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Abstract—Automated program repair is already deployed in
industry, but concerns remain about repair quality. Recent
research has shown that one of the main reasons repair tools
produce incorrect (but seemingly correct) patches is imperfect
fault localization (FL). This paper demonstrates that combining
information from natural-language bug reports and test executions
when localizing faults can have a significant positive impact on
repair quality. For example, existing repair tools with such FL
are able to correctly repair 7 defects in the Defects4J benchmark
that no prior tools have repaired correctly.

We develop, Blues, the first information-retrieval-based,
statement-level FL technique that requires no training data.
We further develop RAFL, the first unsupervised method
for combining multiple FL techniques, which outperforms a
supervised method. Using RAFL, we create SBIR by combining
Blues with a spectrum-based (SBFL) technique. Evaluated on
815 real-world defects, SBIR consistently ranks buggy statements
higher than its underlying techniques.

We then modify three state-of-the-art repair tools, Arja,
SequenceR, and SimFix, to use SBIR, SBFL, and Blues as their
internal FL. We evaluate the quality of the produced patches on
689 real-world defects. Arja and SequenceR significantly benefit
from SBIR: Arja using SBIR correctly repairs 28 defects, but
only 21 using SBFL, and only 15 using Blues; SequenceR using
SBIR correctly repairs 12 defects, but only 10 using SBFL, and
only 4 using Blues. SimFix, (which has internal mechanisms
to overcome poor FL), correctly repairs 30 defects using SBIR
and SBFL, but only 13 using Blues. Our work is the first
investigation of simultaneously using multiple software artifacts
for automated program repair, and our promising findings suggest
future research in this directions is likely to be fruitful.

I. INTRODUCTION

Automated program repair (APR) aims to reduce the cost of
fixing bugs by automatically producing patches [27], [51]. APR
tools have been successful enough to be used in industry [7],
[66], [72], [41]. Unfortunately, repair tools patch only a small
fraction of defects correctly [72], [71], [86] and industrial
deployments require significant manual oversight. Recent
studies show that accuracy of the fault localization (FL) used by
APR has a significant effect on APR’s success [2], [60], [35],
[96], [6], [107], and manually improving FL can correctly
patch more defects [2], [62]. Some APR tools, such as
SimFix [36] use tool-specific methods to address inaccurate
FL; however, these methods are tightly coupled to the specific
repair technique and not reusable by other tools.

Existing APR techniques use either developer-written test
suites or natural-language bug reports. For the former,
spectrum-based fault localization (SBFL) executes the tests
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and collects coverage information to identify suspicious
statements. For the latter, information-retrieval-based fault
localization (IRFL) computes suspiciousness from the similarity
between bug reports and program source. The defects these
two types of APR tools repair tend to be complementary: For
example, IRFL-based iFixR patches defects that 16 SBFL-based
repair tools cannot, and vice versa [44]. Further, combining
multiple FL techniques can improve localization [117], [53],
[48]. We, therefore, hypothesize that combining SBFL and
IRFL can improve APR. To test this hypothesis, we develop a
novel IRFL technique and a novel method for combining FL
techniques in an unsupervised fashion, and evaluate an SBFL,
our IRFL, and the combined techniques in three state-of-the-art
APR tools that have varied sensitivity to FL accuracy.

Our main contribution is SBIR, a novel, reusable
FL technique that combines bug reports and tests.
The use of SBIR in APR is the first instance of
APR simultaneously using multiple software artifacts,
suggesting a promising new research direction. Our
main finding is that the answer to the question “Does
FL that combines bug reports and tests improve APR
performance?” is a resounding yes, for many APR
techniques. For example, on the latest Defects4]
benchmark, we correctly repair 7 defects that none
of 14 prior APR tools could repair correctly [60].

Contributions on using bug-reports. We create Blues,
(Section II-A), the first reusable, APR-agnostic, unsupervised,
statement-level IRFL technique that localizes defects using
bug reports. Prior IRFL techniques are either file- or method-
level [115], [82], [99], [111], [98], [43], or is the technique
used internally by iFixR [44]. iFixR’s FL requires hard-to-get
training data and is tightly coupled to its APR implementa-
tion [44]. Unlike iFixR’s FL, Blues can localize defects to all
57 kinds of Java AST expressions, (iFixR only handles 5 [44]).
We empirically demonstrate that Blues outperforms iFixR’s FL
(Section III-B).

Using tests. Our SBFL technique is not novel. We implement
SBFL using the latest version (v1.7.2) of GZoltar, and the
Ochiai ranking strategy, which is one of the most effective
ranking strategies in object-oriented programs [104], [117], and
is used by most test-suite-based repair tools [60] (Section II-B).



Contributions on using bug reports and tests together. To
combine FL techniques, we develop RAFL, (Section II-C), a
novel approach inspired by search-based software engineer-
ing [31] that uses rank aggregation algorithms [57] to combine
multiple ranked lists of top-k suspicious statements obtained
by different FL techniques. While RAFL can combine any
FL techniques, we focus on combining SBFL and IRFL, which
are used separately by existing repair tools. We use RAFL
to develop SBIR that uses the cross-entropy Monte Carlo
algorithm [81] and the Spearman Footrule distance [9] to
combine our SBFL and Blues. We evaluate our SBFL, Blues,
and SBIR on 815 real-world defects in the Defects4] (v2.0) [26]
benchmark (out of the benchmark’s 835 defects, 18 have no
bug reports, and 2 have irrelevant test execution information)
and find that SBIR consistently outperforms the underlying
techniques (Section III-C1). While one could use existing
supervised combining FL techniques (e.g., CombineFL [117],
DeepFL [53], Fluccs [87], Savant [48], Multric [104], and
TraPT [54]), our study elects to use a new, unsupervised method
because the prior techniques were trained on Defects4] and thus
cannot be applied to an evaluation on Defects4]. Retraining
the supervised techniques poses complex technical challenges,
requires a large, independent, annotated dataset that simply
doesn’t exist today, and does not guarantee previously observed
performance. We demonstrate that our unsupervised technique
outperforms existing supervised ones (Section III-C2).

Importantly, existing supervised methods for both IRFL
and for combining multiple FL techniques require
extensive training data, which is expensive (sometimes
prohibitively so) to obtain. Our evaluation shows
that our unsupervised methods (Blues and RAFL)
consistently perform as well as or better than the
supervised methods, without needing the expensive
training data.

Contributions on effect on APR. To study the effect of
combining FL on repair quality (Section III-D), we select
Arja [113], SequenceR [14], and SimFix [36], three state-of-
the-art APR tools that have varied FL sensitivity [62], are
applicable to general defects, use varied repair approaches, and
have public implementations. We evaluate these tools using
our SBFL, Blues, and SBIR FL techniques on the 689 single-
file-edit defects in the Defects4] (v2.0) benchmark, and find
that SBIR enables APR to repair more defects correctly. For
tools that have been shown to be more sensitive to FL [62],
SBIR significantly improves patch quality (Section III-E).

Our evaluation answers four research questions:

RQ1. Does Blues localize defects better than
existing approaches? Yes. Blues consistently ranks
buggy statements higher than state-of-the-art iFixR’s
supervised IRFL technique (Section III-B).

1230

RQ2. Does SBIR improve FL over the techniques it
is composed of? Yes. SBIR consistently ranks buggy
statements higher than its underlying SBFL and Blues
(Section III-C1).

