Dynamic neural reconstructions of attended object location and features using EEG
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Abstract

Attention allows us to select relevant and ignore irrelevant information from our complex
environments. What happens when attention shifts from one item to another? To answer this
question, it is critical to have tools that accurately recover neural representations of both feature
and location information with high temporal resolution. In the current study, we used human
electroencephalography (EEG) and machine learning to explore how neural representations of
object features and locations update across dynamic shifts of attention. We demonstrate that EEG
can be used to create simultaneous timecourses of neural representations of attended features
(timepoint-by-timepoint inverted encoding model reconstructions) and attended location
(timepoint-by-timepoint decoding) during both stable periods and across dynamic shifts of
attention. Each trial presented two oriented gratings that flickered at the same frequency but had
different orientations; participants were cued to attend one of them, and on half of trials received
a shift cue mid-trial. We trained models on a stable period from Hold attention trials, and then
reconstructed/decoded the attended orientation/location at each timepoint on Shift attention
trials. Our results showed that both feature reconstruction and location decoding dynamically
track the shift of attention, and that there may be timepoints during the shifting of attention when
(1) feature and location representations become uncoupled, and (2) both the previously-attended
and currently-attended orientations are represented with roughly equal strength. The results offer
insight into our understanding of attentional shifts, and the noninvasive techniques developed in

the current study lend themselves well to a wide variety of future applications.
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New & Noteworthy

We used human EEG and machine learning to reconstruct neural response profiles during
dynamic shifts of attention. Specifically, we demonstrated that we could simultaneously read out
both location and feature information from an attended item in a multi-stimulus display.
Moreover, we examined how that readout evolves over time during the dynamic process of
attentional shifts. These results provide insight into our understanding of attention, and this

technique carries substantial potential for versatile extensions and applications.
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Introduction

The visual environment contains so much information, and given that we have limited
cognitive resources, visual attention plays an essential role to select the important information
(Carrasco, 2011; Chun et al., 2011; Desimone & Duncan, 1995). Spatial attention is one way we
can focus on the most relevant objects and locations for behavior, and filter out the irrelevant
information. Spatial attention can accelerate target information accrual across eccentricity
(Carrasco et al., 2006), and may speed the transition between sensory input and the formation of
object representations (Di Russo et al., 2003; Foster et al., 2021; Hillyard & Anllo-Vento, 1998).
In our daily lives, however, spatial attention is rarely static: when there are multiple objects or
locations of interest, we may shift spatial attention frequently between them. Numerous studies
have investigated the neural mechanisms of shifts of attention using various neuroscience tools
(see reviews, Chica et al., 2013; Corbetta & Shulman, 2002; Miller & Buschman, 2013), and
exploring the behavioral consequences of shifts of attention has become an important topic in the
cognitive psychology literature (Carrasco, 2011; Dowd & Golomb, 2019; Egly et al., 1994; Folk
et al., 2002; Paffen & van der Stigchel, 2010).

At the whole-brain network level, neuroimaging studies have established two separate
fronto-parietal systems involved in different attentional operations: the dorsal attention network
which is related to top-down goal-directed attention, responsible for the voluntary deployment of
attention to stay focused on current goals, and the ventral attention network which is related to
bottom-up, stimulus-driven attention, responsible for the reorientation to the salient or
unexpected events in the environment (Corbetta & Shulman, 2002; Vossel et al., 2014).

Neurophysiological evidence is consistent with top-down and bottom-up attention signals in
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frontal and parietal cortices (Buschman & Miller, 2007), and it has been well documented that
fronto-parietal activation is associated with the control of orienting (Hopfinger et al., 2000;
Kastner et al., 1999; Kelley et al., 2008; Peelen et al., 2004; Rosen et al., 1999; Yantis et al.,
2002). Specifically, the superior parietal lobule (SPL) and medial regions of the prefrontal cortex
show transient increases in neural activity when attention is disengaged from fixation and shifts
to new peripheral locations (Kelley et al., 2008; Yantis et al., 2002). SPL is also shown to engage
in covert shifts of attention between spatial locations (Gmeindl et al., 2016; Greenberg et al.,
2010; Kelley et al., 2008, 2008; Zhang & Golomb, 2021), features (Greenberg et al., 2010),
objects (Serences, 2004) and visual/auditory modalities (Shomstein & Yantis, 2004). Human
EEG studies have further identified certain ERP components linked to spatial shifts of attention
(Hillyard & Anllo-Vento, 1998; Kiss et al., 2008; Nobre et al., 2000; Yamaguchi et al., 1994),
thought to be localized to extrastriate and parietal cortices (Di Russo et al., 2003; Hopf et al.,
2000). Other studies have focused on neural timecourses of attentional shifts using
electrophysiological signatures of EEG and single-unit recording (Khayat et al., 2006; Miiller et
al., 1998).

At the same time, human behavioral studies have revealed behavioral costs associated
with shifts of attention. For example, reaction times are slower when attention must be shifted to
a new location to perform a task, rather than holding attention at the same location (Maljkovic &
Nakayama, 1996; Posner et al., 1980). Similar behavioral costs are found when a distracting
stimulus captures attention away from a target location (Theeuwes, 1992). Furthermore, more
recent studies have revealed that these dynamic shifts of attention bring additional challenges to
our visual system to correctly bind location and features (Chen et al., 2019; Dowd & Golomb,

2019; Golomb, 2015; Golomb et al., 2014). Identifying visual objects requires our brain process
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both location and feature information (Holcombe, 2009; Reynolds & Desimone, 1999;
Riesenhuber & Poggio, 1999; Singer, 1999; Treisman, 1996; Treisman & Gelade, 1980; von der
Malsburg, 1999; Wolfe & Cave, 1999), and a common theory of feature integration suggests that
attention serves as a glue to bind objects’ features together (Kristjansson & Egeth, 2020; Nissen,
1985; Treisman & Gelade, 1980). During rapid shifts of attention -- and when spatial attention is
otherwise disrupted or spread across different locations -- different types of feature binding
errors can occur (Chen et al., 2019; Dowd & Golomb, 2019; Golomb, 2015; Golomb et al., 2014;
Jones et al., 2021).

To study dynamic shifts of attention and understand how these behavioral consequences
link to shifts of attention at a neural level, it is essential to have tools that can accurately recover
neural representations of both feature and location information, and do so across a shift of
attention with high temporal resolution. On the rise of machine learning and multivariate pattern
analyses in recent years, many fMRI studies have made efforts to decode or reconstruct location
and/or feature selective responses in the human visual cortex (see De Martino et al., 2008;
Naselaris et al., 2011; Norman et al., 2006 for reviews). By making prior assumptions of
organization of feature space, encoding models have advantages to reconstruct population-level
response profiles of the sensory cortex (Sprague & Serences, 2015). The Inverted Encoding
Model (IEM), one example of an advanced encoding model of neural representation, has been
successfully utilized to reconstruct location or feature selective response profiles in both visual
perception and visual working memory (Brouwer & Heeger, 2009, 2011; Foster, Sutterer, et al.,
2017; Scolari et al., 2012; Sprague et al., 2016; Sprague & Serences, 2013).

Despite these recent advances, fMRI has inherently poor temporal resolution because of

the lag of hemodynamic response. This makes fMRI a suboptimal tool to study the dynamic
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process of neural representations across attention shifts. Electroencephalography (EEG) and
magnetoencephalography (MEG) have millisecond-level temporal resolution and make better
candidates to reveal the dynamics of neural information processing. Previous studies have found
EEG and IEM could be exploited to reconstruct visual perceptual information and working
memory content (Foster et al., 2016; Foster, Sutterer, et al., 2017; Foster et al., 2021; Garcia et
al., 2013), but to our knowledge this has never been attempted across dynamic shifts of attention.
In the current study, we used EEG and IEM to reconstruct the neural response profiles
during dynamic shifts of attention. Our design has multiple unique advances over prior studies.
First and foremost, we focus on simultaneous readout of location and feature information from
an attended stimulus, and how that readout evolves over time. To do so, we used a multi-
stimulus design, where two stimuli were presented but only one was attended at any given
moment. This is important because if only one stimulus was presented, and the algorithm was
run to reconstruct its location or feature (e.g. Foster et al., 2016), the decoded information could
come from two sources: the signal could be directly driven by the sensory information, and/or by
the attended information. Therefore, to better understand shifts of attention and recover the
content of attended information specifically, we presented two stimuli simultaneously and
deliberately maintained the same visual information while manipulating spatial attention. Finally,
we make use of a variation on the steady-state visual evoked potential (SSVEP) approach to
access both attended location and feature information from a common neural signal; as described
more below, our approach incorporates aspects from both frequency tagging (Miiller et al., 1998;
Norcia et al., 2015) and alpha band decoding (Bae & Luck, 2018; Feldmann-Wiistefeld & Awh,

2020; Foster, Bsales, et al., 2017; Foster, Sutterer, et al., 2017; Samaha et al., 2016; van Ede et
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al., 2018; van Moorselaar et al., 2018) to produce a neural measure with both theoretical and
practical advantages.

Some prior studies have used EEG steady-state visual evoked potentials (SSVEPs) to
access which of multiple items is being attended via a frequency tagging approach, where each
stimulus is tagged by presenting it repeatedly at a certain temporal frequency, which entrains the
neural signal (Norcia et al., 2015). In these studies, the EEG signal is decomposed into power at
different frequencies, and the attended item can be tracked based on which of the tagged
frequencies has greater power (Miiller et al., 1998) or increased reconstruction quality (Garcia et
al., 2013). In the current study, however, we are not interested in tracking which of the two items
is being attended; rather, we are interested in reconstructing what is being attended. I.e., how do
the contents of attention (feature representations) evolve across shifts of covert spatial attention?
Thus, rather than using frequency-tagging, we presented the two stimuli at the same frequency,
such that the generated SSVEP signal reflects both stimuli. In this sense, our approach is more
similar to studies that try to reconstruct the focus of attention from a common, stimulus-
independent alpha band signal (Feldmann-Wiistefeld & Awh, 2020; Foster, Bsales, et al., 2017).
Critically, however, we aim to independently reconstruct both attended-spatial and attended-
feature information. For this purpose, we hypothesized that SSVEP power at the stimulus-
entrained frequency may be more beneficial, especially given prior evidence that location
information is robustly decodable from alpha band activity but location-independent orientation
information is not (Bae & Luck, 2018). We conducted machine learning analyses to test whether
we can reconstruct the attended location and feature information from this common signal. We
are particularly interested in tracking how this recovered information updates with a shift of

attention. Our goals were thus to establish: (1) whether this technique can produce reliable
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reconstructions of attended location and feature information from multi-stimulus displays; and
(2) if we can track how these reconstructions change over time across dynamic shifts of

attention.

