive explanations of distrib-
uted brain activity.

Limitations of the study

Our study has three main limitations. First, our sampling method
constrains time-resolved correlation, variance, and mean.
Therefore, by definition, the method also constrains time-
resolved covariance, cosine similarity, and dot product. Future
studies should evaluate the relationship of these related, yet
distinct, measures of similarity with estimates of E-I balance
and scale-free phenomena. Second, time-resolved correlation
varies with the temporal and spatial resolution of individual re-
cordings. Future studies should test our results across a range
of spatial and temporal resolutions. Third, the slope of 1/ f spec-
trum is an indirect estimate of E-I balance. Future studies should
test the relationship between time-resolved correlation and more
direct estimates of E-| balance, ideally excitatory and inhibitory
currents in circuit recordings from model organisms.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB The Mathworks www.mathworks.com

Python Python Software www.python.org

Custom software This study github.com/AdityaNanda/time_resolved_correlation
https://doi.org/10.5281/zenodo.7604194

FieldTrip Toolbox Oostenveld et al., 2011%? github.com/fieldtrip/fieldtrip

FOOOF Donoghue et al., 2020° github.com/fooof-tools/fooof

ARfit Schneider et al., 2001%° github.com/tapios/arfit

Voluseg Mu et al.” github.com/mikarubi/voluseg

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to Mika Rubinov (mika.rubinov@vanderbilt.edu).

Materials availability
No new materials were generated as part of this project.

Data and code availability
o Data from this study are available upon request.
® The main analysis code is publicly available (key resources table).
® Any additional information is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macaque electrocorticography (neurotycho)

Data were collected at the Laboratory for Adaptive Intelligence, Brain Science Institute, RIKEN.*®* Electrocorticography record-
ings were made from two male macaque monkeys before, during, and after administration of propofol anesthesia. Grid electrodes
were implanted on the frontal, parietal, temporal, and occipital lobes. These data are publicly available from http://www.
neurotycho.org.

Human intracranial EEG

Data were acquired at the University of California Irvine Hospital.*® Intracranial EEG recordings were made from adult patients with
epilepsy performing a visuospatial working memory task. Grid and/or depth electrodes were implanted in frontal and medial temporal
lobes. These data are publicly available from http://www.crcns.org.®®

Human stereotactic EEG

Data were acquired at Vanderbilt University Medical Center.*° Stereotactic EEG recordings were made from adult patients with ep-
ilepsy, one day after electrode implantation and before medication wean. The patients were instructed to keep their eyes closed and
remain awake for 20 min. Depth electrodes were implanted in cortical regions, depending on suspected seizure origin.

Zebrafish calcium imaging
Data were acquired at Janelia Research Campus, Howard Hughes Medical Institute.®" Light-sheet calcium imaging recordings were
made from fictively swimming larval zebrafish embedded in agarose. The fish swam against a fixed-velocity one-dimensional moving
stripe pattern, which represented virtual water flow. The imaging spanned almost all brain neurons expressing a genetically encoded
calcium indicator (GCaMP6f).
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Data preprocessing

Electrophysiology

We analyzed all recordings at their original sampling frequency of 1000Hz. Dynamical stability analyses necessitated this high sam-
pling rate.?®>” All recordings were highpass filtered with a cutoff of 0.5Hz using the bandpassfilter function from Fieldtrip toolbox.® In
addition, macaque electrocorticography data were notch-filtered at 50Hz and 100Hz to remove line noise. Likewise, human stereo-
tactic EEG and intracranial EEG data were notch-filtered at 60Hz and 120Hz to remove line noise.

Calcium imaging

All images were motion corrected, and cells were segmented in contiguous and overlapping three-dimensional blocks, using non-
negative matrix factorization with sparseness constraints.®' The resulting demixed and denoised cell segmentations showed higher
signal-to-noise ratio relative to raw pixel time series. Our segmentation software is publicly available (key resources table).

