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a b s t r a c t 

Many studies in human neuroscience seek to understand the structure of brain networks and gradients. Few studies, however, have tested the redundancy between 

these outwardly distinct features. Here, we developed methods to directly enable such tests. We built on insights from linear algebra to develop methods for unbiased 

and efficient sampling of timeseries with network or gradient constraints. We used these methods to show considerable redundancy between popular definitions 

of network and gradient structure in functional MRI data. On the one hand, we found that network constraints largely accounted for the structure of three major 

gradients. On the other hand, we found that gradient constraints largely accounted for the structure of seven major networks. Our results imply that some networks 

and gradients may denote discrete and continuous representations of the same aspects of functional MRI data. We suggest that integrated explanations can reduce 

redundancy by avoiding the attribution of independent existence or function to these features. 
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Networks and gradients represent two basic features of whole-brain

ctivity. Networks (also known as systems or modules) denote discrete

roups of brain regions that, by virtue of similar activity patterns, pu-

atively facilitate specialized brain function ( Damoiseaux et al., 2006;

mith et al., 2009; Yeo et al., 2011 ). Gradients denote spatially contin-

ous variation in anatomy or activity that may reflect the outcome of

evelopmental processes ( Dong et al., 2021; Guell et al., 2018; Margulies

t al., 2016 ). Advances in data acquisition ( Van Essen et al., 2012 ) and

nalysis ( Jenkinson et al., 2012; Vos de Wael et al., 2020 ) have allowed

nvestigators to robustly and noninvasively detect these features in func-

ional MRI data. These advances have enabled an extensive body of work

entered on the structure of these features across healthy and diseased

rain states ( Zhang and Raichle, 2010; Huntenburg et al., 2018 ). 

This body of work has used a diverse group of clustering and dimen-

ionality reduction methods to define networks and gradients. Here, we

dopted two popular definitions of these features. First, we used a popu-

ar parcellation (clustering) of whole-brain voxel correlation matrices to

efine networks ( Schaefer et al., 2018 ). Second, we used diffusion em-

edding (dimensionality reduction) of whole-brain voxel correlations

o define gradients ( Margulies et al., 2016 ). Table 1 clarifies the use of

hese and other technical terms in the article. 

Despite this extensive body of work, few studies have tested the sta-

istical redundancy between networks and gradients. In theory, these

wo features could represent distinct outcomes of selective pressures and

evelopmental constraints ( Cembrowski and Menon, 2018 ). In practice,
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owever, the structure of networks and gradients typically shows con-

iderable overlap. Specifically, seminal studies ( Margulies et al., 2016;

olt et al., 2022 ) have used sophisticated dimension-reduction methods

o show strong statistical associations between networks and gradients.

owever, the correlational nature of these studies cannot disambiguate

he presence of statistical redundancy between these features. There-

ore, some of these studies have considered that networks and gradi-

nts are distinct. For example, Margulies et al. (2016) noted that “a

rincipal gradient of cortical organization [...] is anchored at one end

y [networks] implicated in perceiving and acting, and at the other

nd by [...] the default-mode network ”. Other studies have suspended

udgment on the relationship of networks and gradients. For example,

olt et al. (2022) noted that “the primary aim of [their] study was de-

criptive, [and they] have avoided any explanatory or causal explana-

ion ”. On this basis, the statistical redundancy of networks and gradients

emains an unsettled question. 

Some redundancy between networks and gradients may be expected

rom our knowledge of approximate equivalences between k-means clus-

ering and principal component analysis, canonical methods for cluster-

ng and dimensionality reduction ( Ding and He, 2004; Drineas et al.,

004 ). Here, we developed numerical methods to test this redundancy

ore directly. Our approach is conceptually simple. First, we detected

etwork and gradient structure in functional MRI data. Second, we

ampled regional timeseries with network constraints, and evaluated

he presence of gradient structure in these data. Third, we sampled re-

ional timeseries with gradient constraints, and evaluated the presence

f network structure in these data. This approach resembles a controlled
rbilt.edu (M. Rubinov) . 
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Table 1 

Clarification of terms used in this article 

Nullspace sampling 

Feature Any numeric property of the data (e.g., network and gradient features). 

Constraints A set of features that specify a target data distribution. 

Unbiased sampling Selection of data samples with probability of the target data distribution. 

Nullspace A linear space that maps to the solution space of a linear system. 

Network 

Concept A group of brain regions that have similar activity patterns. This usage is standard in the 

neuroimaging literature but is distinct from the more general definition of a network. 

Structure Correlations between target network timeseries and all regional timeseries. Network timeseries 

denote the mean timeseries of all within-network regions. 

Constraints Mean correlations of regional timeseries within and between networks. 

Gradient 

Concept Spatially continuous variation of brain organization. 

Structure Diffusion-embedding components of interregional correlation matrices. 

Constraints Principal components of regional timeseries matrices. 
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xperiment, or a randomized control trial ( Siddiqi et al., 2022 ), that

ests the effects of targeted interventions (constraints) on outcomes (fea-

ures of interest). The approach goes beyond correlations because it

an show that one feature is redundant with another ( Rubinov, 2016 )

r that both features are approximately numerically equivalent. Such

howings fall within a long tradition that emphasizes the importance

f constraints and “spandrels ”, nonfunctional or nonadaptive traits, in

ntegrated explanations of biological structure ( Gould and Lewontin,

979 ). 

