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Abstract 

Attention allows us to select relevant and ignore irrelevant information from our complex 

environments. What happens when attention shifts from one item to another? To answer this 

question, it is critical to have tools that accurately recover neural representations of both feature 

and location information with high temporal resolution. In the current study, we used human 

electroencephalography (EEG) and machine learning to explore how neural representations of 

object features and locations update across dynamic shifts of attention. We demonstrate that EEG 

can be used to create simultaneous timecourses of neural representations of attended features 

(timepoint-by-timepoint inverted encoding model reconstructions) and attended location 

(timepoint-by-timepoint decoding) during both stable periods and across dynamic shifts of 

attention. Each trial presented two oriented gratings that flickered at the same frequency but had 

different orientations; participants were cued to attend one of them, and on half of trials received 

a shift cue mid-trial. We trained models on a stable period from Hold attention trials, and then 

reconstructed/decoded the attended orientation/location at each timepoint on Shift attention 

trials. Our results showed that both feature reconstruction and location decoding dynamically 

track the shift of attention, and that there may be timepoints during the shifting of attention when 

(1) feature and location representations become uncoupled, and (2) both the previously-attended 

and currently-attended orientations are represented with roughly equal strength. The results offer 

insight into our understanding of attentional shifts, and the noninvasive techniques developed in 

the current study lend themselves well to a wide variety of future applications. 

 

 

Keywords: spatial attention shift, inverted encoding model, SSVEP, feature-binding, neural 

reconstructions 
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New & Noteworthy 

 

We used human EEG and machine learning to reconstruct neural response profiles during 

dynamic shifts of attention. Specifically, we demonstrated that we could simultaneously read out 

both location and feature information from an attended item in a multi-stimulus display. 

Moreover, we examined how that readout evolves over time during the dynamic process of 

attentional shifts. These results provide insight into our understanding of attention, and this 

technique carries substantial potential for versatile extensions and applications.  
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Introduction 

 
 

The visual environment contains so much information, and given that we have limited 

cognitive resources, visual attention plays an essential role to select the important information 

(Carrasco, 2011; Chun et al., 2011; Desimone & Duncan, 1995). Spatial attention is one way we 

can focus on the most relevant objects and locations for behavior, and filter out the irrelevant 

information. Spatial attention can accelerate target information accrual across eccentricity 

(Carrasco et al., 2006), and may speed the transition between sensory input and the formation of 

object representations (Di Russo et al., 2003; Foster et al., 2021; Hillyard & Anllo-Vento, 1998). 

In our daily lives, however, spatial attention is rarely static: when there are multiple objects or 

locations of interest, we may shift spatial attention frequently between them. Numerous studies 

have investigated the neural mechanisms of shifts of attention using various neuroscience tools 

(see reviews, Chica et al., 2013; Corbetta & Shulman, 2002; Miller & Buschman, 2013), and 

exploring the behavioral consequences of shifts of attention has become an important topic in the 

cognitive psychology literature (Carrasco, 2011; Dowd & Golomb, 2019; Egly et al., 1994; Folk 

et al., 2002; Paffen & van der Stigchel, 2010). 

At the whole-brain network level, neuroimaging studies have established two separate 

fronto-parietal systems involved in different attentional operations: the dorsal attention network 

which is related to top-down goal-directed attention, responsible for the voluntary deployment of 

attention to stay focused on current goals, and the ventral attention network which is related to 

bottom-up, stimulus-driven attention, responsible for the reorientation to the salient or 

unexpected events in the environment (Corbetta & Shulman, 2002; Vossel et al., 2014). 

Neurophysiological evidence is consistent with top-down and bottom-up attention signals in 



Running title: Neural reconstructions across attention shifts 

 5 

frontal and parietal cortices (Buschman & Miller, 2007), and it has been well documented that 

fronto-parietal activation is associated with the control of orienting (Hopfinger et al., 2000; 

Kastner et al., 1999; Kelley et al., 2008; Peelen et al., 2004; Rosen et al., 1999; Yantis et al., 

2002). Specifically, the superior parietal lobule (SPL) and medial regions of the prefrontal cortex 

show transient increases in neural activity when attention is disengaged from fixation and shifts 

to new peripheral locations (Kelley et al., 2008; Yantis et al., 2002). SPL is also shown to engage 

in covert shifts of attention between spatial locations (Gmeindl et al., 2016; Greenberg et al., 

2010; Kelley et al., 2008, 2008; Zhang & Golomb, 2021), features (Greenberg et al., 2010), 

objects (Serences, 2004) and visual/auditory modalities (Shomstein & Yantis, 2004). Human 

EEG studies have further identified certain ERP components linked to spatial shifts of attention  

(Hillyard & Anllo-Vento, 1998; Kiss et al., 2008; Nobre et al., 2000; Yamaguchi et al., 1994), 

thought to be localized to extrastriate and parietal cortices (Di Russo et al., 2003; Hopf et al., 

2000). Other studies have focused on neural timecourses of attentional shifts using 

electrophysiological signatures of EEG and single-unit recording (Khayat et al., 2006; Müller et 

al., 1998). 