Methods

Participants

25 subjects (8 male, 17 female; mean age = 21.56) participated in the experiment for
monetary compensation ($15/hour). All participants reported having normal color vision and
normal or corrected-to-normal visual acuity. Three additional participants were excluded due to
poor behavioral performance (change detection accuracy in Hold trials < 10%; the rest of
participants >70%, see Stimuli and Procedure). All participants provided written informed
consent, and study protocols were approved by The Ohio State University Behavioral and Social

Sciences Institutional Review Board.

Behavioral Task

The stimuli consisted of one black fixation cross and two colored, flickering, square-
waved gratings presented on a solid gray background with luminance of 37.5 cd/m2. The size of
the fixation cross was 1° and displayed at 2° visual angle below the center of the screen. The size
of each grating was 8° visual angle in diameter and displayed at 2° above and 6° left or right of
the screen center (Figure 1). The spatial frequency of the gratings was 4 cycle/dva. The
orientations were chosen from a set of 9 orientations (0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°,

160°), such that the two gratings displayed were always 60 degrees apart (clockwise or
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counterclockwise), resulting 18 different stimulus pair combinations. Each orientation was then
added an independent jitter ranging from -5° to 5°.

One grating was colored purple (L=70, a*=28.4, b*=-21.4), and the other one was
colored gold (L=70, a*=11.6, b*=97.4); the two colors were equiluminant. In order to generate
SSVEPs, the contrast of the gratings was reversed (e.g. purple to white to purple) at 40Hz (i.e.,
the stimuli change 40 times per second). Participants were asked to always covertly attend to
either the purple grating or the gold grating (color balanced across participants), all while
keeping their eyes fixated on the fixation cross. The to-be-attended color was determined on a
participant-wise basis: 13 participants always attended the purple grating during their session and
12 always attended the gold grating. The purple and gold gratings were equally likely to appear
in the left or right positions at the start of the trial, and participants were instructed to covertly
shift their attention if the colors switched positions (described below).

Before each trial, participants were shown a screen with a fixation cross and a black
arrow above it that pointed left or right, indicating where the to-be-attended target grating would
appear at the beginning of the trial. We included this additional spatial cue to avoid visual search
and/or attention shift effects at the beginning of the trial. When they were ready to begin the trial,
participants pressed the space bar. The two colored, flickering gratings appeared on the screen

and were displayed for 3000ms.

10
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Hold Trial Shift Trial

=/,

Color Shift
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Report /

Orientation

Gratings flicker at 40Hz for 3000ms
Shift cue occurs between 1300ms to 1700ms

Figure 1. Example trial sequences for Hold and Shift Attention trials. Example here shows sequences
for a participant asked to covertly attend the purple grating (half of the participants attended the gold
grating instead). Dashed circles (not actually shown to participants) indicate the to-be-attended item over
time. On Switch trials (randomly intermixed with Hold trials), the colors of the gratings switched in the
middle of the trial and participants had to shift attention to track the purple (or gold) one. Participants
were instructed to monitor the attended item for subtle orientation changes and press a button when one
was detected. At the end of trial, participants were asked to rotate an orientation bar to match the
orientation of the most recently attended grating.

11



Running title: Neural reconstructions across attention shifts

There were two spatial attention conditions: In half of the trials, the colors of the two
gratings remained the same throughout the trial, so participants attended to the same
item/location the entire trial (“Hold condition™). In the other half of trials, the two gratings
switched colors midway through the trial (i.e., the purple grating turned gold, and the gold
grating turned purple). Once the two gratings switched their colors, participants needed to
immediately shift their spatial attention to the other grating (“Shift condition”). On Shift trials
the two gratings swapped colors but preserved their original orientations, so the spatial shift
resulted in attending a new grating whose orientation was 60° different from the original one.
Hold and Shift trials were intermixed and randomized in each block, such that participants could
not predict whether a shift would take place at the beginning of the trial. The onset of the shift
cue was randomly picked for each trial from a uniform distribution ranging from 1300ms to
1700ms after the stimulus onset.

To confirm that participants maintained their attention on the correct grating, each grating
had 0, 1, or 2 subtle orientation changes (10°) during the trial. For each grating independently,
there was a 50% probability of a change in the first part of the trial (0-1300ms) and a 50%
probability of a change in the second part of the trial (1700-3000ms). The probabilities were
independent, so overall on each trial there was a 25% likelihood of no changes, a 50% likelihood
of a single change, and a 25% likelihood of two changes. Participants were instructed to

(IS4l
S

immediately press the “s” key when they detected an orientation change in the attended grating.
They were also told to disregard any changes in the non-attended grating. Particularly, if the
current trial was a shift trial, once the color-switch happened, participants needed to monitor and

report the subtle orientation change in the newly attended grating and ignore the previously

attended grating. At the end of trial, participants were also asked to rotate an orientation bar

12
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(appearing on the screen center) to match the orientation of the most recently attended grating
and press the spacebar to confirm their answer.

To confirm that participants maintained fixation on the fixation cross while covertly
attending the grating, we performed gaze-contingent eye-tracking. If a participant’s eye position
deviated more than 1.5 dva from the fixation cross during the period while the flickering gratings
appeared on the screen, the trial was aborted immediately and repeated at a random time later in
the block.

The study was scheduled in two sessions. In the first session, participants completed two
blocks of the main behavioral task without EEG, to familiarize themselves with the task. The
second session (scheduled at a later time) was the official EEG session. During this 2-hour
session, participants completed up to 12 blocks of the task (each containing 48 trials; 24 per
condition) while EEG data were collected. We decided in advance that participants who
completed at least 10 blocks (480 trials) were included in the analyses; all 25 participants met

this criteria (M = 11.72 blocks).

Experimental Setup

All stimuli were presented using MATLAB (MathWorks, Natick, MA) and the
Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) on an Apple Mac
Mini. Participants were seated 80cm away from a 27-in. CRT monitor with a resolution of
1280*1024; and a refresh rate of 120 Hz. The CRT monitor was color calibrated with a Minolta
CS-100 (Minolta, Osaka, Japan) colorimeter.

Eyetracking. Participants’ eye position was monitored using an Eyelink 1000 system (SR

Research, Ontario, Canada) recording pupil and corneal reflection in real-time to ensure

13
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participants were fixating the central fixation cross (trials on which participants broke fixation
were aborted, as described above). A chin rest was used to stabilize participants’ head position.
EEG. Scalp EEG activity was recorded while subjects performed the behavioral task in a
shielded testing room. Each subject was fitted with an elastic cap containing 64 active Ag/AgCl
electrodes arranged in an extended 10-20 layout, recorded via a BrainProducts actiCHamp
Amplifier at a sampling rate of 1000Hz. Two additional electrodes (TP9, TP10) were attached to
the left and right mastoids via electrode stickers. Electrode impedances were reduced to <25 kQ

before the commencement of each experiment session.

EEG preprocessing

EEG data preprocessing was done using EEGLAB (Delorme & Makeig, 2004) and
custom MATLAB scripts. We first downsampled the EEG data to 250Hz and re-referenced to
the mean activity of all electrodes offline. Then we applied a band-pass filter from 0.1 to 58 Hz
(using “pop_eegfilternew.m” in EEGLAB). The data were segmented into epochs corresponding
to each trial, by taking EEG activity for each electrode from -500 ms to 3500ms relative to the
start of that trial. (The time period when the stimuli were presented on the screen was Oms to
3000ms.) We removed epochs in which the peak-to-peak range of any electrode was larger than
50 muV during the stimulus display (from Oms to 3000ms relative to the start of each trial). Each
epoch was then visually inspected to confirm no further artifacts. On average, 12.81% of trials
(SD: 2.52%) were discarded for each participant after the preprocessing.

Our experimental design (described below) perfectly balanced trial counts across
conditions, but after excluding noisy trials, the counts may not be fully balanced within each

participant. Because an imbalance in the initially attended location (left vs right) could influence
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training of the models, we re-balanced the attended target location to equate the number of trials
on which target was on the left side of screen in the beginning or on the right side of screen by
randomly selecting a subset of trials from the larger group. Because each random selection
caused a small number of trials to not be included in the final analyses, we repeated the selection
process 100 times and applied all analyses for each selected dataset. We report the final averaged

results to minimize the random selection effects.

Behavioral Analyses

Change Detection Task. We calculated the d-prime for the change detection task. Each
trial may have zero, one, or two orientation changes. Because two orientation changes in one trial
could be displayed very close to each other, participants may respond by pressing the response
key longer but not pressing twice. Because this change detection task was primarily intended to
encourage and verify participant compliance, to simplify our analyses, we combined trials with
one and two orientation changes. Hit trials were defined as trials where participants successfully
detected any changes when there was at least one change. False Alarm trials were defined as
participants reporting one or two changes when the trial had zero changes. d’ was calculated as:

d' = z(Hit rate) — z(False Alarm Rate)

To avoid infinite values, we manually defined the minimum and maximum probability of each
rate as 1/N and (N-1)/N, where N is the number of trials of that condition.