This conceptually simple approach, however, is practically difficult

ecause it requires the unbiased sampling of data with nontrivial con-

traints. Unbiased sampling is important because it allows to distinguish

he constraints of interest from a wealth of confounding, potentially

xtraneous, explanations. However, to the best of our knowledge, the

eld currently lacks methods for unbiased sampling of regional time-

eries with network or gradient constraints. By contrast, existing sam-

ling methods come in three main forms. First, methods based on naive

huffling of timeseries are fast but destroy network and gradient struc-

ure. Second, methods based on sampling data with spatial autocorre-

ation constraints ( Burt et al., 2020; Markello and Misic, 2021; Shinn

t al., 2023 ) are considerably more interesting but are not designed to

onstrain network or gradient structure. Moreover, the heuristic nature

f these methods makes them susceptible to sampling bias. Third, meth-

ds such as autoregressive randomization ( Zivot and Wang, 2006 ) or

hase randomization ( Prichard and Theiler, 1994 ) are perhaps most

elevant to our study but have two important limitations. First, both

ethods trivially constrain all network and gradient structure and in

his way cannot be used to test the redundancy between these features.

econd, both methods assume a stationary, linear, and Gaussian genera-

ive model, and constrain lagged correlations. These additional features

eflect properties of real functional MRI data, but also introduce con-

ounding explanations that make it more difficult to perform controlled

xperiments. Liegeois et al. (2017, 2021) provides a thorough discussion

f these issues. 

Here, we built on insights from linear algebra to develop two related

ethods that sample timeseries with network or gradient constraints.

n both cases, our main contributions was to first reduce the sampling

roblems to a sequence of linear systems, and then use the nullspace to

ample solutions to these systems. Our methods build on a rich litera-

ure for solving linear inverse problems across a wide range of scientific

omains ( Smith, 1984; Tarantola, 2005; Van den Meersche et al., 2009 ).

he methods are unbiased insofar as they accurately sample timeseries

rom the target data distribution, and efficient insofar as they scale to

ultiregional recordings. 

In the next sections we describe the details of these methods, and

se these methods to show considerable redundancy between popular

efinitions of network and gradient structure in functional MRI data. We

onclude by discussing the implications of these methods and results for

uture work. 
t  

2 
esults 

efinition of networks and gradients 

We analyzed resting-state functional MRI recordings from subjects

n the Human Connectome Project ( Van Essen et al., 2013 ). We used a

opular data-driven parcellation ( Schaefer et al., 2018 ) to extract time-

eries from 400 cortical regions in these recordings, and performed all

ur subsequent analyses on regional timeseries matrices. In this sec-

ion we summarize our definitions of network and gradient structure

nd constraints. 

Network structure and constraints . We defined network structure

s the correlations between a network timeseries and the timeseries of

ll brain regions, averaged over all subjects. We used a popular divi-

ion of the cortex into the visual, somatomotor, temporoparietal, dor-

al attention, ventral attention, control, default, and limbic networks

 Schaefer et al., 2018 ), as well as a hierarchical subdivision of these 8

etworks into 34 (17 bilaterally symmetric) subnetworks. We defined

etwork constraints as the mean interregional correlations within and

etween these subnetworks. Below, we evaluated the extent to which

hese constraints accounted for the structure of 7 networks (we did not

resent results on the limbic network because of known problems with

ow signal-to-noise ratio in that network). 

Gradient structure and constraints . We defined gradient structure

s diffusion-embedding components of interregional correlations, av-

raged over all subjects. We followed the pipeline of Margulies et al.

2016) to first nonlinearly transform the mean interregional correlation

atrix to a Markov chain matrix, and then extract diffusion-embedding

omponents as the leading eigenvectors of this matrix. We defined gra-

ient constraints as the principal components of regional timeseries ma-

rices ( Hong et al., 2020 ), and evaluated the extent to which these con-

traints accounted for gradient structure. Finally, we used Procrustes

nalysis to align gradients across samples ( Langs et al., 2015 ), and also

xplored the effect of this alignment on our results. 

verview of nullspace sampling 

We built on insights from linear algebra to sample regional time-

eries with network or gradient constraints. In this section we summa-

ize the general formulation of our method, and its several variants. In

he Methods section we describe our approach in considerable mathe-

atical detail. 

Variant 0: General formulation (Box 1). The general formulation of

ur method samples the solutions to a system of linear equations 𝐀 𝐱 = 𝐛 ,
here 𝐱 is a vector that denotes empirical data, 𝐀 is a matrix that de-

nes features of interest, and 𝐛 is a vector that denotes empirical values
f these features. Our method samples solution vectors 𝐱̃ that satisfy
mpirical constraints, such that 𝐀 ̃𝐱 = 𝐛 where ̃𝐱 denotes model (rather
han empirical) data. We can express these solutions as 𝐱̃ = 𝐱 ∗ + 𝑑𝐙𝐪 ,
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here 𝐱 ∗ is the unique minimum-norm solution, 𝑑 is a scaling constant,

 is a uniformly sampled unit-norm weighting vector, and 𝐙 is an or-

honormal basis of the nullspace of 𝐀 , such that 𝐙 
⊤𝐙 = 𝐈 and 𝐀 𝐙 = 𝟎

 Van den Meersche et al., 2009 ). 