At the same time, human behavioral studies have revealed behavioral costs associated 

with shifts of attention. For example, reaction times are slower when attention must be shifted to 

a new location to perform a task, rather than holding attention at the same location (Maljkovic & 

Nakayama, 1996; Posner et al., 1980). Similar behavioral costs are found when a distracting 

stimulus captures attention away from a target location (Theeuwes, 1992).  Furthermore, more 

recent studies have revealed that these dynamic shifts of attention bring additional challenges to 

our visual system to correctly bind location and features (Chen et al., 2019; Dowd & Golomb, 

2019; Golomb, 2015; Golomb et al., 2014). Identifying visual objects requires our brain process 
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both location and feature information (Holcombe, 2009; Reynolds & Desimone, 1999; 

Riesenhuber & Poggio, 1999; Singer, 1999; Treisman, 1996; Treisman & Gelade, 1980; von der 

Malsburg, 1999; Wolfe & Cave, 1999), and a common theory of feature integration suggests that 

attention serves as a glue to bind objects’ features together (Kristjánsson & Egeth, 2020; Nissen, 

1985; Treisman & Gelade, 1980). During rapid shifts of attention -- and when spatial attention is 

otherwise disrupted or spread across different locations -- different types of feature binding 

errors can occur (Chen et al., 2019; Dowd & Golomb, 2019; Golomb, 2015; Golomb et al., 2014; 

Jones et al., 2021).  

To study dynamic shifts of attention and understand how these behavioral consequences 

link to shifts of attention at a neural level, it is essential to have tools that can accurately recover 

neural representations of both feature and location information, and do so across a shift of 

attention with high temporal resolution. On the rise of machine learning and multivariate pattern 

analyses in recent years, many fMRI studies have made efforts to decode or reconstruct location 

and/or feature selective responses in the human visual cortex (see De Martino et al., 2008; 

Naselaris et al., 2011; Norman et al., 2006 for reviews). By making prior assumptions of 

organization of feature space, encoding models have advantages to reconstruct population-level 

response profiles of the sensory cortex (Sprague & Serences, 2015). The Inverted Encoding 

Model (IEM), one example of an advanced encoding model of neural representation, has been 

successfully utilized to reconstruct location or feature selective response profiles in both visual 

perception and visual working memory (Brouwer & Heeger, 2009, 2011; Foster, Sutterer, et al., 

2017; Scolari et al., 2012; Sprague et al., 2016; Sprague & Serences, 2013).  

Despite these recent advances, fMRI has inherently poor temporal resolution because of 

the lag of hemodynamic response. This makes fMRI a suboptimal tool to study the dynamic 
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process of neural representations across attention shifts. Electroencephalography (EEG) and 

magnetoencephalography (MEG) have millisecond-level temporal resolution and make better 

candidates to reveal the dynamics of neural information processing. Previous studies have found 

EEG and IEM could be exploited to reconstruct visual perceptual information and working 

memory content (Foster et al., 2016; Foster, Sutterer, et al., 2017; Foster et al., 2021; Garcia et 

al., 2013), but to our knowledge this has never been attempted across dynamic shifts of attention. 

In the current study, we used EEG and IEM to reconstruct the neural response profiles 

during dynamic shifts of attention. Our design has multiple unique advances over prior studies. 

First and foremost, we focus on simultaneous readout of location and feature information from 

an attended stimulus, and how that readout evolves over time. To do so, we used a multi-

stimulus design, where two stimuli were presented but only one was attended at any given 

moment. This is important because if only one stimulus was presented, and the algorithm was 

run to reconstruct its location or feature (e.g. Foster et al., 2016), the decoded information could 

come from two sources: the signal could be directly driven by the sensory information, and/or by 

the attended information. Therefore, to better understand shifts of attention and recover the 

content of attended information specifically, we presented two stimuli simultaneously and 

deliberately maintained the same visual information while manipulating spatial attention. Finally, 

we make use of a variation on the steady-state visual evoked potential (SSVEP) approach to 

access both attended location and feature information from a common neural signal; as described 

more below, our approach incorporates aspects from both frequency tagging (Müller et al., 1998; 

Norcia et al., 2015) and alpha band decoding (Bae & Luck, 2018; Feldmann-Wüstefeld & Awh, 

2020; Foster, Bsales, et al., 2017; Foster, Sutterer, et al., 2017; Samaha et al., 2016; van Ede et 
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al., 2018; van Moorselaar et al., 2018) to produce a neural measure with both theoretical and 

practical advantages. 

Some prior studies have used EEG steady-state visual evoked potentials (SSVEPs) to 

access which of multiple items is being attended via a frequency tagging approach, where each 

stimulus is tagged by presenting it repeatedly at a certain temporal frequency, which entrains the 

neural signal (Norcia et al., 2015). In these studies, the EEG signal is decomposed into power at 

different frequencies, and the attended item can be tracked based on which of the tagged 

frequencies has greater power (Müller et al., 1998) or increased reconstruction quality (Garcia et 

al., 2013). In the current study, however, we are not interested in tracking which of the two items 

is being attended; rather, we are interested in reconstructing what is being attended. I.e., how do 

the contents of attention (feature representations) evolve across shifts of covert spatial attention? 

Thus, rather than using frequency-tagging, we presented the two stimuli at the same frequency, 

such that the generated SSVEP signal reflects both stimuli. In this sense, our approach is more 

similar to studies that try to reconstruct the focus of attention from a common, stimulus-

independent alpha band signal (Feldmann-Wüstefeld & Awh, 2020; Foster, Bsales, et al., 2017). 

