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Archetypal motors produce work when two slowly varying degrees of freedom (DOF) move around
a closed loop of finite area in the parameter space. Here, instead, we propose a simple autonomous
monoparametric optomechanical engine that utilizes nonlinearities to turn a constant energy current
into a nonconservative mechanical force. The latter self-sustains the periodic motion of a mechanical
DOF whose frequency is orders of magnitude smaller than the photonic DOF. We have identified
conditions under which the maximum extracted mechanical power is invariant and show self-induced

robustness of the power production against imperfections and driving noise.

I. INTRODUCTION

The vital role of nano/micro-engines in the advance-
ment of nanotechnology has been placing their devel-
opment at the forefront of the recent research activ-
ity [1-17]. Many of the reported achievements have
been benefiting areas ranging from nanorobotics to
molecular electronics, [1-5, 7-9] and from spintronics
to quantum measurements [18-22]. Along these lines,
the concept of current-induced forces for the realiza-
tion of nano/microscopic adiabatic quantum motors has
emerged within the framework of modern condensed mat-
ter physics [10, 23-26]. At the most fundamental level,
adiabatic quantum motors utilize the interference effects
of the electron current going through them to produce
useful work extracted from a mechanical degree of free-
dom (motor). The motor degrees of freedom (DOF) are
assumed to be slow compared to the electronic DOF al-
lowing for a mixed quantum-classical description of the
resulting dynamics. The quantum-coherent nature of the
fast electronic degrees of freedom and the associated in-
terference effects induce an adiabatic reaction force to
the slow mechanical DOF (MDOF) [10, 26]. The work
per cycle associated with such forces has geometric fea-
tures, characterized by the area encircled by the MD-
OFs in their parameters’ space [27-30]. Consequently,
when there is just a single (non-rotational) classical DOF,
these reaction forces are necessarily conservative, produc-
ing zero useful work at the end of an adiabatic cyclic
variation of the MDOF.

The implementation of nanomotors in the condensed
matter framework requires that the nanomechanical de-
vice is connected to electron reservoirs with a temper-

ature or a voltage gradient among them that provide
the transport current [10, 23-26, 31]. Alternative driving
schemes (e.g. ac driving [32-34]) and energy sources in-
clude chemical energy [1, 2] or light [3, 7, 9, 35]. In fact,
the recent advancements in nanophotonics provide tan-
talizing opportunities for the realization of autonomous
nanomotors that might surpass fundamental operational
limitations. Specifically, new features and tools that are
intrinsic to the photonics framework, like the presence of
(self-induced) nonlinearities due to light-matter interac-
tions or the possibility to engineer losses (or gain), etc.,
might turn out to be useful design elements for bypassing
such constraints, like, the multiparametric nature of the
MDOFs.

Here, we propose an autonomous monoparametric
optomechanical motor consisting of a single harmonic
MDOF coupled to a nonlinear photonic circuit driven by
a monochromatic source. In the example shown in Fig. 1,
the photonic circuit consists of a Fabry-Pérrot resonator,
while the MDOF is described by an oscillating mirror at-
tached to a spring. The position of the mirror controls
the resonant frequency of the photonic DOF (PDOF)
and subsequently the energy flux via the detuning from
the monochromatic source. For incident power above a
critical value, the intrinsic nonlinearity of the cavity pro-
duces bistability in the PDOF and the access to one state
or the other is determined by the characteristics of the
MDOEF’s motion. Consequently, the optical force is self-
regulated by the position and direction of the MDOF and
can become non-conservative, thus compensating for the
mechanical friction and enforcing an oscillatory steady
state of the mirror. We show that the optical force under-
goes a self-induced hysteresis loop when the position of
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FIG. 1.

(a) Schematics of a single-cavity monoparamet-
ric motor. The radiation pressure in a nonlinear photonic
cavity induces self-oscillations of the mirror. (Inset) The
magnitude of the photonic force Fpy. o \a\z depends on the
mirror’s direction of motion (see arrows) due to the bistabil-
ity of the modal energy |al?. (b,c) The bistable dependence
of the modal energy |a|? (blue lines) with the mirror’s posi-
tion z [see Eq. (4)] shows a hysteresis loop within the range
z € (z—,z4+). The red lines are real roots that do not corre-
spond to physical solutions. The grey shaded area indicates
the range of oscillation of the MDOF. In (b), the motion of
the MDOF is wide enough to cover the whole loop and the
modal energy |a|? explores both branches (see arrows). The
work done on the MDOF is proportional to the area of the
loop. In (c¢), the amplitude of the MDOF cannot cover the
loop and |a|? explores one branch of the bistability. [Insets
(b,c)] Temporal dynamics of the MDOF that (b) reaches the
steady state; (c) relaxes toward the equilibrium position.

the mirror changes. The associated area of the loop gives
the work done per cycle. Devices based on our mecha-
nism are resilient against stochastic noise associated with
the lasing source. We identify optimal designs and derive
conditions under which the maximum extracted power
is invariant under various design parameters. Our the-
ory utilizes an adiabatic coupled mode framework, but
its predictions are applicable for as long as there is a
large time-scale separation between the mechanical and
the PDOF. The theoretical results have been scrutinized
against time-domain simulations with temporal coupled
mode theory (CMT) models and realistic electromechan-
ical platforms.

Importantly, nonlinearities may also arise in the con-
text of quantum transport via the mean-field treatment
of electron-electron interactions [36], which are essen-
tial in all density-functional-theory-based methods [37].
Therefore, it is reasonable to envision the extrapolation
of our results to the design of novel quantum devices.