Box 1. General formulation of nullspace sampling. 

1. Define a system of linear equations, 𝐀 𝐱 = 𝐛 . 
2. Compute the basis of the nullspace 𝐙 , the minimum-norm so- 
lution 𝐱 ∗ , and the scaling parameter 𝑑. 

3. Uniformly sample weighting vector 𝐪 to sample solutions ̃𝐱 = 

𝐱 ∗ + 𝑑𝐙𝐪 . 

Variant 1: Principal-component constraints . We used a sequen-

ial variant of our general formulation to sample correlation matrices

onstrained by a subset of empirical principal components. 

Variant 2: Pairwise-correlation constraints . We used a sequential

ariant of our general formulation to sample timeseries matrices con-

trained by empirical pairwise correlations. In the Methods section, we

iscuss the relationship between this variant and autoregressive or phase

andomization. 

Variant 3: Global mean and norm constraints . We used a sequen-

ial variant of our general formulation to sample timeseries matrices

onstrained by the mean and norm of empirical timeseries. 

ampling timeseries with network and gradient constraints 

We combined the above variants into pipelines for sampling time-

eries with network or gradient constraints. We summarize these

ipelines below, and illustrate them in Figure 1 . 

Network constraints . We defined network constraints as the mean

orrelations of regional timeseries within and between networks. We

onstrained these correlations by adopting the following pipeline

 Figure 1 C): 

empirical network correlations 
ariant 2 
→ model network timeseries 

ariant 3 
→ model regional timeseries 

We considered two models with network constraints. First, the intra-

etwork model constrained only the mean interregional correlations

ithin a network. Second, the all-network model constrained the mean

nterregional correlations within and between all networks. Therefore,

or a system with 𝑙 networks, the intra-network model had 𝑙 constraints,

hile the all-network model had 1 2 𝑙( 𝑙 + 1) constraints ( 𝑙 intra-network
onstraints and 1 2 𝑙( 𝑙 − 1) inter-network constraints). 
Gradient constraints . We defined gradient constraints as principal

omponents of regional timeseries matrices ( Hong et al., 2020 ). We sam-

led regional timeseries with these constraints by adopting the following

ipeline ( Figure 1 C): 

empirical principal components 
ariant 1 
→ model interregional correlations 

ariant 2 
→ model regional timeseries 

We considered two models with gradient constraints. First, the one-

radient model constrained only the first principal component. Second,

he two-gradient model constrained the first and second principal com-

onents. Both models also constrained all eigenvalues of the empirical

orrelation matrix. Therefore, for a system with 𝑛 regions, the 𝑘 -gradient

odel had ( 𝑘 + 1) 𝑛 empirical constraints ( 𝑘𝑛 eigenvector constraints and
 eigenvalue constraints). 

Model complexity . Our regional timeseries comprised 400 regions

nd 1200 timepoints, and were divided into 34 networks. Therefore,

he one-network model had 34 constraints (0.01% of all data points),
3 
he all-network model had 595 constraints (0.12%) constraints, the

ne-gradient model had 800 constraints (0.17%), and the two-gradient

odel had 1200 constraints (0.25%). The total number of constraints

as most comparable for the all-network models and one-gradient mod-

ls. More generally, this relatively small number of constraints in all

odels implied that all model and empirical data were essentially un-

orrelated (Figure S1). 

odel performance 

This section describes our main results, summarized as correlations

etween network or gradient structure of empirical and model time-

eries. We first evaluated the extent to which network constraints ac-

ounted for network and gradient structure. We then similarly evaluated

he extent to which gradient constraints accounted for gradient and net-

ork structure. 

Network constraints ( Figure 2 ). Our simplest intra-network model

rovided a relatively coarse, albeit generally accurate, representation of

etwork structure (with median [95% uncertainty interval] model-data

earson correlations of 0.74 [0.63, 0.79] across all networks). However,

his model largely failed to recapitulate gradient structure (with corre-

ponding model-data correlations of 0.51 [0.41, 0.60] for the first gra-

ient, 0.07 [0.02, 0.20] for the second gradient, and 0.19 [0.07, 0.23]

or the third gradient). Overall, these results suggest that intra-network

orrelations alone were not sufficient to fully account for network or

radient structure. 

By contrast, the all-network model provided much better represen-

ations of all network structure (with median [95% uncertainty inter-

al] model-data Pearson correlations of 0.89 [0.84, 0.91] across all net-

orks). More interestingly, this model also accurately represented gradi-

nt structure (with corresponding model-data correlations of 0.93 [0.93,

.93] for the first gradient, 0.94 [0.93, 0.94] for the second gradient,

nd 0.82 [0.82, 0.82] for the third gradient). Overall, these results sug-

est that inter-network correlations were largely sufficient to account

or gradient structure. 

