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ABSTRACT

Many studies in human neuroscience seek to understand the structure of brain networks and gradients. Few studies, however, have tested the redundancy between
these outwardly distinct features. Here, we developed methods to directly enable such tests. We built on insights from linear algebra to develop methods for unbiased
and efficient sampling of timeseries with network or gradient constraints. We used these methods to show considerable redundancy between popular definitions
of network and gradient structure in functional MRI data. On the one hand, we found that network constraints largely accounted for the structure of three major
gradients. On the other hand, we found that gradient constraints largely accounted for the structure of seven major networks. Our results imply that some networks
and gradients may denote discrete and continuous representations of the same aspects of functional MRI data. We suggest that integrated explanations can reduce
redundancy by avoiding the attribution of independent existence or function to these features.

Introduction

Networks and gradients represent two basic features of whole-brain
activity. Networks (also known as systems or modules) denote discrete
groups of brain regions that, by virtue of similar activity patterns, pu-
tatively facilitate specialized brain function (Damoiseaux et al., 2006;
Smith et al., 2009; Yeo et al., 2011). Gradients denote spatially contin-
uous variation in anatomy or activity that may reflect the outcome of
developmental processes (Dong et al., 2021; Guell et al., 2018; Margulies
et al., 2016). Advances in data acquisition (Van Essen et al., 2012) and
analysis (Jenkinson et al., 2012; Vos de Wael et al., 2020) have allowed
investigators to robustly and noninvasively detect these features in func-
tional MRI data. These advances have enabled an extensive body of work
centered on the structure of these features across healthy and diseased
brain states (Zhang and Raichle, 2010; Huntenburg et al., 2018).

This body of work has used a diverse group of clustering and dimen-
sionality reduction methods to define networks and gradients. Here, we
adopted two popular definitions of these features. First, we used a popu-
lar parcellation (clustering) of whole-brain voxel correlation matrices to
define networks (Schaefer et al., 2018). Second, we used diffusion em-
bedding (dimensionality reduction) of whole-brain voxel correlations
to define gradients (Margulies et al., 2016). Table 1 clarifies the use of
these and other technical terms in the article.

Despite this extensive body of work, few studies have tested the sta-
tistical redundancy between networks and gradients. In theory, these
two features could represent distinct outcomes of selective pressures and
developmental constraints (Cembrowski and Menon, 2018). In practice,
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however, the structure of networks and gradients typically shows con-
siderable overlap. Specifically, seminal studies (Margulies et al., 2016;
Bolt et al., 2022) have used sophisticated dimension-reduction methods
to show strong statistical associations between networks and gradients.
However, the correlational nature of these studies cannot disambiguate
the presence of statistical redundancy between these features. There-
fore, some of these studies have considered that networks and gradi-
ents are distinct. For example, Margulies et al. (2016) noted that “a
principal gradient of cortical organization [...] is anchored at one end
by [networks] implicated in perceiving and acting, and at the other
end by [...] the default-mode network”. Other studies have suspended
judgment on the relationship of networks and gradients. For example,
Bolt et al. (2022) noted that “the primary aim of [their] study was de-
scriptive, [and they] have avoided any explanatory or causal explana-
tion”. On this basis, the statistical redundancy of networks and gradients
remains an unsettled question.

Some redundancy between networks and gradients may be expected
from our knowledge of approximate equivalences between k-means clus-
tering and principal component analysis, canonical methods for cluster-
ing and dimensionality reduction (Ding and He, 2004; Drineas et al.,
2004). Here, we developed numerical methods to test this redundancy
more directly. Our approach is conceptually simple. First, we detected
network and gradient structure in functional MRI data. Second, we
sampled regional timeseries with network constraints, and evaluated
the presence of gradient structure in these data. Third, we sampled re-
gional timeseries with gradient constraints, and evaluated the presence
of network structure in these data. This approach resembles a controlled
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Table 1
Clarification of terms used in this article
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Nullspace sampling
Feature
Constraints
Unbiased sampling
Nullspace
Network
Concept

Any numeric property of the data (e.g., network and gradient features).
A set of features that specify a target data distribution.

Selection of data samples with probability of the target data distribution.
A linear space that maps to the solution space of a linear system.

