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Modern software relies heavily on data and machine learning, and affects decisions that shape our world. Unfor-
tunately, recent studies have shown that because of biases in data, software systems frequently inject bias into
their decisions, from producing more errors when transcribing women’s than men’s voices to overcharging people
of color for financial loans. To address bias in software, data scientists and software engineers need tools that help
them understand the trade-offs between model quality and fairness in their specific data domains. Toward that
end, we present fairkit-learn, an interactive toolkit for helping engineers reason about and understand fairness.
Fairkit-learn supports over 70 definition of fairness and works with state-of-the-art machine learning tools, using
the same interfaces to ease adoption. It can evaluate thousands of models produced by multiple machine learning
algorithms, hyperparameters, and data permutations, and compute and visualize a small Pareto-optimal set of
models that describe the optimal trade-offs between fairness and quality. Engineers can then iterate, improving
their models and evaluating them using fairkit-learn. We evaluate fairkit-learn via a user study with 54 students,
showing that students using fairkit-learn produce models that provide a better balance between fairness and qual-
ity than students using scikit-learn and IBM AI Fairness 360 toolkits. With fairkit-learn, users can select models
that are up to 67% more fair and 10% more accurate than the models they are likely to train with scikit-learn.

1. Introduction

Data-driven software is used increasingly to make automated de-
cisions that shape our society. Software decides what products we
are led to buy (Mattioli, 2012); who gets access to financial instru-
ments (Olson, 2011) or gets hired (Raghavan et al., 2019); what a self-
driving car does (Goodall, 2016), how medical patients are diagnosed
and treated (Strickland, 2016), and when to grant bail (Angwin et al.,
2016). Unfortunately, recent studies have shown that such software can
inherit biases from data and the environment. For example, translation
engines can inject societal biases into its translations (Caliskan et al.,
2017). YouTube makes more mistakes when automatically generating
closed captions female than male voices (Koenecke et al., 2020; Tatman,
2017). Racial bias affects the ads search engines display, e.g., showing
ads for (nonexistent) arrest records when searching for African Ameri-
can names (Sweeney, 2013). Amazon’s software has failed to offer same-
day delivery to predominantly minority neighborhoods (Letzter, 2016),
while, Staples offered online discounts to customers only in more afflu-
ent neighborhoods (Haweawar, 2012; Mikians et al., 2012). Language
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processing tools are more accurate on English written by white people
than people of other races (Blodgett and O’Connor, 2017). Facial recog-
nition software recognizes female and non-white faces less often and
less accurately than those of white men (Buolamwini and Gebru, 2018;
Klare et al., 2012). And the software US courts use to assess the risk of
a criminal committing another crime exhibits racial bias (Angwin et al.,
2016).

One fundamental cause of these biases is that modern software often
applies machine learning to data generated from the real world. First,
the real world is full of biases, often subconscious ones that the people
who exhibit them do not recognize. In fact, humans often do not real-
ize their biased behavior until they see an automated system reproduce
it (Peng, 2019). Second, machine learning is notoriously opaque due
to its probabilistic nature, sensitivity to small design decisions such as
hyperparameter tuning, complex data preprocessing and model archi-
tecture, and nontransparent operation (Barocas, 2018; Doshi-Velez and
Kim, 2017; Holstein et al., 2019). As a result, models learned from data
can often encode discriminatory behavior from the data’s bias, but that
behavior is both hard to identify and eliminate (Galhotra et al., 2017).
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Recently, public’s demand for transparency in data and learned
model use has increased (Albrecht, 2016), and governments have initi-
ated efforts to increase regulation of decisions made by software systems
to reduce bias and improve transparency (de Blasio, 2018; Executive Of-
fice of the President, 2016; Soper, 2016). As a result, it is increasingly
important to provide support tools for those who apply machine learning
to data, study data, and build software systems that use data to make de-
cisions. These tools must support detecting and understanding biases in
data and learned models, and the inherent trade-offs between mitigating
bias and maximizing decision quality. Industry experts have called for
tools that help data scientists and engineers understand bias in data and
curate datasets, and to audit and debug fairness issues (Holstein et al.,
2019), all of which our paper aims to address.

The challenges in helping engineers reason about fairness include:
(1) Fairness (as well as quality, defined as, for example, precision, recall,
accuracy, etc.) mean different things in different data domains, and no
single definition of fairness is universally appropriate, with definitions
often being mutually exclusive on datasets. (2) The trade-offs between
fairness and quality are typically a function of the data and not of the
tools applied to train models, and algorithms that produce fair models
on some datasets may produce biased ones on others. (3) The space of
possible models machine learning can produce is astronomically large
due to the combinatorial explosion caused by a large number of learn-
ing algorithms, hyperparameters, and data permutations that affect the
models. (4) Learning algorithms that attempt to account for fairness typ-
ically do not provide guarantees on the behavior of the models they
produce (Zafar et al., 2015; 2017a), and can sometimes inject more bias
than fairness-unaware algorithms (Galhotra et al., 2017); using fairness-
aware algorithms to reduce one kind of bias can significantly increase
other biases (Galhotra et al., 2017); and learning algorithms that do pro-
vide guarantees about their models’ fairness can, under some conditions,
break those guarantees (Agarwal et al., 2018) or fail to produce a model
altogether, even if fair ones exist (Metevier et al., 2019; Thomas et al.,
2019).

While some modern tools can measure various dimensions of fair-
ness of a given model (Adebayo and Kagal, 2016; Bellamy et al., 2018;
Galhotra et al., 2017; IBM, 2019; Tramer et al., 2017), and some ma-
chine learning algorithms can train models while enforcing fairness con-
straints (Agarwal et al., 2018; IBM, 2019; Metevier et al., 2019; Thomas
et al., 2019; Zafar et al., 2015; 2017a), none of these tools provide sup-
port for understanding the trade-offs between fairness and quality of
the models and for comparing and contrasting models along the com-
binations of fairness and quality measures they produce. For exam-
ple, scikit-learn, the state-of-the-art go-to toolkit used ubiquitously by
data scientists in industry (scikit-learn, 2019), provides tools for train-
ing many types of machine learning models, and evaluating them for
quality, such as precision and recall, but not fairness metrics. IBM’s
open source toolkit, Al Fairness 360, adds support for computing fair-
ness metrics on learned models and learning algorithms that account for
some definition for fairness (Bellamy et al., 2018; IBM, 2019). Fairness-
aware learning algorithms, such as fairlearn (Agarwal et al., 2018) or
RobinHood (Metevier et al., 2019) and others designed using the Seldo-
nian Framework (Thomas et al., 2019), can enforce fairness constraints,
but without helping engineers understand how that enforcement affects
model quality. The bottom line is, these tools still fail to provide sup-
port for understanding the trade-offs between fairness and quality, e.g.,
to help data scientists answer questions such as “Does finding a more
fair model necessarily imply the model’s quality will decrease, and by
how much?”

Toward this end, we have developed fairkit-learn, a tool that builds
on scikit-learn and IBM Al Fairness 360, to help data scientists and soft-
ware engineers better understand the model fairness landscape. Fairkit-
learn eases adoption by interfacing with scikit-learn, can support the
over 70 definitions of fairness implemented in Al Fairness 360, and
works with all of scikit-learn’s and Al Fairness 360’s algorithms, met-
rics, and datasets. There are also interfaces for easily including more
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definitions, metrics, and datasets. Fairkit-learn uses visualization to help
engineers understand the fairness properties of specific models, which
learning algorithms learn models that better satisfy competing require-
ments of fairness and quality in a particular domain, and demonstrate
opportunities for selecting models that improve fairness or quality at
the lowest expense of the other. For example, fairkit-learn can perform
a grid search through tens of thousands of possible models learned us-
ing different machine learning algorithms with different combinations
of hyperparameters, and select the Pareto-optimal set of models with re-
spect to multiple data-scientist-selected fairness and quality definitions.
Our goal is to complement, not replace, the existing landscape of tools
that help data scientists make informed decisions about machine learn-
ing models by combining visualization and search features, and improv-
ing usability. We have previously published a short tool demonstration
of fairkit-learn (Johnson and Brun, 2022), but the fairkit-learn design
and evaluation contributions are unique to this paper.