METHOD DETAILS

Definition of time-resolved correlation

All our analyses used mean-centered (demeaned) node time series. We defined lag-k time-resolved correlation r; at timepoint j as
r o= (xi—k - <xi—k>)T(xi - <Xi>)
=

' ik — K- llIx — (x))]]

where x; € R™*" denotes the n-dimensional activity of all nodes at timepoint i, (x;) and ||x;|| denote the mean and norm of this activity,
and k is an integer lag. Note that lag-k time-resolved correlation averaged over all timepoints relates to lag-k autocorrelation averaged
over all nodes, as follows,

1< 1
7 er.k =~ Sjk; (Equation 1)

where s; is lag-k autocorrelation of node j. This approximation holds because both quantities in Equation 1 represent averaged dot
products, normalized either over the activity of all nodes at a single timepoint (time-resolved correlation), or over the activity of a single
node at all timepoints (node autocorrelation). However, this relationship holds only for the averaged quantities — the non-averaged
versions of these quantities are incommensurate because time-resolved correlation is defined on timepoints, while autocorrelation is
defined on nodes.

Nullspace sampling: General formulation
Our method uses insights from linear algebra to uniformly sample the solution space of an underdetermined linear system. This
method allows us to constrain time-resolved correlation, variance, and mean by encoding these constraints in systems of linear
equations. We first describe the general formulation of nullspace sampling and then describe specific algorithms for generating
time-resolved constraints for the models in this study.

Consider a linear system

Ax = b, (Equation 2)

where xe R™*" is an empirical data vector, Ae R™*" is a matrix that encodes m features of interest, and b e R™*" denotes empirical
values of these features. Let us assume, without loss of generality, that the m features of interest are linearly independent or, equiv-
alently, that the matrix A has rank m.

Our method samples vectors x that match empirical features of interest, such that

Ax = b,

where the ~ operator denotes model (rather than empirical) vectors.

Note that the number of features m will in general be much smaller than the number of elements n. This implies that the system in
Equation 2 has infinitely many solutions. The space of these solutions is affinely spanned by orthonormal unit vectors that form the
basis of the nullspace of the matrix A,Ze R™"~™ suchthatZ'Z = land AZ = 0, where | is the identity matrix and 0 is a matrix of
zeros.®® Let us now define X as points on this solution space,

X = X" +dZq, (Equation 3)

where x* is the unique minimum-norm solution, d is a scaling constant, and ge R ~™*1 is a unit-norm weighting vector.

Here, we sampled x in two steps. First, we computed the nullspace matrix Z, and the minimum-norm solution x* = A'b where -1
denotes the Moore-Penrose pseudoinverse.®® We also computed the scaling parameter d to restrict our sampling to all X with empir-
ical norm, ||x|| = [|x||. Note that, by the fundamental theorem of linear algebra, the minimum norm solution x* is orthogonal to all
column vectors in Z. Because the additive components in Equation 3 are orthogonal, and because ||q|| = 1, we used Pythagoras

theorem to set d = 1/||x||* —||x*||* and thereby ensure that ||X| = |x]|.
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Second, we uniformly sampled weighting vectors q from the n — m dimensional standard normal distribution, and rescaled these
vectors to have unit norm. This sampling guarantees to produce uniformly distributed random samples of q.%”

Nullspace sampling: Time-resolved correlation

We used a sequential variant of nullspace sampling to efficiently sample data constrained by lag-k time-resolved correlation, vari-
ance, and mean. Fork = 1, we first sampled x1 to have empirical mean and norm. We then sampled x; (i = 2,...t), to have empirical
mean, norm, and dot product with x; _1. We encoded these constraints as,

~ T"‘ ~ ~ ~ .
[1 %] %=[ntx) X %] and %=l (Equation 4)

where 1 denotes a vector of ones.

In practice, this sequential generation of model time series required nullspace matrices with approximately n? elements, and scaled
linearly with the number of timepoints t. We computed these nullspaces using the singular value decomposition, with computational
complexity of O(n?). Since we iteratively solved t — 1 equations, the computational complexity for our algorithm is O(n?t). In prac-
tice, this approach was feasible for intracranial EEG data (n ~ 100), where it outperformed constrained randomization methods. On
the other hand, the approach was not feasible for brain-wide cellular calcium imaging datasets (n ~ 10%), which required the use of
constrained randomization methods.”"+">%®

Nullspace sampling: Time-resolved variance and mean
To constrain variance and mean alone, we sampled x; such that
17x = n(x;) and [|x]| = ||x]| (Equation 5)

In this special case, we derived an analytical expression for the nullspace Z e RMX(-1),

-y -y -y .. =7
B —-a —a .. —«
| —a B —a ... -«
Z-= —a —a B ... —al
“a —a ... —a ﬁ

where «, 8 and y denote solutions to the following set of equations:

—(n—2)a+B—v =0,
(n—2)a?+8°+y*—-1 =0,and
(n —3)a® — 2aB+7? =0.