RQ3. Does SBIR outperform state-of-the-art FL?
Yes. SBIR consistently ranks buggy statements higher
than 9 standalone FL techniques and an existing
supervised FL-combining method (Section III-C2).
RQ4. Does SBIR improve repair quality? Yes.
SBIR enables repairing more defects correctly for Arja
and SequenceR (the more FL-sensitive tools). For
example, Arja using SBIR correctly repairs 28 defects,
but only 21 using SBFL, and only 15 using Blues.
In fact, using SBIR, Arja repairs 7 defects it cannot
repair with either SBFL or Blues, suggesting that the
combination of bug reports and tests is even more
useful, at times, than using both types of information
separately. SimFix already has internal mechanisms for
dealing with poor FL, and correctly repairs 30 defects
using both SBIR and SBFL, but only 13 using Blues.
We empirically show that SBIR significantly reduces
repair failures due to localization errors. Finally, using
SBIR, these tools correctly repair 7 defects that none
of prior 14 APR tools repaired correctly, representing
a 7.5% improvement in the number of defects ever
repaired correctly by APR (Section III-E).

APR has already shown effectiveness in real-world scenarios,
but producing correct repairs is one of the remaining hurdles
preventing wide deployment in industry [27]. This paper makes
progress addressing this challenge by (1) developing a new FL
technique suitable for APR that uses both bug reports and tests,
demonstrating that it localizes defects better than techniques
that use only bug reports or only tests, and (2) demonstrating
that with this new FL, APR tools can repair more defects
correctly.

We make all of our data, source code, and documentation
to reproduce our results publicly available [70]. The rest of
this paper is organized as follows. Section II describes our
FL techniques and Section III evaluates the FL techniques,
and their effect on APR. Section IV places our work in the
context of related research, and Section V summarizes our
contributions.

II. COMBINING FL FOR PROGRAM REPAIR

This section describes our Blues and SBFL techniques, our
method for combining FL techniques called RAFL, and using
RAFL to combine Blues and SBFL into SBIR.

A. Blues: Localizing Bugs Using Bug Reports

We design Blues, an IRFL technique that uses bug reports
to localize defects at the statement level. We create our own
technique because existing techniques [115], [82], [99], [111],
[98], [43] localize defects at the file or method level, while
APR tools require statement-level localization. We do not use



iFixR’s [44] IRFL (the only existing statement-level IRFL)
because its pre-trained model uses projects [52] that overlap
with the Defects4] and retraining on independent projects
poses complex technical challenges and requires another large
annotated dataset of real-world defects. Further, iFixR ignores
for and while loops, which Blues handles. Blues builds on
BLUIiR [82], an unsupervised file-level IRFL technique that
uses structured information retrieval to compute the similarity
between bug reports and source code files. We select BLUIR
because it is efficient, does not require training data, and
performs comparably to other state-of-the-art file-level IRFL
techniques [52]. Algorithm 1 describes our Blues approach.

Ranking Suspicious Files. For each defect, Blues’ inputs
are the bug report URL, the source files, the number of top
ranked files to consider, the number of top ranked statements
per file to consider, and a function to combine statement
and file suspiciousness scores. Blues crawls the bug report
from the input URL and parses the bug report to extract
identifiers from the summary and description fields, and stores
the information in a separate structured XML document (line 2
in Algorithm 1). Next, Blues processes the abstract syntax
tree (AST) of source files to extract identifiers associated
with comments and with class, method, and variable names,
and stores them in separate XML documents (line 3). Blues
preprocesses the terms stored in all the XML documents using
CamelCase splitting, which improves matching recall, text
normalization (removes punctuation, performs case-folding,
tokenizes terms), stopword removal (removes extraneous terms),
and stemming (conflates variants of the same underlying term)
(lines 4-5). Blues then feeds the bug report and source file XML
documents to BLUiR to compute ranked lists of suspicious
files (line 6). BLUIR uses an IR model (TF-IDF formulation
based on the BM25 (Okapi) model [80]) to search and rank the
files based on their similarity with the bug report. Blues uses
the same tuning parameters as BLUiR, which prior work [82]

Algorithm 1 Blues: Statement-level IR-based FL.

br: a bug report URL

srcFiles: collection of source files

irTool: file-level IRFL tool

f: number of suspicious files to consider
Input: m: number of suspicious statements per file to consider
Input: ScoreFn: function to combine file and statement scores
Output: rankedStmtList: ranked list of suspicious statements

1: function MAIN (br, srcFiles, irTool, f, m, ScoreFn)

Input:
Input:
Input:
Input:

2: br_xml < ParseBugReportAndConvertToXML(br)

3: src_files_xml <— ParseSrcFilesAndConvertToXML(srcFiles)

4: PreProcess(br_xml)

5: PreProcess(src_files_xml)

6: ranked_files <— Okapi(br_xml, src_files_xml, irTool)

7: ranked_stmts <— LocalizeStatements(br_xml, ranked_files, irTool)

8: rankedStmtList <— Ranker(ranked_files, ranked_stmts, f, m, ScoreFn)
9: return rankedStmtList

10:

: function LOCALIZESTATEMENTS (br_xml, ranked_files, irTool)

12: sre_stmts_xml < [ ] > stores XMLs of parsed source statements
13: for f € ranked_files do

14: S < extractASTStatements(f) > extract 57 kinds of Java AST statements
15: for ast_stmt € S do

16: stmt_xml < ParseStmtAndConvertToXML(ast_stmt, f)

17: src_stmts_xml.append(stmt_xml)

18: PreProcess(src_stmts_xml)

19: ranked_stmts <— Okapi(br_xml, src_stmts_xml, irTool)

20: return ranked_stmts
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tuned using AspectsJ that does not overlap with Defects4].

Ranking suspicious statements. To rank suspicious state-
ments from the top-ranked suspicious files, Blues parses the
ASTs of the top-ranked suspicious files to extract 57 types of
Java AST statements (lines 13—14). Prior work [59] shows that
localizing bugs at the expression-level can improve repair tools.
Therefore, unlike iFixR [44], which only extracts five kinds of
AST statements (If, Return, Expression, FieldDeclaration, and
VariableDeclaration), Blues extracts 32 AST expressions [79],
3 AST nodes (SingleVariableDeclaration, AnonymousClass-
Declaration, Annotation), and 22 AST statements [19], 17 of
which iFixR ignores, including for loops, while loops, do
statements, etc. For readability, we refer to the AST expression,
AST node, and AST statement as statement.

For each statement, Blues identifies its line number in
the associated source file along with the file name, extracts
identifier terms, and stores this information in an XML
document (lines 15-16). Blues creates these XML documents
for all the statements extracted from the ranked source files
(line 17), and preprocesses these XMLs (line 18) in the same
way it pre-processes source file XMLs. Next, Blues feeds
these statement and the bug report XMLs to BLUIR that
outputs a ranked list of the statements. Blues extracts the
line number, source file name, and suspiciousness scores from
the output to create a ranked list of suspicious statements
(line 19). Note that these ranked statements do not consider
the ranks of their associated source files. Real-world projects
contain many source files, and our experiments show that
treating all statements in a higher-ranked file to be more
suspicious than the ones in lower-ranked files is sometimes
suboptimal, so we also explore other strategies. To combine
the ranked suspicious files and statements, Blues provides a
ranker module that uses the three parameters: f, the number
of suspicious files to consider; m, the number of suspicious
statements per file to consider; and ScoreFn, a function for
combining the file and statement suspiciousness scores (line 8).
We define two such functions: Scorep;qgn ranks the m most
suspicious statements in the most suspicious file, followed by m
statements in the next file, and so forth. Score,,; uses the files’
scores as weights for the associated suspicious statements and
recomputes the weighted suspiciousness scores by multiplying
the scores of the statements with the score of the associated
file. We set f = 50 based on the recommendation of a
prior study [44]. We run Blues’ ranker module using six
different configurations: five (m € {1, 25,50, 100, all}) with
Scorepign, and one (m = all) with Score,,;. For each of the
six configurations, Blues produces a ranked list of statements.