Figure 1 shows a sample fairkit-learn visualization. Here, an engi-
neer is comparing models learned by three learning algorithms — logis-
tic regression, random forest classifier, and adversarial debiasing — on
the COMPAS recidivism dataset. Fairkit-learn trains approximately 80
different models using these three algorithms by varying their hyperpa-
rameters in a grid-search, and computes the much smaller (here, seven)
subset of the models that make up the Pareto-optimal set. Fairkit-learn
visualizes the seven models with respect to two metrics selected by the
user: disparate impact, a fairness metric, visualized on the x-axis, and
model accuracy, a quality metric, visualized on the y-axis. The visualiza-
tion elides multiple sub-optimal models to show only those for which im-
proving fairness decreases accuracy, and vice versa (the Pareto-optimal
model set). This visualization makes it easy to see that (1) in this data do-
main, model fairness and model accuracy are opposing forces (in other
domains, they can be complementary), (2) a small reduction in quality
(63% versus 68%) can produce a large increase in fairness (69% versus
45%), and (3) random forest classifier models (orange) tend to produce
more-fair models at a slight cost in accuracy, adversarial debiasing (ma-
genta), a machine learning algorithm intended to be fairness-aware, pro-
duces less fair but slightly more accurate models, and logistic regression
(purple) models perform slightly better than adversarial debiasing.

We evaluate fairkit-learn in a controlled user study with 54 students
studying data science and software engineering.! (Recent studies Host
et al., 2000; Naiakshina et al., 2019 have demonstrated that, in studies
like ours, findings from student subjects generalize to findings from pro-
fessional subjects.) Our within-subject study asked subjects to use scikit-
learn, IBM Al Fairness 360, and fairkit-learn to explore the machine-
learning-model landscape on three datasets, aiming to produce models
that satisfy a combination of fairness and quality metrics. We found that
subjects who used fairkit-learn produced more fair models than when
using scikit-learn and that while IBM Al Fairness 360 may be better for
engineers only interested in improving fairness, fairkit-learn supports
finding models that are both fair and of high quality (more so than AI
Fairness 360). With fairkit-learn, users can select models that are up to
67% more fair and 10% more accurate than the models they are likely
to train with scikit-learn.

Our work’s key contributions:

e Fairkit-learn, a novel open-source tool that uses familiar interfaces
and visualization for exploring, evaluating, and visualizing the per-
formance and fairness trade-offs in machine learning models. Unlike
existing tools:

e Fairkit-learn supports combining multiple fairness and quality
considerations when evaluating and comparing models. This al-

1 This human-subject study was approved by the UMass Amherst Institutional
Review Board.
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Fig. 1. Fairkit-learn trains and evaluates a large-number of machine learning models using multiple learning algorithms (here, logistic regression, random forrest,
and adversarial debiasing) and an array of hyperparameters, finding the Pareto-optimal set of models that represent the best combination of quality metrics (here,
accuracy, shown on the y-axis) and fairness metrics (here, disparate impact, shown on the x-axis). Fairkit-learn’s visualization helps engineers understand the domain
of their data (here, the COMPAS recidivism dataset Angwin et al., 2016), explaining relationships and trade-offs between quality and fairness metrics, and showing

which algorithms achieve better combinations of multiple metrics.

lows data scientists to optimize their models with respect to mul-

tiple fairness and quality factors simultaneously.

Fairkit-learn simplifies the process of exploring the space of pos-

sible models by automatically performing grid searches over mul-

tiple learning algorithms, model hyperparameters, and data per-
mutations, lifting the burden of implementing such a search off
the user.

Instead of auditing learned models for fairness (as, e.g., Adebayo

and Kagal, 2016; Galhotra et al., 2017; Tramer et al., 2017),

fairkit-learn helps engineers understand the fairness-quality

trade-off landscape during model development, allowing them to
make design decisions about these trade-offs when those deci-
sions can still affect overall system performance.

Fairkit-learn works with more than 70 definitions of fairness and

quality, allowing engineers to evaluate the applicability of differ-

ent definitions to their data domains and select those that make
most sense in their particular situations.

Fairkit-learn uses an interactive, visualization-based approach

that displays the Pareto-optimal set of solutions, to clearly com-

municate trade-offs to the engineers, helping them make in-
formed decisions.

e A user study, evaluating fairkit-learn against scikit-learn and IBM Al
Fairness 360, showing that subjects using fairkit-learn train models
that better balance fairness and accuracy. While, in the real world,
often there is no single best model, fairkit-learn helped subjects se-
lect Pareto-optimal models. Our study also provides insights into
how engineers reason about fairness when using traditional machine
learning tools, e.g., scikit-learn, to train and evaluate models.

It is important to observe that enacting model fairness is a complex
task, and that fairkit-learn is not a silver bullet that will, alone, solve this
problem — it helps engineers evaluate fairness of models to be used in
software, and can help them understand fairness-quality trade-offs, but
our controlled study observed that engineers may still make poor deci-
sions even when informed, at times failing to select the fairest models.
Our study shows that fairkit-learn forms a useful toolkit for understand-
ing and building fair models to be used in software systems, but that it
does not represent the end-all solution and that further work on improv-
ing interfaces and tools engineers can use is necessary and warranted.

A recent study has identified gaps in existing fairness-supporting
tools (Lee and Singh, 2021), and fairkit-learn explicitly addresses these
gaps. Fairkit-learn is a Python library and uses the same interface
as scikit-learn, making it easy to integrate into engieers’ workflows
and significantly reducing the learning curve. Fairkit-learn avoids in-
formation overload by providing an interactive visualization of only
Pareto-optimal models; it avoids oversimplification by providing meth-
ods for digging deeper and revealing additional model information
when needed, and in different formats. Fairkit-learn supports end-to-end
model development considerations by putting data cleaning algorithms,
learning algorithms, analysis, and visualization tools all into one toolkit
with one common interface, and supporting interactive model and fair-
ness definition selection and refinement.

The rest of the paper is structured as follows: Section 2 de-
scribes fairkit-learn. Section 3 outlines our evaluation methodology.
Section 4 presents and discusses the evaluation results and the threats
to their validity. Section 5 places our research in the context of related
work and Section 6 summarizes our contributions.

2. The fairkit-learn toolkit

Fairkit-learn is an open-source, publicly available Python toolkit de-
signed to help engineers evaluate and explore machine learning models
with respect to quality and fairness metrics simultaneously.?

Fairkit-learn builds on top of scikit-learn, the state-of-the-art tool
suite for data mining and data analysis, and Al Fairness 360, the state-
of-the-art Python toolkit for examining, reporting, and mitigating ma-
chine learning bias in individual models (IBM, 2019; scikit-learn, 2019).
Fairkit-learn supports all metrics and learning algorithms available in
scikit-learn and Al Fairness 360, and all of the bias mitigating pre- and
post-processing algorithms available in Al Fairness 360, and provides
extension points to add more metrics and algorithms.

This section describes the complexity of model fairness and the space
of fairness definitions fairkit-learn handles, fairkit-learn’s search ca-
pabilities for helping engineers explore and understand the space of
possible models and data permutations, and fairkit-learn’s analysis of

2 http://go.gmu.edu/fairkit-learn
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Pareto-optimal sets of models and visualization capabilities for illustrat-
ing trade-offs between model fairness and quality.

2.1. Integrated machine learning tools

We selected two existing machine learning toolkits as the foundation
for fairkit-learn: scikit-learn (scikit-learn, 2019) and IBM’s Al Fairness
360 (IBM, 2019). We discuss each of these tools separately below.

2.1.1. Scikit-learn

Scikit-learn is a commonly used and integrated machine learning
toolkit, therefore we wanted to ensure that fairkit-learn works with its
models and functionality. While scikit-learn provides a number of algo-
rithms and metrics for training and evaluating machine learning mod-
els, it does not support training or evaluating models for fairness. It
also does not have built-in support for exploring the space of machine
learning model configurations; if an engineer wants to find an optimal
model for a given metric, she must implement the code to do so herself.
Scikit-learn also only supports evaluating machine learning models by
one metric at a time — any trade-off analysis has to be written by the
user.

2.1.2. Al fairness 360

IBM Al Fairness 360 provides an exhaustive set of datasets, models,
algorithms, and metrics that pertain to machine learning model fair-
ness, so we used this toolkit as the foundation for fairkit-learn’s fairness
components. Along with this large set of functionalities, the website pro-
vides detailed documentation and examples for using the various com-
ponents of the toolkit.> And like fairkit-learn, AI Fairness 360 is built
using scikit-learn. However, Al Fairness 360, like scikit-learn, does not
provide built-in support for exploring the space of models and config-
urations nor does it provide support for evaluating trade-offs between
multiple metrics. Any trade-off evaluations, along with model configu-
ration exploration, would have to be implemented by the user.

2.2. Fairness metrics

Fairness is a broad notion that can be partially represented by
many formal definitions (Narayanan, 2018). Unfortunately, users, data
scientists, and regulators rarely agree on a single definition (Grgic-
Hlaca et al., 2018), though they often agree that fairness, in some form,
is important (Woodruff et al., 2018). In fact, while each definition of
model fairness is appropriate in some context (Makhlouf et al., 2021),
many are impossible to satisfy simultaneously (Friedler et al., 2016;
Kleinberg et al., 2017). To effectively support engineers across many
domains, fairkit-learn supports many fairness definitions, includ-
ing all 70 + supported by IBM AI Fairness 360 (Bellamy et al., 2018;
IBM, 2019), and provides extension points to add more.