Post-trial Orientation Report. For the post-trial continuous report task, the difference
between the correct orientation and the reported orientation was calculated as the “report error”
for each trial. The report error range is from -90° to 90°. We realigned the direction of report

error in the shift condition so that a positively signed report error means the reported orientation
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was attracted towards the orientation of the initially attended item (+60°); a negatively-signed
report error means the reported orientation was repulsed away from the initially attended item’s
orientation. On hold trials, the report error was mock aligned to match the shift condition (and
eliminate any systematic clockwise/counterclockwise bias). We then fit the distribution of report
error with a probabilistic mixture model (Bays et al., 2009; Zhang & Luck, 2008). The model
assumes the distribution of report error comes from two sources (Formula 1): one von Mises
distribution (¢) accounting for the probability to correctly report the target orientation, with a
flexible mean (p) allowing the model to capture any systematic bias from the target orientation
and a flexible concentration parameter (k) to capture precision; and one uniform distribution
accounting for the probability (y) of random guessing. Note: because we did not observe any
large “swap” errors (see Figure 3), we chose this simpler mixture model without a swap error

distribution.

1
p(®) = (A —y)by+ Y(;)

For each participant and each condition, we fit the model by applying Markov chain
Monte Carlo using MemToolbox (Suchow et al., 2013). The best-fitting parameters (maximum
likelihood estimate) were compared between conditions. We also tested whether there were
feature distortions in each condition by comparing the mean shift parameter (1) to zero. We
additionally calculated the mean signed error (without mixture modeling) for each participant
and each condition as a non-modeling measure to determine whether the mean of the report error

distribution for each condition was significantly shifted from zero.
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Manipulation Check: Event-related potentials (ERPs) Analysis

As another way of confirming participants were correctly allocating attention to the target
orientation, especially on shift trials, we analyzed ERP data aligned to the shift cue (in the hold
trials, we randomly picked a time point at each trial as the mock “shift cue” time). We averaged
the signal amplitude from a subset of posterior and parietal channels (P7/P8, PO7/POS, P3/P4
and O1/02) based on the previous literature (Hakim et al., 2019), and subtracted the baseline
EEG activity from 400ms to Oms before the shift cue to calculate the ERPs. We sorted trials
based on the attended side and calculated the difference waveforms by subtracting signals from
contralateral side to ipsilateral side. We hypothesized that if attention was correctly shifted to the
new target when the shift cue appeared, we should observe a robust N2pc component on shift
trials, but not hold trials (Kiss et al., 2008). We calculated the mean N2pc amplitude by
averaging the difference signals from 200ms to 300ms. We also calculated the contralateral delay

activity (CDA) by averaging amplitude from 400ms post-shift cue onset to the end of the trial.

Main EEG Analyses: Pipeline for reconstructing attended spatial and feature information
Time-frequency analysis. Our main analyses rely on time-frequency analyses of the
preprocessed EEG signal. Below we describe the steps to extract the SSVEP power over time,
which is then used for decoding attended location (see Multivariate classification) and attended
orientation (see Inverted Encoding Model). This pipeline is visually depicted in Figure 2.
Because our main emphasis is on reconstructing attended feature and location information across
shifts of attention, we use the Hold trials as training data and the Shift trials as the testing data for

the models.
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Figure 2. Overview of EEG analysis procedure. A) Time-frequency spectrum of example electrode
(POz), showing the increased power in the 40Hz stimulus frequency band. Scalp distribution shows
SSVEP power in the 40Hz band was strongest among parieto-occipital electrodes, as expected. B)
Overview of EEG analysis pipeline for reconstructing attended feature and spatial information. C)
Schematic for the feature reconstruction (Inverted Encoding Model) process. See Methods text for details.

18



Running title: Neural reconstructions across attention shifts

First, to validate that our design evoked significant SSVEPs, we calculated the EEG
power spectrum. Figure 2A shows an example electrode channel (POz) illustrating the increased
power in the 40Hz frequency band (the stimulus frequency), with the spatial topography of the
SSVEP signal maximal over the parietal-occipital electrodes.

To extract the timepoint-by-timepoint SSVEP power for the main analyses, we first
applied a frequency-domain Gaussian shaped filter to the epoched artifact-free EEG signal for
each trial (Cohen & Gulbinaite, 2017). The analysis is done using custom Python and Matlab
scripts. A Fourier transform was applied to the padded signal to convert it from time-domain to
frequency-domain. The frequency-domain EEG signal was point-wise multiplied by a gaussian
shaped filter with peak frequency at 40Hz and full-width at half-maximum (FWHM) at 3 Hz. An
inversed Fourier transform was then applied to recover the time-domain EEG signal. Finally, to
extract the instantaneous power value of SSVEP, we applied a Hilbert transform to the filtered
EEG data. To better deal with the edge effect, the signal was padded with 500ms blank data in
both ends before the time frequency analysis. The padded data were removed after the analyses
to maintain the same length as the original signal. To maximize our temporal resolution, we
tested different wavelets with FWHM ranges from 0.5Hz to SHz and found at least 3Hz was
required to achieve a reliable orientation reconstruction.

The above analysis results in a m *n*t matrix for each participant and each condition
representing the spatiotemporal pattern of SSVEP power, where m is the number of electrodes, #
is the number of trials, and # is the number of time points. The temporal resolution of this matrix
is 4ms (we downsampled the EEG signal to 250Hz). However, it should be noted that due to the
use of the 40Hz SSVEP and frequency filtering, each data point is not entirely independent. The

effective temporal precision ranges from a minimum of 25ms (the SSVEP frequency) to ~140ms
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(estimated time for the filtered signal to achieve 95% maximum power; 75% power takes about
50ms). To avoid overfit and reduce computational demands, the 17 posterior channels (P7, P5,
P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, POS, O1, Oz, O2) were selected for input to the
decoding and encoding model, as previous literature has reported that SSVEP is most commonly

observed in these posterior electrodes (Norcia et al., 2015; also see Figure 2A).

Inverted encoding models (Reconstructing attended orientation). To reconstruct attended
feature information on Shift trials, we used a cross-condition training and test routine. We trained
the model based on the patterns of EEG SSVEP power and orientation of the attended items on
Hold trials, and then inverted the model weights to reconstruct the attended orientation on Shift
trials. We first applied this inverted encoding model (IEM) procedure to the stable attention
periods of the shift trials, defining the before-shift period as the first second following stimulus
onset (time 0 to time 1sec), and the after-shift period as the last second prior to stimulus offset
(time 2sec to 3sec). SSVEP power was averaged over each time window for each electrode and
participant. For both stable attention periods — as well as the dynamic reconstruction analyses
below — we wanted to ensure we used common training data. The use of common training data
ensures any differences in test results are not due to the differences in the training data. For the
stable attention periods, we tested two options for common training data: the two corresponding
stable attention periods from Hold trials (first second or final second). Note that we wanted to
avoid the middle period of the Hold trials since Hold and Shift trials were intermixed, and
participants may have been anticipating or preparing for attention shifts even on Hold trials. For
this reason, for the dynamic reconstructions below, we selected the final second of hold trials

(rather than the first second) as the training dataset, because there was no uncertainty at that
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point in the trial as to whether or not a shift would occur, so this period was the most pure hold-
attention period.

For the dynamic reconstruction of attended feature over time analysis, we trained the
model on the final-second time window of Hold trials (i.e. the average power over that training
window), and then tested the model on the timepoint-by-timepoint Shift data. We alternatively
considered using a model with separate training data for each timepoint (train Hold time(t), test
Shift time(t)), but there are both theoretical and practical advantages of using common training
data for each reconstruction (Sprague et al., 2019). (Preliminary analyses using the timepoint-by-
timepoint train and test procedure gave us similar, though noisier results.)

For the IEMs, we followed similar approaches as previous literature (Garcia et al., 2013;
Sprague & Serences, 2015; Figure 2C). We assumed the signal at each electrode reflects the
linear sum of 9 different hypothesized orientation channels (basis set). The response function of
each basis channel is modeled as a half sinusoid raised to the 8" power, where the centers of the
9 response functions are circularly distributed across feature space (20°, 40°, 60°, ..., 180°). We
repeated the process described below 19 times for each model, iteratively shifting the center of
each response function 1° each time. Iterative shifting of basis sets allows for more accurate
reconstructions across the full orientation space (Kok et al., 2013; Lorenc et al., 2018; Scotti et
al., 2021).

The IEM model assumes a linear relationship between the EEG signal and channel tuning
functions. During the training stage, a weights matrix is estimated as follows:

B, =W,
, where B (m electrodes * n trials) is the observed EEG signal (SSVEP power) at each electrode

in the training set, C; (k channels * n trials) is the response function of the hypothesized
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orientation basis set channels, and W (m electrodes * k channels) is the weight matrix that
characterizes a linear mapping from channel space to electrode space. The weight matrix W is
derived via ordinary least-square estimations as:
W = B,C{ (C,c])™!

, where W (m electrodes * k channels) is the least-square solution.
In the test stage, we inverted the model to transform the test data B, (m electrodes * 1 trial) to the
estimated channel response C, (k channels * 1 trial) using the estimated weight matrix W:

G, = (W'W) 'WTB,
The output of the model is the estimated channel response for each test trial (and/or test
timepoint). After iterative shifting, these channel-tuning functions (CTFs, Foster et al., 2017)
were circularly shifted to align all trials to a common center for statistics and illustration
purposes; for our figures the aligned reconstruction plots were centered on 30° (range -60° to
120°), with 0° indicating the orientation of the initially attended item and +60° the orientation of
the second attended item (similar to the behavioral mixture model, we flipped reconstructions for
trials where the second attended item was actually oriented -60° so that all reconstructions would
be aligned in the same way).

Because in the hold condition the attended orientation stays the same and in the shift
condition the attended orientation changes by 60° in the middle of the trial, if IEM correctly
models the attended orientation, we should observe CTFs shift their peak center from the initially
attended orientation (0°) to the newly attended orientation (60°).