Critically, however, we aim to independently reconstruct both attended-spatial and attended-

feature information. For this purpose, we hypothesized that SSVEP power at the stimulus-

entrained frequency may be more beneficial, especially given prior evidence that location 

information is robustly decodable from alpha band activity but location-independent orientation 

information is not (Bae & Luck, 2018). We conducted machine learning analyses to test whether 

we can reconstruct the attended location and feature information from this common signal. We 

are particularly interested in tracking how this recovered information updates with a shift of 

attention. Our goals were thus to establish: (1) whether this technique can produce reliable 
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reconstructions of attended location and feature information from multi-stimulus displays; and 

(2) if we can track how these reconstructions change over time across dynamic shifts of 

attention. 

 

Methods 

Participants 

25 subjects (8 male, 17 female; mean age = 21.56) participated in the experiment for 

monetary compensation ($15/hour). All participants reported having normal color vision and 

normal or corrected-to-normal visual acuity. Three additional participants were excluded due to 

poor behavioral performance (change detection accuracy in Hold trials < 10%; the rest of 

participants >70%, see Stimuli and Procedure). All participants provided written informed 

consent, and study protocols were approved by The Ohio State University Behavioral and Social 

Sciences Institutional Review Board. 

 

Behavioral Task 

The stimuli consisted of one black fixation cross and two colored, flickering, square-

waved gratings presented on a solid gray background with luminance of 37.5 cd/m2. The size of 

the fixation cross was 1° and displayed at 2° visual angle below the center of the screen. The size 

of each grating was 8° visual angle in diameter and displayed at 2° above and 6° left or right of 

the screen center (Figure 1). The spatial frequency of the gratings was 4 cycle/dva. The 

orientations were chosen from a set of 9 orientations (0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 

160°), such that the two gratings displayed were always 60 degrees apart (clockwise or 
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counterclockwise), resulting 18 different stimulus pair combinations. Each orientation was then 

added an independent jitter ranging from -5° to 5°.  

One grating was colored purple (L=70, a*=28.4, b*=-21.4), and the other one was 

colored gold (L=70, a*=11.6, b*=97.4); the two colors were equiluminant. In order to generate 

SSVEPs, the contrast of the gratings was reversed (e.g. purple to white to purple) at 40Hz (i.e., 

the stimuli change 40 times per second). Participants were asked to always covertly attend to 

either the purple grating or the gold grating (color balanced across participants), all while 

keeping their eyes fixated on the fixation cross. The to-be-attended color was determined on a 

participant-wise basis: 13 participants always attended the purple grating during their session and 

12 always attended the gold grating. The purple and gold gratings were equally likely to appear 

in the left or right positions at the start of the trial, and participants were instructed to covertly 

shift their attention if the colors switched positions (described below). 

Before each trial, participants were shown a screen with a fixation cross and a black 

arrow above it that pointed left or right, indicating where the to-be-attended target grating would 

appear at the beginning of the trial. We included this additional spatial cue to avoid visual search 

and/or attention shift effects at the beginning of the trial. When they were ready to begin the trial, 

participants pressed the space bar. The two colored, flickering gratings appeared on the screen 

and were displayed for 3000ms.  
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Figure 1. Example trial sequences for Hold and Shift Attention trials. Example here shows sequences 
for a participant asked to covertly attend the purple grating (half of the participants attended the gold 
grating instead). Dashed circles (not actually shown to participants) indicate the to-be-attended item over 
time. On Switch trials (randomly intermixed with Hold trials), the colors of the gratings switched in the 
middle of the trial and participants had to shift attention to track the purple (or gold) one. Participants 
were instructed to monitor the attended item for subtle orientation changes and press a button when one 
was detected. At the end of trial, participants were asked to rotate an orientation bar to match the 
orientation of the most recently attended grating. 
 

Report
Orientation

Gratings flicker at 40Hz for 3000ms
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There were two spatial attention conditions: In half of the trials, the colors of the two 

gratings remained the same throughout the trial, so participants attended to the same 

item/location the entire trial (“Hold condition”). In the other half of trials, the two gratings 

switched colors midway through the trial (i.e., the purple grating turned gold, and the gold 

grating turned purple). Once the two gratings switched their colors, participants needed to 

immediately shift their spatial attention to the other grating (“Shift condition”).  On Shift trials 

the two gratings swapped colors but preserved their original orientations, so the spatial shift 

resulted in attending a new grating whose orientation was 60° different from the original one. 

Hold and Shift trials were intermixed and randomized in each block, such that participants could 

not predict whether a shift would take place at the beginning of the trial. The onset of the shift 

cue was randomly picked for each trial from a uniform distribution ranging from 1300ms to 

1700ms after the stimulus onset.  

To confirm that participants maintained their attention on the correct grating, each grating 

had 0, 1, or 2 subtle orientation changes (10°) during the trial. For each grating independently, 

there was a 50% probability of a change in the first part of the trial (0-1300ms) and a 50% 

probability of a change in the second part of the trial (1700-3000ms). The probabilities were 

independent, so overall on each trial there was a 25% likelihood of no changes, a 50% likelihood 

of a single change, and a 25% likelihood of two changes. Participants were instructed to 

immediately press the “s” key when they detected an orientation change in the attended grating. 