Here, we describe several representative definitions of fairness
fairkit-learn handles to give the reader as sense of their diversity. More
complete lists exist, e.g., Narayanan (2018), and active research in the
area of fairness definitions is continually expanding that list at this time.

Together with intuitive descriptions of each definition, we in-
clude a formal mathematical defintion, similar to what prior
work Thomas et al. (2019) has done. For these definitions, we consider
three random variables, X, T, and Y, where X is the set of non-sensitive
attributes, T is the set of sensitive attributes, and when applied to classi-
fication, Y is restricted to being in a (typically small) discrete set (here,
we will focus on binary classification, where Y € {—1,+1}). We refer to
X X T as the feature vector and we refer to Y as the label. A classifier 0 is
a function that consumes an element of X x T and produces an element
of Y (0 : X XxT — Y). In other words, for a datapointd = (x,7) € X X T,
0(d) = y € Y. Note that we make a distinction between the true label

3 https://aif360.mybluemix.net
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y and the classifier-produced label y. While the classifier’s goal is to
determine the correct y, it may not always succeed. The classifier 6 is
typically learned from a dataset D C X x T x Y of labeled data, though
most definitions (all below except disparate treatment) of fairness are
agnostic to how 6 is created. For simplicity of exposition, we assume be-
low that T = {0, 1}, that is, there is a single protected attribute with two
possible values; however, all definitions apply to scenarios with mul-
tiple protected attributes, with multiple possible values each. We refer
to the set of all feature vectors with the same value for the protected
attribute as a group. We use the notation Pr($(X, )=+1|T=7) to mean
the fraction of feature vectors in a group that the model classifies with
label +1 (members of the positive class).

¢ Disparate treatment is a concept originally of legal origins. The
computer science formalization of this definition says that for a
model to satisfy disparate treatment with respect to a set of at-
tributes, it must have been learned without access to those at-
tributes (Zafar et al., 2017a). Formally, 8 : X — Y (as opposed to the
general case of 6 : X X T — Y). However, this definition often fails
to ensure meaningful fairness in practice, because data attributes X
and T are often correlated, e.g., age correlates with savings, race
correlates with name, and, in the United States, race correlates with
zip code, models trained without access to a set of attributes 7' can
still effectively act unfairly with respect to those attributes (Ingold
and Soper, 2016; Sweeney, 2013).

Disparate impact captures the notion that a model may have ad-
verse effects on protected groups (Chouldechova, 2017; Griggs v.
Duke Power Co., 1971; Zafar et al., 2017a). To satisfy the disparate
treatment definition, a model must treat similarly the same fraction

of individuals of each group. For example, if an employer hires %

of its male applicants, then that employer must hire at least L ofits
female applicants (Griggs v. Duke Power Co., 1971). If the fractions
are different, the ratio p between the fractions is a measure of bias.
Formally, for a classifier 6

L (PrG(X, 0)=+1]T=0) Pr(y(X,0)=+1|T=1)
P=M0 B X, 0)=+1]T=1) Pr(J(X, O)=+1|T=0) )

Demographic parity, also called statistical parity and group fair-
ness, is closely related to disparate impact, and requires that the
model’s predictions are statistically independent of the attribute with
respect to which the model is fair (Calders and Verwer, 2010; Dwork
et al., 2012). The measure of bias is, unlike for disparate impact, the
difference between the fractions. Formally, the measure of demo-
graphic parity p of a classifier 6 is

p = |Pr((X, 0)= +1|T=0) — Pr(}(X, )= +1|T=1)|.

¢ Delayed impact is concerned with the fact that making seem-
ingly fair decisions can, in the long term, produce unfair conse-
quences (Liu et al., 2018). For example, to make up for a disparity
in recidivism predictions by race, a model may, at random, decrease
its predictions for one race. While on its face, this may improve the
situation for members of that race, if this results in more visibility
for repeat offenders of that race, the public’s perception may have a
more negative effect toward that race, producing delayed negative
impact. Measuring delayed impact requires temporal indicator data,
of, for example, long-term improvement, stagnation, and decline in
variables of interest (Liu et al., 2018).

Predictive equality requires that false positive rates are equal
among groups (Chouldechova, 2017; Corbett-Davies et al., 2017).
Formally, the measure of predictive equality p of a classifier 0 is

p=|Pr((X, 0)= +1|T=0,Y= —1) — Pr(J(X, 0)= +1|T=1,Y=—1)].

Note that this definition only considers feature vectors whose true
label is y = —1.
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Equal opportunity requires that false negative rates are equal
among groups (Chouldechova, 2017; Hardt et al., 2016). Formally,
the measure of equal opportunity p of a classifier 6 is

p=[Pr(I(X,0)=—1|T=0,Y=+1) — Pr((X, 0)= —1|T=1, Y= +1)|.

Note that this definition only considers feature vectors whose true
label is y = +1.
Equalized odds, a combination of predictive equality and equal op-
portunity, requires that both false positive and false negative rates
are equal among groups (Hardt et al., 2016). Consequently, the
equalized odds criterion can be viewed as the conjunction of the pre-
dictive equality and equal opportunity criteria. Formally, the mea-
sure of equalized odds p of a classifier 0 is the mean of predictive
equality and equal opportunity.
Treatment equality requires that the ratio of the false-positive rate
to the false-negative rate is the same for each group (Berk et al.,
2018). Formally, the measure of treatment equality p of a classifier
0 is

_|Pr(3(X,0)=—1|T=0,Y=+1) Pr()(X,0)=—1|T=1,Y=+1)
P Pr(X, 0= +1|T=0,Y=—1) _ Pr(J(X,0)= +1|T=1,Y=—1)|"

Causal fairness is based on the counterfactual causal relationship
between variables. To be causally fair, a classifier must predict
the same label for all feature vectors that are the same except
for those attributes. In other words, if two individuals differ only
in protected attributes, and are otherwise identical, this definition
requires classifiers to predict the same outcome for both individ-
uals (Galhotra et al., 2017). For example, a recidivism model is
causally fair with respect to race only if it predicts identical labels
for all pairs of individuals identical in every way except race. For-
mally, the measure of causal fairness p is the fraction of the feature
vectors whose only differences are in the T attributes for which the
y labels the classifier 0 assignes differ.

p=Pr(P(X,0)|T=0 # H(X,0)|T=1).

The term causal fairness has also been used to describe a broader
set of definitions based on Pearl’s causal framework (Kusner et al.,
2017; Pearl, 2009).

Counterfactual fairness similarly attempts to measure the causal
impact of changing a sensitive attribute of an individual, but, un-
like the above definition of causal fairness, models the relationship
between sensitive and other attributes (Kusner et al., 2017).
Individual fairness, also referred to as metric fairness, requires
that, given a distance metric to compare two feature vectors, the
model should predict similar labels for similar feature vectors, on
average (Dwork et al., 2012). Approximate metric fairness extends
this definition by incorporating a tolerance parameter to obtain gen-
eralization bounds (Rothblum and Yona, 2018).

Representation disparity limits the error for all sub-
groups (Hashimoto et al., 2018). The amount of representation
disparity is the maximum loss for any particular group. Formally,
the measure of representation disparity p for the classifier 6 is the
maximum loss for any particular group:

max E[£(X,0)|T=r],

€{0,1}
where 7(X, 0) is the loss associated with the parameter vector, 6.
Conditional use accuracy equality requires that precision (the
probability that the model is correct when it predicts a label) is the

same for all groups (Berk et al., 2018). Formally, the measure of
conditional use accuracy equality (p,, p_) of a classifier 6 is

Py = IPr(Y=+1|T = 0, H(X,0)= +1) —=Pr(Y=+1|T = 1, 5(X, 6)= +1)|
and

p_ = [Pr(Y=—1|T = 0, %(X,0)= —1) = Pr(Y= —1|T = 1, (X, 0)= ~ ).
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¢ Overall accuracy equality requires that the accuracy of the classi-
fier (fraction of the feature vectors that the model correctly classifies)
is equal for each group (Berk et al., 2018). Formally, the measure of
overall accuracy equality p is

p=Pr(Y = (X, 0)|T=0) — Pr(Y = }(X,0)|T=1)|. (O]

2.3. Model search

Unlike existing tools, which require engineers to write their own
code to evaluate more than one model configuration, fairkit-learn pro-
vides functionality that allows engineers to search over any number of
model configurations (given enough memory and power) for Pareto-
optimal solutions (that best balance quality metrics of concern and fair-
ness). Figure 2 shows code that initializes each parameter required for
the model search: models, metrics, hyperparameters, thresholds, and pre-
/post-processing algorithms.