To quantify the orientation sensitivity of the CTFs, we calculated linear slope as an index
of orientation sensitivity (Foster, Sutterer, et al., 2017; Samaha et al., 2016; van Moorselaar et

al., 2018; Yu et al., 2020). We calculated symmetric slope by reversing the sign of positive
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orientation channels and collapsing their channel responses with the corresponding negative
degrees. Then we fitted a linear regression to obtain the linear slope as the sensitivity measure.
Higher slope indicates greater orientation sensitivity. For shift trials, we calculated slope in two
ways: relative to the initial attended item’s orientation (CTFslope-O1), and relative to the second
attended item’s orientation (CTFslope-O2). Reliable reconstructions of attended feature
information should show a CTFslope-O1 significantly greater than 0 in the first part of the shift
trial and a CTFslope-O2 significantly greater than 0 in the second part of the shift trial (see
Statistics section below).

Multivariate classification (Decoding attended location). For the attended spatial
information analyses, support vector machine (SVM) was applied to determine whether the
attended location (left vs right) could be decoded from the spatial distribution of SSVEP power
over time. Analogous to above, we trained the SVM on the last second of hold trials, using
SSVEP power and the correct attended location for each trial, and then tested at each timepoint
on the shift trials to predict its attended location. Because there were only 2 possible locations to
attend, the chance level of the prediction is 50% (left vs right). We used custom python code and
“SVC” function from “sklearn” package, using a linear kernel and regularization parameter set to
1.0.

Additional decoding analyses. For control and comparison purposes, we conducted
additional analyses decoding attended location from (1) gaze position and (2) alpha band power.
For gaze position, we input the trial-by-trial average horizontal eye position to a simple linear
decoder. For the alpha power signal, we applied a two-way least-squares finite impulse response
filter to the EEG signal, in the frequency range of alpha range (8-12Hz). Subsequently, we

performed a Hilbert transformation on the filtered signal, as in (Foster, Bsales, et al., 2017). We
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then conducted the same analyses as described above to perform attended-location decoding on
the spatial distribution of alpha band power over time.

Statistical significance tests. To determine significant time points for the above analyses,
we used cluster-based permutation tests to correct for multiple comparisons and identify clusters
of time points when the CTF slopes were significantly larger than 0 (significant orientation
reconstruction) and/or location decoding performance was significantly better than chance
(Cohen, 2014; Maris & Oostenveld, 2007). For each analysis, we first did a one sample t-test to
detect time points with CTF sensitivity greater than O (or location decoding accuracy greater than
0.5). We used .05 as the alpha threshold (t = 1.711, one-sided, df = 24) to identify clusters of
adjacent points, and computed the sum of all the 7 values within each cluster. We then compared
the sum of t-values against a null distribution empirically specified with the Monte Carlo
randomization procedure. The null distribution is calculated by randomizing the training and test
labels and repeating the IEM procedure (or multivariate classification procedure, in case of
location decoding performance) 1,000 times. We followed the same procedure as described
above to compute the sum of t-values for the largest cluster for each of the 1,000 iterations,
resulting a null distribution with 1,000 sums of t-values. We compared the sum of t-values of the
correctly labeled data with the 95" percentile of the null distribution to determine whether the

cluster was above chance (one-tail alpha rate = .05).

Results

Behavior and ERP analyses confirm participants successfully performed the attention task
Behavioral analyses of the change detection task indicated that participants were able to

allocate and maintain their attention to the correct location. Participants detected the orientation
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changes in the attended item significantly better than chance level on both Hold trials (dprime =
2.258, t(24) = 8.988, p<0.001) and Shift trials (dprime = 1.269, t(24) = 6.562, p<0.001). Post-
trial continuous orientation reports similarly showed that participants reported the target
orientation rather accurately, with probabilistic mixture models outputting low guess rates and
high precision (small standard deviation) for both hold and shift trials (Figure 3A).

Given prior behavioral reports of feature distortions when attention is split across two
locations (Chen et al., 2019; Dowd & Golomb, 2019; Golomb, 2015; Golomb et al., 2014), we
also measured feature distortions (target orientation report either biased towards or repulsed
away from the other item’s orientation). There was no evidence for distortion in hold trials: mu
was not significantly different from zero (t(24)=1.017, p=0.318). However, for shift trials, mu
was slightly but significantly negative (t(24)=2.372, p=0.025), indicating participants’ post-trial
orientation reports were shifted away from the initially attended orientation (repulsion effect).
We also assessed this in a model-free analysis by analyzing the mean of the entire error
distribution. For hold trials, we did not observe a response bias (M=0.140; t(24)=0.642,
p=0.527). For shift trials, we found the mean of reporting error was numerically negative and
marginally significant (M=-0.526; t(24)=-1.930, p=0.066), consistent with a weak response bias
away from the initially attended orientation.

As a preliminary analysis and sanity check of the EEG data, we also analyzed ERPs, with
data aligned to the shift cue. Shifts of spatial attention are associated with characteristic ERP
components, particularly a contralateral N2pc at the posterior/occipital channels, typically
peaking from 200ms to 250ms at P7/P8, PO7/POS, P3/P4 and O1/02 (Luck, 2012). We observed
a robust N2pc on Shift trials (Figure 3B), peaking at 229ms after the shift cue (M=-0.937 pV,

t(24)=3.318, p=0.003). On Hold trials, no N2pc was present, as expected. Another ERP marker

25



Running title: Neural reconstructions across attention shifts

A Hold Trials Shift Trials
z 0.03-
[
=
S 0.02-
=y
=]
T 0.01-
£
o
ol N ul
-80 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
Orientation Report Error (deg) Orientation Report Error (deg)
Guess Rate SD Mean Shift
0.05 A 34
30 -
0.04 - 25 27
20 1 -
c w 9 w .
o o 15— o e
a @ ) r
S 0.02 - a il; sk | © -1
= j: ' 10 -] [, - B ;
o : . -2
0.01 41 e N 5
< S -3
0.00 T - - 0 T - T T T
Hold Shift Hold Shift Hold Shift
B . .
ERP aligned to shift cue onset
(contralateral - ipsilateral)
-3 7 I
—— | Hold trials (control)
| . .
= Shift trials
-2 4 !

N2pc

Amplitude (pV)
1
|

|

|

|

I

I

I

|

I

|

|

:
| | I | T ]
0 200 400 600 800 1000

) ra Time(ms)
shift cue

Figure 3 Behavioral and ERP results. A) Behavioral orientation report error distributions for hold and
shift trials. We aligned the directions of the errors for shift trials so that the initially attended orientation
was always represented at +60°. Parameter estimates from the mixture-modeling analysis: guess rate =
probability of random guessing, SD = standard deviation of target distribution, and mu = mean shift of
target distribution; bar plots show values averaged across subjects, with individual subjects’ values
plotted as dots. B) ERPs from electrodes P7/P8, PO7/POS, P3/P4 and O1/02 aligned to shift cue onset
time (for shift trials), calculated for trials with contralateral vs ipsilateral attended location. Because there
were no actual shift cues in hold trials, we randomly selected time points during the shift cue window to
align the hold trials (control data) accordingly.
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of selective spatial attention and maintaining objects in working memory is the CDA (Vogel et
al., 2005; Vogel & Machizawa, 2004), which is apparent in Figure 3B for Shift trials, peaking at
700ms after the shift cue (M=-2.285 nV, t(24)=8.892, p<0.001). Note a robust CDA on hold
trials would have been visible if the data were aligned to the stimulus onset, but it is not visible
in Figure 3B because these ERP plots were aligned and baseline-adjusted to the non-existent

shift cue.

Attended-feature information can be reliably reconstructed from multi-stimulus displays

Having confirmed that our behavioral task was successful at manipulating selective
attention and evoking covert shifts of attention, we turned to our first main goal: Can the EEG
IEM model reliably reconstruct attended feature information from these multi-stimulus displays?
In other words, before attempting to track how neural reconstructions might change dynamically
around the time of a shift of attention, we first needed to confirm that we could reconstruct the
orientation that was attended in the first half of the trial (before any shift cue), and the orientation
attended in the second half of the trial (well after the shift).

Critically, we could reconstruct attended feature information during the static attention
periods both before and after the shift cue using this technique (Figure 4). The reconstructions
revealed two peaks: In the before-shift static period, there was a primary peak centered on the
orientation of the initially to-be-attended item (the current target), as well as a smaller peak
centered on the orientation of the other item in the display. In the after-shift static period, there
was a primary peak centered on the orientation of the current to-be-attended item, as well as a
smaller peak centered on the orientation of the other item in the display (the previous target).
Thus, our technique is capable of reconstructing the orientations of two different items in the

display, and of differentiating which one is at the current focus of attention.
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Figure 4. Orientation reconstructions during the static attention periods. [IEMs were trained on Hold
trials, and tested on Shift trials. The before-shift static period (first period) is the first second following
stimulus onset (0 — 1000 ms), and the after-shift static period (final period) is the last second prior to
stimulus offset (2000 — 3000 ms).

We note that unsurprisingly, the reconstructions for each period are stronger when the
training dataset came from the same corresponding time period on Hold trials. However,
particularly for the dynamic reconstruction (timecourse) analyses below, it is critical to use
common training data to ensures any differences in test results are not due to differences in the
training data. For all analyses that follow, we selected the final second of hold trials (rather than
the first second) as the training dataset, because there was no uncertainty at that point in the trial

as to whether or not a shift would occur, so this period was the most pure hold-attention period.

Decoding of attended-location from the same signal

Based on prior work we expected that attended location would be reliably decoded from
the EEG signal during these static attention periods, and indeed that was true: The average
location decoding accuracy in the before-shift static period was 0.651 (SD 0.125), significantly

above chance (chance level: 0.5; t(24)=5.906, p<0.001). In the after-shift static period, the
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location decoding accuracy was 0.708 (SD 0.121), also significantly above chance (t(24)=8.442,
p<0.001).