A group of brain regions that have similar activity patterns. This usage is standard in the

neuroimaging literature but is distinct from the more general definition of a network.

Structure

Correlations between target network timeseries and all regional timeseries. Network timeseries

denote the mean timeseries of all within-network regions.

Constraints
Gradient
Concept
Structure
Constraints

Mean correlations of regional timeseries within and between networks.

Spatially continuous variation of brain organization.
Diffusion-embedding components of interregional correlation matrices.
Principal components of regional timeseries matrices.

experiment, or a randomized control trial (Siddiqi et al., 2022), that
tests the effects of targeted interventions (constraints) on outcomes (fea-
tures of interest). The approach goes beyond correlations because it
can show that one feature is redundant with another (Rubinov, 2016)
or that both features are approximately numerically equivalent. Such
showings fall within a long tradition that emphasizes the importance
of constraints and “spandrels”, nonfunctional or nonadaptive traits, in
integrated explanations of biological structure (Gould and Lewontin,
1979).

This conceptually simple approach, however, is practically difficult
because it requires the unbiased sampling of data with nontrivial con-
straints. Unbiased sampling is important because it allows to distinguish
the constraints of interest from a wealth of confounding, potentially
extraneous, explanations. However, to the best of our knowledge, the
field currently lacks methods for unbiased sampling of regional time-
series with network or gradient constraints. By contrast, existing sam-
pling methods come in three main forms. First, methods based on naive
shuffling of timeseries are fast but destroy network and gradient struc-
ture. Second, methods based on sampling data with spatial autocorre-
lation constraints (Burt et al., 2020; Markello and Misic, 2021; Shinn
et al., 2023) are considerably more interesting but are not designed to
constrain network or gradient structure. Moreover, the heuristic nature
of these methods makes them susceptible to sampling bias. Third, meth-
ods such as autoregressive randomization (Zivot and Wang, 2006) or
phase randomization (Prichard and Theiler, 1994) are perhaps most
relevant to our study but have two important limitations. First, both
methods trivially constrain all network and gradient structure and in
this way cannot be used to test the redundancy between these features.
Second, both methods assume a stationary, linear, and Gaussian genera-
tive model, and constrain lagged correlations. These additional features
reflect properties of real functional MRI data, but also introduce con-
founding explanations that make it more difficult to perform controlled
experiments. Liegeois et al. (2017, 2021) provides a thorough discussion
of these issues.

Here, we built on insights from linear algebra to develop two related
methods that sample timeseries with network or gradient constraints.
In both cases, our main contributions was to first reduce the sampling
problems to a sequence of linear systems, and then use the nullspace to
sample solutions to these systems. Our methods build on a rich litera-
ture for solving linear inverse problems across a wide range of scientific
domains (Smith, 1984; Tarantola, 2005; Van den Meersche et al., 2009).
The methods are unbiased insofar as they accurately sample timeseries
from the target data distribution, and efficient insofar as they scale to
multiregional recordings.

In the next sections we describe the details of these methods, and
use these methods to show considerable redundancy between popular
definitions of network and gradient structure in functional MRI data. We
conclude by discussing the implications of these methods and results for
future work.

Results
Definition of networks and gradients

We analyzed resting-state functional MRI recordings from subjects
in the Human Connectome Project (Van Essen et al., 2013). We used a
popular data-driven parcellation (Schaefer et al., 2018) to extract time-
series from 400 cortical regions in these recordings, and performed all
our subsequent analyses on regional timeseries matrices. In this sec-
tion we summarize our definitions of network and gradient structure
and constraints.

Network structure and constraints. We defined network structure
as the correlations between a network timeseries and the timeseries of
all brain regions, averaged over all subjects. We used a popular divi-
sion of the cortex into the visual, somatomotor, temporoparietal, dor-
sal attention, ventral attention, control, default, and limbic networks
(Schaefer et al., 2018), as well as a hierarchical subdivision of these 8
networks into 34 (17 bilaterally symmetric) subnetworks. We defined
network constraints as the mean interregional correlations within and
between these subnetworks. Below, we evaluated the extent to which
these constraints accounted for the structure of 7 networks (we did not
present results on the limbic network because of known problems with
low signal-to-noise ratio in that network).