2.3.1. Models

To run the grid search, you need to specify at least one model to
include (models in Fig. 2). You can specify as many models as available
computational resources will allow. Fairkit-learn is currently compatible
with scikit-learn and Al Fairness 360, but can be extended to work with
others via the model wrapper class provided.

2.3.2. Metrics

Also required for the grid search are metrics to evaluate each model
configuration (metrics in Fig. 2). Fairkit-learn is currently compatible
with metrics from scikit-learn and Al Fairness 360, but uses a wrapper
metric class that can be extended with other metrics.

2.3.3. Hyperparameters

Fairkit-learn can run using default hyperparameters, or users can
provide different values for each hyperparameter to evaluate in the grid
search. The example in Fig. 2 runs the AdversarialDebiasing
and RandomForestClassifier models with default parameters
and provides options for two of the LogisticRegression model
hyperparameters.

2.3.4. Thresholds

The threshold parameter denotes the probabilistic threshold required
to be considered a positive classification (in a binary classification). For
example, if the threshold is 0.7, then any prediction with > 0.7 proba-
bility will be considered favorable.

2.3.5. Pre- and post-processing algorithms

Finally, users have the option of specifying any data pre-
processing or model post-processing algorithms to include in the search
(preprocessors and postprocessors in Fig. 2). Fairkit-learn
currently works with pre- and post-processing algorithms provided by
Al Fairness 360.

Once the search is done, results are written to a.csv file. The.csv file
is used to render a visualization of the results of the grid search.

2.4. Search result visualization

To help engineers process the results of the grid search, fairkit-learn
provides functionality that allows users to visualize the results. The visu-
alization shown in Fig. 1 is showing some results from the search shown
in Fig. 2. More specifically, the visualization is showing the Pareto fron-
tier of the LogisticRegression, RandomForestClassifier,
and AdversarialDebiasing models with respect to accuracy and
(accuracy_score) and fairness (disparate_impact).

When using the fairkit-learn visualization, one can view the Pareto
frontier of any two metrics by selecting those metrics in the checklist
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Fig. 2. Example parameters for model search

1 v models = {'LogisticRegression': LogisticRegression, K -
2 ‘RandomForestClassifier': RandomForestClassifier, in fairkit-learn.
3 = 'AdversarialDebiasing': AdversarialDebiasing}

4

5 v metrics = {'UnifiedMetricLibrary': [UnifiedMetricLibrary,

6 ‘accuracy_score',

7 ‘average_odds_difference',

8 'statistical_parity_difference',

9 'equal_opportunity_difference',

10 ‘disparate_impact'

11 =

12

13 processor_args = {'unprivileged_groups': unprivileged, 'privileged_groups': privileged}

14 v hyperparameters = {'LogisticRegression':{'penalty': ['l11', '12'], 'C': [e.1, 0.5, 1]},

15 'RandomForestClassifier':{},

16 'AdversarialDebiasing': DEFAULT_ADB_PARAMS (skprocessor_args)

17 = ¥

18

19 thresholds = [i % 10.0/1e@ for i in range(5)]

21 preprocessors=[DisparateImpactRemover(), Reweighing(*processor_args)]
22 postprocessors=[CalibratedEq0ddsPostprocessing(**processor_args)]
23

and for the X and Y axes (as shown in Fig. 1). To access all search re-
sults (including not Pareto optimal), select all metrics and choose the
X and Y axis you want to view. Engineers can also toggle which mod-
els to show in the plot by clicking the model button (e.g., the magenta
AdversarialDebiasing button) hover over the data points in a
given plot to get more information on the model configuration at that
point (e.g., hyperparameter values). The visualization can also be ex-
ported for later viewing and comparison, along with a JSON file that
describes the exported plot.

3. Evaluation methodology

To evaluate fairkit-learn and explore how engineers train fair mod-
els, we conducted a user study to validate the following hypotheses:

1. H, Compared to out-of-the-box scikit-learn models, fairkit-learn sup-
ports training fairer models.

2. H, When asked to find the most fair model, individuals who use
fairkit-learn are able to train models that are more fair.

3. H; When asked to find a model that best balances fairness and accu-
racy, individuals who use fairkit-learn are able to train models that
are more fair and comparably accurate.

We also collect data to answer the question how do engineers reason
about model fairness when not using fairness tooling? and we qualitatively
explore some of the reasons why fairkit-learn’s visual interface enables
reasoning about fairness and quality in ways scikit-learn and Al Fairness
360 do not.

All experimental artifacts, including the Jupyter Notebooks used in
our study, are available online for future reference and replication.* The
publicly available fairkit-learn implementation also contains Jupyter-
Notebook-based tutorials for using fairkit-learn.®

3.1. Datasets

We used three real-world datasets to evaluate fairkit-learn. Each
dataset has its own definition of which groups are privileged and can
be used for binary classification tasks.

3.1.1. Task 1: ProPublica COMPAS dataset

The COMPAS dataset is publicly available and contains recidi-
vism data for defendants in Browards County between 2013 and
2014 (ProPublica, 2019). For each individual in the dataset, the dataset

4 https://go.gmu.edu/fkl-study-materials
5 http://go.gmu.edu/fairkit-learn

includes their criminal history both before and after arrest, and the risk
assessment score, as calculated by the COMPAS system (Angwin et al.,
2016). In 2016, ProPublica found significant differences between pre-
dictions the COMPAS system made based on race, finding that the sys-
tem more often predicted African American defendants would commit a
crime again, when, in reality, they did not, while predicting that white
defendants would not a commit a crime again, when, in reality, they
did. Data scientists can use this dataset to train models to predict re-
cidivism and to ensure fairness. For our analyses, we treated Caucasian
females as the the privileged group, treating race and sex as protected
attributes.

3.1.2. Task 2: German credit dataset

The German credit dataset is publicly available and contains finan-
cial data of 1,000, some of whom are classified as potential credit
risks (Statlog, 1994b). The dataset consists of attributes ranging from
credit history to personal status and sex. Engineers can use the German
credit dataset when, for example, training models for use in banking or
loan approval software. For our analyses, we treated the men 25 years
of age or older as the privileged group, treating age and sex as protected
attributes.

3.1.3. Task 3: Adult census income dataset

The Adult census income dataset is publicly available and contains
Census data, such as race, occupation, and salary, for 48,842 individu-
als from 1994 (Statlog, 1994a). Engineers can use this dataset to train
models that make income predictions (e.g., whether a person make more
than US$50K per year). For our analyses, we treated Caucasian men as
the privileged group, treating sex and race as the protected attributes.

3.2. State-of-the-art comparison

When we first developed and publicly released the code for fairkit-
learn, no other visualization-based fairness-aware toolkit existed. Soon
after, IBM released Al Fairness 360 (IBM, 2019). Thus, for our evalua-
tion, we compare to Al Fairness 360, and also scikit-learn, the state-of-
the-art relevant tools that existed at the time of our study.

Since then, several other relevant tools have emerged. For example,
Microsoft’s fairlearn (Agarwal et al., 2018), which was only a machine
learning algorithm that provided no visualization capabilities at the time
of our study, has added visualization features after our study. In general,
in this fast-moving field, many relevant industrially created frameworks
have emerged. What allows industry to produce these frameworks so
rapidly is that it follows a different set of standards for release. For
example, neither IBM’s Al Fairness 360 nor Microsoft’s fairlearn visu-
alization toolkit published a scientific, peer-reviewed paper evaluating
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their tools against the state of the art. Instead, IBM released an non-peer-
reviewed blog post (Varshney, 2018) and Microsoft a non-peer-reviewed
technical report (Bird et al., 2020) that describe their tools but do not
evaluate them. Similarly, FAT Forensics (Sokol et al., 2020) is published
as open-source software, but has no peer-reviewed evaluation against
other tools. And Google’s ML-fairness-gym (MI-fairness-gym) is peer-
reviewed (D’Amour et al., 2020), but it too was not evaluated against
other frameworks.

As we strive for a higher bar, we evaluated our fairkit-learn against
the state-of-the-art techniques available at the time of our study, and
pursued peer review. Because industrial tools can be released quickly
without those requirements, and user-based evaluations take significant
time and resources, they cannot be simply repeated every time a new
industrial toolkit emerges. In the time that evaluation takes place, a new
toolkit would already be released.

3.3. User study design

To validate our hypotheses and answer our research question, we
designed a user study to explore the effects of various tooling on the
machine learning models engineers train. The state-of-the-art in training
and evaluating machine learning models, and at the core of both fairkit-
learn and AI Fairness 360, is scikit-learn. Therefore, we designed our
experiment with two control groups: one that only uses functionality
provided by scikit-learn and the other only using Al Fairness 360.

To make our study design more realistic, we created a Jupyter Note-
book® for each experimental group. We presented the notebooks to par-
ticipants as a homework assignment with three tasks.