We found that the six configurations localize complementary
defects, so we use Algorithm 2 to combine the six ranked lists
into a single list, which we call Blues ensemble. The algorithm
to combine lists sorts the statements using each statement’s
highest rank in the six lists, breaking ties using the number of
lists in which the statement occurs (line 15 in Algorithm 2). To
fairly compare suspiciousness scores across lists, the algorithm
normalizes the scores first (line5). Note that computing the
individual configurations and the ensemble is a relatively low-



Algorithm 2 Combining ranked suspicious statement lists using
suspiciousness scores and consensus.

Input: rankedStmtLists < [l1, 12, . . ]

Output: combinedStmtList
1: function COMBINELISTS(rankedStmtLists)

2: stmt_maxscore +— {} > max susp. score of stmt from all the lists
3: stmt_listcount < {} > number of lists in which a stmt occurs
4: for [, € rankedStmtLists do

5: list,, < NormalizeScoresInList(l )

6: for (stmt, score) € listy, do

7 if score > 0.0 then

8: if stmt ¢ stmt_listcount then

9: stmit_listcount{stmt] = 1

10: stmt_maxscore[stmt] = score

11: else > stmt seen before, update maxscore if needed
12: stmt_listcount[stmt] += 1

13: if score > stmt_maxscore[stmt] then

14: stmt_maxscore[stmt] = score

15: combinedStmtList < SORT(stmt_maxscore, stmt_count)

16: return combinedStmtList

cost process. One only needs to rerun Blues’s ranker module
(line 8 in Algorithm 1) and Algorithm 2, not the entire Blues
pipeline. From here on, we use only the ensemble and refer
to it as just Blues.

B. Spectrum-Based Fault Localization

We do not create a new SBFL technique, but combine
existing tools to produce a state-of-the-art implementation.
SBFL compares program spectra— measurements of the
runtime behavior of a program, such as code covered by
tests [32] — of passing and failing developer-written tests to
rank program elements, such as statements. SBFL calculates
suspiciousness scores using a ranking strategy that considers
four values collected from the spectrum: the number of failing
tests that do (ey) and do not (ny) execute the element, and the
number of passing tests that do (e,,) and do not (n,) execute
the element. While there are multiple ranking strategies,
including Ochiai [1], DStar [100], and Tarantula [38],
empirical studies [104], [117] have found that Ochiai is more
effective for object-oriented programs. Most SBFL-based APR
tools use Ochiai, and so does our study.

There exist multiple frameworks that APR tools use to
compute code coverage, including JaCoCo [33], GZoltar [13],
and Cobertura [15]. Our study uses GZoltar because most
APR tools use it, and a recent study comparing 14 APR tools
used multiple GZoltar versions, showing that the latest-at-the-
time version (v1.6.0) significantly improved FL results and
repair performance [60]. We use the latest version (v1.7.2)
of GZoltar available at the time of running our experiments.
GZoltar’s inputs are the source code and test suite and its
outputs are each statement’s ey, ny, ep, and n,. We use
the Ochiai ranking formula to compute suspiciousness scores:
score = £

V(eg+ng)(es+ep)

To validate our SBFL implementation, we compare it to
previously reported results [60] on Defects4] (v1.2.0) for
SBFL implemented using Ochiai and older versions of Gzoltar.
Figure 1 shows our SBFL implementation localizes 13 more
defects than the best prior version.
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project Chart Closure Lang Math Mockito Time | Total
#defects 26 133 65 106 38 27 395
GZ v0.1.1 22 78 29 91 21 22 263
GZ v1.6.0 24 95 57 100 23 22 321
GZ v1.7.2 25 101 53 96 36 23 334

Fig. 1. Our SBFL (implemented using GZoltar (v1.7.2) and Ochiai), in bold,
localizes more defects than prior SBFLs using older versions of Gzoltar [60].

In the remainder of this paper, when we refer to our SBFL,
we are referring to this particular implementation.

C. Combining FL Techniques

Existing approaches to combining multiple FL tech-
niques [53], [117], [87], [48], [104] typically use learning
to rank [12] supervised machine learning. These techniques
use multiple FL techniques’ suspiciousness scores as features to
train a model to rank buggy statements higher than non-buggy
ones. Such approaches require a training dataset of program
statements annotated with suspiciousness scores from multiple
FL techniques, and the manually labeled ground truth “buggy’
or “not-buggy”. Such training data is hard to create because
of the required manual effort, and the performance of trained
models depends heavily on its data and features [65].

Instead, we propose RAFL, a novel unsupervised approach
that requires no training. We formulate the problem of com-
bining different FL techniques as a rank aggregation (RA) [57]
problem. RA involves combining multiple ranked lists (base
rankers) into one ranked list (aggregated ranker) [17]. The
RA problem has been studied extensively in information
retrieval [18], marketing and advertisement research [57], social
choice (elections) [18], and genomics [42]. We propose to
use RA algorithms to combine multiple FL techniques’ ranked
lists. We next describe our RAFL approach to combine FL
techniques (Section II-C1) and using it to combine Blues and
SBFL (Section II-C2). Section III-C2 will empirically show
that our approach outperforms the supervised ones.

1) RAFL: Rank Aggregation-based FL: FL techniques
typically assign suspiciousness scores to hundreds of program
statements. Combining multiple ranked lists, which are often
inconsistent, such that the result is as close as possible to the
individual lists according to some distance metric, can become
combinatorially intractable. We propose rank aggregation-
based FL. (RAFL), a novel approach that uses RA algorithms
to combine FL. Our technique takes inspiration from the
research in search-based software engineering [31], which
involves applying metaheuristic search techniques to solve
problems of balancing competing (and sometimes inconsistent)
constraints. RAFL works as follows. Let Ly, Lo, ..., L,, be
m ordered lists of suspicious statements (e.g., obtained using
m FL techniques). RAFL aims to create an ordered list § of
length £ > 1 that combines the statements in the individual lists
by minimizing the weighted sum of the distances between § and
the individual lists. Formally, RAFL minimizes the objective
function f(6) = Y%, w;d(d, L;), where w; is the importance
weight associated with list L;, and d is a distance metric.

)



parameter definition SBIR value
k size of the combined list 100
seed seed specified for reproducibility 1
distance Spearman or Kendall Spearman
method algorithm (CE or GA) CE
maxIter max #iterations allowed (default 1000) 1000
convin #consecutive iterations to decide if al- 7
gorithm has converged (default: 7 for
CE, 30 for GA)
importance  vector of weights (w;) indicating the  default
importance of each list (default: a
vector of 1’s (equal weights to all lists))
N #samples generated in each iteration. 10,000
Used only by the CE (default: 10kn,
where n is the #unique statements con-
sidering all ranked lists and n >> k,
otherwise at least k2)
p (p - N) is quantile of candidate lists  0.01
sorted by the objective function scores.
Used only by the CE. (default: 0.01
when N > 100 and 0.1 otherwise)
popSize population size in each generation for ~NA
the GA (default 100)
CP Cross-over probability for the GA (de- NA
fault 0.4)
MP Mutation probability for the GA NA

Fig. 2. RAFL configuration parameters.

To minimize the objective function, RAFL samples multiple
lists of k statements from the unique statements in the
individual lists, using an algorithm-specific sampling strategy.
RAFL computes the objective function for each sampled
list. Iteratively, RAFL updates the sampled lists using the
objective function computations, e.g., by adjusting the sampling
probabilities or using genetic algorithms to select the next
generation of sampled lists. This iteration continues until
RAFL observes no change in the objective function scores for
a fixed number of iterations, returning the lowest-scoring list.