Importantly, we also found that decoding of attended location using this common-signal
SSVEP approach was superior to other potential signals. First, to ensure the above results were
not driven by oculomotor artifacts (e.g. microsaccades or small fixation biases), we asked if we
could decode attended location based on eye position. For the before-shift static period, the
decoding accuracy was 50.75%; for the after-shift static period, the decoding accuracy was
51.02%. Neither was significant; the 95% range of error based on permutation tests was
[48.75%, 51.31%]. Thus, attended location could not be reliably decoded from eye position.
Second, we compared decoding of attended location using alpha-band power instead of the 40Hz
SSVEP signal. Decoding accuracy was significantly above chance using the alpha power signal,
but was less effective than using our technique, resulting in lower decoding accuracy, increased

noise, and slower resolution for detecting the shift in attention (see Supplemental Figure S1).

Reconstructed location and orientation timecourses both track the shift of attention

Finally, we tested whether this approach can dynamically track the attended orientation
and attended location as covert spatial attention shifts to a different stimulus during the trial.
Figure 5A shows the timecourse of feature reconstructions on shift trials, plotted as time-by-time
channel tuning functions (CTFs) temporally aligned for each trial such that time O is the onset of
the shift cue. (Supplemental Figure S2 shows a comparable CTF plot for Hold trials, though
there is some non-independence between the training and test data for the Hold analysis.)

The dynamic CTF nicely captures the updating of the attended feature on Shift trials.
Consistent with the static reconstructions, dynamic CTFs accurately reconstructed the orientation

of the initially attended stimulus during the first half of the trial. Immediately following the shift,
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a period of poorer / ambiguous reconstruction was visible, followed by a settling of the
reconstructions on the orientation of the newly attended stimulus (aligned at 60 degrees). Figure
5B plots these feature reconstructions another way, using CTF slope as a quantitative measure to
assess reconstruction quality at each time point. We calculated CTF slope in two ways for each
time point: centered on the orientation of the initially attended item (C7Fslope-O1) and centered
on the orientation of the newly attended item (C7Fslope-O2). During the first half of the trial, the
orientation of the initially attended item was significantly reconstructed (CTFslope-O1 > 0,
p<0.05 cluster-based permutation test) at all time points. After the shift cue there was a transient
period (~170-400ms post-cue) where both the initially and newly attended orientations were
significantly reconstructed, and then eventually only the orientation of the newly attended item
was recoverable. We note that slope is just one of several possible measures to quantify
reconstruction quality (for example, we found a similar pattern using the mean absolute error
metric of Scotti et al., 2021), but it appears to reasonably well capture the fluctuations of
attended orientation in the CTFs in Figure 5A.

These results indicate that our dynamic IEM approach successfully tracked the attended
orientation(s) across the shift of attention. Moreover, the period where both orientations seemed
to be represented — with overlapping timepoints where both CTFslope-O1 and CTFslope-O2
were significant — is particularly intriguing. Such a pattern is consistent with prior findings of
temporal overlap in attentional facilitation during shifts of attention (Dowd & Golomb, 2019;
Golomb, 2019; Khayat et al., 2006; Shulman et al., 1979), as we speculate on later in the

Discussion.
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Figure 5 Attended feature reconstructions and location decoding accuracy of Shift trials.

A) Reconstructed channel tuning functions for each timepoint on Shift trials (based on IEM model trained
on final second average from Hold trials). Trials were aligned in time, such that time 0 was when the shift
cue appeared, and in orientation space, such that the orientation of the initially attended item was centered
at 0° and the newly attended item’s orientation was always represented at 60°. Colors reflect the
amplitude of the reconstructed signal. B) Reconstruction slopes across time, calculated based on the
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initially attended target (CTFslope-O1 = blue line) and the newly attended target (CTFslope-O2 = orange
line). C) Decoded location accuracy for each timepoint on Shift trials, aligned as in A-B. Before the shift
cue, accuracy based on the correct initially attended location (LocAcc-L1 plotted in blue for consistency
with B); after the shift cue, accuracy based on the correct newly attended location (LocAcc-L2 plotted in
orange). In B-C, the shaded error bars reflect £1 SEM across participants, dashed black lines indicate
chance level, and the solid bars along the bottom of the plots indicate timepoints that significantly
differed from chance (cluster-based permutation tests). O1 = orientation of target 1; O2 = orientation of
target 2; L1 = location of target 1; L2 = location of target 2.

We also examined the timecourse of attended location decoding (Figure 5C). This
analysis was quantified as a simple decoding accuracy (attending left vs right location). Before
the shift cue, we could decode the attended location (left vs right) consistently above chance
(chance = .5; p<0.05, cluster-based permutation test). After the shift cue, the decoded location
gradually shifted to the other side and became significantly above chance after 260ms, peaking
around 600m:s.

Cluster-based permutation tests were performed for both the dynamic feature
reconstruction and dynamic location decoding analyses. Although it is important to keep in mind
that these are quantified by different measures, and location is a two-way decoding while
orientation is a continuous reconstruction, there are some intriguing comparisons between the
two timecourses that may be interesting to speculate on. Comparing the attended feature and
location timecourses revealed what could be characterized as multiple distinct periods: a stable
pre-cue period, potentially three distinct transition stages, and a stable post-cue period. Note that
while we include time points corresponding to these stages in our descriptive summary below,
this is primarily for ease of linking to Figure 5; we are not aiming to make specific claims about
the precise temporal extents of these time periods, and emphasize caution in interpreting the

specific time points, since cluster-based permutation tests are designed to correct for false-

positives at the cluster level, not the point level (Sassenhagen & Draschkow, 2019).

32



Running title: Neural reconstructions across attention shifts

During the stable period before the shift cue, the correct currently attended location and
orientation could both be significantly and robustly recovered from the EEG SSVEP signal. For
the first 150ms following the shift cue, spatial attention appeared to still be primarily lingering at
the initial location, though the signal was rapidly decaying to chance. During this time, neither
orientation could be reconstructed above baseline. From around 150-250ms post-cue, location
decoding was not significantly different from chance, suggesting spatial attention was truly in
transition. Strikingly, during this ambiguous spatial attention period, both the initial and the
newly attended orientations could be significantly reconstructed. Since the location decoding
analysis was simply a two-way decoder, we can’t resolve whether spatial attention was
simultaneously at both locations or neither (or highly variable across trials), but we are clearly
capturing a transitory period of ambiguous spatial attention, during which both items’
orientations were represented. Starting around 280ms post-shift, the location decoding became
significant for the newly attended location; yet interestingly, both orientations could still be
significantly reconstructed for another 100ms. Finally, starting around 400ms post-cue, only the
correct newly attended orientation and location were significantly represented. Reconstruction
slope and location decoding accuracy both continued to increase for another 100ms or so,
plateauing into the post-shift stable period. As another interesting point of comparison, it is also
potentially notable that the location decoding timecourses remained at a relatively constant and
stable accuracy over the duration of the static-attention periods, whereas the orientation
reconstruction slopes seemed to oscillate throughout the trial; one possibility is the feature
reconstruction technique is more sensitive to oscillations of attention and/or divided attention, a

speculation we revisit in the Discussion.

33



Running title: Neural reconstructions across attention shifts

Discussion

In the current study, we used EEG and IEM to reconstruct the neural response profiles
during dynamic shifts of attention in high temporal resolution. Specifically, we demonstrated that
we could simultaneously read out both location and feature information from an attended
stimulus to produce reliable reconstructions of attended location and feature information from
multi-stimulus displays. Moreover, we examined how that readout evolves over time during the
dynamic process of attentional shifts.

Our study offers several methodological and theoretical contributions. In terms of
methodological contributions, our study can be thought of as a proof of concept that EEG can be
used to construct timecourses of the neural representations of attended features (timepoint-by-
timepoint IEM reconstructions) and attended location (timepoint-by-timepoint decoding) during
both stable periods and across dynamic spatial shifts of attention. Our approach builds off of
prior studies using machine learning and IEM to decode/reconstruct the locations or features of a
stimulus, either visually presented or in memory, from neuroimaging data (Brouwer & Heeger,
2009, 2011; De Martino et al., 2008; Foster et al., 2016; Foster, Sutterer, et al., 2017; Foster et
al., 2021; Garcia et al., 2013; Naselaris et al., 2011; Norman et al., 2006; Scolari et al., 2012;
Sprague & Serences, 2013, 2015). However, unlike most of the previous studies, we focused on
(1) both the location and feature information, (2) for an attended stimulus in a multi-stimulus
display, (3) explored how the readout information evolved over time, and (4) showed that a
model trained on Hold-attention trials could be used to reliably track the updating of neural
representations on Shift-attention trials. To our knowledge this is the first study to successfully
attempt this combination of goals. Our approach also carries advantages because it uses the same

exact neural signal for both location and orientation reconstructions, giving us an unbiased
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window into the contents of attention. Moreover, our supplemental results comparing an
alternative EEG signal commonly used for location decoding — alpha power — suggest that our
approach offers practical benefits in terms of quality as well. Of course, as we discuss more
below, with all new approaches there is room for improvement and refinement, but the current
results demonstrate that this approach is both feasible and carries substantial potential for
versatile extensions and applications.