Gradient structure and constraints. We defined gradient structure
as diffusion-embedding components of interregional correlations, av-
eraged over all subjects. We followed the pipeline of Margulies et al.
(2016) to first nonlinearly transform the mean interregional correlation
matrix to a Markov chain matrix, and then extract diffusion-embedding
components as the leading eigenvectors of this matrix. We defined gra-
dient constraints as the principal components of regional timeseries ma-
trices (Hong et al., 2020), and evaluated the extent to which these con-
straints accounted for gradient structure. Finally, we used Procrustes
analysis to align gradients across samples (Langs et al., 2015), and also
explored the effect of this alignment on our results.

Overview of nullspace sampling

We built on insights from linear algebra to sample regional time-
series with network or gradient constraints. In this section we summa-
rize the general formulation of our method, and its several variants. In
the Methods section we describe our approach in considerable mathe-
matical detail.

Variant 0: General formulation (Box 1). The general formulation of
our method samples the solutions to a system of linear equations Ax = b,
where x is a vector that denotes empirical data, A is a matrix that de-
fines features of interest, and b is a vector that denotes empirical values
of these features. Our method samples solution vectors X that satisfy
empirical constraints, such that AX = b where X denotes model (rather
than empirical) data. We can express these solutions as X = x* + dZq,
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where x* is the unique minimum-norm solution, d is a scaling constant,
q is a uniformly sampled unit-norm weighting vector, and Z is an or-
thonormal basis of the nullspace of A, such that ZTZ =1 and AZ = 0
(Van den Meersche et al., 2009).

Box 1. General formulation of nullspace sampling.

—

. Define a system of linear equations, Ax = b.

2. Compute the basis of the nullspace Z, the minimum-norm so-
lution x*, and the scaling parameter d.

3. Uniformly sample weighting vector q to sample solutions X =

x* + dZ4q.

Variant 1: Principal-component constraints. We used a sequen-
tial variant of our general formulation to sample correlation matrices
constrained by a subset of empirical principal components.

Variant 2: Pairwise-correlation constraints. We used a sequential
variant of our general formulation to sample timeseries matrices con-
strained by empirical pairwise correlations. In the Methods section, we
discuss the relationship between this variant and autoregressive or phase
randomization.

Variant 3: Global mean and norm constraints. We used a sequen-
tial variant of our general formulation to sample timeseries matrices
constrained by the mean and norm of empirical timeseries.

Sampling timeseries with network and gradient constraints

We combined the above variants into pipelines for sampling time-
series with network or gradient constraints. We summarize these
pipelines below, and illustrate them in Figure 1.

Network constraints. We defined network constraints as the mean
correlations of regional timeseries within and between networks. We
constrained these correlations by adopting the following pipeline
(Figure 1C):

empirical network correlations

variant 2 . .
- model network timeseries

variant 3 . . .
- model regional timeseries

We considered two models with network constraints. First, the intra-
network model constrained only the mean interregional correlations
within a network. Second, the all-network model constrained the mean
interregional correlations within and between all networks. Therefore,
for a system with / networks, the intra-network model had / constraints,
while the all-network model had %l(l + 1) constraints (/ intra-network

constraints and %l(l — 1) inter-network constraints).

Gradient constraints. We defined gradient constraints as principal
components of regional timeseries matrices (Hong et al., 2020). We sam-
pled regional timeseries with these constraints by adopting the following
pipeline (Figure 1C):

empirical principal components

variant 1 . . .

- model interregional correlations
variant 2 . . .

- model regional timeseries

We considered two models with gradient constraints. First, the one-
gradient model constrained only the first principal component. Second,
the two-gradient model constrained the first and second principal com-
ponents. Both models also constrained all eigenvalues of the empirical
correlation matrix. Therefore, for a system with n regions, the k-gradient
model had (k + 1)n empirical constraints (kn eigenvector constraints and
n eigenvalue constraints).