Our RAFL implementation uses the RankAggreg [76] pack-
age, which implements several RA algorithms (cross-entropy
Monte Carlo (CE), genetic algorithm (GA), and brute force)
and provides distance metrics (Spearman Footrule [9], and
Kendall’s tau [8]). The left two columns in Figure 2 list RAFL
configuration parameters, which can be used to select combi-
nations of RA algorithms and distance metrics to combine FL.

2) SBIR: Combining Blues and SBFL: To combine the
suspicious statement lists from Blues (Section II-A) and our
SBFL (Section II-B), we use RAFL to develop SBIR using the
cross-entropy Monte Carlo (CE) rank aggregation algorithm
with the Spearman Footrule distance. We make these choices
because prior work found CE to be typically more efficient than
genetic algorithms [77] and than Borda count [16], [76], and
because computing the Spearman Footrule distance is faster
than Kendall’s tau.

The CE algorithm represents an ordered list of k statements
using a 0—1 matrix of size n x k, where 7 is the total number of
unique statements in the ranked lists and & is the length of the
desired combined list. The algorithm imposes two constraints:
each column sums up to exactly 1, and each row sums up
to at most 1. Under this representation, an ordered list of
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size k is uniquely determined by reordering the matrix’ rows
(statements) such that the top k rows form the identity matrix.
For example, if the full list was [A, B, C], a 3 x 2 matrix,
E ﬂ would translate into the candidate top 2 list of (C, B).

C;E algorithm’s goal is to identify a matrix that results
in the minimum objective function score out of all possible
matrices. The CE algorithm uses the following four steps:
(1) Initialization creates an n x k matrix and assigns each
cell a probability of % This matrix represents the multinomial
sampling probabilities of the statements: each statement (row)
is equally likely to be in each of the k positions (column).
Next, CE runs steps 2 and 3 iteratively. (2) Sampling
generates N 0-1 matrices using the restricted (truncated)
multinomial sampling [84] using the current probabilities.
The output of this step are N (new) randomly generated 0—1
matrices of size n x k. (3) Updating computes the objective
function scores for each of the N sampled matrices, sorts
the sampled matrices in the ascending order of the scores,
and identifies p-quantiles y' of the sorted matrices. The
algorithm uses the objective function scores of the matrices
in iteration t to update the multinomial cell probabilities of
unique statements that tend to minimize the objective function
scores of the matrices sampled in the next iteration, as follows:

N

Yo I(f(6:) < yh)ayr
S I(F(8:) < yt)

i=1
where 1 < j7<n,1<r <k, pg-r is the probability of the
unique statement at the jr™ position in the matrix at iteration
t and p;jl is its updated value at iteration t + 1; f(0;) is
the objective function score of the i sampled matrix and
T;j, is the value of the jr™ cell of the i sampled matrix; w
is a weight parameter with a default value of 0.25 (tuned
by prior work [77] on independent dataset) and [ is the
indicator function. (4) Convergence stops the iteration when
the minimum value of the objective function does not change
in a preset number of iterations. The matrix with a minimum
objective function score in the final iteration represents the
final combined list of statements.

SBIR combines SBFL’s and Blues’ ranked suspicious state-
ment lists to produce a single list of top-100 statements. The
right column in Figure 2 shows the values of configuration pa-
rameters we used to develop SBIR. We select £ = 100 because
most APR tools consider at most 100 statements during repair.
We set w; = 1.0 to assign equal importance to SBFL and Blues
and use default values of other parameters including w (used in
updating sampling probabilities), and p that are tuned by prior
work [77] on a dataset that does not overlap with Defects4J.

t+1
P =

III. EVALUATION

We next evaluate our FL techniques and their effect on APR.

A. FL Evaluation Dataset and Metrics

We use the Defects4] (v2.0) [26] benchmark to evaluate our
FL techniques. Defects4] (v2.0) targets Java 8 and consists
of 835 reproducible defects from 17 large open-source Java



identifier project description all  sfd sld

Chart jfreechart framework to create charts 8 8 4

Cli commons-cli API for parsing command 39 32 3
line options

Closure closure-compiler JavaScript compiler 174 137 23

Codec commons-codec implementations of 18 14 8
encoders & decoders

Collections commons-collections Java Collections Framework 4 4 1
extensions

Compress €OMMONS-COMpress API for file compression 47 43 4
utilities

Csv €cOmMMmons-csv API to read and write CSV 16 15 5
files

Gson gson API to convert Java Objects 18 16 2
into JSON

JacksonCore jackson-core core part of the Java JSON 26 19 3
API (Jackson)

JacksonDatabind  jackson-databind data-binding package for 111 91 13
Jackson

JacksonXml jackson-dataformat-xml  data format extension for 6 6 1
Jackson

Jsoup jsoup HTML parser 93 75 18

JxPath commons-jxpath XPath (an expression 22 13 1
language) interpreter

Lang commons-lang extensions to Java Lang 64 64 10

Math commons-math library of math utilities 106 98 23

Mockito mockito a unit-test mocking 38 33 7
framework

Time joda-time date and time library 25 21 3

total 815 689 129

Fig. 3. The “all” column shows the 815 defects from the 17 real-world
Java projects in the Defects4] (v2.0) benchmark we use to evaluate our FL
techniques. The “sfd” column shows the 689 single-file-edit defects and the
“sld” column shows the 129 single-line-edit defects we use for APR evaluations.

projects. Each defect comes with (1) one buggy and one
developer-repaired version of the project code with the changes
minimized to those relevant to the defect; (2) a set of developer-
written tests, all of which pass on the developer-repaired version
and at least one of which evidences the defect by failing on
the buggy version; and (3) defect information, including the
bug report URL. Out of the 835 defects, 817 have the bug
report URL available, making IRFL possible. For 815 of the
817 defects, the test execution information was relevant to
make SBFL possible. Figure 3 describes these 815 defects,
which we use to evaluate our FL techniques.

We use two metrics, common to FL evaluations [117]:
(1) hit@Qk is the number of defects localized in the top-k ranked
statements, and (2) EXAM is the fraction of ranked statements
one has to inspect before finding a buggy statement. hit@Fk tells
us how useful an FL technique is for APR that uses the top %
statements, while EXAM tells us how highly the buggy state-
ments are ranked, easing APR’s job to produce correct patches.

Similar to prior studies [60], [117], [44], we consider a
defect successfully localized when at least one of the buggy
statements is in the top-k. Unlike studies that break ties by
reassigning average rank [74] or expected rank [117], we rank
same-suspiciousness statements in the order they appear in the
FL results, as this is how APR tools process them.

B. Blues’ Evaluation (RQ1)
We next compare Blues’ performance to the state-of-the-art
(Section III-B1) and baseline (Section III-B2) IRFL techniques.

1) Blues vs. State of the Art: Figure 4 compares Blues with
iFixR’s internal statement-level IRFL technique [44] on the
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(171 defects) | hit@k EXAM
‘ k=1 25 50 100 all ‘ k = all

iFixR 26 74 95 106 135 0.048

Blues 11 79 97 108 151 0.034

Fig. 4. For ranked lists of size > 25, Blues localizes more defects (hit @k)
and places buggy statements higher in the list (lower EXAM) than the state-
of-the-art IRFL technique used in iFixR when evaluated on 171 Lang and
Math defects in the Defects4] on which original iFixR was evaluated.

(815 defects) | hit@k | EXAM
| k=1 25 50 100 all | k=all

vanilla BLUIR 26 143 192 245 611 0.159
Blues 27 184 241 306 611 0.111

Fig. 5. For all ranked list sizes, Blues consistently localizes more defects
(higher hit@k) and ranks buggy statements higher (lower EXAM) than
statement-level BLUIR that does not consider suspicious file scores when
evaluated on the 815 defects available in the Defects4] v2.0.