One can directly verify that this linear system has a unique solution which ensures that Z is an orthonormal nullspace of
A = 17. Specifically, the first equation above ensures that AZ = 0, while the second and third equations ensure that
zZ'z =1

Phase randomization

We generated phase-randomized model data using a well-known algorithm from the physics and neuroscience literature.®° Briefly,
we first used the Fourier transform to compute the phase and amplitude of each time series. We then rotated the phase of all nodes at
each frequency by a random complex variable € with ¢ uniformly distributed in [ — , . Finally, we obtained model time series by
computing the inverse Fourier transform of these phase-randomized data. This method is guaranteed to generate maximally random
data that preserve nodal power spectra and full cross-correlation structure.

For the windowed phase-randomized model, we first partitioned each time series into non-overlapping windows of length 500
timepoints (twin = 500ms). We chose this window length for consistency with dynamical stability analyses (below). We then applied
the phase randomization algorithm to each windowed section of the time series. For zebrafish calcium imaging data, the low fre-
quency of calcium imaging required us to adopt a different window length of 50 timepoints (twin ~ 17s).

Number of model constraints

We estimated the number of constraints in nullspace-based and phase-randomization based models. For this estimation, we
assumed that each dataset has n nodes and t timepoints. Nullspace-based models constrain the mean, variance, and optionally
the covariance, at each timepoint. This results in2/n or 3/n, or at most 2 — 3% of all data points. By contrast, phase-randomization
based models constrained t/2 amplitudes for each node, and therefore 50% of all data points.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Dynamical stability analysis
We performed linearized dynamical stability analysis within temporally local time windows. We first divided the time series Xe R"*!,
into non-overlapping windows of length t,, = 500 ms.?° We then fitted a time-invariant vector autoregressive model, representing a

linear dynamical system, separately for time series at each window k, X, = |X,,Xx,, o Xe | € RMtin The vector autoregressive
model is defined as,

Xy, = Akxk/. for i = 1,2, ...twin

For each window, we first estimated the system matrix A, € R"*" using least squares,®® and then computed the eigenvalues of this
matrix, A € C"*'. These eigenvalues tracked the dynamical stability of this system. Specifically, the presence of all eigenvalues
strictly inside the complex unit circle (||)J,'{H <1, forj = 1,2,...n) implies that the system is asymptotically stable, such that external

perturbations will decay exponentially. In contrast, the presence of some eigenvalues outside the complex unit circle (H)\’,'( I> 1) im-
plies that the system is unstable and that external perturbations will grow exponentially. Finally, the presence of eigenvalues on the

complex unit circle <||){(\\ ~1 ) , implies that the system is weakly stable and external perturbations will produce diverse responses.*®

Amplitude of alpha oscillations

We estimated the amplitude of alpha oscillations in each region of the macaque dataset as follows. First, we normalized the regional
time series to have zero mean and unit standard deviation. Second, we divided this time series into 8 s non-overlapping windows.
Third, we filtered the signal used 1 s Hanning windows and a bandpass finite-impulse-response filter with frequencies 8 and 12Hz
(implemented in Fieldtrip toolbox). Finally, we computed the Hilbert transform of the filtered signal and derived the mean amplitude
over all regions within each window.

Power spectral analysis

We used Welch’s method to characterize the power spectral density over a relatively large frequency range between 1 and 80Hz. In
brief, power spectra were computed for each channel separately, using windowed time series convolved with Hanning windows of
length 6 s and then averaged over all windows.

There has been significant recent progress in the development of methods for estimating slopes of neural power spectra. Unlike
earlier methods, such as coarse grained spectral analysis,” which were strictly applicable only to completely aperiodic signals,”®
more recent methods, such as IRASA®® and Fitting Oscillations and One Over f (FOOOF),® are able to estimate both periodic and
aperiodic signal components.