Each notebook provided information on the tasks, relevant details,
and links to external documentation. For each task, we provided partic-
ipants with a real-world dataset and a tutorial on how to use one of the
tools. Following each tutorial, we asked them to complete the following
subtasks:

1. Find a machine learning model you believe will be the most accurate.

2. Find a machine learning model you believe will be the most fair.

3. Find a machine learning model you believe will best balance both
accuracy and fairness.

For our evaluation, we selected a subset of the metrics available for
use in fairkit-learn. However, as previously mentioned, users of fairkit-
learn can incorporate and use any fairness metric of their choice. To
complete the tasks, we gave each participant all the necessary study
materials and instructions for participation. The first task notebook pro-
vided participants with background information on what they would be
doing, the tools they will be using, and where to submit their responses.

Our design consisted of 6 experimental groups. To reduce the effects
of learning bias on the validity of our findings, each experimental group
used the tools in a different order. We used the same three datasets
from Al Fairness 360 for all 6 experimental groups. This allowed us to
increase confidence that our findings generalize.

After the exercise was complete, we collected participant notebooks
and other relevant data. Next, we outline what data we collected and
how.

3.4. Data collection

We collected data from participants as they completed the exer-
cise in an online response form. The form consisted of 5 pages. The
first page asked participants demographic questions, including questions
about their experience with Python and various Python machine learn-
ing tools. The next three pages corresponded to each task where we
asked participants variations of the following questions, depending on
the subtask:

6 https://jupyter.org/
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1. Describe the best model and report its metric(s) scores.
2. Why did you select this model?

We also collected notebook changes and snapshots using nbcomet,”
an open source tool for tracking Jupyter Notebook changes. We used this
data to triangulate with form responses when possible and necessary.

3.5. Data analysis

After data collection, we had to clean, prepare, and analyze the data.
The first step in our data analysis was to extract and clean responses
from the response form. We first had to extract, organize, and make each
participants’ responses anonymous. We organized participant responses
by task, and then by tool within each task, since that is how we planned
to analyze the data.

Research has shown that one of the challenges engineers have is deal-
ing with the machine learning aspects of working with data, such as fea-
ture engineering and hyperparameter tuning (Kim et al., 2017; Sanders
and Giraud-Carrier, 2017). To evaluate H,, we compared our study’s
base scikit-learn models with default parameter settings to the models
participants selected using fairkit-learn. For each default model, we cal-
culated accuracy and fairness scores for each fairness metric used in the
study. We then compared the averages of each for the default models
to the averages for participant models selected when using fairkit-learn
for fairness related subtasks.

To evaluate H, and H;, we calculated fairness scores and accuracy
for each of participants’ model selections in the “find the most fair
model” and “find the model that best balances both” subtasks. We aver-
aged scores for each metric and measured the difference between those
averages using a two-sample t-test (a = 0.05).

We further analyzed responses from the tasks where participants
used scikit-learn to find the most fair model. We extracted model se-
lections and the qualitative and quantitative rationales for fair model
selections in the response form. We then categorized the methods used
by participants into the following categories: (1) did not try to evaluate
for fairness, (2) evaluated with a metric, (3) evaluated with something other
than a metric, and finally (4) implemented one or more fairness metrics for
evaluation. We kept track of metrics, and other information, used when
participant did try to evaluate fairness.

3.6. Participants

We recruited 54 participants from an advanced software engineering
course: 30 undergraduates and 24 graduate students. One participant
reported having industry experience as a data scientist.

Twenty-six participants had experience with using scikit-learn prior
to participating. One participant had prior experience using Al Fairness
360 and no participants had prior experience with fairkit-learn. Fifty-
one participants had experience with other Python data science and
machine learning tools, such as numpy, scipy, and tensorflow. Fourty
participants had prior experience using Jupyter Notebooks. On average,
participants had approximately 2 years of Python programming expe-
rience; this excludes two participants who did not report any years of
experience with Python despite reporting having experience with vari-
ous Python tools.

4. Evaluation results and discussion

We used data collected from our user study to validate and explore
how engineers train models and evaluate them for fairness and accu-
racy. In comparing fairkit-learn models to scikit-learn default models,
we found that even with concerns split between fairness and accuracy,
participants selected fairer, more accurate models when using fairkit-
learn (Fig. 3). When fairness is the only concern, our study found that

7 https://github.com/activityhistory/nbcomet
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Tool Average Statistical Equal Disparate Accuracy
Odds Parity Opportunity Impact
(lower is better)  (lower is better) (lower is better) (higher is better) (higher is better)
scikit-learn (default) 0.173+£0.214 0.221+0.235 0.150£0.202 0.555+£0.281 0.74140.248
fairkit-learn (fairness) 0.116+0.083 0.225+0.108 0.093+£0.075 0.725+£0.116  0.788+0.106
fairkit-learn (fairness+accuracy) | 0.086+0.073  0.229+£0.109 0.070+0.066 0.829+0.098  0.81540.101

Fig. 3. Mean fairness scores (across all three tasks) of default scikit-learn models and fairkit-learn models selected by participants for fairness related subtasks. Each

mean is annotated with the 95% two-sided confidence interval.

Tool Average Statistical Equal Disparate Accuracy
Odds Parity Opportunity Impact
(lower is better) (lower is better) (lower is better) (higher is better) (higher is better)
scikit-learn 0.163+£0.096 0.213+£0.110 0.1544+0.094 0.5704+0.129  0.734+0.115
Al Fairness 360 | 0.079+0.070 0.2004+0.104 0.061 +£0.062 0.814+0.101  0.816+0.101
fairkit-learn 0.116 £0.083 0.225+£0.108 0.0934+0.075 0.7254+0.116  0.788£0.106

Fig. 4. Mean fairness scores (across all three tasks) of models selected by participants for fairness subtasks. Each mean is annotated with the 95% two-sided confidence

interval.

Tool Average Statistical Equal Disparate Accuracy
Odds Parity Opportunity Impact
(lower is better) (lower is better) (lower is better) (higher is better) (higher is better)
scikit-learn 0.190£0.102 0.242+0.111 0.1714+0.098 0.5334+0.130 0.747+0.113
Al Fairness 360 | 0.097+0.077 0.2584+0.114 0.076£0.069  0.820+0.10 0.8224+0.100
fairkit-learn 0.086£0.073 0.229+£0.109 0.070£0.066 0.8294+0.098  0.815£0.101

Fig. 5. Mean fairness scores (across all three tasks) of models selected by participants for balancing fairness and accuracy subtasks. Each mean is annotated with

the 95% two-sided confidence interval.

Al Fairness 360 can generally find more fair models than fairkit-learn
and scikit-learn (Fig. 4). When trying to balance fairness and accuracy,
fairkit-learn is capable of finding models that are high performing and
generally more fair than models found by AI Fairness 360 and scikit-
learn (Fig. 5).

When evaluating fairness without using tools designed to do so, our
study found that engineers have different ways of reasoning about model
fairness ranging from “educated guesses” to implementing their own
fairness metrics. Most often, participants use accuracy as some proxy
for fairness. However our data suggests engineers may have different
ideas of the relationship between accuracy and fairness.

4.1. Hy: Out-of-the-box model fairness

One of the most commonly used toolkits for machine learning is
scikit-learn, and it is not clear how often engineers modify default pa-
rameters (Kim et al., 2017; Sanders and Giraud-Carrier, 2017). One of
the main advantages to using fairkit-learn is that it provides easy-to-
use support searching different hyperparameter configurations, and ex-
ploring those configurations’ effects on model quality and fairness. As
shown in Fig. 3, participant models selected for fairness related subtasks
while using fairkit-learn outperformed all scikit-learn default models
with respect to all metrics considered. We see even more improvement
when participants used fairkit-learn to find models that best balance
between fairness and accuracy, with the differences as high as 0.30 be-
tween fairkit-learn and scikit-learn model fairness scores. These fairness
improvements came with no sacrifice to accuracy; in fact, we see an
increase of 0.04-0.07 in accuracy score.

Our findings suggest that when using fairkit-learn, engineers can find models that
are more fair and accurate than out-of-the-box, default scikit-learn models.

4.2. H,: More fair models with fairkit-learn

One of the goals of fairkit-learn is to help engineers find the fairest
models possible. When asked to find a model that will be the most fair,
overall the models selected by participants using fairkit-learn were more
fair than models selected using scikit-learn. While comparable, the mod-
els selected when using Al Fairness 360 were generally more fair than
models selected when using fairkit-learn. Figure 4 shows the average
fairness scores by metric across tasks by tool. While one of the goals of
fairkit-learn is to support finding fair models, the primary goal is to sup-
port balancing fairness with other quality concerns. Given the primary
goal of Al Fairness 360 is to support training fair models, these findings
are not surprising.