Gradient constraints ( Figure 3 ). The one-gradient model had a sim-

lar number of constraints to the all-network model, and performed sim-

larly well to that model. Specifically, this model provided accurate rep-

esentations of first-gradient structure (with median [95% uncertainty

nterval] model-data Pearson correlations of 0.96 [0.96, 0.96]), and rea-

onable approximations of second- and third-gradient structure (with

orresponding model-data correlations of 0.63 [0.62, 0.65], and 0.73

0.72, 0.75]). More interestingly, this model provided a highly accurate

epresentation of all network structure (with corresponding model-data

orrelations of 0.89 [0.79, 0.99] across all networks). Overall, these re-

ults suggest that primary-gradient constraints alone were largely suffi-

ient to account for network structure. 

Finally, our most complex two-gradient model provided additional

mprovements in representation of all gradient structure (with median

95% uncertainty interval] model-data Pearson correlations of 0.90

0.83, 0.98] across all gradients), and all network structure (with cor-

esponding model-data correlations of 0.94 [0.87, 0.99] across all net-

orks). 

Control experiments . We evaluated the effects of preprocessing and

nalysis methods on our results. First, we considered the effects of global

ignal regression (Figures S2 and S3). As we discuss in the Methods

ection, we adopted this step to remove the effects of vigilance and

on-neuronal physiology, and correspondingly to better align princi-

al components (gradient constraints) with diffusion-embedding com-

onents (gradient structure). The exclusion of global signal regression

onsiderably worsened the performance of both gradient models, and

he one-network model, but had little effect on the performance of the

ll-network model. 

Second, we considered the effect of Procrustes alignment on our re-

ults (Figures S4 and S5). This alignment tends to increase the observed

imilarity of gradient structure. The exclusion of Procrustes alignment
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Fig. 1. Overview of nullspace sampling pipelines. (A) Three variants of nullspace sampling. (B) Empirical timeseries matrix. (C) Pipelines for sampling timeseries 

with network or gradient constraints. Arrows denote distinct variants of nullspace sampling (A). The principal-component pipeline first uses variant 1 to generate 

interregional correlation matrices constrained by empirical principal components, and then uses variant 2 to generate model timeseries constrained by these inter- 

regional correlations. The network-correlation pipeline first uses variant 2 to generate model network timeseries and then uses variant 3 to generate model regional 

timeseries constrained by these network timeseries. 
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ikewise considerably worsened the performance of both gradient mod-

ls, and the one-network model, but had little effect on the performance

f the all-network model. By definition, the exclusion of this step only

ffected the representation of gradient structure (i.e., it had no effect on

he representation of network structure). 

iscussion 

Summary. We developed methods for sampling timeseries with net-

ork or gradient constraints. We first validated our approach by show-

ng that network constraints largely accounted for a parcellation-based

efinition of network structure, and gradient constraints largely ac-

ounted for a diffusion-embedding based definition of gradient struc-

ure. We then noted that network constraints also largely accounted for

radient structure, while gradient constraints also largely accounted for

etwork structure. Specifically, we found that the all-network and one-

radient models had similar complexity, and induced relatively similar

etwork and gradient structure (although the one-gradient model was

ore sensitive to changes in preprocessing methodology, Figures S2-

5). We also found that a simpler (intra-network) model considerably

educed the similarity between empirical and model data, while a more

omplicated (two-gradient) model somewhat increased this similarity. 
4 
Implications. Our results suggest that these popular definitions of

radient and network structure show considerable redundancy, and may

imply denote discrete and continuous representations of the same as-

ects of functional MRI data. The strong similarity between these dis-

inctly defined features has an intuitive technical explanation. Specif-

cally, both networks and gradients are extracted from interregional-

orrelation matrices, and both network and gradient constraints repre-

ent low-dimensional approximations of these same matrices ( Figure 1 ).

t follows, therefore, that accurate representations of interregional-

orrelation matrices (whether due to network or gradient constraints)

ill simultaneously recapitulate both network and gradient structure in

odel data. 

Our demonstration of redundancy goes beyond previously reported

orrelations between networks and gradients ( Margulies et al., 2016;

uell et al., 2018; Raut et al., 2021; Vos de Wael et al., 2021; Dong

t al., 2021; Bolt et al., 2022 ). This demonstration implies that the

eld is not justified to assume the independent importance of all net-

orks and all gradients, much in the same way that one is not justi-

ed to assume the importance of redundant regressors in a linear model

 Rubinov, 2022 ). We suggest that future studies need to combine addi-

ional data on the functional relevance ( Krakauer et al., 2017 ), evolu-

ionary ancestry ( Cisek and Hayden, 2022 ), and developmental mech-
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Fig. 2. Effects of network constraints. Left: maps of network structure (correlations between the timeseries of a target network and all brain regions). Right: maps of 

gradient structure (diffusion-embedding components of regional timeseries matrices). First row: maps of intra-network model data. Second row: maps of all-network 

model data. Third row: Maps of empirical data. Bottom row: violin plots of Pearson correlation coefficients between empirical and model data. Network and gradient 

structure were computed from correlation matrices averaged over all 100 subjects. Model data comprised 100 such mean correlation matrices (for a total of 10,000 

sampled timeseries matrices). 
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nisms ( Cembrowski and Menon, 2018 ) of specific networks and gra-

ients, in order to rigorously validate the inclusion of these features in

nified explanations of brain organization. 