Model complexity. Our regional timeseries comprised 400 regions
and 1200 timepoints, and were divided into 34 networks. Therefore,
the one-network model had 34 constraints (0.01% of all data points),
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the all-network model had 595 constraints (0.12%) constraints, the
one-gradient model had 800 constraints (0.17%), and the two-gradient
model had 1200 constraints (0.25%). The total number of constraints
was most comparable for the all-network models and one-gradient mod-
els. More generally, this relatively small number of constraints in all
models implied that all model and empirical data were essentially un-
correlated (Figure S1).

Model performance

This section describes our main results, summarized as correlations
between network or gradient structure of empirical and model time-
series. We first evaluated the extent to which network constraints ac-
counted for network and gradient structure. We then similarly evaluated
the extent to which gradient constraints accounted for gradient and net-
work structure.

Network constraints (Figure 2). Our simplest intra-network model
provided a relatively coarse, albeit generally accurate, representation of
network structure (with median [95% uncertainty interval] model-data
Pearson correlations of 0.74 [0.63, 0.79] across all networks). However,
this model largely failed to recapitulate gradient structure (with corre-
sponding model-data correlations of 0.51 [0.41, 0.60] for the first gra-
dient, 0.07 [0.02, 0.20] for the second gradient, and 0.19 [0.07, 0.23]
for the third gradient). Overall, these results suggest that intra-network
correlations alone were not sufficient to fully account for network or
gradient structure.

By contrast, the all-network model provided much better represen-
tations of all network structure (with median [95% uncertainty inter-
val] model-data Pearson correlations of 0.89 [0.84, 0.91] across all net-
works). More interestingly, this model also accurately represented gradi-
ent structure (with corresponding model-data correlations of 0.93 [0.93,
0.93] for the first gradient, 0.94 [0.93, 0.94] for the second gradient,
and 0.82 [0.82, 0.82] for the third gradient). Overall, these results sug-
gest that inter-network correlations were largely sufficient to account
for gradient structure.

Gradient constraints (Figure 3). The one-gradient model had a sim-
ilar number of constraints to the all-network model, and performed sim-
ilarly well to that model. Specifically, this model provided accurate rep-
resentations of first-gradient structure (with median [95% uncertainty
interval] model-data Pearson correlations of 0.96 [0.96, 0.96]), and rea-
sonable approximations of second- and third-gradient structure (with
corresponding model-data correlations of 0.63 [0.62, 0.65], and 0.73
[0.72, 0.75]). More interestingly, this model provided a highly accurate
representation of all network structure (with corresponding model-data
correlations of 0.89 [0.79, 0.99] across all networks). Overall, these re-
sults suggest that primary-gradient constraints alone were largely suffi-
cient to account for network structure.

Finally, our most complex two-gradient model provided additional
improvements in representation of all gradient structure (with median
[95% uncertainty interval] model-data Pearson correlations of 0.90
[0.83, 0.98] across all gradients), and all network structure (with cor-
responding model-data correlations of 0.94 [0.87, 0.99] across all net-
works).

Control experiments. We evaluated the effects of preprocessing and
analysis methods on our results. First, we considered the effects of global
signal regression (Figures S2 and S3). As we discuss in the Methods
section, we adopted this step to remove the effects of vigilance and
non-neuronal physiology, and correspondingly to better align princi-
pal components (gradient constraints) with diffusion-embedding com-
ponents (gradient structure). The exclusion of global signal regression
considerably worsened the performance of both gradient models, and
the one-network model, but had little effect on the performance of the
all-network model.

Second, we considered the effect of Procrustes alignment on our re-
sults (Figures S4 and S5). This alignment tends to increase the observed
similarity of gradient structure. The exclusion of Procrustes alignment
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Fig. 1. Overview of nullspace sampling pipelines. (A) Three variants of nullspace sampling. (B) Empirical timeseries matrix. (C) Pipelines for sampling timeseries
with network or gradient constraints. Arrows denote distinct variants of nullspace sampling (A). The principal-component pipeline first uses variant 1 to generate
interregional correlation matrices constrained by empirical principal components, and then uses variant 2 to generate model timeseries constrained by these inter-
regional correlations. The network-correlation pipeline first uses variant 2 to generate model network timeseries and then uses variant 3 to generate model regional

timeseries constrained by these network timeseries.

likewise considerably worsened the performance of both gradient mod-
els, and the one-network model, but had little effect on the performance
of the all-network model. By definition, the exclusion of this step only
affected the representation of gradient structure (i.e., it had no effect on
the representation of network structure).