They were also told to disregard any changes in the non-attended grating. Particularly, if the 

current trial was a shift trial, once the color-switch happened, participants needed to monitor and 

report the subtle orientation change in the newly attended grating and ignore the previously 

attended grating. At the end of trial, participants were also asked to rotate an orientation bar 
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(appearing on the screen center) to match the orientation of the most recently attended grating 

and press the spacebar to confirm their answer.  

To confirm that participants maintained fixation on the fixation cross while covertly 

attending the grating, we performed gaze-contingent eye-tracking. If a participant’s eye position 

deviated more than 1.5 dva from the fixation cross during the period while the flickering gratings 

appeared on the screen, the trial was aborted immediately and repeated at a random time later in 

the block.  

The study was scheduled in two sessions. In the first session, participants completed two 

blocks of the main behavioral task without EEG, to familiarize themselves with the task. The 

second session (scheduled at a later time) was the official EEG session. During this 2-hour 

session, participants completed up to 12 blocks of the task (each containing 48 trials; 24 per 

condition) while EEG data were collected. We decided in advance that participants who 

completed at least 10 blocks (480 trials) were included in the analyses; all 25 participants met 

this criteria (M = 11.72 blocks). 

 

Experimental Setup 

All stimuli were presented using MATLAB (MathWorks, Natick, MA) and the 

Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) on an Apple Mac 

Mini. Participants were seated 80cm away from a 27-in. CRT monitor with a resolution of 

1280*1024; and a refresh rate of 120 Hz. The CRT monitor was color calibrated with a Minolta 

CS-100 (Minolta, Osaka, Japan) colorimeter. 

Eyetracking. Participants’ eye position was monitored using an Eyelink 1000 system (SR 

Research, Ontario, Canada) recording pupil and corneal reflection in real-time to ensure 
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participants were fixating the central fixation cross (trials on which participants broke fixation 

were aborted, as described above). A chin rest was used to stabilize participants’ head position.  

EEG. Scalp EEG activity was recorded while subjects performed the behavioral task in a 

shielded testing room. Each subject was fitted with an elastic cap containing 64 active Ag/AgCl 

electrodes arranged in an extended 10-20 layout, recorded via a BrainProducts actiCHamp 

Amplifier at a sampling rate of 1000Hz. Two additional electrodes (TP9, TP10) were attached to 

the left and right mastoids via electrode stickers. Electrode impedances were reduced to <25 kΩ 

before the commencement of each experiment session.  

 

EEG preprocessing 

EEG data preprocessing was done using EEGLAB (Delorme & Makeig, 2004) and 

custom MATLAB scripts. We first downsampled the EEG data to 250Hz and re-referenced to 

the mean activity of all electrodes offline. Then we applied a band-pass filter from 0.1 to 58 Hz 

(using “pop_eegfilternew.m” in EEGLAB). The data were segmented into epochs corresponding 

to each trial, by taking EEG activity for each electrode from -500 ms to 3500ms relative to the 

start of that trial. (The time period when the stimuli were presented on the screen was 0ms to 

3000ms.) We removed epochs in which the peak-to-peak range of any electrode was larger than 

50 muV during the stimulus display (from 0ms to 3000ms relative to the start of each trial). Each 

epoch was then visually inspected to confirm no further artifacts. On average, 12.81% of trials 

(SD: 2.52%) were discarded for each participant after the preprocessing. 

Our experimental design (described below) perfectly balanced trial counts across 

conditions, but after excluding noisy trials, the counts may not be fully balanced within each 

participant. Because an imbalance in the initially attended location (left vs right) could influence 
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training of the models, we re-balanced the attended target location to equate the number of trials 

on which target was on the left side of screen in the beginning or on the right side of screen by 

randomly selecting a subset of trials from the larger group. Because each random selection 

caused a small number of trials to not be included in the final analyses, we repeated the selection 

process 100 times and applied all analyses for each selected dataset. We report the final averaged 

results to minimize the random selection effects. 

 

Behavioral Analyses  

Change Detection Task. We calculated the d-prime for the change detection task. Each 

trial may have zero, one, or two orientation changes. Because two orientation changes in one trial 

could be displayed very close to each other, participants may respond by pressing the response 

key longer but not pressing twice. Because this change detection task was primarily intended to 

encourage and verify participant compliance, to simplify our analyses, we combined trials with 

one and two orientation changes. Hit trials were defined as trials where participants successfully 

detected any changes when there was at least one change. False Alarm trials were defined as 

participants reporting one or two changes when the trial had zero changes. d’ was calculated as: 

𝑑! = 𝑧(𝐻𝑖𝑡	𝑟𝑎𝑡𝑒) − 𝑧(𝐹𝑎𝑙𝑠𝑒	𝐴𝑙𝑎𝑟𝑚	𝑅𝑎𝑡𝑒) 

To avoid infinite values, we manually defined the minimum and maximum probability of each 

rate as 1/N and (N-1)/N, where N is the number of trials of that condition.  

Post-trial Orientation Report. For the post-trial continuous report task, the difference 

between the correct orientation and the reported orientation was calculated as the “report error” 

for each trial. The report error range is from -90° to 90°. We realigned the direction of report 

error in the shift condition so that a positively signed report error means the reported orientation 
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was attracted towards the orientation of the initially attended item (+60°); a negatively-signed 

report error means the reported orientation was repulsed away from the initially attended item’s 

orientation. On hold trials, the report error was mock aligned to match the shift condition (and 

eliminate any systematic clockwise/counterclockwise bias). We then fit the distribution of report 

error with a probabilistic mixture model (Bays et al., 2009; Zhang & Luck, 2008). The model 

assumes the distribution of report error comes from two sources (Formula 1):  one von Mises 

distribution (ϕ) accounting for the probability to correctly report the target orientation, with a 

flexible mean (µ) allowing the model to capture any systematic bias from the target orientation 

and a flexible concentration parameter (κ) to capture precision; and one uniform distribution 

accounting for the probability (γ) of random guessing. Note: because we did not observe any 

large “swap” errors (see Figure 3), we chose this simpler mixture model without a swap error 

distribution. 