II. BASIC PRINCIPLE USING A SINGLE
CAVITY SETUP

We consider a nonlinear single-mode cavity driven by
a monochromatic source. The dynamics of the electro-
magnetic field inside the cavity is described by a time-

dependent CMT
a=1 [ o (X) + xlal ] a —vya+ i\/2'yespei“t, (1)

where the field amplitude a(t) is normalized such that
la]? is the energy inside the cavity and |sp|? and w
represent the power of the incident wave and its fre-
quency. Here, 7. is the decay rate toward the input-
output channel, and v > ~. is the total loss. Finally,
the term y|a|? describes a nonlinear frequency correction
due to, for instance, a Kerr effect. The modal resonant
frequency w,(X) depends parametrically on the (slow)
MDOF X. For concreteness, we adopt below a lan-
guage associated with the Fabry-Pérot example of Fig.
1. In this framework, X is the position of the mirror,
wa(X) = woL/(X + L) = wo(l — X/L) where wy is the
resonant frequency of the cavity in the equilibrium posi-
tion of the mirror X = 0. Below, we assume that X < L.
Nonlinearity could be provided by a filling medium that
does not limit the MDOF dynamics, like a gas [38] or a
thin film [39].

The MDOF is described by a dumped harmonic os-
cillator driven by a photonic force proportional to the
energy inside the cavity, Fj,n = €|a|® [40],

MX = —2TMX — KX + ¢|al? (2)

where M, K, and I' are the mirror mass, the spring
constant, and the friction coefficient. The coupling is
e = (L', where the model dependent coefficient ¢ takes
the value ¢ = 1 in case of Fabry-Pérot resonators. It
is convenient to rewrite Egs. (1) and (2) in terms of

x=X/L, Q=+/K/M,and a =¢/M,

a=1ilwo(l — )+ xlal*] a — va+iy/2vespe™,
&= —2Tc — Oz + alal?.

III. SELF-INDUCED NONCONSERVATIVE
FORCE

We consider the situation where the MDOF is much
slower than the PDOFs, ie., Q < v < wp. In this adia-
batic limit, « in Eq. (3a) can be treated as a parameter
rather than a time- dependent variable.It is then possible
to find an analytical solution to Egs. (3a) and (3b), by
introducing the ansatz a(t) = ae’* [41]. Then, Eq. (3a)
reads

2[(z=A)P+B]-J=0 (4)

where z = x|a|?/vy, A(z) = (wox + dw)/y, B =1, J =
2x|sp|?/~7?, and the frequency detuning of the emitting
source is dw = w — wy. Specifically, when the injected

power |s,|? exceeds a critical value |s;7'\2

= (4/3)327* | (27ex), (5)

Eq. (4) admits three solutions for z o |al? in some dis-
placement range = € (x_,z4). This bistable behavior is

|5p* > |} [?



associated with the formation of a self-induced “hystere-
sis loop” in the parameter space defined by the optical
force and the displacement, see Figs. 1(b) and 1(c). We
stress that both displacement bounds x4 are byproducts
of Eq. (4) and they do not depend on the parameters
of the MDOF. Instead, they only depend on the param-
eters associated with the PDOF, the detuning dw, and
the incident field amplitudes s, [41].

Let us analyze in more detail the motion of the mir-
ror. First, consider the case where the mirror is at
x < z_ and it moves expanding the cavity. The modal
energy of the PDOF |a|? will change along the upper
branch of the hysteresis loop until the critical position
x4 is reached, see Fig. 1(b). At this point, the en-
ergy |a|? sharply decreases. In contrast, when the mir-
ror starts at a position x > x4 and moves to contract
the cavity, |a|? changes following the lower branch of the
hysteresis loop until it reaches the position x_, where
the modal energy |a|? sharply increases, see Fig. 1(b).
In consequence, the optical force Fpp o |a|2f( has a
magnitude that depends on the mirror’s direction. The
associated work performed by the radiation pressure,
Won = $ FondX = [, (~0F/9lal?) dXd|a|?, results
proportional to the area of the hysteresis loop. Notice
that the nonlinearity introduces an additional effective
DOF, |a|?, that enables a nonzero area. Since such an
area is insensitive to the details of the parametric tra-
jectory, providing a self-induced robustness of the work
production.

Energy conservation implies that, in the steady state,
the work of the optical force Wy, should balance the
dissipated energy Wy in each cycle. Assuming z(t) =
Teq + TosinQt and |zeq| < xp, we can estimate the
mirror’s amplitude z¢ from Wy, = W, where Wy =
2rTQM a3 L2, Therefore zg ~ /aw/(2rTQ), where w
is the area encircled by the hysteresis loop. This ex-
pression for xzy, however, becomes inconsistent whenever
xo < |z4|, because the extraction of useful work from
the MDOF requires that the optical force Fy, explores
both branches of the bistability. If the mirror reaches its
rightmost position at z.q + ¢ < 4+ and turns back, the
driving force remains on the same branch, as shown by
the arrows in Fig. 1(c); therefore w = 0 and consequently
F,1 becomes conservative. Importantly, this is true even
if the initial displacement exceeds x,. In such a case,
the motion of the mirror simply relaxes to the equilib-
rium position, zeq (inset of Fig. 1(c)). Thus, to guaran-
tee the existence of the MDOF’s stationary regime, one
has to supplement the necessary condition Eq. (5) with
a sufficient condition

2o > max(|z |, [z ), (6)

that ensures the exploration of the whole bistability re-
gion.

The optomechanical nanostructure of Fig. 1(a) consti-
tutes an autonomous monoparametric motor that con-
verts energy from a constant energy current, generated
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FIG. 2. (a) Schematics of the double-cavity monoparametric
motor. (b) Output power versus emitter detuning dw = w—wq
and coupling s, see Eq. (8). The cutoffs are determined
by Eq. (6), and the solid red line indicates the maximum
(iso)power line Eq. (9) with s¢ = 5. Vertical black dashed
line indicates s/, = 2 (see Fig. 3). Inset: Maximum power
production of the single-cavity (red dotted line) and double
cavity (blue solid line) motors vs. the loss 7. The addition of
a second cavity allows us to optimize the coupling s to obtain
a stable performance against losses. (Parameters in Ref. 55)

by coherent radiation, into mechanical work. The perfor-
mance of such a motor can be quantified by the output
power Pyt and the efficiency n which are

Q Pous ~ Wpn - 3 Q
Pouy =W : 5 = T y 7
out phg P, [sp|? wo (™)
where the input power P, = |s,|?>. The efficiency, al-

though small (2/wy < 1), is comparable to that of other
systems in the adiabatic limit [35].