Our findings suggest that when using fairkit-learn, engineers can find models that
are comparable in fairness to those found using AI Fairness 360 and more fair
than models found using scikit-learn.

4.3. Hj: Fair and accurate models with fairkit-learn

While fairkit-learn wants to help engineers improve the fairness of
their models, the primary goal of our toolkit is to support engineers
when attempting to balance fairness with other quality metrics, such as
accuracy. Figure 5 shows the average fairness by metric and accuracy of
models selected as the most balanced across tasks by tool. When asked
to find a model that will best balance fairness and accuracy, participants
selected models that were more fair with almost no loss with respect to
accuracy across all three tasks when using fairkit-learn.

Of course, the fairness-quality trade-off depends on the dataset used
to train the models (see Section ). Thus, we expect that for some datasets,
more improvement in fairness is possible, and fairkit-learn should be
able to enable that improvement. We observed that for Task 3, which
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uses the adult census income dataset, the users demonstrated a greater
improvement with respect to fairness when using fairkit-learn than
when using scikit-learn. For that dataset, fairkit-learn models were more
fair as well as more accurate than Al Fairness 360 and scikit-learn mod-
els.

Our findings suggest that engineers find more fair models of high quality when using
fairkit-learn than when using Al Fairness 360 or scikit-learn. When using
fairkit-learn, the balanced models are comparably accurate, and sometimes more
accurate, compared to using Al Fairness 360 or scikit-learn.

4.4. Evaluating fairness without fairness tools

We expect that engineers would be able to at least reason about fair-
ness when using tools like fairkit-learn and AI Fairness 360, given they
provide functionality for doing so. It is less obvious how engineers han-
dle fairness when using tools like scikit-learn that do not provide func-
tionality for training or evaluating fair models.

For four participants, lack of immediate or easy access to fairness
tooling rendered them either unable to find a model they felt would be
fair or unable to reason about why a given model should be considered
fair. When asked to select a model they felt would be most fair while
using scikit-learn, all participants selected a model. However, the ability
to explain why they selected that model over others varied. For Task 1,
two participants could not figure out how to reason about the fairness of
the model they selected. P47, rather than using some metric or resource
to reason about the fairness of their model, put “not applicable.”

For those who did try to reason about the fairness of their models,
participants used various (and sometimes contradictory) ways of eval-
uating the fairness of a given model. Only four participants used what
would be considered fairness metrics to evaluate their models. Two par-
ticipants used another fairness tool, FairML (Adebayo, 2016), to evalu-
ate model fairness. Seven participants created their own metric to eval-
uate model fairness.

The majority of participants that used a metric (21 out of 25) used
model accuracy, or some related metric, to evaluate fairness. However,
participants were split on whether higher accuracy was an indicator of
being more fair or if lower accuracy was a better indicator. Eight out of
21 participants that used accuracy reported selecting a given model be-
cause it has the highest accuracy. But three out of the 21 participants felt
that lower accuracy meant a model was more likely to be fair. Those who
opted for higher accuracy noted that they felt higher accuracy meant a
model would handle bias better, while those who took the lower accu-
racy route noted they felt accuracy had to be sacrificed to help guarantee
fairness.

Fifteen participants cited making an “educated guess” regarding
model fairness. Participants backed their educated guesses with the
accuracy score, outside resources, background knowledge of machine
learning models and how they work, or some combination of the three.
Often accuracy was coupled with some other metric or explanation for
model selection but some participants made decisions on the fairness of
their models without using any metrics. For two of 15 educated guesses,
the decision was based on the models they evaluated using fairkit-learn
or Al Fairness 360 in previous tasks. For another two participants, the
model that was able to achieve the highest accuracy in the the short-
est amount of time was considered to be the most fair. Participants also
made assumptions about the dataset, such as how well distributed it is,
to determine model fairness.

Our findings suggest that engineers sometimes struggle with reasoning about fairness
without the proper tooling. Engineers have different, sometimes contradictory,
ways of reasoning about fairness when asked to do so, often using accuracy as a
proxy for fairness, despite clear evidence that those metrics are often at odds.
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4.5. Threats to validity

External validity Our study compared fairkit-learn to a subset of the
tools available for training and evaluating machine learning models. To
increase the generalizability of our findings, we selected tools that are
considered to be state-of-the-art and supported by industry practices.

We derived tasks to evaluate our tool, however, the tasks and results
may not be representative of what real engineers do and the models they
would build. To mitigate the effects of this threat, we provided partic-
ipants with real datasets that have been used in research and practice.
We also asked participants to evaluate bias against attributes that prac-
titioners would care about (e.g., race).

While it may be seen as a threat to validity that we used students as
participants, previous research suggests student behavior when complet-
ing programming tasks is often not far from that of professionals (Host
et al., 2000; Naiakshina et al., 2019). Given the students in our sample
were studying related topics, this heightens the potential for our findings
to generalize to practicing engineers.

Internal validity Our user study participants were students complet-
ing the study as a homework assignment. This leads to the potential for
selection bias. The course included a diverse set of participants and we
randomly assigned the task and tool ordering across participants, some-
what mitigating this threat.

The design of our study had participants complete the same tasks for
each tool, which introduces the potential for testing bias. To minimize
this threat, we had participants use a different dataset for each task
which meant different approaches would be needed to meet the goals
for each task.

Construct validity Given the technical and time requirements for com-
pleting the study, one issue we encountered was the effect of technical
difficulties and time management of participants on data collection. We
included various safeguards for keeping track of participants’ contribu-
tions and minimizing the effects of technical difficulties on study com-
pletion and data collection.

4.6. Discussion

Our findings suggest that tools like fairkit-learn and AI Fairness 360
can help engineers and software engineers find fair models over tools
such as scikit-learn (that are not designed for this purpose). Further,
we find that while AI Fairness 360 may be better for focusing on fair-
ness alone, fairkit-learn is able to help engineers find the best balance
between fairness with other quality concerns, such as accuracy. Still,
while fairkit-learn was helpful in many situations, that was not always
the case. Our conclusions observe that fairkit-learn can help engineers
understand the fairness landscape and select more fair models in many
situations, but that it is not an end-all solution to this complex problem,
and further research into the situations where our study found fairkit-
learn to be less effective is warranted. This section discusses the impli-
cations of our findings.

4.6.1. Using Pareto optimality for balanced models

One of the primary contributions of fairkit-learn is the ability to
search a large space of models and return results from only the best
or optimal models with respect to the relevant metrics. This is done by
calculating the Pareto optimal set of models from a given set of evalu-
ated models and metrics. Rather than engineers having to do their own
coding and math to compute a large number of models to get a sense
for where the best balance lies, data scientists can use the grid search
provided by fairkit-learn to find fair models and understand the fairness-
quality trade-offs.

While the notion of a Pareto-optimal set of models can be useful for
finding the most fair models, our study suggests it is most useful for try-
ing to find models that balance more than one metric. In the case of our
study, we wanted to balance accuracy and fairness. But in the real world,
data scientists may have other metrics they want to balance, including
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multiple quality metrics. Fairkit-learn can help engineers find models
that are Pareto optimal for a given set of metrics, thereby increasing the
possibility of improving the models used for a given dataset or task.

4.6.2. Understanding relationships between model fairness and quality

Intuitively, adding extra constraints on machine learning algorithms
should only constrain the solutions they return. Thus, asking an algo-
rithm to learn a model that maximizes accuracy should always produce
a more-accurate model than when asking an algorithm to maximize ac-
curacy while also adhering to a fairness constraint. The same intuition,
theoretically, holds for a user attempting to select a model — when faced
with extra constraints, the user should only find less-accurate models.
However, in our experiments, we observed that when given the tools
to measure and enforce fairness, users often returned not only more fair
but also more accurate models. While observing accuracy improvements
when enforcing fairness may not be the most common outcome, because
we observed it in our evaluation, we suggest three possible reasons this
could happen. This list is not intended to be exhaustive.

First, users do not typically report optimal solutions. The space of
possible models is enormous, and users aim to produce a high-accuracy
model, but, typically, finding the absolute most accurate model is not
feasible. As a result, it is theoretically possible to find a more accurate
model if one looks harder. But that’s precisely what having an extra con-
straint forces the user to do — look harder. When a user is prompted to
consider fairness and given the tools to do so, they are likely to explore
more models, more different learning algorithms, and more hyperpa-
rameter values. As a result, they are likely to come across more accurate
models during their search, and if some of those happen to also be more
fair, the models the users chose would then improve both accuracy and
fairness.