Discussion

Summary. We developed methods for sampling timeseries with net-
work or gradient constraints. We first validated our approach by show-
ing that network constraints largely accounted for a parcellation-based
definition of network structure, and gradient constraints largely ac-
counted for a diffusion-embedding based definition of gradient struc-
ture. We then noted that network constraints also largely accounted for
gradient structure, while gradient constraints also largely accounted for
network structure. Specifically, we found that the all-network and one-
gradient models had similar complexity, and induced relatively similar
network and gradient structure (although the one-gradient model was
more sensitive to changes in preprocessing methodology, Figures S2-
S5). We also found that a simpler (intra-network) model considerably
reduced the similarity between empirical and model data, while a more
complicated (two-gradient) model somewhat increased this similarity.

Implications. Our results suggest that these popular definitions of
gradient and network structure show considerable redundancy, and may
simply denote discrete and continuous representations of the same as-
pects of functional MRI data. The strong similarity between these dis-
tinctly defined features has an intuitive technical explanation. Specif-
ically, both networks and gradients are extracted from interregional-
correlation matrices, and both network and gradient constraints repre-
sent low-dimensional approximations of these same matrices (Figure 1).
It follows, therefore, that accurate representations of interregional-
correlation matrices (whether due to network or gradient constraints)
will simultaneously recapitulate both network and gradient structure in
model data.

Our demonstration of redundancy goes beyond previously reported
correlations between networks and gradients (Margulies et al., 2016;
Guell et al., 2018; Raut et al., 2021; Vos de Wael et al., 2021; Dong
et al., 2021; Bolt et al., 2022). This demonstration implies that the
field is not justified to assume the independent importance of all net-
works and all gradients, much in the same way that one is not justi-
fied to assume the importance of redundant regressors in a linear model
(Rubinov, 2022). We suggest that future studies need to combine addi-
tional data on the functional relevance (Krakauer et al., 2017), evolu-
tionary ancestry (Cisek and Hayden, 2022), and developmental mech-
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Fig. 2. Effects of network constraints. Left: maps of network structure (correlations between the timeseries of a target network and all brain regions). Right: maps of
gradient structure (diffusion-embedding components of regional timeseries matrices). First row: maps of intra-network model data. Second row: maps of all-network
model data. Third row: Maps of empirical data. Bottom row: violin plots of Pearson correlation coefficients between empirical and model data. Network and gradient
structure were computed from correlation matrices averaged over all 100 subjects. Model data comprised 100 such mean correlation matrices (for a total of 10,000

sampled timeseries matrices).

anisms (Cembrowski and Menon, 2018) of specific networks and gra-
dients, in order to rigorously validate the inclusion of these features in
unified explanations of brain organization.

Limitations and future work. Our methods have two main limi-
tations. First, the methods can be slow and memory-intensive. This is
not a practical limitation for parcel-resolution timeseries, but can be a
practical limitation for voxel-resolution timeseries. Second, the meth-
ods do not admit additional constraints, such as spatial or temporal au-
tocorrelations, or diffusion-embedding components. This second set of
limitations is rather subtle, and worth additional consideration.

Our methods do not admit spatial or temporal autocorrelation con-
straints. This may be an important limitation because neuroimaging data
are dominated by autocorrelation structure. However, in theory, the un-
biasedness of our methods guarantees the sampling of data with all em-
pirical structure, including empirical autocorrelations. In other words,
a sufficiently large number of data samples is bound to include samples
with empirical autocorrelations. Nonetheless, in practice, our methods
do not sample data with empirical autocorrelations because these data
form a negligible fraction of our target distributions. It is possible, there-
fore, that our results on these data may differ from our main results.

Separately from these considerations, our methods do not directly
constrain diffusion-embedding components. This limitation may be im-
portant if one is interested in exploring the subtle differences between
gradients defined with diffusion embedding, and gradients defined with
principal component analysis.