171 Lang and Math defects in Defects4J on which iFixR was
evaluated'. As shown in Figure 4, considering ranked lists
of size > 25 (relevant for APR), Blues consistently localizes
more defects (higher hit @k) than iFixR’s IRFL. Comparing
the ranks of buggy statements in localized defects, Blues places
buggy statements higher (lowering EXAM) in the lists than
iFixR. Blues’ advantage of using a lightweight unsupervised
approach outweighs iFixR’s supervised technique that requires
6 file-level IRFL techniques.

2) Blues vs. Baseline: We implement a version of statement-
level BLUiIR (vanilla BLUiR) that does not consider the
suspiciousness scores of the ranked suspicious files and instead
ranks the suspicious statements only based on their similarity
to the bug reports. Figure 5 compares Blues’ and vanilla
BLUIR performance on the 815 defects. For all list sizes,
Blues consistently outperforms vanilla BLUIR with higher
hit@k and lower EXAM.

For APR-relevant scenarios (kK > 25), Blues con-
sistently localizes more defects and ranks buggy
statements higher than the state-of-the-art, supervised,
statement-level IRFL technique used in iFixR. Blues
also consistently outperforms a statement-level baseline
that ignores suspicious files’ ranks. (RQ1)

C. SBIR’s Evaluation

We next compare SBIR with its underlying SBFL and
Blues (Section III-C1) and with state-of-the-art FL techniques
(Section III-C2). As SBIR’s ranked lists are at most 100 state-
ments, our comparisons use that maximum. To account for the
randomness in SBIR’s Monte Carlo algorithm, we compute
SBIR using 10 random seeds, reporting the mean, standard

The iFixR FL results available at https://github.com/TruX-DTF/iFixR/
tree/master/data/stmtLoc contain multiple statements with the same rank and
multiple ranks for the same statement. We break ties by assigning the highest
possible rank to each statement.



(815 defects) ‘ hit@k ‘ EXAM (334 defects) ‘ hit@k EXAM

| k=1 25 50 100 | k=25 50 100 family technique | k=1 25 50 100 | k=100

SBFL 88 408 475 549 0.287 0.240 0.220 Ochiai 30 168 196 221 0.254
Blues 27 184 241 306 0.332 0.300 0.270 SBFL DStar 32 169 199 222 0.254
SBIR mean 101 419 489 557 | 0.256 0.215 0.187 MBFL Metallaxis 40 154 175 195 0.238
(10 seeds)  stdev 7.60 5.01 5.40 4.22 0.006 0.006 0.005 MUSE 26 9% 104 118 0.193
cv 0.08 0.01 0.01 0.01 0.023 0.026 0.028 slicing-union o1 87 100 111 0.462
Fig. 6. Comparing SBIR, SBFL, and Blues FL performance on the 815 defects slicing ShCl.m.g’m;ersecuon é? ;é 13(1) 1?5 gﬁé

in Defects4] (v2.0). For all list sizes, SBIR consistently localizes more defects shicing-frequency .

(higher hit@k) and places buggy statements higher in the list (lower EXAM) stack trace stack trace | 16 28 28 28| 0.663
than underlying SBFL and Blues. predicate switching predicate switching | 9 24 24 24| 0662
SBIR (10 seeds) mean 48 177 207 231 0.175
o ) o wtdev ) stdev | 4.31 416 292 232 | 0.006
deviation (stdev), and coefficient of variation (cv = ; ==, which cv | 009 002 001 001| 0.034

measures variability in relation to the mean of the population).
A coefficient of variation less than 0.1 means the 10 seeds’
results are tightly coupled [5].

1) SBIR’s FL Performance (RQ2): Figure 6 shows the FL
performance of SBIR, SBFL, and Blues for different list sizes.
SBIR consistently localizes more defects (higher hit@Fk) and
ranks buggy statements higher (lower EXAM) than SBFL and
Blues. For example, considering top-100 statements, SBIR, on
average, localizes 8 more defects than SBFL and 251 more
defects than Blues. Comparing the ranks of buggy statements
in the top-100 ranked lists, SBIR, on average, ranks buggy
statements 19 (EXAM 0.187) while SBFL 22 (EXAM 0.220)
and Blues 27 (EXAM 0.270). These results confirm prior
findings suggesting that combining FL techniques can lead to
better FL [53], [117], [34], [87], [48], [104]. Thus, an APR
tool using SBIR gets earlier opportunities to patch the buggy
statements and a more diverse set of localized defects than
using SBFL or Blues.

For all list sizes we consider, SBIR consistently
localizes more defects and ranks buggy statements
higher than underlying SBFL and Blues. (RQ2)

2) SBIR vs. State of the Art (RQ3): We compare SBIR to
9 standalone FL techniques and a supervised learning-to-rank
approach [46] used by existing combining FL techniques.

SBIR vs. Standalone FL. Our evaluation considers tech-
niques that were previously evaluated on Defects4], make no
assumptions about a priori knowing the buggy file, and localize
buggy statements (as opposed to methods or files). We compare
SBIR with 9 such standalone FL techniques used in a recent FL
evaluation [117]: two SBFL — Ochiai and DStar; two mutation-
based FL. (MBFL)— Metallaxis and MUSE; three slicing—
union, intersection, and frequency; one stack trace FL; and one
predicate switching FL. The existing evaluation [118] provides
a dataset of the 357 defects of Defects4J (v1.0) annotated with
suspiciousness scores of the 9 techniques, but does not release
the implementations of the individual techniques. We recreate
ranked lists of the 9 techniques from the dataset. 334 of the
357 defects have bug reports available, making SBIR possible.
We use these 334 defects for our analysis. Figure 7 compares
the 9 techniques with SBIR. For all list sizes, SBIR consistently
localizes more defects (higher hit@Fk) and ranks buggy state-
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Fig. 7. Comparing SBIR to 9 standalone FL techniques on 334 defects from
Defects4] (v1.0). For all list sizes, SBIR consistently localizes more defects
(higher hit@Fk) and places buggy statements higher in the ranked lists (lower
EXAM) than each of the 9 techniques.

ments higher (lower EXAM) than all of the 9 prior techniques.

SBIR vs. Supervised Combining FL. Techniques. Su-
pervised learning-to-rank approaches (e.g., RankSVM [46],
RankBoost [23], RankNet [12], FRank [92], LambdaRank [11])
can combine FL techniques. Most such state-of-the-art
techniques (e.g., CombineFL [117], Fluccs [87], TraPT [54],
Savant [48]) use RankSVM [46]. Thus, we compare our
unsupervised RAFL with supervised RankSVM in combining
SBFL and Blues.” We first create a dataset of the 815 defects by
annotating program statements of each defect with normalized
suspiciousness scores obtained using our SBFL and Blues,
along with the ground truth information. We then use this
annotated dataset to train the RankSVM model using SBFL’s
and Blues’ scores as features. To evaluate the trained model,
we use the CombineFL framework [118] that uses 10—fold
cross validation and computes Ejpgpect @k and EXAM metrics.
The Ejpnspect @k metric break ties by computing the expected
rank of buggy statement in the ranked lists and then counts
the number of defects whose buggy statements have expected
rank < k. (As there are no ties in SBIR lists, Ej,spect @K
is the same as the hit@k for SBIR.) The EXAM scores are
computed using the expected ranks of buggy statements in
the lists therefore, we denote it as EXAM;,spect. Figure 8
compares SBIR (implemented using RAFL as described
in Section II-C2) and SBIR (RankSVM) (the combination
of SBFL and Blues, combined using RankSVM). For all
lists of sizes, SBIR consistently localizes significantly more
defects (higher Eyy,gpect @K) and ranks buggy statements higher
(lower EXAM;,spect) than RankSVM. The fact that SBIR is
unsupervised and requires no training data is a further advantage
over the supervised RankSVM approach.