Here, we adopted FOOOF to estimate the spectral exponent of empirical and model time series. Formally, the algorithm estimates

1 Qfoffset
(f + fknee)e
where P is the power spectrum, f is the frequency of interest, e is the scaling exponent, fysset is the offset frequency, and fynee is the

knee frequency.® More details about the application of this method to the study of neural spectra is provided in a recent study.'® In
this study, we set the maximum number of peaks to 6, and the minimum peak height to 0.15.

P(f) =

Long-range temporal correlation analysis

Following initial preprocessing, we used the Fieldtrip toolbox to bandpass filter the data in the alpha (8-12Hz) frequency band, and
applied the Hilbert transform to extract time-resolved amplitude at each electrode. We then used detrended fluctuation analysis to
estimate amplitude scaling coefficients from these time-resolved amplitude time series.®® Detrended fluctuation analysis is especially
suitable for analysis of neurophysiological time series because it is unaffected by nonstationary structure. In practice, given a time

series ¥ € R'*!, we first defined the cumulative sum Y/ as follows,
t
Y =Y (vi—t¥)
i=1

where ¥ denotes the mean activity of node j. We then segmented the time series into non-overlapping segments of varying lengths
At. We considered a broad range of temporal windows, from 1 s to 3 min, in order to robustly capture scaling behavior across multiple
timescales.

For each timescale At, we computed F(At), the root-mean-square of the detrended cumulative signal Y within each segment,
averaged over segments.
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Finally, we fitted a power law of the form F(At) = hAt*. The value of the exponent « denotes the presence or absence of long-range
temporal correlations. A value between 0.5 and 1.0 is indicative of long range temporal correlations, while values close to 0.5 denote
an uncorrelated process.

For very long recordings, the DFA algorithm can be extremely slow. To overcome this problem, we implemented the DFA on
randomly chosen 120s segments of model and empirical datasets.

Avalanche analysis

Avalanche detection in electrophysiological datasets

In line with previous studies, we binarized electrophysiological imaging datasets by setting to 1 deflections in local field potentials that
exceeded three standard deviations below the mean.®*°"**> We then detected, at each timepoint, bursts of temporally contiguous
coordinated activity in these binarized time series. Specifically, a new avalanche is instantiated if at least one of the constituent el-
ements becomes active. The avalanche propagates until none of the constituent elements are active. The size of an avalanche is
defined by the number of active constituent elements, and the duration of an avalanche is defined by the period of its activity.
Avalanche detection in calcium imaging datasets

In line with previous studies, we binarized calcium imaging datasets by setting to 1 deflections in calcium concentration that
exceeded three standard deviations above the mean.®* The standard method for avalanche detection fails for brain-wide cellular res-
olution data because the large number of cells produce a single never-ending avalanche. In line with recent work, we used a method
to detect spatially contiguous avalanches from binarized zebrafish calcium imaging time series.** More specifically, we detected
clusters of simultaneously active and spatially contiguous neurons. We used the MATLAB function bwconncomp to find these
clusters. We then formed neuronal avalanches by detecting clusters that shared cells at adjacent timepoints. In this way, we followed
the spatiotemporal structure of each avalanche as it started, propagated, and ended.

Power law fitting to avalanche distributions

We assessed the presence of power-law scaling in avalanche distributions, by adopting the methods of Clauset et al.,*® implemented
by Rubinov et al.®® Specifically, we denoted the probability density function of avalanche size as p(N),

N-7
:(T,Nmin) - Z(Tmeax + 1)

pP(N) =

with a cumulative distribution function

C(ﬂN) — C(T7Nmax+1)
C(T7Nmin) - c(Tmeax+1)

where N is avalanche size, 7 is the scaling exponent, Nmin and Niax are the lower and upper cut-off sizes and {(r,N) = Z,"": oi+N)"is
the generalized Hurwitz zeta function. The functions incorporate an upper cut-off N« because all empirical distributions are neces-
sarily bounded by system size.” We defined the probability distributions for avalanche durations in exactly the same way. We then
estimated the exponents of avalanche sizes and durations using the method of maximum likelihood. %%

Exponent scaling and shape collapses

We quantified power-law exponents between mean avalanche size for a given avalanche duration. We estimated the slope of this
power law using linear regression in log-log coordinates.®® Finally, we quantified avalanche shape collapses by averaging all
avalanches of a given duration in a single recording. We rescaled collapsed avalanche shapes to have unit area and avalanche
durations to have unit length.

P(N) =
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