The output power of the optomechanical nanomotor is
affected dramatically by variations of the loss parameter
~. Our CMT analysis indicates that the performance of
the motor deteriorates rapidly for moderate y-values or
even drops to zero due to the violation of Eq. (6), see
inset of Fig. 2(b). Obviously, in any realistic scenario,
such rapid performance deterioration is undesirable. It
turns out that we can eliminate this deficiency by incor-
porating in our design an additional PDOF. The idea is
to separate the PDOF that couples to the source from
the PDOF that implements the non-conservative optical
force. In this way, the first PDOF will act as a buffer, pro-
tecting the second PDOF (and consequently the induced
Fon) from any variations occurring in y. We proceed with
the analysis of such a structure.



IV. DOUBLE CAVITY SETUP

We consider two coupled optical modes, a and b, where
b is driven by the monochromatic source, while a is non-
linear and its resonant frequency depends on the position
of the MDOF (see Fig. 2(a)). The associated equations
of motion read

b = iwob — b + ixa + i/ 2ycs,e (8a)
a=1wo(l — )+ x|al*] a — vaa +isb (8b)
i = —2Ti — Q%x + alal?, (8¢)

where s is the coupling parameter between the modes
and Y4, v5(> 7e) are the decay rates of the modes.

By applying the adiabatic approximation in Eq. (8),
we arrive at a similar equation as Eq. (4) for the field
intensity of the second PDOF. Now, z = x|a|?>/¥ where
¥ = (Ya+7)/2 and only A depends on z [41]. Following
the same steps as previously, we find the critical power
|sﬂ|2 that ensures self-oscillations and analyze the hys-
teresis loop in the force-displacement plane to extract the
equivalent mechanical criterion Eq. (6) for work produc-
tion.

In this configuration, the coupling > (together with
the emitter detuning dw) controls the flow of energy to
the second PDOF that forms the non-conservative force
due to light-matter interactions. In Fig. 2(b), we report
the extracted power Eq. (7) for different values of » and
dw keeping fixed the rest of the parameters. The red line
indicates an “isopower” line where the output power re-
mains the same. This curve is described by the equation

(w—wo)? = (w/0)*(5* — ) 9)

for any particular values of wy, s, and =, [41] and pro-
vides a desirable flexibility in designing the motor.

To compare the performance of this setup with the one
in Eq. 3, we require three conditions: (a) The coupling
to the source 7. in both setups is the same; (b) The av-
erage loss in each setup is the same, v = 7; and (c) the
source power |s,|?, characteristic frequency wp, nonlin-
earity coefficient x, and all the mechanical parameters
are the same. Under these conditions, we calculate the
maximum value of Py, of the double cavity by exploring
the (¢, dw)-plane as a function of ¥ = (v, + v5)/2, with
Yo = cons. and v, = 7. For the single cavity, we adjust
Ye =y = 7. We find that the performance of the single-
cavity setup (red dashed line) is better at high-quality
factors (~ 1/%) while the double-cavity demonstrates a
degree of robustness against variations in 7 (see inset of
Fig. 2(b)). Importantly, it does not vanish as 7 increases.

V. DYNAMICAL SIMULATIONS AND NOISE

For practical implementations, it is necessary to assess
the robustness of our proposal using realistic conditions,
like the presence of noise or non-adiabatic (dynamical)
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FIG. 3. Output power of the double-cavity motor with

coupling /. = 2 vs. dw for different noise strengths NS.
Our time-domain simulations (with Q/wo = 107°) in the ab-
sence of noise (violet dashed line) deviate slightly from the
adiabatic prediction (black solid line) because of dynamical
effects. Strong noise strength NS = 5% and NS = 10% pro-
duce small deviations for dw < 0. Symbols indicate values
of different noise realizations. (Left inset) The field inten-
sity dynamics |a(t)|*> vs x(t) for Q/wo = 10™* (green line),
Q/wo = 107° (blue line), and Q/wo = 107° (red line) agree
nicely with the analytical prediction (black line) (Right inset)
Strong noise NS = 10% does not destroy the hysteresis loop.
Here Q/wo = 1073,

effects. To this end, we consider time-domain simulations
using the CMT modeling where the driven mode b is
affected by noise.

In Fig. 3, we show the extracted power evaluated from
dynamical simulations for a vertical cut of Fig. 2(b) with
/s, = 2 versus the detuning dw/wg. First, we discuss
the case of a finite value of /wy = 107> in the absence
of noise (NS = 0%). We observe that the power from dy-
namical simulations is slightly higher than the analytical
prediction. We attribute this small deviation to dynam-
ical effects. In the left inset of Fig. 3, we show the field
intensity |a(t)|? vs. x(t) for different values of Q/wq. The
agreement with the adiabatic solution is satisfactory for
Q/wy < 1075 while a reasonable agreement persists for
even higher ratios Q/wo = 1074,

Next, we consider white noise associated with the driv-
ing source [41]. The noise strength NS is quantified by
comparing the fluctuations of the optical field intensity,
in terms of its variance of = Var(|b(t)|?), relative to the
mean modal energy E, = (|b(t)|]*), NS := o4/E,. In
Fig. 3, we report the extracted power in case of rela-
tively strong noise (NS = 5% and NS = 10%). It turns
out that even in the extreme case of NS = 10%, the
performance of the motor remains relatively unaffected.
Such stability originates in that the hysteresis loop per-
sists even when noise affects the photonic field (see right
inset of Fig. 3).



VI. ELECTROMECHANICAL MOTOR

Here, we propose two designs of monoparametric elec-
tromechanical motors based on electronic circuit setups
that display a steady-state motion of a MDOF. We val-
idate our predictions via realistic time-domain simula-
tions.