Our future work will focus on resolving some of these limitations,
through improvements in scalability, and through expansion of sam-
pling variants to admit other constraints. More generally, as neuroimag-
ing data continue to increase in size and complexity, the ability to sam-

ple these data with a rich set of spatial, temporal, correlational, spectral
and other structure will become increasingly important for delineating
common principles of brain organization. We hope that our methods
will help fulfill an important part of this increasing need.

Methods
Nullspace sampling methodology

We sampled regional timeseries with network-correlation con-
straints, or with principal-component constraints. In this section we de-
scribe the details of our nullspace sampling methodology. Our MAT-
LAB software implements these methods and is freely available at: https:
//github.com/AdityaNanda/Networks-Gradients-Sampling-Toolbox.

Variant 0: General formulation

The general formulation of our method leverages insights from linear
algebra to uniformly sample data constrained by sets of predetermined
features (Figure 4). Consider a linear system

Ax =b, ()]

where x € R'¥! is some empirical data vector, A € R"¥ is a matrix that
encodes m features of interest, and b € R"*! denotes empirical values
of these features. Let us assume, without loss of generality, that the m
features of interest are linearly independent or, equivalently, that the
matrix A has rank m.

Our method uniformly samples vectors X that match empirical fea-
tures of interest, such that

AX =D,
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network structure (diffusion-embedding components of regional timeseries matrices). First row: maps of one-gradient model data. Second row: maps of two-gradient
model data. Third row: Maps of empirical data. Bottom row: violin plots of Pearson correlation coefficients between empirical and model data. Gradient and network
structure were computed from correlation matrices averaged over all 100 subjects. Model data comprised 100 such mean correlation matrices (for a total of 10,000

sampled timeseries matrices).

where the ~ operator denotes model (rather than empirical) vectors.

Note that the number of features m will in general be much smaller
than the number of data elements ¢. This implies that the system in
Equation 1 has infinitely many solutions. The solution space of this
system maps to the nullspace of the matrix A, Z € R~ such that
777 =1and AZ = 0, where 0 is a matrix of zeros (Laub, 2005; Van den
Meersche et al., 2009). Let us now define X as points on this solution
space,

X =x*+dZq, 2

where x* is the unique minimum-norm solution, d is a scaling constant,
and q € R¢™x! is a unit-norm weighting vector. Geometrically, each
row in A represents an unbounded hyperplane in 7 dimensions, and the
solution space is an 7 — m vector space formed by the intersection of
these hyperplanes.

We sampled X in two steps. Figure 4 summarizes these steps, and here
we discuss each step in more detail. First, we computed the nullspace
matrix Z, and the minimum-norm solution x* = A'b, where -7 denotes
the Moore-Penrose pseudoinverse (Laub, 2005). We also computed the
scaling parameter d to enforce additional, problem-specific constraints.
In practice, we set d to restrict our sampling to all X with some pre-
determined Euclidean norm e, ||X|| = e. Note that, by the fundamental
theorem of linear algebra, the minimum norm solution x* is orthog-
onal to all column vectors in Z. Because the additive components in
Equation 2 are orthogonal, and because ||q|| = 1, we used Pythagoras
theorem to set d = y/e? — ||x*||? and thereby ensure that ||X|| = e.

Second, we uniformly sampled weighting vectors q from the n —m
dimensional standard normal distribution, and rescaled these vectors
to have unit norm. This sampling approach guarantees to produce

uniformly distributed random samples of q (Smith, 1984). Geometri-
cally, this procedure is equivalent to sampling from the surface of the
t —m dimensional hypersphere that has unit radius and is centered at
the origin.

Let us now show that our sampling of X is uniform. First, let us ex-
press the solution space in Equation 2 solely as a function of the weight-
ing vector, such thatX = f(q). Then, let P(X) and P(q) denote probability
distributions over X and q respectively. Following Papoulis (1965) we
can write

- _ P@ _ P@ _1
P(X) = T izl = i@ 3)
q

This equation demonstrates that the probability density functions P(q)
and P(X) are related by the scaling constant d and implies that a uniform
sampling of q guarantees a uniform sampling of X.

This completes the general formulation of our method. In the fol-
lowing sections, we describe three variants of this formulation. In the
Results section, we used combinations of these variants to sample re-
gional timeseries with network or gradient constraints (Figure 1).