In addition to the methodological contributions of this study, our results reveal some
intriguing aspects of attentional updating that contribute to various theoretical issues in the
attention literature. One aspect is how attended and unattended items are represented in a multi-
item display. A number of prior studies have demonstrated that neural reconstructions of object
features are more precise for attended than unattended items (Ester et al., 2016; Jehee et al.,
2011), and that the attended orientation can be decoded from ambiguous stimuli (Kamitani &
Tong, 2005). In the current study, we similarly found that we could reliably reconstruct the
attended orientation during the static attention periods. We also found some evidence for a
weaker but detectable reconstruction of the other orientation in the display. It is unclear if this
secondary peak was due to participants also allocating some attention to the other item in the
display, or if it simply reflects the visual stimulus representation. A supplemental analysis where
we trained the IEM on the unattended orientation did not produce reliable reconstructions
(Figure S3), suggesting that the secondary peak may indeed reflect an attentional effect, though
this is not a definitive test. If the secondary peak does reflect attentional sampling, this could
potentially be driven by intrinsic rhythmic sampling (Fiebelkorn et al., 2013; Landau & Fries,
2012; Re et al., 2019; VanRullen, 2016) and/or anticipatory sampling prior to expected

attentional shifts (Jones et al., 2021). In the first half of the trial, participants did not know if they
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would be holding attention or shifting attention, so there may have been some incentive to
represent both items in the display. However, we note that it is unlikely that participants were
simply distributing their attention across both items, as the behavioral task required sustained
focused attention on the attended item for the unpredictable and challenging change-detection
task, and the results showed that participants were indeed focusing their attention on the current
target item, as both the attended feature and attended location could be reliably extracted from
the neural signal. These questions also bear similarities to the working memory literature, where
studies have examined how representations change when items are added to or dropped from
working memory (Balaban & Luria, 2017; Lewis-Peacock et al., 2018; Souza et al., 2014; Wan
et al., 2020; Yu et al., 2020), except in the current study, only one orientation needed to be
attended and held in WM at a time.

Another finding of the current study is that there appeared to be a transitional period
following the shift cue during which both the previously attended and the currently attended
orientations could be significantly reconstructed. In other words, after the spatial shift of
attention, the previously relevant orientation was not immediately discarded, but was still
temporarily represented in the neural signals. Because these reconstructions averaged across
trials, it is difficult to say whether this effect was due to variable timing of attentional updating
across trials or simultaneous representations of both items. However, a prior study in primate V1
found that during spatial shifts of attention, attentional enhancement is found for the item that is
newly attended (distractor to target status) faster than attention is withdrawn from the initially
attended item (target to distractor status) (Khayat et al., 2006). ERP evidence has also suggested
that attention can be maintained at its previous location while it is simultaneously allocated to a

new target object (Eimer & Grubert, 2014). Similar temporal overlap of attentional facilitation
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has been found when attention is updated across eye movements, resulting in a dual spotlight
(Golomb, 2019) or soft handoff (Fabius et al., 2020; Marino & Mazer, 2018) of attention, and
soft handoffs of attention are also found across hemispheres during multiple object tracking
(Drew et al., 2014).

Indeed, the timecourse of attentional shifting has been debated over the years across
behavioral (Duncan et al., 1994; Shulman et al., 1979; Wolfe, 1994), monkey neurophysiological
(Khayat et al., 2006), and human EEG (Miiller et al., 1998; Woodman & Luck, 1999) studies.
Our current study offers a unique addition of providing several simultaneous measures that can
track the timecourse of attentional shifts, including the N2pc, decoding of attended location, and
reconstruction of attended orientation. The reconstruction timecourse for attended orientation
revealed that the newly attended orientation first became significant around 170ms post-cue,
similar to Khayat et al’s distractor-to-target latency of 144ms post-switch (Khayat et al., 2006).
Meanwhile, the previously attended orientation was still significantly reconstructed at 400ms
(substantially after Khayat et al’s target-to-distractor latency of 210ms). The location decoding
timecourse crossed the chance point around 150ms and then became significant for the new
location at 250ms. And the N2pc peaked 229ms after the shift cue. Meanwhile, both the location
decoding and orientation reconstructions didn’t reach their peaks until 500-600ms after the cue.
One takeaway from these data is that attentional shifting is perhaps better thought of as a more
nuanced set of multiple processes or steps that unfold over an extended time window, rather than
a single unitary switch.

Moreover, other previous literature has suggested that location plays a vital role in the
process of binding features into cohesive objects (Treisman, 1996, 1998). When we talk about

attention shifting from one object to another object, we generally do not separate the attended
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location and attended feature. But in fact, during the shift of attention, both the attended location
and feature representations are updated, and location and feature representations may involve
different brain regions (Ungerleider, 1994). An important question that this paradigm opens up is
whether these two processes are temporally linked such that the timing of location updates is
correlated with the timing of feature updates. The data presented here suggest some intriguing
links, but an exciting future direction of this paradigm would be investigating correlations
between the feature and location timecourses across subjects and/or trials. Because we only
collected a single session of EEG data per subject, the current experiment was not powered to get
reliable measures of transition timepoints in individual subjects, but future studies employing
more extensive sampling may be better powered to investigate individual differences.

Another appealing direction for future applications of this technique would be to try to
link individual or trial-wise behavior with the attended location and feature reconstruction
measures. We did not find significant correlations between behavioral report measures and
location or feature reconstructions in the current study, but we note that the behavioral tasks were
not optimized to detect subtle variations in attentional state, but rather primarily meant to ensure
that participants were attending to the correct item. As such, performance in the post-trial
behavioral task (orientation report) was essentially at ceiling, exhibiting very low variability, and
the frequency of the probes in the ongoing change detection task was too low to use for this
purpose. That said, this paradigm may carry even more enticing potential for investigating
attentional contexts that produce more behavioral errors and variability, such as divided attention
(Dowd & Golomb, 2019), attentional capture by salient distractors (Chen et al., 2019),

remapping across eye movements (Golomb et al., 2014), vigilance/distraction (Esterman et al.,
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2013; Rosenberg et al., 2015), and rhythmic oscillations of attention (Fiebelkorn et al., 2013;
Landau & Fries, 2012).

One limitation of the current study is that the measures we used for assessing the attended
feature and attended location representations are not directly comparable in terms of quality. We
chose to focus on a single shift of attention between two fixed locations in the current study for a
well-powered and clean proof of concept, and thus our attended location measure was limited to
two-way decoding. In principle, future tasks could be designed such that a continuous
reconstruction measure (IEM or other model-based technique) could be used to evaluate both
attended location and attended orientation on the same scale, though likely multiple sessions of
EEG data would be needed per subject.

In conclusion, by applying IEM and machine learning methods to EEG data, we
simultaneously reconstructed feature representations and the location of spatial attention over the
shift of attention in a multi-stimulus design. Our results showed that both feature reconstructions
and location decoding dynamically track the shift of attention, and that there may be timepoints
during the shifting of attention when (1) feature and location representations become uncoupled,
and (2) both the previously-attended and currently-attended orientations are represented with
roughly equal strength. The results offer insight into our understanding of attentional shifts, and
the techniques developed in the current study lend themselves well to a wide variety of future

applications.

SUPPLEMENTAL MATERIAL

Supplemental Figs. S1-S3: DOI: https://doi.org/10.6084/m9.figshare.22791005

39


https://doi.org/10.6084/m9.figshare.22791005

Running title: Neural reconstructions across attention shifts

References

Bae, G.-Y., & Luck, S. J. (2018). Dissociable Decoding of Spatial Attention and Working
Memory from EEG Oscillations and Sustained Potentials. The Journal of Neuroscience,
38(2), 409-422. https://doi.org/10.1523/INEUROSCI.2860-17.2017

Balaban, H., & Luria, R. (2017). Neural and Behavioral Evidence for an Online Resetting
Process in Visual Working Memory. The Journal of Neuroscience, 37(5), 1225-1239.
https://doi.org/10.1523/JNEUROSCI.2789-16.2016

Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is
set by allocation of a shared resource. Journal of Vision, 9(10), 7-7.
https://doi.org/10.1167/9.10.7

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433—436.
https://doi.org/10.1163/156856897X00357

Brouwer, G. J., & Heeger, D. J. (2009). Decoding and Reconstructing Color from Responses in
Human Visual Cortex. The Journal of Neuroscience, 29(44), 13992.
https://doi.org/10.1523/JINEUROSCI.3577-09.2009

Brouwer, G. J., & Heeger, D. J. (2011). Cross-orientation suppression in human visual cortex.
Journal of Neurophysiology, 106(5), 2108-2119. https://doi.org/10.1152/jn.00540.2011

Buschman, T. J., & Miller, E. K. (2007). Top-Down Versus Bottom-Up Control of Attention in
the Prefrontal and Posterior Parietal Cortices. Science, 315(5820), 1860—1862.
https://doi.org/10.1126/science.1138071

Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484—1525.

https://doi.org/10.1016/j.visres.2011.04.012

40



Running title: Neural reconstructions across attention shifts

Carrasco, M., Giordano, A. M., & McElree, B. (2006). Attention speeds processing across
eccentricity: Feature and conjunction searches. Vision Research, 46(13), 2028-2040.
https://doi.org/10.1016/j.visres.2005.12.015

Chen, J., Leber, A. B., & Golomb, J. D. (2019). Attentional capture alters feature perception.
Journal of Experimental Psychology: Human Perception and Performance, 45(11),
1443—1454. https://doi.org/10.1037/xhp0000681

Chica, A. B., Bartolomeo, P., & Lupiafiez, J. (2013). Two cognitive and neural systems for
endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107-123.
https://doi.org/10.1016/j.bbr.2012.09.027

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A Taxonomy of External and
Internal Attention. Annual Review of Psychology, 62(1), 73—101.
https://doi.org/10.1146/annurev.psych.093008.100427

Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT press.