𝑝(θ) = (1 − γ)ϕ",$ + γ(
1
𝜋) 

For each participant and each condition, we fit the model by applying Markov chain 

Monte Carlo using MemToolbox (Suchow et al., 2013). The best-fitting parameters (maximum 

likelihood estimate) were compared between conditions. We also tested whether there were 

feature distortions in each condition by comparing the mean shift parameter (µ) to zero. We 

additionally calculated the mean signed error (without mixture modeling) for each participant 

and each condition as a non-modeling measure to determine whether the mean of the report error 

distribution for each condition was significantly shifted from zero. 
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Manipulation Check: Event-related potentials (ERPs) Analysis  

As another way of confirming participants were correctly allocating attention to the target 

orientation, especially on shift trials, we analyzed ERP data aligned to the shift cue (in the hold 

trials, we randomly picked a time point at each trial as the mock “shift cue” time).  We averaged 

the signal amplitude from a subset of posterior and parietal channels (P7/P8, PO7/PO8, P3/P4 

and O1/O2) based on the previous literature (Hakim et al., 2019), and subtracted the baseline 

EEG activity from 400ms to 0ms before the shift cue to calculate the ERPs. We sorted trials 

based on the attended side and calculated the difference waveforms by subtracting signals from 

contralateral side to ipsilateral side. We hypothesized that if attention was correctly shifted to the 

new target when the shift cue appeared, we should observe a robust N2pc component on shift 

trials, but not hold trials (Kiss et al., 2008). We calculated the mean N2pc amplitude by 

averaging the difference signals from 200ms to 300ms. We also calculated the contralateral delay 

activity (CDA) by averaging amplitude from 400ms post-shift cue onset to the end of the trial. 

 

Main EEG Analyses: Pipeline for reconstructing attended spatial and feature information  

Time-frequency analysis. Our main analyses rely on time-frequency analyses of the 

preprocessed EEG signal. Below we describe the steps to extract the SSVEP power over time, 

which is then used for decoding attended location (see Multivariate classification) and attended 

orientation (see Inverted Encoding Model). This pipeline is visually depicted in Figure 2. 

Because our main emphasis is on reconstructing attended feature and location information across 

shifts of attention, we use the Hold trials as training data and the Shift trials as the testing data for 

the models.  
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Figure 2. Overview of EEG analysis procedure. A) Time-frequency spectrum of example electrode 
(POz), showing the increased power in the 40Hz stimulus frequency band. Scalp distribution shows 
SSVEP power in the 40Hz band was strongest among parieto-occipital electrodes, as expected. B) 
Overview of EEG analysis pipeline for reconstructing attended feature and spatial information. C) 
Schematic for the feature reconstruction (Inverted Encoding Model) process. See Methods text for details. 
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First, to validate that our design evoked significant SSVEPs, we calculated the EEG 

power spectrum. Figure 2A shows an example electrode channel (POz) illustrating the increased 

power in the 40Hz frequency band (the stimulus frequency), with the spatial topography of the 

SSVEP signal maximal over the parietal-occipital electrodes. 

To extract the timepoint-by-timepoint SSVEP power for the main analyses, we first 

applied a frequency-domain Gaussian shaped filter to the epoched artifact-free EEG signal for 

each trial (Cohen & Gulbinaite, 2017). The analysis is done using custom Python and Matlab 

scripts. A Fourier transform was applied to the padded signal to convert it from time-domain to 

frequency-domain. The frequency-domain EEG signal was point-wise multiplied by a gaussian 

shaped filter with peak frequency at 40Hz and full-width at half-maximum (FWHM) at 3 Hz. An 

inversed Fourier transform was then applied to recover the time-domain EEG signal. Finally, to 

extract the instantaneous power value of SSVEP, we applied a Hilbert transform to the filtered 

EEG data. To better deal with the edge effect, the signal was padded with 500ms blank data in 

both ends before the time frequency analysis. The padded data were removed after the analyses 

to maintain the same length as the original signal. To maximize our temporal resolution, we 

tested different wavelets with FWHM ranges from 0.5Hz to 5Hz and found at least 3Hz was 

required to achieve a reliable orientation reconstruction.  

The above analysis results in a m*n*t matrix for each participant and each condition 

representing the spatiotemporal pattern of SSVEP power, where m is the number of electrodes, n 

is the number of trials, and t is the number of time points. The temporal resolution of this matrix 

is 4ms (we downsampled the EEG signal to 250Hz). However, it should be noted that due to the 

use of the 40Hz SSVEP and frequency filtering, each data point is not entirely independent. The 

effective temporal precision ranges from a minimum of 25ms (the SSVEP frequency) to ~140ms 
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(estimated time for the filtered signal to achieve 95% maximum power; 75% power takes about 

50ms). To avoid overfit and reduce computational demands, the 17 posterior channels (P7, P5, 

P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2) were selected for input to the 

decoding and encoding model, as previous literature has reported that SSVEP is most commonly 

observed in these posterior electrodes (Norcia et al., 2015; also see Figure 2A).  