Variant 1: Correlation matrices constrained by principal-component
structure

We first built on our basic formulation to sample correlation ma-
trices constrained by k principal components. Let us denote a matrix
of normalized (zero-mean, unit-norm) regional timeseries by X € R"™",
and the corresponding correlation matrix by C e R"". Note that
C=X"X=VAV' where A € R denotes the eigenvalue matrices of
C, and V € R™" denotes the eigenvectors of C or, equivalently, the
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Encode constraints in a
system of linear equations:
Ax = b.

Compute:

Z nullspace matrix of A
x* minimum-norm solution
d scaling parameter

\4

Uniformly sample weighting
vector q to generate data:
X = x* + dZq.

General formulation of nullspace sampling

Fig. 4. General formulation of nullspace sampling. Left: a flowchart of the main steps. Right: a geometric representation of the method for a three-dimensional
linear system with one feature of interest (Ax = b where A € R, x € R*, and b € R'*!). The purple plane represents the solution space of this system. This plane
is affinely spanned by orthonormal vectors z, and z, that form the nullspace matrix Z = [z, z,] € R¥?. Our method uniformly samples points X on this plane by
expressing each point as a sum of vectors x* and dZq. The vector x* denotes the minimum norm solution, a point on the plane with the shortest Euclidean distance
to the origin. The vector dZq denotes a random linear combination of the nullspace vectors. See the text for details.

principal components of X. Here, we sought to sample matrices V that
shared the k leading empirical eigenvectors with V.

We sampled these matrices using a sequential variant of our gen-
eral formulation. Specifically, we sequentially sampled »n — k unit vec-
tors orthogonal to the k empirical eigenvectors, v,...,v,, as well as
to any previously sampled eigenvectors. We first sampled v, such that

[vi v, ¥v;=0and ||V|]| = 1. We then sampled V; (i =2,...n—k),
such that

~ ~ 1T~ ~
[vi v Vi o V] Vi=0and|v=1 4)

where v,,...v, are the empirical k leading eigenvectors. The struc-
ture of the coefficient matrix in Equation 4 guarantees that V=
[vi  ve ¥ V,_i] forms a set of unit eigenvectors. We then
used these vectors to define a correlation matrix C = VAVT. The unique-
ness of eigendecomposition guarantees that C is constrained to have the

desired principal component structure.

Variant 2: Timeseries matrices constrained by pairwise-correlation structure

We next sought to sample matrices of normalized (zero-mean, unit-
norm) regional timeseries X = [%, %,] such that C=X"X =
XTX = C. We sampled these timeseries using a similar sequential vari-
ant of our general formulation. Specifically, we first sampled X, to have

zero mean and unit norm, and then sampled X; (i =2, ... n), such that

T~

N x5 - X, %=[0 ¢ ¢;-1) and %]l =1 6))

where 1 is a vector of ones. The structure of the coefficient matrix in
Equation 5 guarantees that X = [X| X,,] will have the desired cor-
relation matrix C.

In practice, we implemented this variant by leveraging the eigen-
decomposition C = VAV, Specifically, we first sampled timeseries X'

> T . . .
constrained to have (X)) X = A, and then obtained our timeseries of
interest via a rotation, X = X' VT. Note that X will have the desired cor-
relation matrix C because

C=X"X= (i’VT)T(i’VT) =VXTXVT = VAV = C.

This approach guarantees that the minimum-norm solution will be
x* = 0, and therefore does not require the computation of this solution
at every step. Moreover, the orthonormal transformation V' preserves
probability distributions (Equation 3), and in this way guarantees that
the uniform sampling of X leads to the uniform sampling of X V7.

Note that this variant is broadly similar to autoregressive or phase
randomization. However, unlike these methods, the variant does not
assume a stationary, linear, and Gaussian generative model, and does
not constrain lagged correlations. The lack of these assumptions allows
us to test the effect of instantaneous correlations in a controlled way.
By contrast, the presence of these assumptions introduces confounding
or extraneous explanations, even if it increases the similarity between
model and empirical data.