Second, the above reasoning is not only true for users, but also for
machine learning algorithms. Such algorithms are not optimal-solution
seekers. Again, the search space of possible solution models is typically
too large, and machine learning algorithms simply attempt to find a
model that tries to minimize a particular loss function (e.g., inaccu-
racy), but provide no guarantees that the trained model is optimal. In
real-world datasets, adding an extra constraint, such as optimizing for
fairness, can force the algorithm to consider more possible solutions.
Considering more possible solutions, can, in turn, result in finding a
more accurate model. Thus, even if the user does not explicitly consider
more solutions when asked to consider fairness in training models, the
underlying algorithms are likely to still do so, thus potentially finding
solutions that improve both fairness and accuracy.

Third, the assumption that fairness and quality are at odds with one
another is not always correct. It is certainly possible to design a dataset
for which learning a more fair model necessitates that the model is less
accurate. Imagine, for example, a dataset of loan applicants and the
bank’s loan decisions in which all men get loans and no women get
loans. When training on such a biased dataset, accuracy and fairness
are at odds. However, in real-world datasets, fairness and quality often
complement each other (Thomas et al., 2019) because the bias in data
can be an artifact of real-world discrimination. For example, a bank not
giving loans to women or Black applicants because of their gender or
race can result in not giving loans to people who can actually repay
them. Thus, depending on how accuracy is measured, training more fair
models on such datasets can improve real-world accuracy by removing
the bias that led to not only unfair but also inaccurate decisions.

4.6.3. The importance of fairness tools

Findings from our study suggest that even without fairness machine
learning tools, engineers will sometimes try to reason about the fairness
of machine learning models, often making improper assumptions, lead-
ing to poor reasoning. On the one hand, the first step to training fair
models is thinking about model fairness while training it. On the other
hand, one can argue that ad hoc rationale for model fairness is no better
(if not worse than) not evaluating for fairness at all.
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Although some participants found reasonably fair models when us-
ing scikit-learn, more often than not, larger sacrifices had to be made
(either in terms of fairness, or accuracy, or both) when trying to find
a well-balanced model using scikit-learn than when using fairkit-learn
and Al Fairness 360. There was also much more inconsistency behind the
rationale for selecting fair or well-balanced models, which can lead to
uncertainty regarding how fair or unfair a model really is. Our results
shed a light on the importance of using tools that support fair model
training and evaluation.

4.6.4. Misconceptions regarding model fairness

When tasked with evaluating model fairness and not equipped with
fairness machine learning tools, participants in our study made various
assumptions to reason about the fairness of a given model. Some of the
assumptions participants made contradicted others, such as the relation-
ship between accuracy and fairness. Many participants used accuracy as
a proxy for fairness, even though in the datasets available to them, ac-
curacy and fairness metrics are opposing forces: increasing one typically
decreases the other. Our data suggest that there may be misconceptions
engineers have regarding what it means for a model to be fair, and,
when not armed with proper tools, make incorrect assumptions and use
those assumptions in evaluating fairness. One reason this discrepancy
may exist is due to the large (and growing) number of ways one can
mitigate and measure model fairness. An important step to training fair
models is understanding what it means for a model to be fair in a given
context and what factors may affect overall fairness or quality of a given
model. Typically, domain experts are the ones who understand the fair-
ness requirements of their domain, and adequately communicating these
requirements to the engineers building the system is critical.

4.6.5. Qualitative comparisons

While AI Fairness 360 can be used to produce visualizations, the
built-in visualizations significantly limit their support for engineers rea-
soning about the interactions between model fairness and quality. As an
example, Fig. 6 shows a screenshot from an online tutorial of Al Fair-
ness 360 applied to the COMPAS recidivism dataset. Here, Al Fairness
360 first trains models using fairness-unaware algorithms and computes
five fairness metrics of the resulting models, and then applies a data-
reweighing algorithm for bias-mitigation and recomputes the five met-
rics on the resulting models. The five graphs, one per definition, shows
the resulting fairness metric scores for each of the definitions for the two
models, showing that for all five metrics, the mitigation brought them
within acceptable levels.

While such visualizations allow the user to understand the impact of
an approach on metrics, they, unlike fairkit-learn’s visualizations (recall
Fig. 1), fail to support informing decisions reasoning about the overall
landscape of the quality versus fairness trade-off in four important ways:

First, these Al Fairness 360 visualizations do not display model fair-
ness and quality metrics on the same graph (although it is possible to
place the two separate graphs onto the same plot), failing to support un-
derstanding how improvement in each each fairness metric affects accu-
racy, or other quality metrics. For example, in Fig. 6, the improvements
in fairness caused by the data-reweighing mitigation strategy might sig-
nificantly reduce the model’s accuracy (or it might not), but the visual-
ization fails to convey that information. By contrast, fairkit-learn visu-
alizes the relationship between any two user-selected metrics, including
one fairness and one quality metric at a time (see Fig. 1), supporting
such understanding and reasoning about the effects of mitigation strate-
gies, data and model procesessing procedures, and learning algorithms
have on these metrics.

Second, fairkit-learn visualizations allow for comparing multiple
fairness metrics directly, on a single graph, while Al Fairness 360 relies
on side-by-side, separate graphs, one per metric. Fairkit-learn’s visual-
izations, thus, support understanding the relationships between fairness
metrics, which can be quite complex, including situations where im-
proving some metrics necessarily hurts the others, and situations where
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Dataset: Compas (ProPublica recidivism)
Mitigation: Reweighi 1 lied

Protected Attribute: Sex
Privileged Group: Female, Unprivileged Group: Male
Accuracy after mitigation unchanged
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Bias against unprivileged group was reduced to acceptable levels” for 4 of 4 previously biased metrics (0 of 5 metrics still indicate bias for unprivileged group)
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Fig. 6. A screenshot of Al Fairness 360 visualization from an online tutorial (https://aif360.mybluemix.net/data/) of a reweighing algorithm bias-mitigation strategy

applied to the COMPAS recidivism dataset.

improving some metrics helps the others (Friedler et al., 2016; Kleinberg
et al., 2017).

Third, a single fairkit-learn visualization can compare multiple bias-
mitigation strategies, demonstrating, for example, whether some strate-
gies are completely dominated by others with respect with user-selected
fairness and quality metrics, or whether some strategies perform better
when model quality is the top concern, but others when model fairness
is. Al Fairness 360 visualizes one mitigation strategy (and one fairness
definition) per graph, failing to support the needed comparisons.

Forth, by computing the Patero-optimal frontier of solutions with
respect to an arbitrary number of metrics (recall that while the two-
dimensional visualization only displays the comparison across two met-
rics at once, the user can select more metrics for computing the Pareto-
optimal solutions that are displayed), fairkit-learn visualizations (Fig. 1)
support understanding the fundamental trade-offs between quality and
fairness metrics within the dataset that persevere despite applying mul-
tiple mitigation strategies, data and model procesessing procedures, and
learning algorithms.

The scikit-learn toolkit also allows for some basic visualizations that
are similar to the AI Fairness 360 ones, but without explicitly encod-
ing fairness metrics, further complicating using scikit-learn for under-
standing models’ effects on fairness. Importantly, Al Fairness 360, scikit-
learn, and fairkit-learn are all extendable frameworks. That is, develop-
ers can create new visualizations on top of ones that already exist. In
fact, fairkit-learn is simply code written on top of scikit-learn, so, in the
extreme, a developer could reimplement fairkit-learn’s functionality and
enable all the visualization comparisons with scikit-learn. Our compar-
isons here appropriately focus on the functionality already included in
the three toolkits.

5. Related work

We now place fairkit-learn in the context of related contributions
on algorithmic fairness and support for evaluating system fairness and
performance.

5.1. Perceptions on algorithmic fairness

While it is important to explore algorithmic fairness when consid-
ering the use of machine learning models, some research has explored
how end-users understand and perceive the notion of algorithmic fair-
ness (Grgic-Hlaca et al., 2018; Warshaw et al., 2016; Woodruff et al.,
2018).
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Warsaw and colleagues interviewed 21 high school educations in-
dividuals on their beliefs and misconceptions regarding how com-
panies collect data and make inferences about them using that
data (Warshaw et al., 2016). They found that most participants believed
companies make decisions either based largely on stereotypes or based
on online behaviors and intuition.

Similarly, Woodruff and colleagues conducted an interview study
with 44 traditionally marginalized individuals on how they feel about
algorithmic fairness (Woodruff et al., 2018). When provided with a de-
scription of what it meant for algorithms to be unfair, participants ex-
pressed concerns regarding the implications of algorithmic (un)fairness.
They also found that participants expected companies to address these
sorts of things, regardless of the cause.

Grgié-Hlaca et al. propose an explanatory framework to understand
the features people consider fair or unfair to use in decision-making and
why (Grgic-Hlaca et al., 2018). They deployed a series of scenario-based
surveys, developed based on their framework, and found that they can
accurately predict features that would be deemed fair to use.