 
Inverted encoding models (Reconstructing attended orientation). To reconstruct attended 

feature information on Shift trials, we used a cross-condition training and test routine. We trained 

the model based on the patterns of EEG SSVEP power and orientation of the attended items on 

Hold trials, and then inverted the model weights to reconstruct the attended orientation on Shift 

trials. We first applied this inverted encoding model (IEM) procedure to the stable attention 

periods of the shift trials, defining the before-shift period as the first second following stimulus 

onset (time 0 to time 1sec), and the after-shift period as the last second prior to stimulus offset 

(time 2sec to 3sec). SSVEP power was averaged over each time window for each electrode and 

participant. For both stable attention periods – as well as the dynamic reconstruction analyses 

below – we wanted to ensure we used common training data. The use of common training data 

ensures any differences in test results are not due to the differences in the training data. For the 

stable attention periods, we tested two options for common training data: the two corresponding 

stable attention periods from Hold trials (first second or final second). Note that we wanted to 

avoid the middle period of the Hold trials since Hold and Shift trials were intermixed, and 

participants may have been anticipating or preparing for attention shifts even on Hold trials. For 

this reason, for the dynamic reconstructions below, we selected the final second of hold trials 

(rather than the first second) as the training dataset, because there was no uncertainty at that 
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point in the trial as to whether or not a shift would occur, so this period was the most pure hold-

attention period. 

For the dynamic reconstruction of attended feature over time analysis, we trained the 

model on the final-second time window of Hold trials (i.e. the average power over that training 

window), and then tested the model on the timepoint-by-timepoint Shift data. We alternatively 

considered using a model with separate training data for each timepoint (train Hold time(t), test 

Shift time(t)), but there are both theoretical and practical advantages of using common training 

data for each reconstruction (Sprague et al., 2019). (Preliminary analyses using the timepoint-by-

timepoint train and test procedure gave us similar, though noisier results.)  

For the IEMs, we followed similar approaches as previous literature (Garcia et al., 2013; 

Sprague & Serences, 2015; Figure 2C). We assumed the signal at each electrode reflects the 

linear sum of 9 different hypothesized orientation channels (basis set). The response function of 

each basis channel is modeled as a half sinusoid raised to the 8th power, where the centers of the 

9 response functions are circularly distributed across feature space (20°, 40°, 60°, …, 180°). We 

repeated the process described below 19 times for each model, iteratively shifting the center of 

each response function 1° each time. Iterative shifting of basis sets allows for more accurate 

reconstructions across the full orientation space (Kok et al., 2013; Lorenc et al., 2018; Scotti et 

al., 2021).  

The IEM model assumes a linear relationship between the EEG signal and channel tuning 

functions. During the training stage, a weights matrix is estimated as follows:  

𝐵% = 𝑊𝐶% 

, where B1 (m electrodes * n trials) is the observed EEG signal (SSVEP power) at each electrode 

in the training set, C1 (k channels * n trials) is the response function of the hypothesized 
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orientation basis set channels, and W (m electrodes * k channels) is the weight matrix that 

characterizes a linear mapping from channel space to electrode space. The weight matrix W is 

derived via ordinary least-square estimations as: 

𝑊@ = 𝐵%𝐶%&(𝐶%𝐶%&)'% 

, where 𝑊@  (m electrodes * k channels) is the least-square solution.  

In the test stage, we inverted the model to transform the test data B2 (m electrodes * 1 trial) to the 

estimated channel response 𝐶(A (k channels * 1 trial) using the estimated weight matrix 𝑊@ : 

𝐶(A = B𝑊@ &𝑊@ C'%𝑊@ &𝐵( 

The output of the model is the estimated channel response for each test trial (and/or test 

timepoint). After iterative shifting, these channel-tuning functions (CTFs, Foster et al., 2017) 

were circularly shifted to align all trials to a common center for statistics and illustration 

purposes; for our figures the aligned reconstruction plots were centered on 30° (range -60° to 

120°), with 0° indicating the orientation of the initially attended item and +60° the orientation of 

the second attended item (similar to the behavioral mixture model, we flipped reconstructions for 

trials where the second attended item was actually oriented -60° so that all reconstructions would 

be aligned in the same way).  

Because in the hold condition the attended orientation stays the same and in the shift 

condition the attended orientation changes by 60° in the middle of the trial, if IEM correctly 

models the attended orientation, we should observe CTFs shift their peak center from the initially 

attended orientation (0°) to the newly attended orientation (60°).  

To quantify the orientation sensitivity of the CTFs, we calculated linear slope as an index 

of orientation sensitivity (Foster, Sutterer, et al., 2017; Samaha et al., 2016; van Moorselaar et 

al., 2018; Yu et al., 2020). We calculated symmetric slope by reversing the sign of positive 
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orientation channels and collapsing their channel responses with the corresponding negative 

degrees. Then we fitted a linear regression to obtain the linear slope as the sensitivity measure. 