Cohen, M. X., & Gulbinaite, R. (2017). Rhythmic entrainment source separation: Optimizing
analyses of neural responses to rhythmic sensory stimulation. Neurolmage, 147, 43-56.
https://doi.org/10.1016/j.neuroimage.2016.11.036

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in
the brain. Nature Reviews Neuroscience, 3(3), 201-215. https://doi.org/10.1038/nrn755

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008).
Combining multivariate voxel selection and support vector machines for mapping and
classification of fMRI spatial patterns. Neurolmage, 43(1), 44-58.

https://doi.org/10.1016/j.neuroimage.2008.06.037

41



Running title: Neural reconstructions across attention shifts

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. Journal of Neuroscience
Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual
Review of Neuroscience, 18(1), 193-222.
https://doi.org/10.1146/annurev.ne.18.030195.001205

Di Russo, F., Martinez, A., & Hillyard, S. A. (2003). Source Analysis of Event-related Cortical
Activity during Visuo-spatial Attention. Cerebral Cortex, 13(5), 486—499.
https://doi.org/10.1093/cercor/13.5.486

Dowd, E. W., & Golomb, J. D. (2019). Object-Feature Binding Survives Dynamic Shifts of
Spatial Attention. Psychological Science, 30(3), 343-361.
https://doi.org/10.1177/0956797618818481

Drew, T., Mance, 1., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K. (2014). A Soft Handoff of
Attention between Cerebral Hemispheres. Current Biology, 24(10), 1133—-1137.
https://doi.org/10.1016/j.cub.2014.03.054

Duncan, J., Ward, R., & Shapiro, K. (1994). Direct measurement of attentional dwell time in
human vision. Nature, 369(6478), 313-315. https://doi.org/10.1038/369313a0

Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and
locations: Evidence from normal and parietal lesion subjects. Journal of Experimental
Psychology: General, 123(2), 161-177. https://doi.org/10.1037/0096-3445.123.2.161

Eimer, M., & Grubert, A. (2014). Spatial Attention Can Be Allocated Rapidly and in Parallel to
New Visual Objects. Current Biology, 24(2), 193—198.

https://doi.org/10.1016/j.cub.2013.12.001

42



Running title: Neural reconstructions across attention shifts

Ester, E. F., Sutterer, D. W., Serences, J. T., & Awh, E. (2016). Feature-Selective Attentional
Modulations in Human Frontoparietal Cortex. Journal of Neuroscience, 36(31), 8188—
8199. https://doi.org/10.1523/JINEUROSCI.3935-15.2016

Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the Zone or Zoning Out?
Tracking Behavioral and Neural Fluctuations During Sustained Attention. Cerebral
Cortex, 23(11), 2712-2723. https://doi.org/10.1093/cercor/bhs261

Fabius, J. H., Fracasso, A., Acunzo, D. J., Van der Stigchel, S., & Melcher, D. (2020). Low-
Level Visual Information Is Maintained across Saccades, Allowing for a Postsaccadic
Handoff between Visual Areas. The Journal of Neuroscience, 40(49), 9476-9486.
https://doi.org/10.1523/JINEUROSCI.1169-20.2020

Feldmann-Wiistefeld, T., & Awh, E. (2020). Alpha-band activity tracks the zoom lens of
attention. Journal of Cognitive Neuroscience, 32(2), 272-282.

Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic Sampling within and
between Objects despite Sustained Attention at a Cued Location. Current Biology,
23(24), 2553-2558. https://doi.org/10.1016/j.cub.2013.10.063

Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture
produces a spatial blink. Perception & Psychophysics, 64(5), 741-753.
https://doi.org/10.3758/BF03194741

Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E. (2017). Alpha-band activity reveals
spontaneous representations of spatial position in visual working memory. Current

Biology, 27(20), 3216-3223.

43



Running title: Neural reconstructions across attention shifts

Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2016). The topography of
alpha-band activity tracks the content of spatial working memory. Journal of
Neurophysiology, 115(1), 168—177. https://doi.org/10.1152/jn.00860.2015

Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2017). Alpha-Band
Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial
Attention. Psychological Science, 28(7), 929-941.
https://doi.org/10.1177/0956797617699167

Foster, J. J., Thyer, W., Wennberg, J. W., & Awh, E. (2021). Covert Attention Increases the Gain
of Stimulus-Evoked Population Codes. The Journal of Neuroscience, 41(8), 1802—1815.
https://doi.org/10.1523/INEUROSCI.2186-20.2020

Garcia, J. O., Srinivasan, R., & Serences, J. T. (2013). Near-Real-Time Feature-Selective
Modulations in Human Cortex. Current Biology, 23(6), 515-522.
https://doi.org/10.1016/j.cub.2013.02.013

Gmeindl, L., Chiu, Y.-C., Esterman, M. S., Greenberg, A. S., Courtney, S. M., & Yantis, S.
(2016). Tracking the will to attend: Cortical activity indexes self-generated, voluntary
shifts of attention. Attention, Perception, & Psychophysics, 78(7), 2176-2184.
https://doi.org/10.3758/s13414-016-1159-7

Golomb, J. D. (2015). Divided spatial attention and feature-mixing errors. Attention, Perception,
& Psychophysics, 77(8), 2562—-2569. https://doi.org/10.3758/s13414-015-0951-0

Golomb, J. D. (2019). Remapping locations and features across saccades: A dual-spotlight theory
of attentional updating. Current Opinion in Psychology, 29, 211-218.

https://doi.org/10.1016/j.copsyc.2019.03.018

44



Running title: Neural reconstructions across attention shifts

Golomb, J. D., L’Heureux, Z. E., & Kanwisher, N. (2014). Feature-Binding Errors After Eye
Movements and Shifts of Attention. Psychological Science, 25(5), 1067-1078.
https://doi.org/10.1177/0956797614522068

Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T., & Yantis, S. (2010). Control of
Spatial and Feature-Based Attention in Frontoparietal Cortex. Journal of Neuroscience,
30(43), 14330-14339. https://doi.org/10.1523/JNEUROSCI.4248-09.2010

Hakim, N., Adam, K. C. S., Gunseli, E., Awh, E., & Vogel, E. K. (2019). Dissecting the Neural
Focus of Attention Reveals Distinct Processes for Spatial Attention and Object-Based
Storage in Visual Working Memory. Psychological Science, 30(4), 526—540.
https://doi.org/10.1177/0956797619830384

Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual
selective attention. Proceedings of the National Academy of Sciences, 95(3), 781-787.
https://doi.org/10.1073/pnas.95.3.781

Holcombe, A. O. (2009). Seeing slow and seeing fast: Two limits on perception. Trends in
Cognitive Sciences, 13(5), 216-221. https://doi.org/10.1016/].tics.2009.02.005

Hopf, J.-M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., & Heinze, H.-J.
(2000). Neural Sources of Focused Attention in Visual Search. Cerebral Cortex, 10(12),
1233—-1241. https://doi.org/10.1093/cercor/10.12.1233

Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-
down attentional control. Nature Neuroscience, 3(3), 284-291.
https://doi.org/10.1038/72999

Jehee, J. F. M., Brady, D. K., & Tong, F. (2011). Attention improves encoding of task-relevant

features in the human visual cortex. The Journal of Neuroscience : The Official Journal

45



Running title: Neural reconstructions across attention shifts

of the Society for Neuroscience, 31(22), 8210-8219. PubMed.
https://doi.org/10.1523/JNEUROSCI.6153-09.2011

Jones, C. M., Dowd, E. W., & Golomb, J. D. (2021). Shifting expectations: Lapses in spatial
attention are driven by anticipatory attentional shifts. Attention, Perception, &
Psychophysics, 83(7), 2822-2842. https://doi.org/10.3758/s13414-021-02354-6

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human
brain. Nature Neuroscience, 8(5), 679—685. https://doi.org/10.1038/nn1444

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased
Activity in Human Visual Cortex during Directed Attention in the Absence of Visual
Stimulation. Neuron, 22(4), 751-761. https://doi.org/10.1016/S0896-6273(00)80734-5

Kelley, T. A., Serences, J. T., Giesbrecht, B., & Yantis, S. (2008). Cortical Mechanisms for
Shifting and Holding Visuospatial Attention. Cerebral Cortex, 18(1), 114—-125.
https://doi.org/10.1093/cercor/bhm036

Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2006). Attention Lights Up New Object
Representations before the Old Ones Fade Away. Journal of Neuroscience, 26(1), 138—
142. https://doi.org/10.1523/INEUROSCI.2784-05.2006

Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention
shifts and spatially selective visual processing. Psychophysiology, 45(2), 240-249.
https://doi.org/10.1111/j.1469-8986.2007.00611.x

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception 36

ECVP Abstract Supplement.

46



Running title: Neural reconstructions across attention shifts

Kok, P., Brouwer, G. J., van Gerven, M. A. J., & de Lange, F. P. (2013). Prior Expectations Bias
Sensory Representations in Visual Cortex. Journal of Neuroscience, 33(41), 16275—
16284. https://doi.org/10.1523/JNEUROSCI.0742-13.2013

Kristjansson, A., & Egeth, H. (2020). How feature integration theory integrated cognitive
psychology, neurophysiology, and psychophysics. Attention, Perception, &
Psychophysics, 82(1), 7-23. https://doi.org/10.3758/s13414-019-01803-7

Landau, A. N., & Fries, P. (2012). Attention Samples Stimuli Rhythmically. Current Biology,
22(11), 1000—1004. https://doi.org/10.1016/j.cub.2012.03.054

Lewis-Peacock, J. A., Kessler, Y., & Oberauer, K. (2018). The removal of information from
working memory: The removal of information from working memory. Annals of the New
York Academy of Sciences, 1424(1), 33—44. https://doi.org/10.1111/nyas.13714

Lorenc, E. S., Sreenivasan, K. K., Nee, D. E., Vandenbroucke, A. R. E., & D’Esposito, M.
(2018). Flexible Coding of Visual Working Memory Representations during Distraction.
The Journal of Neuroscience, 38(23), 5267-5276.
https://doi.org/10.1523/JNEUROSCIL.3061-17.2018

Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception
& Psychophysics, 58(7), 977-991. https://doi.org/10.3758/BF03206826

Marino, A. C., & Mazer, J. A. (2018). Saccades Trigger Predictive Updating of Attentional
Topography in Area V4. Neuron, 98(2), 429-438.¢e4.
https://doi.org/10.1016/j.neuron.2018.03.020

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data.
Journal of Neuroscience Methods, 164(1), 177-190.

https://doi.org/10.1016/j.jneumeth.2007.03.024

47



Running title: Neural reconstructions across attention shifts

Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current
Opinion in Neurobiology, 23(2), 216-222. https://doi.org/10.1016/j.conb.2012.11.011

Miiller, M. M., Teder-Sélejarvi, W., & Hillyard, S. A. (1998). The time course of cortical
facilitation during cued shifts of spatial attention. Nature Neuroscience, 1(7), 631-634.
https://doi.org/10.1038/2865

Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in
fMRI. Neurolmage, 56(2), 400-410. https://doi.org/10.1016/j.neuroimage.2010.07.073

Nissen, M. J. (1985). Accessing features and objects: Is location special. Attention and
Performance, XI, 205-219.