As shown schematically in Figs. 4(a) and 4(b), we
consider the electric circuit analogue of the single- and
double- cavity setups consisting in one LC resonator and
two coupled LC resonators, respectively. In both setups,
the nonlinearity is introduced by a nonlinear capacitor
C, whose inverse capacitance depends nonlinearly on the
charge q as C;1(q) = C;)l + B¢® with Cuo,8 = cons.
[42]. The circuit element C, is a parallel plate ca-
pacitor with one movable massive plate attached to a
spring. Its associated capacitance depends on the plate
displacement § as C; ' = (do + 0)/(e0A) = Cpg (1 + ),
where A is plate area, dy is the capacitor width in ab-
sence of bias and = = §/dy is a dimensionless displace-
ment, considered as the MDOF. Therefore, the voltage
on the node v, is v,(q) = Cio(l + &x) + Bq3, where
Cit = Cot + 0o, € = Cy/Cro. Each LC resonator
supports a resonant mode that, in absence of nonlinear-
ity and displacement of the mechanical plate, has a res-
onance frequency wy = 1/y/LCy = 27 x 109rad/s and
impedance at resonance zg = y/L/Cy = 7052 [43].

The signal vs(t) = vg sin(wt) is generated by a voltage
source connected to the circuit via a transmission line
(TL) with characteristic impedance R = 50€) ended in
a coupling capacitance C., = €,Cpy, @ = a,b. In con-
trast to the single cavity setup, where the TL is coupled
to the nonlinear mechanical LC resonator, in the double
cavity setup the TL is coupled to a linear LC resonator
via a capacitance Cgp and, in turn, such resonator is cou-
pled to the nonlinear mechanical LC resonator via a mu-
tual inductance coupling with coefficient p. The later is
also coupled to a TL that introduces an energy leakage
controlled by the coupling capacitor C.,. The capaci-
tive coupling to the TLs introduces a frequency shift. To
avoid impedance mismatch between the resonators in the
double cavity setup, we keep their resonant frequencies
approximately the same by introducing the conditions
C,=(1-=XN)Cp and g, — A ~ g,.

The back action to the MDOF is determined by the
force induced by the electric field E inside the capac-
itor C, on the movable plate’s charge, F = —FEq =
—lq/(e0A)]q = —q3*¢/(doCp). Such a force displaces the
capacitor plate according to the dimensionless equation

d*z dx

i _QF% — Q% — aq?,
where 7 = t/wy, Q@ = wy'VK/M ~ 107°, a =
fvg/(Md%wS’L and g, = q/(Covo).

The coupling of the resonators with TLs produces an
electric energy leakage with decay rates v, and v, when
# = 0. Such rates can be determined, e.g. by estimat-
ing transient decay times, or alternatively finding the
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FIG. 4. Schematics of (a) single-circuit and (b) double-circuit
setups. The transmission line impedance is R = 50 (2; the in-
ductance L and linear components of conductances C,, Cp, Cy
satisfy \/L/Co = zo = 70 vs(t) = vosinwt. (¢) Normalized
work production as a function of normalized electric field en-
ergy loss for single-circuit (red circles), double-circuit (blue di-
amonds) and corresponding CMT approximations (blue solid
and red dot-dashed lines respectively). The reference loss
value chosen is . = 5.7 - 1072, while the work w(y) is com-
puted independently for each setup. Here, w. = w(v«). One
can see the single-circuit (single-cavity) setup performance is
very sensitive to changes in v while double-circuit (double-
cavity) setup is stable. (d,e) Charge squared |g,|® vs. dis-
placement x during a whole cycle of the MDOF that evidences
the hysteresis loop associated to the single resonator (d) and
double resonator (e) circuit.

linewidths in a scattering analysis. In addition, those
decay rates can be approximated via a CMT description
of the circuit setups, as described in Ref. 43. There, the
CMT predicts decay rates v, o €2 ,(20/R) and there-
fore they can be controlled by varying’ the capacitive cou-
pling to the TL.

In Fig. 4(c¢) we plot the (dimensionless) work pro-
duction w = [ |gq|*dz versus the decay rate -y, which
is v = 7, for the single resonator and v = =, for the
double resonator setup. Variations of these parame-
ters are achieved by sweeping €, and ¢, in the interval
[0.085,0.11], respectively. We have normalized both the
work production and the loss parameter v by a specific
—but arbitrary— set of parameters. Specifically, for the
double-resonator circuit we set £, = 0.03, € = 0.1, which
corresponds to losses v, = 0.5-1073, 43, = v, = 5.7-1073.
We have found the maximum work w by varying the cou-
pling, p, and the driving frequency, w. For the single-
resonator circuit we choose resonant driving. This ap-
proach allows us to compare w/w, vs. /7., where



wy = w(7), for both circuit setups and their associated
CMT. One can see that the CMT accurately predicts the
outcome of the time domain simulations of the electrome-
chanical equations also evidencing the robustness of the
double-cavity performance while the single-cavity setup
is sensitive to the parameters.

For completeness, in Figs. 4(d) and 4(e) we show the
hysteresis loops associated to the charge square |q,|?
when z changes for the single-resonator 4(d) and double-
resonator 4(e) circuits. Qualitative similarities with the
photonic counterparts can be found for the single circuit
setup, Fig. 4(d), although it is not the case for the dou-
ble circuit setup, Fig. 4(e). Despite this, in both cases,
the loops enclose nonzero areas and the results of circuit
simulations shows an excellent matching with the CMT.

VII. COMPARISON WITH EXISTING
SELF-OSCILLATIONS IN OPTOMECHANICAL
SYSTEMS

Self-sustained oscillations of the MDOF in single-
cavity optomechanical systems have been known for some
time and reported in a variety of theoretical and exper-
imental platforms (see Ref. [40] and references therein).
Here, we compare our proposal with the standard self-
oscillations in optomechanical systems. In principle, such
setups can be described by the same equations of mo-
tion Eq. (3) utilized here, with the crucial difference that
these setups do not involve a Kerr nonlinear correction
to the frequency, i.e., x = 0. We discuss next how self
oscillations can develop.