SBIR outperforms 9 standalone FL techniques and a su-
pervised technique used by existing combiners. (RQ3)

2We could not compare RAFL to the deep learning-based DeepFL [53]
because DeepFL’s data is not public (https:/github.com/DeepFL/
DeepFaultLocalization/issues/4).



(815 defects) | Einspect @k EXAM,pspect
technique | k=1 25 50 100 | k=100
SBIR (RankSVM) | 50 270 328 396 |  0.236
SBIR (RAFL) mean | 101 419 489 556 0.187
(10 seeds) stdev | 7.60 501 541 4.22 0.005

cv | 008 001 001 0.01 0.027

Fig. 8. Comparing SBIR to a supervised-RankSVM combination of SBFL
and Blues on 815 defects from Defects4] (v2.0). For all list sizes, SBIR
consistently localizes more defects (higher Ejspect @k) and places buggy
statements higher in the ranked lists (lower EXAM) than the RankSVM
combination.

D. APR Evaluation Tools, Dataset, and Metrics

We ran our experiments evaluating FL’s effect on APR using
a cluster of 50 compute nodes, each with a Xeon E5-2680 v4
CPU with 28 cores (2 processors, 14 cores each) running at
2.40GHz. Each node had 128GB of RAM and 200GB of local
SSD. We launched multiple repair attempts in parallel, each
requesting 4 cores on one compute node. We next describe
the APR tools we evaluate, our dataset, and the metrics used.

1) APR Tools Evaluated: Instead of developing a new APR
tool or arbitrarily selecting tools from state-of-the-art, we select
Arja [113] and SimFix [36] that are the most (Sen = 66.9%)
and least (Sen = 29.5%) FL-sensitive general purpose repair
tools out of the 11 APR tools evaluated in a recent study [62]
for their FL sensitivity. We select a third tool, SequenceR [14],
which uses fundamentally different repair approach than Arja
and SimFix, and whose FL-sensitivity (Sen = 39.5%) lies
between Arja and SimFix. Our tool selection criteria require
that tools apply to general defects, rather than specialized,
and have public implementations available so that they can be
customized to take precomputed FL results. Arja, SequenceR,
and SimFix use genetic-programming-[45], neural-machine-
translation-[93], and fix-pattern-mining-based [61] repair ap-
proaches, respectively. Although there are more effective
learning-based APR tools (e.g., CURE [37]) than SequenceR,
which is only applicable to single-line-edit defects, we use
SequenceR because its implementation is public and can be
customized.

Using the dataset described next (Section III-D2), we use
Arja and SimFix to repair 689 single-file-edit defects and
SequenceR to repair 129 single-line-edit defects using SBFL,
Blues, and SBIR for FL. We use the developer-written tests to
validate the produced patches. As SBIR’s ranked lists contain
at most 100 suspicious statements, to fairly evaluate repair tools
with respect to all three FL techniques, we limit repair tools
to use top-100 suspicious program statements obtained by the
three FL techniques. The original SequenceR evaluation [14]
used (manually created) perfect FL and top-10 statements to
repair a defect. We do the same for SequenceR. We do not
otherwise modify the implementations of the three repair tools
except customizing them to use our precomputed FL results.

2) Dataset: Manually assessing the correctness of patches
that modify multiple files is error-prone and suffers from
bias [49], [109]. To reduce errors and bias, we consider
the 689 single-file-edit defects from the 815 defects from
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Section III-A. As SequenceR applies to single-line-edit defects,
we use the 129 single-line-edit defects that are a subset of the
689 defects. Figure 3 shows the distribution of the 689 single-
file-edit defects and 129 single-line-edit defects across the
17 projects in the Defects4] benchmark.

3) Metrics: Prior repair tools’ evaluations that measure patch
correctness use either manual inspection [67], [102], [49] or
automatically-generated evaluation test suites [101], [103], [49],
[71], [2]. While manual inspection is subjective and could be
biased, using evaluation test-suites could inaccurately measure
patch correctness [49]. Therefore, we propose a novel patch
evaluation methodology that uses a hybrid of these methods
to evaluate patch correctness.

For each patched defect, we use the developer-patched
program (available for all Defects4] defects) as an oracle and
use EvoSuite [22] to generate 10 held-out test suites using
10 seeds, a search budget of 12 minutes per seed, and a coverage
criterion of maximizing line coverage of the developer-modified
classes. We use EvoSuite because it is typically used to generate
tests for regression oracles, and because prior studies [56], [71]
preferred EvoSuite for this task. Most studies using EvoSuite
use a 3 minute budget per seed, but using longer time budgets
leads to better quality tests [71]. Therefore, we used 12 minutes
(4 times what most prior studies use) per seed, for 10 seeds.

To check the correctness of an automatically produced
patch, we first execute the held-out evaluation tests on the
patch. If any test fails, we annotate such patch as plausible
(the term used for a patch that passes developer-written tests
but is incorrect [78]). This methodology is the state-of-
the-art objective (but potentially incomplete [49]) automated
test-driven patch correctness methodology [71]. If all the
evaluation tests pass, we manually compare the patch against
the developer’s patch. If the patch is semantically equivalent
to the developer’s patch, we annotate it as correct. If it is
not, we annotate it as plausible. If a patch is partially correct
or we cannot determine its semantic equivalence because it
requires extensive domain knowledge, which happens when
the modifications are made to methods that are different
from developer-modified ones, we conservatively annotate
it as plausible. Thus, our patch evaluation methodology is
conservative as it only considers a patch to be correct if it
passes all held-out evaluation tests and is also semantically
equivalent to the developer’s patch. To study the effect of
improving FL on APR, we compare the number of defects a
repair tool correctly patches (repair quality), using different
FL techniques. Since we had run SBIR with 10 seeds, we
executed the APR tool experiments ten times, once for each
SBIR result. We verified that the defects patched in each run
is representative of all 10, but we only manually analyzed the
patches for correctness for one run because of the significant
manual effort involved.

E. Effect of SBIR on APR quality (RQ4)

The top of Figure 9 compares repair quality of the three
repair tools using the three FL techniques. Arja and SequenceR
correctly patch more defects when using SBIR than when using
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SBFL 15 14 2
Blues 21 20 19
SBIR 8 12 2

Fig. 9. SBIR improves repair quality and reduces localization errors for
more FL-sensitive APR tools. Arja and SequenceR, more FL-sensitive tools,
correctly patch complementary defects using SBFL and Blues, and benefit
more from using SBIR. SimFix, a less FL-sensitive repair tool, correctly
patches the same number of defects using SBIR as SBFL but more than Blues.

SBFL or Blues. Specifically, Arja using SBIR correctly repairs
7 (33%) more defects than using SBFL and 13 (87%) more
defects than using Blues. SequenceR using SBIR correctly
patches 2 (20%) (out of a smaller subset of single-line defects)
more defects than using SBFL and 8 (200%) more defects
than using Blues. SimFix unsurprisingly correctly patches the
same number of defects when using SBFL but 17 (131%) more
defects than using Blues. More FL-sensitive repair tools, Arja
and SequenceR, correctly patch complementary defects using
SBFL and Blues, as evident by the row showing the union
of defects they patch using SBFL and Blues. However, as
the less FL-sensitive SimFix uses test case purification [105]
and expands each suspicious statement by £5 lines to address
inaccurate FL, it does not patch complementary defects.