Nobre, A. C., Sebestyen, G. N., & Miniussi, C. (2000). The dynamics of shifting visuospatial
attention revealed by event-related potentials. Neuropsychologia, 38(7), 964-974.
https://doi.org/10.1016/S0028-3932(00)00015-4

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The
steady-state visual evoked potential in vision research: A review. Journal of Vision,
15(6), 4. https://doi.org/10.1167/15.6.4

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-
voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424—430.
https://doi.org/10.1016/j.tics.2006.07.005

Paffen, C. L. E., & Van der Stigchel, S. (2010). Shifting spatial attention makes you flip:
Exogenous visual attention triggers perceptual alternations during binocular rivalry.
Attention, Perception, & Psychophysics, 72(5), 1237-1243.

https://doi.org/10.3758/APP.72.5.1237

48



Running title: Neural reconstructions across attention shifts

Peelen, M. V., Heslenfeld, D. J., & Theeuwes, J. (2004). Endogenous and exogenous attention
shifts are mediated by the same large-scale neural network. Neurolmage, 22(2), 822—-830.
https://doi.org/10.1016/j.neuroimage.2004.01.044

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming
numbers into movies. Spatial Vision, 10(4), 437-442.

Posner, M. 1., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals.
Journal of Experimental Psychology: General, 109(2), 160—174.
https://doi.org/10.1037/0096-3445.109.2.160

Re, D., Inbar, M., Richter, C. G., & Landau, A. N. (2019). Feature-Based Attention Samples
Stimuli Rhythmically. Current Biology, 29(4), 693-699.¢e4.
https://doi.org/10.1016/j.cub.2019.01.010

Reynolds, J. H., & Desimone, R. (1999). The Role of Neural Mechanisms of Attention in
Solving the Binding Problem. Neuron, 24(1), 19-29. https://doi.org/10.1016/S0896-
6273(00)80819-3

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2(11), 1019-1025. https://doi.org/10.1038/14819

Rosen, A. C., Rao, S. M., Caffarra, P., Scaglioni, A., Bobholz, J. A., Woodley, S. J., Hammeke,
T. A., Cunningham, J. M., Prieto, T. E., & Binder, J. R. (1999). Neural Basis of
Endogenous and Exogenous Spatial Orienting: A Functional MRI Study. Journal of
Cognitive Neuroscience, 11(2), 135-152. https://doi.org/10.1162/089892999563283

Rosenberg, M. D., Finn, E. S., Constable, R. T., & Chun, M. M. (2015). Predicting moment-to-
moment attentional state. Neurolmage, 114, 249-256.

https://doi.org/10.1016/j.neuroimage.2015.03.032

49



Running title: Neural reconstructions across attention shifts

Samaha, J., Sprague, T. C., & Postle, B. R. (2016). Decoding and Reconstructing the Focus of
Spatial Attention from the Topography of Alpha-band Oscillations. Journal of Cognitive
Neuroscience, 28(8), 1090—-1097. https://doi.org/10.1162/jocn_a_00955

Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation tests of MEG/EEG data do
not establish significance of effect latency or location. Psychophysiology, 56(6), €e13335.

Scolari, M., Byers, A., & Serences, J. T. (2012). Optimal Deployment of Attentional Gain during
Fine Discriminations. The Journal of Neuroscience, 32(22), 7723.
https://doi.org/10.1523/JNEUROSCI.5558-11.2012

Scotti, P. S., Chen, J., & Golomb, J. D. (2021). An enhanced inverted encoding model for neural
reconstructions [Preprint]. BioRxiv. https://doi.org/10.1101/2021.05.22.445245

Serences, J. T. (2004). Control of Object-based Attention in Human Cortex. Cerebral Cortex,
14(12), 1346—-1357. https://doi.org/10.1093/cercor/bhh095

Shomstein, S., & Yantis, S. (2004). Control of Attention Shifts between Vision and Audition in
Human Cortex. Journal of Neuroscience, 24(47), 10702—10706.
https://doi.org/10.1523/INEUROSCI.2939-04.2004

Shulman, G. L., Remington, R. W., & McLean, J. P. (1979). Moving attention through visual
space. Journal of Experimental Psychology: Human Perception and Performance, 5(3),
522-526. https://doi.org/10.1037/0096-1523.5.3.522

Singer, W. (1999). Neuronal Synchrony: A Versatile Code for the Definition of Relations?
Neuron, 24(1), 49—65. https://doi.org/10.1016/S0896-6273(00)80821-1

Souza, A. S., Rerko, L., & Oberauer, K. (2014). Unloading and reloading working memory:
Attending to one item frees capacity. Journal of Experimental Psychology: Human

Perception and Performance, 40(3), 1237-1256. https://doi.org/10.1037/a0036331

50



Running title: Neural reconstructions across attention shifts

Sprague, T. C., Boynton, G. M., & Serences, J. T. (2019). The Importance of Considering Model
Choices When Interpreting Results in Computational Neuroimaging. Eneuro, 6(6),
ENEURO.0196-19.2019. https://doi.org/10.1523/ENEURO.0196-19.2019

Sprague, T. C., Ester, E. F., & Serences, J. T. (2016). Restoring Latent Visual Working Memory
Representations in Human Cortex. Neuron, 91(3), 694-707.
https://doi.org/10.1016/j.neuron.2016.07.006

Sprague, T. C., & Serences, J. T. (2013). Attention modulates spatial priority maps in the human
occipital, parietal and frontal cortices. Nature Neuroscience, 16(12), 1879—-1887.
https://doi.org/10.1038/nn.3574

Sprague, T. C., & Serences, J. T. (2015). Using Human Neuroimaging to Examine Top-down
Modulation of Visual Perception. In B. U. Forstmann & E.-J. Wagenmakers (Eds.), An
Introduction to Model-Based Cognitive Neuroscience (pp. 245-274). Springer New York.
https://doi.org/10.1007/978-1-4939-2236-9 12

Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working
memory with the MemToolbox. Journal of Vision, 13(10), 9-9.
https://doi.org/10.1167/13.10.9

Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics,
51(6), 599—-606. https://doi.org/10.3758/BF03211656

Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6(2), 171-178.
https://doi.org/10.1016/S0959-4388(96)80070-5

Treisman, A. (1998). Feature binding, attention and object perception. Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373),

1295-1306. https://doi.org/10.1098/rstb.1998.0284

51



Running title: Neural reconstructions across attention shifts

Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive
Psychology, 12(1), 97—136. https://doi.org/10.1016/0010-0285(80)90005-5

Ungerleider, L. (1994). “What” and “where” in the human brain. Current Opinion in
Neurobiology, 4(2), 157-165. https://doi.org/10.1016/0959-4388(94)90066-3

van Ede, F., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2018). Decoding the influence of
anticipatory states on visual perception in the presence of temporal distractors. Nature
Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-03960-z

van Moorselaar, D., Foster, J. J., Sutterer, D. W., Theeuwes, J., Olivers, C. N. L., & Awh, E.
(2018). Spatially Selective Alpha Oscillations Reveal Moment-by-Moment Trade-offs
between Working Memory and Attention. Journal of Cognitive Neuroscience, 30(2),
256-266. https://doi.org/10.1162/jocn_a 01198

VanRullen, R. (2016). Perceptual Cycles. Trends in Cognitive Sciences, 20(10), 723—735.
https://doi.org/10.1016/j.tics.2016.07.006

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in
visual working memory capacity. Nature, 428(6984), 748-751.
https://doi.org/10.1038/nature02447

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal
individual differences in controlling access to working memory. Nature, 438(7067), 500—
503. https://doi.org/10.1038/nature04171

von der Malsburg, C. (1999). The What and Why of Binding. Neuron, 24(1), 95-104.

https://doi.org/10.1016/S0896-6273(00)80825-9

52



Running title: Neural reconstructions across attention shifts

Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and Ventral Attention Systems: Distinct
Neural Circuits but Collaborative Roles. The Neuroscientist, 20(2), 150—159.
https://doi.org/10.1177/1073858413494269

Wan, Q., Cai, Y., Samaha, J., & Postle, B. R. (2020). Tracking stimulus representation across a
2-back visual working memory task. Royal Society Open Science, 7(8), 190228.
https://doi.org/10.1098/rs0s.190228

Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin
& Review, 1(2), 202-238. https://doi.org/10.3758/BF03200774

Wolfe, J. M., & Cave, K. R. (1999). The Psychophysical Evidence for a Binding Problem in
Human Vision. Neuron, 24(1), 11-17. https://doi.org/10.1016/S0896-6273(00)80818-1

Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of
attention during visual search. Nature, 400(6747), 867—869.
https://doi.org/10.1038/23698

Yamaguchi, S., Tsuchiya, H., & Kobayashi, S. (1994). Electrooencephalographic activity
associated with shifts of visuospatial attention. Brain, 117(3), 553-562.
https://doi.org/10.1093/brain/117.3.553

Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., &
Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial
attention shifts. Nature Neuroscience, 5(10), 995-1002. https://doi.org/10.1038/nn921

Yu, Q., Teng, C., & Postle, B. R. (2020). Different states of priority recruit different neural
representations in visual working memory. PLOS Biology, 18(6), €3000769.

https://doi.org/10.1371/journal.pbio.3000769

53



Running title: Neural reconstructions across attention shifts

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working
memory. Nature, 453(7192), 233-235. https://doi.org/10.1038/nature06860

Zhang, X., & Golomb, J. D. (2021). Neural Representations of Covert Attention across Saccades:
Comparing Pattern Similarity to Shifting and Holding Attention during Fixation. Eneuro,

8(2), ENEURO.0186-20.2021. https://doi.org/10.1523/ENEURO.0186-20.2021

54