Limitations and future work. Our methods have two main limi-

ations. First, the methods can be slow and memory-intensive. This is

ot a practical limitation for parcel-resolution timeseries, but can be a

ractical limitation for voxel-resolution timeseries. Second, the meth-

ds do not admit additional constraints, such as spatial or temporal au-

ocorrelations, or diffusion-embedding components. This second set of

imitations is rather subtle, and worth additional consideration. 

Our methods do not admit spatial or temporal autocorrelation con-

traints. This may be an important limitation because neuroimaging data

re dominated by autocorrelation structure. However, in theory, the un-

iasedness of our methods guarantees the sampling of data with all em-

irical structure, including empirical autocorrelations. In other words,

 sufficiently large number of data samples is bound to include samples

ith empirical autocorrelations. Nonetheless, in practice, our methods

o not sample data with empirical autocorrelations because these data

orm a negligible fraction of our target distributions. It is possible, there-

ore, that our results on these data may differ from our main results. 

Separately from these considerations, our methods do not directly

onstrain diffusion-embedding components. This limitation may be im-

ortant if one is interested in exploring the subtle differences between

radients defined with diffusion embedding, and gradients defined with

rincipal component analysis. 

Our future work will focus on resolving some of these limitations,

hrough improvements in scalability, and through expansion of sam-

ling variants to admit other constraints. More generally, as neuroimag-

ng data continue to increase in size and complexity, the ability to sam-
5 
le these data with a rich set of spatial, temporal, correlational, spectral

nd other structure will become increasingly important for delineating

ommon principles of brain organization. We hope that our methods

ill help fulfill an important part of this increasing need. 

ethods 

ullspace sampling methodology 

We sampled regional timeseries with network-correlation con-

traints, or with principal-component constraints. In this section we de-

cribe the details of our nullspace sampling methodology. Our MAT-

AB software implements these methods and is freely available at: https:

/github.com/AdityaNanda/Networks- Gradients- Sampling- Toolbox . 

ariant 0: General formulation 

The general formulation of our method leverages insights from linear

lgebra to uniformly sample data constrained by sets of predetermined

eatures ( Figure 4 ). Consider a linear system 

 𝐱 = 𝐛 , (1) 

here 𝐱 ∈  
𝑡 ×1 is some empirical data vector, 𝐀 ∈  

𝑚 ×𝑡 is a matrix that

ncodes 𝑚 features of interest, and 𝐛 ∈  
𝑚 ×1 denotes empirical values

f these features. Let us assume, without loss of generality, that the 𝑚

eatures of interest are linearly independent or, equivalently, that the

atrix 𝐀 has rank 𝑚 . 

Our method uniformly samples vectors ̃𝐱 that match empirical fea-
ures of interest, such that 

 ̃𝐱 = 𝐛 , 

https://github.com/AdityaNanda/Networks-Gradients-Sampling-Toolbox
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Fig. 3. Effects of gradient constraints. Left: maps of gradient structure (correlations between the timeseries of a target network and all brain regions). Right: maps of 

network structure (diffusion-embedding components of regional timeseries matrices). First row: maps of one-gradient model data. Second row: maps of two-gradient 

model data. Third row: Maps of empirical data. Bottom row: violin plots of Pearson correlation coefficients between empirical and model data. Gradient and network 

structure were computed from correlation matrices averaged over all 100 subjects. Model data comprised 100 such mean correlation matrices (for a total of 10,000 

sampled timeseries matrices). 
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here the ̃. operator denotes model (rather than empirical) vectors. 

Note that the number of features 𝑚 will in general be much smaller

han the number of data elements 𝑡 . This implies that the system in

quation 1 has infinitely many solutions. The solution space of this

ystem maps to the nullspace of the matrix 𝐀 , 𝐙 ∈  
𝑡 ×( 𝑡 − 𝑚 ) , such that

 
⊤𝐙 = 𝐈 and 𝐀 𝐙 = 𝟎 , where 𝟎 is a matrix of zeros ( Laub, 2005; Van den
eersche et al., 2009 ). Let us now define 𝐱̃ as points on this solution
pace, 

 = 𝐱 ∗ + 𝑑𝐙𝐪 , (2) 

here 𝐱 ∗ is the unique minimum-norm solution, 𝑑 is a scaling constant,

nd 𝐪 ∈  
( 𝑡 − 𝑚 )×1 is a unit-norm weighting vector. Geometrically, each

ow in 𝐀 represents an unbounded hyperplane in 𝑡 dimensions, and the

olution space is an 𝑡 − 𝑚 vector space formed by the intersection of

hese hyperplanes. 

We sampled ̃𝐱 in two steps. Figure 4 summarizes these steps, and here
e discuss each step in more detail. First, we computed the nullspace

atrix 𝐙 , and the minimum-norm solution 𝐱 ∗ = 𝐀 
†𝐛 , where ⋅† denotes

he Moore-Penrose pseudoinverse ( Laub, 2005 ). We also computed the

caling parameter 𝑑 to enforce additional, problem-specific constraints.

n practice, we set 𝑑 to restrict our sampling to all 𝐱̃ with some pre-
etermined Euclidean norm 𝑒 , ‖𝐱̃ ‖ = 𝑒 . Note that, by the fundamental

heorem of linear algebra, the minimum norm solution 𝐱 ∗ is orthog-
nal to all column vectors in 𝐙 . Because the additive components in

quation 2 are orthogonal, and because ‖𝐪 ‖ = 1 , we used Pythagoras
heorem to set 𝑑 = 

√
𝑒 2 − ‖𝐱 ∗ ‖2 and thereby ensure that ‖𝐱̃ ‖ = 𝑒 . 