Localization Error Analysis. Multiple factors can prevent
repair tools from producing correct patches. For example,
if inaccurate FL ranks irrelevant non-buggy statements as
more suspicious than buggy statements, the tool may produce
plausible patches before having a chance to explore the
buggy statement. This phenomenon is called APR localization
error [44]. We next measure SBFL’s, Blues’, and SBIR’s effect
on localization error. We execute each of the three repair tools
using perfect (manual) FL and measure the number of correctly
patched defects (“perfect FL” row in Figure 9). We compute
the “upper bound” [62] number of defects a repair tool can
correctly patch as the union of defects correctly patched using
the perfect FL and our three FL techniques. (Note that Arja
and SimFix consider multiple suspicious statements and can
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case Token.MOD:

if (rval == 0) {

error (DiagnosticType . error (“JSC_DIVIDE_BY_0_ERROR” ,
; /I Blues(38) SBIR(40)

“Divide by 07), right)

return null;

result = Ival % rval;

break ;

case Token.DIV:

if (rval == 0) {

error (DiagnosticType . error ("JSC_DIVIDE_BY_0_ERROR™,
: // SBFL(1) Blues(36) SBIR(1)

133

1

“Divide by 0”), right)

return null;

}

Fig. 10. The two non-consecutive buggy statements (lines 711 and 718) that
cause the Closure-78 defect. The annotations show which of the three FL
techniques localize the buggy statements and their ranks in the respective lists.

patch more defects using SBIR than perfect FL. Their repair
algorithms fail to construct patches for some defects when
FL’s ranked lists do not contain certain non-buggy statements
adjacent to the buggy ones.) We then compute the localization
error for each FL technique: the difference between the upper
bound and the number of defects correctly patched using that
FL technique. The bottom three rows of Figure 9 show that
using SBIR significantly reduces the number of defects not
patched due to localization error for the more FL-sensitive
repair tools, compared to SBFL and Blues.

Overall, Arja and SequenceR significantly benefit from
SBIR. Arja using SBIR correctly patches 28 (78%) of the
36 upper bound defects, whereas using SBFL, it only patches
21 (58%) and using Blues only 15 (42%). SequenceR using
SBIR correctly patches 12 (50%) of the 24 upper bound
defects, whereas using SBFL, it patches 10 (42%) and using
Blues 4 (17%). SimFix, correctly patches 30 (94%) of the
32 upper bound defects using both SBIR and SBFL, and patches
13 (41%) using Blues.

Case Study Illustrating How SBIR Helps APR. The three
APR tools using SBIR correctly patched 7 defects (Chart-12,
Closure-68, Closure-78, Closure-86, Closure-92, Lang-10, and
Lang-20) in Defects4J that none of the existing 14 APR tools
patch. That is a 7.5% improvement over the 93 defects in
Defects4] (v1.0) that at least one of the 14 tools correctly
patches [60]. Closure-78 and Lang-20 require editing multiple
code locations in a single file, and most repair tools struggle
to patch these kind of defects. For example, Arja using SBIR
correctly patches Closure-78, whose repair involves deleting
two non-consecutive statements (lines 711 and 718 in Figure 10)
to fix a division-by-O error. None of the existing 14 APR
tools [60], nor Arja with our SBFL or Blues, patch this defect.
For this defect, SBFL ranks only line 718 in the 1st position;
Blues ranks line 718 36th and line 711 38th; and SBIR ranks
line 718 1st and line 711 40th. Arja using SBFL produces a
plausible, but only partially correct patch that deletes line 718
while Arja using Blues does not produce a patch, timing out try-
ing to modify the 35 non-buggy statements ranked higher. Arja
using SBIR produces a correct patch (identical to the developer
patch) because it finds the buggy statement at the top of SBIR’s
list, and then fetches the second buggy statement because it is
also in SBIR’s list and because it uses the same variables and
methods as the top-ranked line (Arja’s ingredient screening



step [113]). Arja constructs a correct patch by deleting both
the buggy statements. Thus, it is precisely the combination
of the information from bug reports and test executions that
enables Arja to localize and correctly repair this defect.

SBIR vs. Union of SBFL and Blues. Since APR using
SBFL and IRFL often repairs complementary defects [44], we
set out to measure how defects repaired with SBIR compare
to the union of the defects repaired with Blues and SBFL.
We find that while there is some complementarity, for Arja,
SBIR repairs more defects than the union, suggesting that
combining bug reports and tests not only captures most (though
not all) of the benefits of the two, it is also able to extract a
combined benefit where neither Blues nor SBFL alone leads
to a repair. Arja patches 25 defects (row 3 in Figure 9)
using SBFL and Blues, including 4 defects (Compress 27,
Jsoup 33, Jsoup 55, and Time 15) that Arja could not patch
using SBIR. However, Arja using SBIR patches 28 defects,
including 7 defects (Closure 78, Gson 7, Jsoup 39, Jsoup 68,
Jsoup 85, JxPath 5, and Lang 7) that Arja could not patch using
SBFL or Blues. Thus, for Arja, SBIR is even more beneficial
than using both SBFL and Blues. SequenceR patches 12 defects
using both SBFL and Blues that include one defect (Cli 40) that
SequenceR could not patch using SBIR. However, SequenceR
using SBIR also patches 12 defects that include one defect
(JacksonCore 25) that SequenceR could not patch using SBFL
or Blues. Thus, SBIR provides the same benefit to SequenceR
as using both SBFL and Blues. SimFix correctly patches the
same 30 defects using SBIR as it does using both SBFL and
Blues. Thus, for SimFix, using SBIR provides the same benefit
as using just SBFL or both SBFL and Blues.

SBIR vs. Original Published APR Versions. We find that
the three repair tools using SBIR correctly repair somewhat
complementary defects to those the original published versions
repaired. Arja using SBIR correctly patches 4 defects (Lang-7,
Lang-10, Lang-59, and Math-35) original Arja did not. Of
the defects in our dataset, the original Arja correctly patched
15 defects [113] (plus 3 others that either had no bug reports
(Chart-3) or were multi-file-edit defects (Math-22 and Math-
98)). Of these 15, Arja using SBIR correctly patches 12, but not
the other 3 (Lang-35, Math-39, and Math-86). We examined the
original evaluation’s patches® and found that for these 3 defects,
Arja had produced only a single patch, which is highly
uncommon for Arja (it produced many patches for all other
defects it patched), suggesting that there is something special
about these defects or the process the Arja evaluation followed
in repairing them. Overall, Arja with SBIR correctly patches 1
more defect than the original Arja. SimFix using SBIR correctly
patches 3 defects (Closure-68, Closure 92, and Closure-126)
original SimFix did not. Of the defects in our dataset, original
SimFix correctly patched 21 defects [36] (plus 6 others that
either had no bug reports (Chart-3, Chart-7, Chart-20) or were
multi-file-edit defects (Closure-63, Math-71, and Math-98)).
Of these 21, SimFix with SBIR correctly patches 19. (Note that
the original evaluation [36] listed 7 more defects (Closure-115,

3https://github.com/yyxhdy/defects4j- patches/tree/master/Arja
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Lang-16, Lang-27, Lang-39, Lang-41, Lang-50, and Lang-60)
as patched correctly. The authors subsequently identified one
of those (Lang-27) as incorrect,* and our analysis revealed
that the six others are also incorrect. SimFix with SBIR could
not patch the remaining two defects (Math-35 and Math-63).
Overall, SimFix with SBIR correctly patches 1 more defect
than the original SimFix. SequenceR’s original evaluation used
perfect FL [14], so a direct comparison is not appropriate. With
perfect FL, original SequenceR patched 14 defects correctly,
and with SBIR, it patches 6 (Chart-11, Closure-73, Closure-86,
Lang-59, Math-58, and Math-75) of those 14.