Variant 3: Timeseries matrices constrained by global mean and norm
structure

We finally sought to sample timeseries matrices constrained by
global mean and norm structure. We first considered empirical activ-
ity vectors at time i, y; € R"¥!, and then sequentially sampled model
activity vectors y; such that

17y, = 1Ty, and |3 = lly,lI. ©)
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Efficient computation of nullspace matrices

We optimized our sampling by replacing the slow direct computation
of nullspace matrices Z with fast sequential or analytical computation
of these matrices. Let us now describe the details of this computation.

Sequential computation of nullspace matrix. We developed a se-
quential computation of the nullspace matrix for our sampling variants
1 and 2 Equations 4 and (5). Let A; denote the coefficient matrix at step
i. A sequential variant of our method allowed us to express A, as

A, = A = Ai T
H—l §:T (X;k+diziqi) ’

where X; denotes our sampled vector at step i. This, in turn, allowed us
to express Z;, | as

Z;,, = Znull(g) @

where null(q)) is the nullspace matrix of the vector q. We then effi-
ciently computed null(q;) using the Householder transformation (Golub
and Van Loan, 2013; Trefethen and Bau, 2022).

Let us now prove that Z,, is indeed the nullspace of matrix A, ;.
We can do this by showing that Z,, is an orthonormal matrix and that
A;1Z;,, = 0. First, let us note that Z, , is the product of two orthonor-
mal matrices, Z; and null(qr), and is therefore itself an orthonormal ma-
trix (Laub, 2005). Second, let us note that

A,
AiZiy = [(x;"+d[IZ;q,~)T] [Z;null(q])]
_ [ A, Znull(q])
(x7) Z:null(q]) + d,q] Z] Z;null(q] )

Now, A,Z;null(q]) = 0 because A,;Z, = 0. Likewise, (x})7Z,null(g) =0
because the minimum norm solution is orthogonal to the nullspace. Fi-
nally, d,q] Z] Z;null(q]) = 0 because Z, is orthonormal and q is orthog-
onal to its nullspace. Putting this together, we find that A, ,Z;,; = 0.
This completes our proof.

Analytical solution of nullspace matrix. We derived an ana-
lytical expression for the nullspace matrix Z € R™”-D in variant 3
(Equation 6). Specifically, the nullspace matrix of A =17 is given by

e A A
p - -« —a

7= —a p —a —a ’
—-a -« p —a
—-a -« —a p

where a, f# and y denote solutions to the following set of equations:

—n=2a+p—-y=0,
n=2)>+p>+y>*-1=0, and
(n—23)?-2ap+y2=0.

One can directly verify that this linear system has a unique solution
which ensures that Z is an orthonormal nullspace of A = 17. Specifically,
the first equation above ensures that AZ = 0, while the second and third
equations ensure that 7'72=1

Data selection and preprocessing

We analyzed 15-minute resting-state functional MRI recordings from
100 healthy subjects of the Human Connectome Project. We chose to
analyze 100 recordings with the lowest-available head movement. All
our recordings had relative root-mean-square head movements of less
than 0.2 at all timepoints. We used data processed with standard Hu-
man Connectome Project methods: the minimal preprocessing pipeline
(Glasser et al., 2013), MSM-All registration (Robinson et al., 2014), and
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ICA-FIX denoising (Salimi-Khorshidi et al., 2014). In addition, we re-
gressed out the six motion parameters, their derivatives, as well as CSF,
white matter, and global signals from these timeseries.

Global signal regression is a controversial step (Murphy and
Fox, 2017) that warrants additional discussion. The global signal can
reflect a mix of structured artifact (Power et al., 2017), but also infor-
mation about vigilance and non-neuronal physiology (Liu et al., 2017).
While the latter information may be of interest in some studies, here we
sought to remove this signal to better align principal components and
gradients. In functional MRI data, the first principal component tends to
strongly reflect the global signal (He and Liu, 2012), while the second
principal component tends to reflect the primary gradient (Bolt et al.,
2022). These considerations suggest that global signal regression re-
moved information about vigilance and non-neuronal physiology, and
in this way aligned the leading principal component and the primary
gradient. We directly checked the effect of this step by repeating our
analysis without global signal regression.
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