Second, we uniformly sampled weighting vectors 𝐪 from the 𝑛 − 𝑚

imensional standard normal distribution, and rescaled these vectors

o have unit norm. This sampling approach guarantees to produce
6 
niformly distributed random samples of 𝐪 ( Smith, 1984 ). Geometri-
ally, this procedure is equivalent to sampling from the surface of the

 − 𝑚 dimensional hypersphere that has unit radius and is centered at

he origin. 

Let us now show that our sampling of ̃𝐱 is uniform. First, let us ex-
ress the solution space in Equation 2 solely as a function of the weight-

ng vector, such that ̃𝐱 = 𝑓 ( 𝐪 ) . Then, let 𝑃 ( ̃𝐱 ) and 𝑃 ( 𝐪 ) denote probability
istributions over ̃𝐱 and 𝐪 respectively. Following Papoulis (1965) we
an write 

 

(
𝐱̃ 
)
= 

𝑃 ( 𝐪 ) || 𝜕𝐟 
𝜕𝐪 || = 

𝑃 ( 𝐪 ) 
𝑑‖𝐙 ‖ = 

1 
𝑑 
𝑃 ( 𝐪 ) . (3) 

his equation demonstrates that the probability density functions 𝑃 ( 𝐪 )
nd 𝑃 ( ̃𝐱 ) are related by the scaling constant 𝑑 and implies that a uniform
ampling of 𝐪 guarantees a uniform sampling of ̃𝐱 . 
This completes the general formulation of our method. In the fol-

owing sections, we describe three variants of this formulation. In the

esults section, we used combinations of these variants to sample re-

ional timeseries with network or gradient constraints ( Figure 1 ). 

ariant 1: Correlation matrices constrained by principal-component 

tructure 

We first built on our basic formulation to sample correlation ma-

rices constrained by 𝑘 principal components. Let us denote a matrix

f normalized (zero-mean, unit-norm) regional timeseries by 𝐗 ∈  
𝑡 ×𝑛 ,

nd the corresponding correlation matrix by 𝐂 ∈  
𝑛 ×𝑛 . Note that

 = 𝐗 
⊤𝐗 = 𝐕 𝚲𝐕 

⊤ where 𝚲 ∈  
𝑛 ×𝑛 denotes the eigenvalue matrices of

 , and 𝐕 ∈  
𝑛 ×𝑛 denotes the eigenvectors of 𝐂 or, equivalently, the
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Fig. 4. General formulation of nullspace sampling. Left: a flowchart of the main steps. Right: a geometric representation of the method for a three-dimensional 

linear system with one feature of interest ( 𝐀 𝐱 = 𝐛 where 𝐀 ∈  
1×3 , 𝐱 ∈  

3×1 , and 𝐛 ∈  
1×1 ). The purple plane represents the solution space of this system. This plane 

is affinely spanned by orthonormal vectors 𝐳 1 and 𝐳 2 that form the nullspace matrix 𝐙 = [ 𝐳 1 𝐳 2 ] ∈  
3×2 . Our method uniformly samples points ̃𝐱 on this plane by 

expressing each point as a sum of vectors 𝐱 ∗ and 𝑑 𝐙 𝐪 . The vector 𝐱 ∗ denotes the minimum norm solution, a point on the plane with the shortest Euclidean distance 

to the origin. The vector 𝑑 𝐙 𝐪 denotes a random linear combination of the nullspace vectors. See the text for details. 
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rincipal components of 𝐗 . Here, we sought to sample matrices 𝐕̃ that

hared the 𝑘 leading empirical eigenvectors with 𝐕 . 

We sampled these matrices using a sequential variant of our gen-

ral formulation. Specifically, we sequentially sampled 𝑛 − 𝑘 unit vec-

ors orthogonal to the 𝑘 empirical eigenvectors, 𝐯 1 , … , 𝐯 𝑘 , as well as
o any previously sampled eigenvectors. We first sampled ̃𝐯 1 such that
 𝐯 1 ⋯ 𝐯 𝑘 ] 

⊤𝐯 1 = 𝟎 and ‖𝐯 1 ‖ = 1 . We then sampled 𝐯 𝑖 ( 𝑖 = 2 , … 𝑛 − 𝑘 ),

uch that 

𝐯 1 ⋯ 𝐯 𝑘 𝐯 1 ⋯ 𝐯 𝑖 −1 
]⊤𝐯 𝑖 = 𝟎 and ‖𝐯 𝑖 ‖ = 1 (4) 

here 𝐯 1 , … 𝐯 𝑘 are the empirical 𝑘 leading eigenvectors. The struc-
ure of the coefficient matrix in Equation 4 guarantees that 𝐕̃ =
 𝐯 1 ⋯ 𝐯 𝑘 𝐯 1 ⋯ 𝐯 𝑛 − 𝑘 ] forms a set of unit eigenvectors. We then
sed these vectors to define a correlation matrix ̃𝐂 = 𝐕̃ 𝚲𝐕̃ 