~

SBIR significantly improves repair quality and reduces
localization errors for more FL-sensitive APR tools,
and enables correctly repairing some defects that they
cannot repair with other FL techniques. For less
FL-sensitive APR, SBIR provides the same repair
quality as SBFL. Using SBIR, we are able to correctly
repair 7 defects never previously automatically repaired
correctly by existing techniques. (RQ4)

F. Discussion and Threats to Validity

Our approach requires a bug report and a bug-exposing
test. This requirement is not always met: several defects in
Defects4] (v2.0) have no documented bug reports, and prior
studies [44], [39] show that for 92% of defects, bug-exposing
tests are added after the bug is reported. However, most repair
tools cannot function without either a failing test or a bug
report, and existing repair tools that use only bug reports are not
fully automatic (a human must validate the proposed patches).
Meanwhile, while test-driven APR can be fully automated,
most patches it produces are incorrect [72], [71], [86]. Our
work extends APR to use SBIR, which uses both bug reports
and test suites, enabling repair tools to be fully automated
and to produce higher-quality patches. This is a worthwhile
achievement even if not all defects in industrial settings
have the requisite artifacts, and may motivate developers to
create the artifacts in the future, which reinforces an already
recommended practice. Further, combining the available user
inputs to improve APR can foster trust in the generated
patches [73], thereby helping the adoption of repair techniques.

Blues’ effectiveness depends on the quality of bug reports.
For example, Blues could not localize the Chart 2 defect’
because its bug report only contains a URL and no description.
This caused SBIR to lower the rank of the buggy statement in
its ranked list of suspicious statements.

It is not a goal of our study to develop the best way to
combine FL techniques. Instead, because existing combining
techniques are trained on Defects4J, we could not use them
in our evaluation, so we created RAFL, an unsupervised com-
bining method. We show that RAFL outperforms RankSVM,
a state-of-the-art supervised combining method, and that it is

“https://github.com/xgdsmileboy/SimFix/tree/master/final/result
Shttps://sourceforge.net/p/jfreechart/bugs/959/



sufficient to demonstrate improvement in APR performance.
However, comparing RAFL with all supervised methods is out
of scope of this study.

Our evaluation aims to measure the impact of combined
IRFL and SBFL on APR in a way that will generalize to a
wide range of APR techniques. That is why our evaluation
uses three diverse APR techniques. The design of our study
allows estimating the SBIR’s impact on a repair technique
based on its FL-sensitivity. For example, a recent technique
Recoder [116] has an FL-sensitivity of 34.5%, similar to
SequenceR’s 39.5%. Thus, we expect SBIR’s impact on
Recoder will be similar to that on SequenceR, but smaller
than that on Arja (sensitivity 66.9%).

Arja and SequenceR are stochastic and results may vary
across executions. We address this threat by using a large-
scale dataset. Executing our study is highly computationally
intensive and required eight weeks of wall-clock time on a
50-node cluster. To enable others to independently reproduce
our results, and reuse our FL techniques in improving APR,
we make all code and data available.

We address threats to internal validity by reusing publicly
available implementations of repair tools instead of reimple-
menting them. We address threats to external validity by
selecting diverse APR tools and using Defects4] (v2.0) that
has significantly more projects and defects than earlier versions.

IV. RELATED WORK

Improving APR Performance. Program repair tools
typically follow a three step process: identifying the location
of a defect, producing candidate patches, and validating those
patches. The method used for each of these steps can signifi-
cantly affect the tool’s success. To improve APR, researchers
have proposed to use different kinds of FL strategies [6],
[107], [88], [44], [35], [64], patch generation algorithms (e.g.,
heuristic-based [50], [63], [91], [97], [36], [75], constraint-
based [2], [94], [29], [68], [40], and learning-based [14], [30],
[83]), and patch validation methodologies [95], [108], [112],
[90], [109]. Assuming perfect FL, recent study [62] shows
that modern repair tools can patch significantly more defects.
However, assuming perfect FL is unrealistic and therefore we
propose to improve automated FL used in APR.

Recent APR research has used formal constraints derived
by program analyzers instead of test suites [28], [25]. These
techniques patch specific families of defects, such as security
vulnerabilities and exception-causing defects, and our approach
to improving general-purpose APR is complementary.

APR’s fundamental challenge is generating fewer incorrect
patches [86], [71], [78]. In some domains, e.g., formal
verification, an oracle exists to determine patch correctness [21],
[20], [85], [3], overcoming this problem, though better FL. can
still lead to the production of more patches.

Improving FL. Techniques to improve FL can be classified
into two categories. The first category is the standalone
techniques. For example, PRoFL [64] improves SBFL us-
ing patch execution results from APR, PREDFL [34] uses
runtime statistics from statistical debugging to improve SBFL,
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PRFL [114] uses the PageRank algorithm, XGB-FL [106] uses
a classifier to learn the importance of program statements
and features, such as execution sequence and semantics,
UniVal [47] uses execution profiles and the success and failure
information from program executions, in conjunction with
statistical inference, and DeepRL4FL [55] formulates FL as
pattern recognition and uses code coverage representation
learning to improve SBFL and MBFL techniques. The second
category (e.g., CombineFL [117], DeepFL [53], Fluccs [87],
Savant [48], Multric [104], and TraPT [54]) uses learning-to-
rank [12] machine learning approaches such as RankSVM [46]
to combine multiple FL techniques. RAFL outperforms
RankSVM, the state-of-the-art supervised method.

Property-based testing, e.g., for software fairness [24], [89],
[4], [10], and automated oracle generation [69] can synthesize
additional tests to improve FL in ways complementary to our
approach.

FL in Program Repair. Most repair tools use SBFL
implemented using off-the-shelf coverage tracking tools and the
Ochiai ranking strategy [50], [63], [91], [30], [83], [97], [36].
[94], [68], [29], [2], [14], [110]. R2Fix [58] and iFixR [44]
are the only two IRFL-based repair tools, and no prior repair
tool uses combined SBFL and IRFL. Although, using patch-
execution results from repair tools to refine FL results can
outperform state-of-the-art SBFL and MBFL techniques [64].
Recent studies have shown the effect of using different
technologies, assumptions, and adaptations of test-suite-based
FL techniques on the performance of repair tools [2], [60], [35],
[88], [107], [96], [6]. Often, APR researchers omit FL tuning
used by their repair tools while presenting repair performance,
which leads to bias in comparing performance of different
repair tools [62], [60]. Further, the tuned FL implementations
are often tightly coupled to the repair tool implementations,
which makes it hard to reuse them for other repair tools. Our
FL techniques can be used to mitigate this bias as they can
serve as a plugin by future repair tools to decouple their FL
implementations from their repair algorithm implementation,
as is done in some frameworks, including JaRFly [71].

V. CONTRIBUTIONS

We have developed SBIR, an FL technique that uses both
bug reports and tests to localize defects, and showed that it
helps improve APR quality for FL-sensitive tools, repairing
more defects correctly than by using other FL techniques.
Along the way, we also created Blues, the first statement-level,
information-retrieval-based FL that outperforms the state of
the art without needing ground truth data for training, and
RAFL, a novel unsupervised method for combining arbitrary
FL techniques. Our results demonstrate that combining bug
reports and tests leads to better FL, and enables higher-quality
APR. Our findings support further research into improving APR
by combining bug-report-based and test-based information.

DATA AVAILABILITY

All of our data, source code, and documentation to reproduce
our results are publicly available [70].
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