While these studies help us understand perceptions of algorithmic
fairness and what features may affect the public’s perception of a given
software’s fairness, it does not help engineers make informed decisions
that can ensure, for example, that the proper features are being consid-
ered while also providing a high performing system. In contrast, fairkit-
learn empowers engineers to explore the space of possible models, with
regard to the features and metrics they care about, such that they can
better ensure algorithmic fairness.

Finally, transferring academic technology to industry always poses
some challenges, but initial attempts for transitioning machine learn-
ing fairness evaluation technology in the banking industry shows
promise (Castelnovo et al., 2020). This suggests some hope for the use
of fairkit-learn, and other similar tools, in industry.

5.2. Evaluating model fairness & performance

Typically, machine learning model performance is evaluated
using metrics pertaining to the accuracy of that model. scikit-
learn (Pedregosa et al., 2011) is one of the most common tools used
for training and evaluating machine learning models. scikit-learn is an
open source Python module that provides engineers with a variety of
machine learning algorithms and various metrics for evaluating models
for performance, though no fairness metrics. It is designed to be easy
to use and accessible to non-specialists. While scikit-learn is useful for
training and evaluating models based on their performance, there is no
built in functionality for measuring model fairness or mitigating bias.
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There exist tools designed to help engineers reason about fairness in
their machine learning models (Adebayo, 2016; Bellamy et al., 2018;
Wexler, 2018). FairML helps engineers avoid unintentional discrimi-
nation by automatically determining relative significance of model in-
puts to that model’s predictions, allowing engineers to more easily
audit predictive models. Meanwhile, Fairway combines pre-processing
and in-processing methods to remove bias from training data and
models (Chakraborty et al., 2020). Meanwhile other tools can miti-
gate (Hort et al., 2021) or repair (Sun et al., 2022) bias in models by
altering their behavior.

FairPrep helps data scientists follow best practices in software engi-
neering and machine learning to develop models according to the sci-
entists’ needs (Schelter et al., 2020). FairRover helps scientists explore
the trade-offs that result from use of machine learning models, focusing
on responsible and ethical uses (Zhang et al., 2021a).

Google developed the What-If Tool to help programmers and non-
programmers analyze and understand machine learning models with-
out writing code (Wexler, 2018). Provided a TensorFlow model and a
dataset, the What-If Tool allows you to visualize the dataset, edit individ-
uals in the dataset and see the effects, perform counterfactual analysis,
and evaluate models based on performance and fairness.

Similar to the What-If Tool is Al Fairness 360, a Python tool suite
for mitigating bias and evaluating models for fairness and perfor-
mance (Bellamy et al., 2018). The package includes fairness metrics,
metric explanations, and bias mitigation algorithms for datasets and
models. AI Fairness 360 is designed to be extensible and accessible to
data scientists and practitioners.

FairVis is a visual analytics system that supports exploring
fairness and performance with respect to certain subgroups in a
dataset (Cabrera et al., 2019). Its focus is auditing trained model perfor-
mance on data from these subgroups. FairVis supports directly explor-
ing a dataset and the labels produced by an externally trained model,
whereas fairkit-learn focuses on training models and visualizing learned
model behavior. Users could make inferences about the dataset using
fairkit-learn, but that process would be less direct, for example, general-
izing from common behavior of multiple learned models. FairVis allows
users to specify custom subgroups and explore a set of ten metrics, one
metric per plot. Unlike FairVis, fairkit-learn supports training models
using fairness-aware and fairness-unaware methods, supports more met-
rics, and allows the user to specify custom metrics. To compare model
behavior, FairVis requires training models and applying those models to
data externally. The features of these two tools are complementary and
can likely both help users understand the fairness and accuracy proper-
ties of data and of learned models. While FairVis had not been evaluated
directly with users via a controlled study (Cabrera et al., 2019), and our
controlled user study does not include FairVis, future work on combin-
ing features of the two tools and evaluating their effect on users is likely
to produce fruitful results.

While there exists tools that can help engineers evaluate model fair-
ness and performance, fairkit-learn works with existing tools to help
engineers find Pareto-optimal models that balance fairness and perfor-
mance and a visualization that makes it quicker and easier to explore
the effects of different model configurations.

5.3. Training fair models

Machine learning approaches that aim to train fair models even when
using biased training data fall into three primary categories: (1) data
transformation (perturbing input data to quantify bias in data) (2) al-
gorithm manipulation (modifying the machine learning cost function
typically by adding fairness constraints or regularization), and (3) out-
come manipulation (balancing the outcome across multiple groups).
Dwork et al. formulate fairness as an optimization problem that can be
solved by a linear program (Dwork et al., 2012). They minimize a loss
function while achieving a Lipschitz property for a defined similarity
metric between two individuals and then they analyze when this local
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fairness constraint implies statistical parity. Corbett-Davies et al. refor-
mulate algorithmic fairness as constrained optimization with their fair-
ness definitions as constraints (Corbett-Davies et al., 2017). Meanwhile
Zhang et al. use adversarial learning as a means for finding fair mod-
els (Zhang et al., 2018). Zafar et al. define a measure of decision bound-
ary fairness: the covariance between sensitive (protected) attributes and
the signed distance between the subjects’ feature vectors and the deci-
sion boundary of a classifier (Zafar et al., 2017b). They take two dif-
ferent constrained optimization approaches: (1) maximizing accuracy
subject to fairness constraints and (2) maximizing fairness subject to
accuracy constraints. Kamishima et al. express fairness regularization
as a function of the data and logistic regression model weights and
then they optimize the set of weights using standard conjugate gradi-
ent methods (Kamishima et al., 2012). Their proposed fairness regular-
ization is differentiable and smooth, thus enabling gradient descent or
second order optimization methods. Thomas et al. introduce the Sel-
donian Framework for designing machine learning algorithms that per-
form a one-time safety-check to produce models that are probabilisti-
cally guaranteed to satisfy fairness and safety constraints, even when
applied to unseen data (Thomas et al., 2019). Users of algorithms within
the Seldonian Framework can apply a large number of fairness and
safety constraints, including multiple simultaneously. Metevier et al.
then demonstrate contextual bandit algorithms within the Seldonian
Framework (Metevier et al., 2019), which can satisfy delayed impact
constraints (Liu et al., 2018). While designing novel classification tech-
niques that explicitly optimize for fairness has shown great promise,
fairkit-learn tackles a related by different problem of helping data scien-
tists understand the quality-fairness trade-offs and make decisions about
which fairness definitions to use and which models to select in their spe-
cific domains. Models can be trained to respect fairness definitions even
when the data to which the models are applied come from a different
distribution than the training data (Giguere et al., 2022).

Model cards can accompany trained machine learning models to in-
form users of benchmark evaluations in certain conditions, which can
both disclose the intended use context and warn users of possible mis-
uses of models (Mitchell et al., 2018). By contrast, fairkit-learn can pro-
duce benchmark results when model cards are not available, and help
uses see fairness metrics and other parameters relevant to their applica-
tion domain, which the algorithm’s designers may not have considered
a priori.

5.4. Testing for fairness

In contrast to correcting for fairness explicitly, there exist a num-
ber of open-source software systems that test for fairness. Galhotra et al.
present Themis, a system that automatically generates test suites to mea-
sure a (1) a causal definition of fairness (if two individuals differ in
only a single protected attribute then the system recommendation is
the same) and (2) group fairness (Galhotra et al., 2017). By biasing the
search mechanisms used in such testing, it is possible to find examples
of bias more efficiently (Soremekun et al., 2022; Udeshi et al., 2018;
Zhang et al., 2021b; 2020), potentially useful for debugging or bias re-
pair, though not for measuring bias frequency. FairTest discovers bias
bugs, tests systems for discrimination, and conducts error profiling of
machine learning algorithms (Tramer et al., 2017), but does not help re-
move bias. FairML, an iterative orthogonal transformation process, aims
to remove the effect of a given attribute from a dataset (Adebayo and
Kagal, 2016), which creates variants of datasets, which then need to
be explored by tools such as fairkit-learn, which, in turn, helps explore
the entire space of model configurations and find the ones that satisfy
fairness conditions.

6. Contributions

We have presented fairkit-learn, a novel open-source toolkit de-
signed to support engineers in training fair machine learning models. A



B. Johnson, J. Bartola, R. Angell et al.

controlled user study showed that students using fairkit-learn produced
models that provided a better balance between fairness and accuracy
than students using state-of-the-art tools scikit-learn and IBM Al Fair-
ness 360. Exploring how engineers approach evaluating fairness when
fairness tools are not available, we found that they struggle, and often
default to using quality metrics, such as accuracy, as a proxy for fairness
(despite the fact that these metrics are often at odds with fairness). Over-
all, fairkit-learn is an effective tool for helping engineers understand the
fairness-quality landscape, and our user study shows promising results,
suggesting that further work improving and evaluating fairkit-learn with
industrial engineers is worthwhile.
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