⊤. The unique-

ess of eigendecomposition guarantees that ̃𝐂 is constrained to have the

esired principal component structure. 

ariant 2: Timeseries matrices constrained by pairwise-correlation structure

We next sought to sample matrices of normalized (zero-mean, unit-

orm) regional timeseries 𝐗̃ = [ ̃𝐱 1 ⋯ 𝐱̃ 𝑛 ] such that 𝐂̃ = 𝐗̃ 
⊤𝐗̃ =

 
⊤𝐗 = 𝐂 . We sampled these timeseries using a similar sequential vari-

nt of our general formulation. Specifically, we first sampled ̃𝐱 1 to have
ero mean and unit norm, and then sampled ̃𝐱 𝑖 ( 𝑖 = 2 , … 𝑛 ), such that 

𝟏 𝐱̃ 1 ⋯ 𝐱̃ 𝑖 −1 
]⊤𝐱̃ 𝑖 = 

[
0 𝑐 𝑖, 1 ⋯ 𝑐 𝑖,𝑖 −1 

]
and ‖𝐱̃ 𝑖 ‖ = 1 (5) 

here 𝟏 is a vector of ones. The structure of the coefficient matrix in
quation 5 guarantees that ̃𝐗 = [ ̃𝐱 1 ⋯ 𝐱̃ 𝑛 ] will have the desired cor-
elation matrix 𝐂 . 
7 
In practice, we implemented this variant by leveraging the eigen-

ecomposition 𝐂 = 𝐕 𝚲𝐕 
⊤. Specifically, we first sampled timeseries 𝐗̃ 

’ 

onstrained to have ( ̃𝐗 
’ ) 
⊤
𝐗̃ 
’ = 𝚲, and then obtained our timeseries of

nterest via a rotation, 𝐗̃ = 𝐗̃ 
’ 𝐕 

⊤. Note that 𝐗̃ will have the desired cor-

elation matrix 𝐂 because 

̃
 = 𝐗̃ 

⊤𝐗̃ = 

(
𝐗̃ 
’ 𝐕 

⊤
)⊤(

𝐗̃ 
’ 𝐕 

⊤
)
= 𝐕 ̃𝐗 

’ ⊤𝐗̃ 
’ 𝐕 

⊤ = 𝐕 𝚲𝐕 
⊤ = 𝐂 . 

his approach guarantees that the minimum-norm solution will be

 
∗ = 𝟎 , and therefore does not require the computation of this solution
t every step. Moreover, the orthonormal transformation 𝐕 

⊤ preserves

robability distributions ( Equation 3 ), and in this way guarantees that

he uniform sampling of 𝐗̃ 
’ leads to the uniform sampling of 𝐗̃ 

’ 𝐕 
⊤. 

Note that this variant is broadly similar to autoregressive or phase

andomization. However, unlike these methods, the variant does not

ssume a stationary, linear, and Gaussian generative model, and does

ot constrain lagged correlations. The lack of these assumptions allows

s to test the effect of instantaneous correlations in a controlled way.

y contrast, the presence of these assumptions introduces confounding

r extraneous explanations, even if it increases the similarity between

odel and empirical data. 

ariant 3: Timeseries matrices constrained by global mean and norm 

tructure 

We finally sought to sample timeseries matrices constrained by

lobal mean and norm structure. We first considered empirical activ-

ty vectors at time 𝑖 , 𝐲 𝑖 ∈  
𝑛 ×1 , and then sequentially sampled model

ctivity vectors ̃𝐲 𝑖 such that 

 
⊤𝐲̃ 𝑖 = 𝟏 ⊤𝐲 𝑖 and ‖𝐲̃ 𝑖 ‖ = ‖𝐲 𝑖 ‖. (6) 
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D  
fficient computation of nullspace matrices 

We optimized our sampling by replacing the slow direct computation

f nullspace matrices 𝐙 with fast sequential or analytical computation

f these matrices. Let us now describe the details of this computation. 

Sequential computation of nullspace matrix . We developed a se-

uential computation of the nullspace matrix for our sampling variants

 and 2 Equations 4 and (5) . Let 𝐀 𝑖 denote the coefficient matrix at step

 . A sequential variant of our method allowed us to express 𝐀 𝑖 +1 as 

 𝑖 +1 = 

[ 
𝐀 𝑖 

𝐱̃ ⊤
𝑖 

] 
= 

[ 

𝐀 𝑖 (
𝐱 ∗ 
𝑖 
+ 𝑑 𝑖 𝐙 𝑖 𝐪 𝑖 

)⊤] 

. 

here 𝐱̃ 𝑖 denotes our sampled vector at step 𝑖 . This, in turn, allowed us
o express 𝐙 𝑖 +1 as 

 𝑖 +1 = 𝐙 𝑖 null ( 𝐪 ⊤𝑖 ) (7) 

here null ( 𝐪 ⊤
𝑖 
) is the nullspace matrix of the vector 𝐪 ⊤

𝑖 
. We then effi-

iently computed null ( 𝐪 𝐢 ) using the Householder transformation ( Golub
nd Van Loan, 2013; Trefethen and Bau, 2022 ). 