We stress again that the optical force provides the
energy required to sustain the motion of the MDOF,
and such energy can be interpreted as the area below
the (w, |a|?)-trajectory, i.e., Wpn o § |a[?dX. It turns
out that in the adiabatic limit, ) < v < wy, and for
Q — 0, the field reacts instantaneously to the motion of
the MDOF, and so does the force. Under this condition,
the energy of the cavity only depends on the position of
the MDOF, |a|* = |a(x)[?, which implies that no net
work can be produced when considering a closed trajec-
tory, i.e. Wy, = 0.

One possibility to overcome this limitation corresponds
to operating the device under non-adiabatic effects, which
has been extensively studied both experimentally and
theoretically [40, 44-49]. This is indeed a mechanism
exploited in optomechanical platforms to create self-
oscillations, which are enabled by the (extremely) high
experimental quality factors , i.e., v,I' < Q. In these
scenarios, the time that photons spend inside the cav-
ity is enough to undergo the effect of the motion of the
MDOF. As a result, the associated energy inside the
cavity |a|> = |a(z,¢)]> will draw a finite area in the
(7,]a|?) plane, and, for appropriate input frequencies,
a self-oscillation can be achieved. This mechanism can
also lead to more complex scenarios, such as dynamical
multistability (caused by the nonlinear optomechanical

coupling and the high quality factor), which, in the case
of high input power, results in chaotic MDOF dynamics
[48]. Of course, many realistic platforms cannot benefit
from the high quality factors that are required to exploit
the non-adiabatic effects, which limits the range of ap-
plications to a few experimental setups.

An alternative that can induce the MDOF motion con-
sists of the introduction of another degree of freedom
which can cause retardation effects between the photonic
force Fy, o |a(X,t)|* and the MODF X. One of such
cases corresponds to the retardation produced by ther-
mal effects where the heat has to propagate through a
cantilever before it bends [50].

In the present work, our approach is different from the
ones discussed above. While our mechanism focuses on
the adiabatic limit, useful for a variety of platforms with
moderate or even low quality factors, it does not con-
sider retardation effects, which makes analytical calcula-
tions straightforward. The idea is that, due to the ad-
ditional (Kerr-type) nonlinear effects, the photonic force
Fon o |a|? can distinguish the direction of motion of the
MDOF, and can be treated as a function of position z
and direction of motion & /|| rather than a function of
position only. Such a dependence originates in the non-
linearity affecting the energy of the cavity that, under
certain conditions, can show bistabilities leading to the
formation of a hysteresis loop, as shown in Fig. 1. A cru-
cial feature of our proposal corresponds to the magnitude
of the output power that can be delivered to the MDOF
that goes as §2, as opposed to non-adiabatic optomechan-
ical self-oscillations that can deliver a power that is pro-
portional to higher orders in Q (larger than linear), see
Appendix E.

Our proposal also differs from existing examples of self-
oscillators in the framework of mechanics, which are typ-
ically describing scenarios where the adiabatic approxi-
mation is not applicable [51, 52].

VIII. CONCLUSIONS

We have introduced a class of adiabatic autonomous
nonlinear motors that produce useful work based on the
motion of a single MDOF with a clear separation of time
scales from the PDOF. The monoparametric nature of
these motors challenges the common belief that the ex-
traction of a useful work requires the control of (at least)
two independent parameters; instead, the nonlinearity
enables an effective extra DOF. The proposed motor of-
fers: (a) Self-induced robustness that guarantees a work
production that is resilient against driving noise and im-
perfections; (b) An opportunity to invoke MDOF and
PDOF, which do not have comparable frequencies. Me-
chanical modes with much lower frequency can now be
utilized with our mechanism; and (c) The implied adia-
baticity offers additional robustness against noise due to
a self-averaging process of the trajectory of the MDOF.
We also validated our proposal via realistic time-domain



simulations with an electromechanical version of the pro-
posed motor. It will be interesting to extend the con-
cept of adiabatic autonomous monoparametric motors to
solid-state systems [53]. A promising platform is ferro-
magnetic films, where nonlinearities due to the coupling
of a macroscopic magnetic moment with lattice phonons
can naturally emerge [54].
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Appendix A: Reduction of the equations of motion
to the algebraic cubic equation

In this section, we discuss the steady state solutions of
the photonic degrees of freedom (PDOF) when the me-
chanical degree of freedom (MDOF) is considered as a
parameter. We show that the photonic equations of mo-
tion reduce to a cubic equation whose solutions indicate
the presence of bistability.

1. Single-cavity

We start by considering the time-dependent equations
of motion

a=1wo(l —z)+xla]*] a —ya+is,\/27ve™" (Ala)
i = —2T'c — Q%2 + alal?. (A1b)

Here, the nonlinear optical cavity mode a has a natural
frequency wy, is driven by a monochromatic source with
frequency w and source power |sp|2, and is coupled to
a MDOF z, which is dimensionless. The field amplitude
a(t) is normalized such that |a(t)|? is the energy stored in
cavity “a”, v > 7. is the loss, while x|a|? is a nonlinear
frequency correction (we consider only the case of x).
Here, < v < w ~ wg and T are MDOF frequency and
loss, while « is the reduced nonlinear coupling between
the PDOF and the MDOF.

The condition Q < v implies that the MDOF is very
slow as compared with the electromagnetic field dynam-
ics and justifies an adiabatic approximation, namely,
treating Eq. (Ala) as if © were a constant parameter.
To reformulate this condition, one can split slow and fast
dynamics by the ansatz a(t) = ¥(t)e™t (|¢|?> = |a|?),
where the slow component ¥ (t) parametrically reflects
the dynamics of z(t). In the equation

¥+ (6w + woz — X|Y[1)Y + 71 = isp\/27e,

a b
X P
Q R —————
wa() wp

FIG. 5. Schematic representation of the double cavity setup.

where we introduce the laser detuning dw = wg — w, one
can omit the small term ¢ «x . By introducing z =
x|a|? /7y, we obtain a cubic equation

(z—A)2+B]z—J:0, (A2)
with parameters

A(z) = (woz + dw) /7,

B=1, (A3)

J = 27.x|sp |2 /7.