Higher slope indicates greater orientation sensitivity. For shift trials, we calculated slope in two 

ways: relative to the initial attended item’s orientation (CTFslope-O1), and relative to the second 

attended item’s orientation (CTFslope-O2). Reliable reconstructions of attended feature 

information should show a CTFslope-O1 significantly greater than 0 in the first part of the shift 

trial and a CTFslope-O2 significantly greater than 0 in the second part of the shift trial (see 

Statistics section below). 

Multivariate classification (Decoding attended location). For the attended spatial 

information analyses, support vector machine (SVM) was applied to determine whether the 

attended location (left vs right) could be decoded from the spatial distribution of SSVEP power 

over time. Analogous to above, we trained the SVM on the last second of hold trials, using 

SSVEP power and the correct attended location for each trial, and then tested at each timepoint 

on the shift trials to predict its attended location. Because there were only 2 possible locations to 

attend, the chance level of the prediction is 50% (left vs right). We used custom python code and 

“SVC” function from “sklearn” package, using a linear kernel and regularization parameter set to 

1.0. 

Additional decoding analyses. For control and comparison purposes, we conducted 

additional analyses decoding attended location from (1) gaze position and (2) alpha band power. 

For gaze position, we input the trial-by-trial average horizontal eye position to a simple linear 

decoder. For the alpha power signal, we applied a two-way least-squares finite impulse response 

filter to the EEG signal, in the frequency range of alpha range (8-12Hz). Subsequently, we 

performed a Hilbert transformation on the filtered signal, as in (Foster, Bsales, et al., 2017). We 
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then conducted the same analyses as described above to perform attended-location decoding on 

the spatial distribution of alpha band power over time. 

Statistical significance tests. To determine significant time points for the above analyses, 

we used cluster-based permutation tests to correct for multiple comparisons and identify clusters 

of time points when the CTF slopes were significantly larger than 0 (significant orientation 

reconstruction) and/or location decoding performance was significantly better than chance 

(Cohen, 2014; Maris & Oostenveld, 2007). For each analysis, we first did a one sample t-test to 

detect time points with CTF sensitivity greater than 0 (or location decoding accuracy greater than 

0.5). We used .05 as the alpha threshold (t = 1.711, one-sided, df = 24) to identify clusters of 

adjacent points, and computed the sum of all the t values within each cluster. We then compared 

the sum of t-values against a null distribution empirically specified with the Monte Carlo 

randomization procedure. The null distribution is calculated by randomizing the training and test 

labels and repeating the IEM procedure (or multivariate classification procedure, in case of 

location decoding performance) 1,000 times. We followed the same procedure as described 

above to compute the sum of t-values for the largest cluster for each of the 1,000 iterations, 

resulting a null distribution with 1,000 sums of t-values. We compared the sum of t-values of the 

correctly labeled data with the 95th percentile of the null distribution to determine whether the 

cluster was above chance (one-tail alpha rate = .05).  

 

Results 

 
Behavior and ERP analyses confirm participants successfully performed the attention task 

Behavioral analyses of the change detection task indicated that participants were able to 

allocate and maintain their attention to the correct location. Participants detected the orientation 
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changes in the attended item significantly better than chance level on both Hold trials (dprime = 

2.258, t(24) = 8.988, p<0.001) and Shift trials (dprime = 1.269, t(24) = 6.562, p<0.001).  Post-

trial continuous orientation reports similarly showed that participants reported the target 

orientation rather accurately, with probabilistic mixture models outputting low guess rates and 

high precision (small standard deviation) for both hold and shift trials (Figure 3A).   

Given prior behavioral reports of feature distortions when attention is split across two 

locations (Chen et al., 2019; Dowd & Golomb, 2019; Golomb, 2015; Golomb et al., 2014), we 

also measured feature distortions (target orientation report either biased towards or repulsed 

away from the other item’s orientation). There was no evidence for distortion in hold trials: mu 

was not significantly different from zero (t(24)=1.017, p=0.318). However, for shift trials, mu 

was slightly but significantly negative (t(24)=2.372, p=0.025), indicating participants’ post-trial 

orientation reports were shifted away from the initially attended orientation (repulsion effect). 

We also assessed this in a model-free analysis by analyzing the mean of the entire error 

distribution. For hold trials, we did not observe a response bias (M=0.140; t(24)=0.642, 

p=0.527). For shift trials, we found the mean of reporting error was numerically negative and 

marginally significant (M=-0.526; t(24)=-1.930, p=0.066), consistent with a weak response bias 

away from the initially attended orientation. 

As a preliminary analysis and sanity check of the EEG data, we also analyzed ERPs, with 

data aligned to the shift cue. Shifts of spatial attention are associated with characteristic ERP 

components, particularly a contralateral N2pc at the posterior/occipital channels, typically 

peaking from 200ms to 250ms at P7/P8, PO7/PO8, P3/P4 and O1/O2 (Luck, 2012). We observed 

a robust N2pc on Shift trials (Figure 3B), peaking at 229ms after the shift cue (M=-0.937 µV, 

t(24)=3.318, p=0.003). On Hold trials, no N2pc was present, as expected. Another ERP marker  
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Figure 3 Behavioral and ERP results. A) Behavioral orientation report error distributions for hold and 
shift trials. We aligned the directions of the errors for shift trials so that the initially attended orientation 
was always represented at +60°. Parameter estimates from the mixture-modeling analysis: guess rate = 
probability of random guessing, SD = standard deviation of target distribution, and mu = mean shift of 
target distribution; bar plots show values averaged across subjects, with individual subjects’ values 
plotted as dots.  B) ERPs from electrodes P7/P8, PO7/PO8, P3/P4 and O1/O2 aligned to shift cue onset 
time (for shift trials), calculated for trials with contralateral vs ipsilateral attended location. Because there 
were no actual shift cues in hold trials, we randomly selected time points during the shift cue window to 
align the hold trials (control data) accordingly. 
 