Let us now prove that 𝐙 𝑖 +1 is indeed the nullspace of matrix 𝐀 𝑖 +1 .

e can do this by showing that 𝐙 𝑖 +1 is an orthonormal matrix and that

 𝑖 +1 𝐙 𝑖 +1 = 𝟎 . First, let us note that 𝐙 𝑖 +1 is the product of two orthonor-

al matrices, 𝐙 𝑖 and null ( 𝐪 ⊤𝑖 ) , and is therefore itself an orthonormal ma-
rix ( Laub, 2005 ). Second, let us note that 

 𝑖 +1 𝐙 𝑖 +1 = 

[ 

𝐀 𝑖 (
𝐱 ∗ 
𝑖 
+ 𝑑 𝑖 𝐙 𝑖 𝐪 𝑖 

)⊤
] [

𝐙 𝑖 null 
(
𝐪 ⊤𝑖 

)]
= 

[ 

𝐀 𝑖 𝐙 𝑖 null 
(
𝐪 ⊤
𝑖 

)(
𝐱 ∗ 
𝑖 

)⊤𝐙 𝑖 null 
(
𝐪 ⊤
𝑖 

)
+ 𝑑 𝑖 𝐪 ⊤𝑖 𝐙 

⊤
𝑖 
𝐙 𝑖 null 

(
𝐪 ⊤
𝑖 

)] 

. 

ow, 𝐀 𝑖 𝐙 𝑖 null ( 𝐪 ⊤𝑖 ) = 𝟎 because 𝐀 𝑖 𝐙 𝑖 = 𝟎 . Likewise, ( 𝐱 ∗ 
𝑖 
) ⊤𝐙 𝑖 null ( 𝐪 ⊤𝑖 ) = 𝟎

ecause the minimum norm solution is orthogonal to the nullspace. Fi-

ally, 𝑑 𝑖 𝐪 ⊤𝑖 𝐙 
⊤
𝑖 𝐙 𝑖 null ( 𝐪 ⊤𝑖 ) = 𝟎 because 𝐙 𝑖 is orthonormal and 𝐪 ⊤𝑖 is orthog-

nal to its nullspace. Putting this together, we find that 𝐀 𝑖 +1 𝐙 𝑖 +1 = 𝟎 .
his completes our proof. 

Analytical solution of nullspace matrix . We derived an ana-

ytical expression for the nullspace matrix 𝐙 ∈  
𝑛 ×( 𝑛 −1) in variant 3

 Equation 6 ). Specifically, the nullspace matrix of 𝐀 = 𝟏 ⊤ is given by

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− 𝛾 − 𝛾 − 𝛾 … − 𝛾

𝛽 − 𝛼 − 𝛼 … − 𝛼

− 𝛼 𝛽 − 𝛼 … − 𝛼

− 𝛼 − 𝛼 𝛽 … − 𝛼

⋮ ⋮ ⋮ ⋮ ⋮ 
− 𝛼 − 𝛼 … − 𝛼 𝛽

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

here 𝛼, 𝛽 and 𝛾 denote solutions to the following set of equations: 

− ( 𝑛 − 2 ) 𝛼 + 𝛽 − 𝛾 = 0 , 
 𝑛 − 2 ) 𝛼2 + 𝛽2 + 𝛾2 − 1 = 0 , and 

( 𝑛 − 3 ) 𝛼2 − 2 𝛼𝛽 + 𝛾2 = 0 . 

ne can directly verify that this linear system has a unique solution

hich ensures that 𝐙 is an orthonormal nullspace of 𝐀 = 𝟏 ⊤. Specifically,
he first equation above ensures that 𝐀 𝐙 = 𝟎 , while the second and third
quations ensure that 𝐙 

⊤𝐙 = 𝐈 . 

ata selection and preprocessing 

We analyzed 15-minute resting-state functional MRI recordings from

00 healthy subjects of the Human Connectome Project. We chose to

nalyze 100 recordings with the lowest-available head movement. All

ur recordings had relative root-mean-square head movements of less

han 0.2 at all timepoints. We used data processed with standard Hu-

an Connectome Project methods: the minimal preprocessing pipeline

 Glasser et al., 2013 ), MSM-All registration ( Robinson et al., 2014 ), and
8 
CA-FIX denoising ( Salimi-Khorshidi et al., 2014 ). In addition, we re-

ressed out the six motion parameters, their derivatives, as well as CSF,

hite matter, and global signals from these timeseries. 

Global signal regression is a controversial step ( Murphy and

ox, 2017 ) that warrants additional discussion. The global signal can

eflect a mix of structured artifact ( Power et al., 2017 ), but also infor-

ation about vigilance and non-neuronal physiology ( Liu et al., 2017 ).

hile the latter information may be of interest in some studies, here we

ought to remove this signal to better align principal components and

radients. In functional MRI data, the first principal component tends to

trongly reflect the global signal ( He and Liu, 2012 ), while the second

rincipal component tends to reflect the primary gradient ( Bolt et al.,

022 ). These considerations suggest that global signal regression re-

oved information about vigilance and non-neuronal physiology, and

n this way aligned the leading principal component and the primary

radient. We directly checked the effect of this step by repeating our

nalysis without global signal regression. 
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