The time dependence in the latter equation becomes im-
plicit. From its analysis in Appendix A 3, we will ex-
plore the parametric dependence of the modal energy |al|?
stored in the cavity as a function of .

2. Double-cavity

Next, we consider the system depicted in Fig. 5. There,
a monochromatic laser with frequency w is directed to-
ward the photonic cavity b, with natural frequency wy, =
wp, that is coupled to the nonlinear photonic mode a.
The latter is coupled to a movable mirror attached to a
spring. The natural frequency of the cavity mode w, is
wp at low field intensities and when the position of the
left mirror is fixed at = 0. Using coupled modes theory
(CMT) for the PDOF, we describe the system via the
equations

b = iwob — Vb + ixa + i\/2%speiwt (Ada)
i = iwg(r)a — Yea + ixb +ix|al’a (A4b)
&= —2T'% — Q*x + alal?, (A4c)

were v, and v, — 7. are the losses due to radiation in
modes a and b, v, is the loss due to the coupling of mode
b to the continuum, and T is the mechanical friction. The
emitter amplitude s, is such that |s,|? is the incident
source power, while |a|?, |b]? is the energy stored in the
respective mode.

The frequency of the mode a is inversely proportional
to the length of the cavity and then, it is modulated



by the mechanical degree of freedom (MDOF) z, which
represents a small displacement of the mirror normalized
by the cavity length. Such a frequency reads

wo

wa(x) = it

This linear frequency approximation is also useful to de-
scribe frequency modulations by MDOFs in other plat-
forms of interest, like the electronic circuits discussed
later on.

Using the condition Q/wy < 1, we use the adia-
batic approximation, as in Appendix A 1, treating x in
Eqgs. (Ad4a) and (A4b) as a parameter. Then, we solve
the first two equations in Eq. (A4)

r < 1.

~ wo(l — x), (A5)

b = iwob — Wb + isa + is.e™t
a=ifwo(l—m)+ x|a\2] a — Yqa + i,

considering a parametric modulation via x. Here, s, =
V27Ye5p.

We look for stationary solutions of Eq. (A6) of the form
(a,b) = (ag, bo) exp {iwt}. The equation could be written
in matrix form as

16w + vp —ix bo|
—ix  i(wor — X|ao|? + dw) + *ya} {ao] o

4]

where the emitter detuning dw = w — wq. It follows that

22|52
jaof? = — )
I [woz — xlao* — &u]™ + 03
where we introduced auxiliary notations
I} =6’ +3,
22
o= —bw |[1— ——
¢ N [ dw? + 75 }
4 (A9)
2 »”
773 = (%2 —i—’ya’yb) + |:’7§ — F2:| 5&}2,
b
5 _ Ya + Y
Y 5

By introducing the variable z = x|ag|?/¥, we may rewrite
Eq. (A8) in the cubic form

G(z)==z[(z—A)?+B] - J =0, (A10)
where now the coefficients
wo — gw
Alr) = ——=,
(z) 5
2
U™
B = - , All
72F§ ( )
J= 2y
7T

Because of formal equivalence between Eq. (A2) and
Eq. (A10), the analysis of the next section where we dis-
cuss their solutions, is applicable to both cases.

3. Algebraic cubic equation

In addition to a pathological case of no real roots in the
domain of z > 0, there might be one or three real zeros
for the cubic equation Eq. (A10), as shown in Fig. 6. The
latter situation might occur only when G(z) has one max-
imum (on the left) and one minimum (on the right), as
shown by the green dashed line in Fig. 6. The condition
G'(z) = 0 leads to a quadratic equation with solutions

24 1
— 2 2\ /A2_3B.
S

(A12)
Now, we notice that in Eq. (A10) all the parameters are
fixed by the setup parameters except for the variables z
and z, which change their value during the system evolu-
tion in such a way that we may consider z as a function
of x or vice versa. Indeed, the photonic energy is a func-
tion of the mirror position, while the mechanical driving
force and, therefore, the mirror position is a function of
photonic energy. In Eq. (A10), only the parameter A de-
pends on x. Here, we introduce A4 as the values of A
that are solutions of the equations

Glzx(A4)] = 0. (A13)
Explicitly,
241 1 5
<3 + gﬁ/Ai — 3B> X
Ay 1 2 ’ —
<—3 + g\/Ai —BB) +B| =J (Al4)

Thus, 4+ « A4 are the values of the mirror position for
which G[z(z)] crosses the horizontal axes only twice, i.e.,
two of the three roots are degenerate (see Fig. 6). When-
ever r < x_ or & > x4, only one solution of Eq. (A10)
is possible. Therefore, z1 indicate whether bistability is
possible and they define the boundaries of the hysteresis
loop.

By solving Eq. (A14), we may deduce if there is a hys-
teresis loop for the given set of parameters. In such a
case, the width of the hysteresis loop, which is propor-
tional to the work of the motor after one cycle, is entirely
controlled by the parameter J in Eq. (A10). There, we
can identify a critical value of z. = z4 = z_ that causes
the collapse of the bi-stability region, which is defined
from Eq. (A12) as

24
Zc:?, A2:3B

This leads to a critical value of J (see Fig. 7)

AB 3/2
-]

. (A15)

above which bistability is possible. In turn, this implies

that there is a critical value for the source power |sch|2 to
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FIG. 6. (a) Function G(z) for different values of the MDOF
xz < A. Gi(z) stand for G(z,z+). The green dashed line
represents G(z) for some arbitrary value of z_ < z < zy. (b)
Hysteresis loop z o |a]? vs. 2. By moving the MDOF from
the left to the right, = reaches the critical value x4 where z
drops from zy (circle) down to z2 (diamond) and the MDOF
continues moving to the right. On its way back, at critical
value z_, z jumps from z_ (square) to z4 (star) and the mirror
continues its motion to the left and repeats. The red solid line
corresponds to the third root of Eq. (A10), which is physically
inaccessible.

be overcome in order to have bistability. Using Eq. (A3),
this condition can be formulated as

3/2
o1 = (4) 2
P P 3 2X7e

(A16)

for the single-cavity motor, while for the double-cavity
motor one should use Eq. (A11) to get

3/2 _6
4 2%
2 cr|2
s |“>|s == _— Al7
5l > ey (3) VeV X (Ya — Tb)? (A17)

Appendix B: Mechanical Criterion

From the solution of Eq. (A6), we can predict whether
work production is possible and also compute its value,

e
L

3J. -

FIG. 7. Glz+] vs z. At the critical value J., Eq. (A15),
two solutions of Eq. (A13) collapse into one point and no real
solution below J. is possible (there is an imaginary component
below J. not shown in the plot). By increasing J, we increase
the width of the loop in Fig. 6(b).

assuming that the whole bi-stability region is accessed by
the MDOF. However, this assumption is not always satis-
fied. Indeed, by considering only the photonic equations
of motion, we cannot obtain information whether x will
reach this region dynamically or not. Instead, we have
to consider also Eq. (A4c). In this section, we discuss
a criterion that guarantees that the steady state motion
of the MDOF will explore the whole bistability region,
hence producing work.

The MDOF reaches its steady state when the dissi-
pated energy wy, is balanced by the work of the photonic
force wpy in each period of its motion. Assuming reso-
nant driving, the work done per period by the friction
force results

27 /Q
we = Ui dt =
0
27 /)
PANORF cos® Qtdt = 27T Qxg.  (B1)
0
Here, we have assumed
z(t) = Teq + o sin O, (B2)

where z.q < x is the equilibrium position of the MDOF.
Then, the amplitude z( is given by

Wph
To =1/ QW;Q’ Wph = a?{ la(x)|*dz. (B3)

If g > max {|z_|,|z4|}, the MDOF covers the whole
bistability region and work production can sustain a self-
oscillation of the MDOF.

Notice that we have neglected the displacement of the
equilibrium position of the MDOF since z.q < . The
precise criterion would be zg > max {|z_|, |24} — Zeqs
however, we have numerically tested that neglecting xcq
does not affect the results.
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FIG. 8. |a|? (arb. units) vs z (dimensionless) for (a) » =

VYaVe, dw = 0 and (b) > = 2\/YaVs, ow = —0.05wo. The
rest of the parameters are the same, wo = 1, |sc] = 0.15,
Yo =2.0-1073 7 =12-1073, x = 1.0-107*, « = 1.25-107 7.
The green vertical line indicates the maximum amplitude of
the MDOF, xo.

As an example, in Fig. 8, we consider two scenarios
where we vary the coupling and emitter detuning, given
that the rest of the parameters are the same, such that
in both cases Eq. (A10) predicts non-zero area of the
hysteresis loop. Here, the MDOF covers the whole bista-
bility region in case (a) only, while for the case in (b),
x is not able to reach the value required to explore the
two branches of the loop. In consequence, no work is
produced after each cycle and finally the MDOF relaxes
to the equilibrium position regardless of the initial con-
ditions. We have verified these statements via dynamical
simulations.

Appendix C: Invariance of the work per cycle along
the iso-power line.

As discussed in the main text, the double-cavity setup
has a nontrivial dependence of the mechanical power pro-
duction with the laser detuning, dw = w — wp, and the

10

coupling, ». In the present section, we show that Eq. (9)
of the main text (iso-power line),

2
2 Yo 2 2
dw :?(%_%0)7 %2%0,
0

(C1)

indeed represents a line in the parameter space along
which the power production is constant for any s > 0.
In order to show this, we use again the fact that that
the work per cycle is proportional to the area under the
loop associated to the bistability region, e.g. in Fig. 8.
In principle, this hysteresis loop might be controlled by
the parameters A, B, and J in Eq. (A10), however, not
all these parameters affect the area of the loop, and at
the same time, some of these parameters may remain
unchanged under variations of the system parameters.
Indeed, one can verify that B and J are invariant under
any values of (s, 0w) satisfying Eq. (C1). To show this,
we consider Egs. (A9) to (A11l) which result in
2 >, V(2 2 o 5
Fb—7b+%g (> %o)—’Yb%g
2
n? = (s +7208) S
0

and therefore

) +Yah

B= 20"
22
J_ J{(%)(|8€|2
32
b

Here, B and J are invariant under variations of (¢, dw)
satisfying the condition imposed by Eq. (Cl). Finally,
the parameter A may shift the the boundaries of the hys-
teresis loop x4, but the bistability region A_ < A < Ay,
which is determined entirely by values of B and J, re-
mains unchanged as well as its area. This invariance is
translated to the mechanical work, unless the required
values of & become unsupported by the MDOF due to
the mechanical criterion, see Appendix B.

It could be shown that, for a given value of 7, the
curves from the parametric family of Eq. (C1) do not
cross. This result suggests a simple method to determine
the maximum power production on the manifold (dw, s),
assuming the same set of the other parameters. Indeed,
it is enough to find a maximum value of the mechanical
power production along the line dw = 0 and the corre-
sponding value of coupling s.. This power value is the
maximum possible and it is preserved constant for any
pair of detuning and coupling values bound by Eq. (C1)
with 2¢g = s,.

Appendix D: Noise quantification

In this section, we provide details about the noise
strength quantification. In our time-domain simulations,



we consider white noise as a stochastic component in
addition to the monochromatic driving in Egs. (Ala)
and (A4a). To quantify the noise strength as compared
to the signal, we consider a single mode a whose dynam-
ics is given by a Langevin equation,

da

— = iw,a — Ya + isp/ 27" + i\/27,06(t)

7 (D1)

Here, w, is the resonant frequency, v represents the total
loss, |s,|? and w are the power and the frequency of the
driving source, 6 is the effective temperature (in energy
units), and £(t) is delta-correlated Gaussian stochastic
process:

(€ (WEE)) = 8t —t), (1) =0.

For simplicity, we assume v, = 7. = 7. For further anal-
ysis, it is convenient to rewrite Eq. (D1) in dimensionless
form:

da, . . .
Ly — ua + i€ +iNE(T), (D2
dr
where
w
€= —, Yu = l
Wy
(D3)

ay =
\/ 2% |5:D

\F \/ |s;|2’
(€ () = b(r — 7

Eq. (D2) could be formally integrated as
() = 1777 x

/ds{eh"“(s_l)]s + /\e(%"_i)sf(s)} (D4)
0

where we assume a,(0) = 0. The average energy stored
in the mode is proportional to the dimensionless value of
€ = (|a,(7)]?) and could be found from Eq. (D4) and &’s
correlations properties as

et 1
(E - 1)2 + ’YE 27u .

(lau()?) (D5)

The two terms in the latter expression correspond to
regular, &, and stochastic, £, components respectively.
In the resonant absorption scenario ¢ = 1, the reg-
ular component is dominant. Indeed, for typical val-
ues of A ~ 1 and =, = 0.01 the contribution ratio is
Er)Es = N2 /2, ~ 50.

Here, we quantify the noise strength via the fluctua-
tions of the modal energy, given by the variance

2 = Var(la,(T)]*) =

(lau()*) = {au(r)[*)* = (D6)

N+ 0.

T + Am COs (wmt
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Here, the four-point correlation is evaluated using Is-
serlis” theorem and only the main asymptotics of v, *
in the final expression preserved. Finally, we quantify
the noise strength by the expression

—3/2

oa M

NS=—~
£ 77;2

= /% (D7)

Therefore, typical parameters used in the main text are
v/wo = 0.012 (yp/wp in the double-cavity motor) and
noise amplitude A = 1 that correspond to a noise strength
NS ~ 10%. This amount of noise represents huge fluc-
tuations as compared with the ones associated to typical
quantum noise values in lasers.

Appendix E: Comparison with existing
self-oscillations in optomechanical systems.

In this section, we compare our mechanism with classi-
cal nonlinear dynamics in the context of optomechanics.
[40] In this case, the coupled equations of motion be-
tween the photonic and mechanical degrees of freedom,
as presented in Ref. 49, are

am (t) = (ixm - ;) am (t) + % (Ela)
im =P lam|? — w2, (zm — 2%,) = T (E1b)

Here, x,, (t) and a,, (t) describe the MDOF and the
PDOF respectively. The latter is given by a,, (t) =

QUm e"'“’L tm

Vitmax
of the ring-down time of the cavity 7,,!, wy is the
laser frequency, a.,, is the coherent light amplitude,
and npay 18 the maximum photon number (np.x =
4P;, /(yhwy),where P, is the input power). The pa-
rameters of the MDOF P, w,,, 2%, and T, provide,
respectively, the coupling with the PDOF, the unper-
turbed resonant frequency, the unperturbed equilibrium
position and the mechanical damping rate.

The dynamics of a(t) resembles that of a driven
damped oscillator with a natural frequency that is swept
through resonance non-adiabatically. Typically, the ef-
fects of radiation per cycle are weak, such that x,, (t)
moves approximately with sinusoidal oscillations, x,, =
m), where A, is the amplitude of the

where t,, is the time measured in units

oscillation.
In Ref. 49, the authors provide and analytical expres-

sion for the output power Péut produced by the mechan-
ical force, P™) = <\am\ xm> , which reads
t

out T
m

PO = PApwpIn [Za 1y W) i (14 1 wm)] :

n

Here, the supra-index (m) indicates that the output
power is in units consistent with Eqs. (Ela) and (E1b)



1 J"(f%) h H h 1
im where Jn is the Besse

function of the first kind. The above equation can be
recast as

and @, (N, wn,) =

e (~PA2,) Jo (=2 ) Ty (—40)

;< (n+1)w2 — 2n+ 1) Tw, +22 + )" + (22)°

By taking Eqs. (Ela) and (E1b) and performing the fol-
lowing replacements: a = G, vAwr, tym = ty, Ty = 20 +

J
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—dag, —A
oxd,, X {( ey ) + (zg‘) o8 (Wmymt) |, wo = (22vm).
2
Y= ’Yva Py, = 3p| y W= WrYm, I = ’meFm> Q:'mem
3
and a = 4;5”73_ ) we recover exactly our Egs. (3a)

and (3b) of the main text (but without the nonlinear
photonic term).

The output power, in units consistent with our equa-
tions (Poyt = 7f0 \a|2th and written in terms of
our parameterb is

2 2
alsp| Q T T
(* 270 ) (70) In (*<9/30)> Tnt1 (*m/io))

m ( (n+1) g2 (%)2

0 0.005 0.01 0.015 0.02

Q/wo

FIG. 9. Output power divided by (92/w§) as function of
the frequency of the MDOF Q/wq. For this plot we used the
parameters indicated in Ref. 47 and x¢ = 0.1 which is of the
order of the amplitudes shown in panels (¢) and (d) of Fig. 1
of the main text.

2 9"
2 1 Q
(2?’l + ) 2710 (w ) + 2’yw0 4w0’1}0> + 41% (QTO)

(

Here, we emphasize that in Ref. 49, the authors were us-
ing a completely different approach and they were treat-
ing the amplitude of the MDOF’s oscillation x( as a pa-
rameter while, in our case, xy corresponds to a single
value that results from energy conservation.

Although not so obvious from the equations, numerical
evaluations confirm that the output power goes as Q2 in
the limit of small 2, see Fig. 9. This has at least two
main consequences. First, it is clear then that, in the
adiabatic limit, only our mechanism can contribute sig-
nificantly to the output power, since it is linear in 2. Sec-
ond, without a nonlinear photonic term, self-oscillation
with large frequency separation between the MDOF and
PDOF is only possible for high quality factors, other-
wise, the expected oscillation amplitude will be extremely
small. As can be seen in the specialized literature, this
is indeed the case. For example, in Ref. 48 the authors
observed self-oscillations but using cavities with a value
of v five orders of magnitude smaller than the ones used
in the present manuscript, while in Ref. 49 they used a
value of v three orders of magnitude smaller.
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