Running title: Neural reconstructions across attention shifts 

 27 

of selective spatial attention and maintaining objects in working memory is the CDA (Vogel et 

al., 2005; Vogel & Machizawa, 2004), which is apparent in Figure 3B for Shift trials, peaking at 

700ms after the shift cue (M=-2.285 µV, t(24)=8.892, p<0.001). Note a robust CDA on hold 

trials would have been visible if the data were aligned to the stimulus onset, but it is not visible 

in Figure 3B because these ERP plots were aligned and baseline-adjusted to the non-existent 

shift cue. 

 
Attended-feature information can be reliably reconstructed from multi-stimulus displays 

Having confirmed that our behavioral task was successful at manipulating selective 

attention and evoking covert shifts of attention, we turned to our first main goal: Can the EEG 

IEM model reliably reconstruct attended feature information from these multi-stimulus displays? 

In other words, before attempting to track how neural reconstructions might change dynamically 

around the time of a shift of attention, we first needed to confirm that we could reconstruct the 

orientation that was attended in the first half of the trial (before any shift cue), and the orientation 

attended in the second half of the trial (well after the shift).  

Critically, we could reconstruct attended feature information during the static attention 

periods both before and after the shift cue using this technique (Figure 4). The reconstructions 

revealed two peaks: In the before-shift static period, there was a primary peak centered on the 

orientation of the initially to-be-attended item (the current target), as well as a smaller peak 

centered on the orientation of the other item in the display. In the after-shift static period, there 

was a primary peak centered on the orientation of the current to-be-attended item, as well as a 

smaller peak centered on the orientation of the other item in the display (the previous target). 

Thus, our technique is capable of reconstructing the orientations of two different items in the 

display, and of differentiating which one is at the current focus of attention.  
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Figure 4. Orientation reconstructions during the static attention periods. IEMs were trained on Hold 
trials, and tested on Shift trials. The before-shift static period (first period) is the first second following 
stimulus onset (0 – 1000 ms), and the after-shift static period (final period) is the last second prior to 
stimulus offset (2000 – 3000 ms).  
 
 
 

We note that unsurprisingly, the reconstructions for each period are stronger when the 

training dataset came from the same corresponding time period on Hold trials. However, 

particularly for the dynamic reconstruction (timecourse) analyses below, it is critical to use 

common training data to ensures any differences in test results are not due to differences in the 

training data. For all analyses that follow, we selected the final second of hold trials (rather than 

the first second) as the training dataset, because there was no uncertainty at that point in the trial 

as to whether or not a shift would occur, so this period was the most pure hold-attention period. 

 
 
Decoding of attended-location from the same signal  

Based on prior work we expected that attended location would be reliably decoded from 

the EEG signal during these static attention periods, and indeed that was true: The average 

location decoding accuracy in the before-shift static period was 0.651 (SD 0.125), significantly 

above chance (chance level: 0.5; t(24)=5.906, p<0.001). In the after-shift static period, the 
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location decoding accuracy was 0.708 (SD 0.121), also significantly above chance (t(24)=8.442, 

p<0.001).  

Importantly, we also found that decoding of attended location using this common-signal 

SSVEP approach was superior to other potential signals. First, to ensure the above results were 

not driven by oculomotor artifacts (e.g. microsaccades or small fixation biases), we asked if we 

could decode attended location based on eye position. For the before-shift static period, the 

decoding accuracy was 50.75%; for the after-shift static period, the decoding accuracy was 

51.02%. Neither was significant; the 95% range of error based on permutation tests was 

[48.75%, 51.31%]. Thus, attended location could not be reliably decoded from eye position. 

Second, we compared decoding of attended location using alpha-band power instead of the 40Hz 

SSVEP signal. Decoding accuracy was significantly above chance using the alpha power signal, 

but was less effective than using our technique, resulting in lower decoding accuracy, increased 

noise, and slower resolution for detecting the shift in attention (see Supplemental Figure S1). 

 
Reconstructed location and orientation timecourses both track the shift of attention 

Finally, we tested whether this approach can dynamically track the attended orientation 

and attended location as covert spatial attention shifts to a different stimulus during the trial. 

Figure 5A shows the timecourse of feature reconstructions on shift trials, plotted as time-by-time 

channel tuning functions (CTFs) temporally aligned for each trial such that time 0 is the onset of 

the shift cue. (Supplemental Figure S2 shows a comparable CTF plot for Hold trials, though 

there is some non-independence between the training and test data for the Hold analysis.)   

The dynamic CTF nicely captures the updating of the attended feature on Shift trials. 

Consistent with the static reconstructions, dynamic CTFs accurately reconstructed the orientation 

of the initially attended stimulus during the first half of the trial. Immediately following the shift, 
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a period of poorer / ambiguous reconstruction was visible, followed by a settling of the 

reconstructions on the orientation of the newly attended stimulus (aligned at 60 degrees). Figure 

5B plots these feature reconstructions another way, using CTF slope as a quantitative measure to 

assess reconstruction quality at each time point. We calculated CTF slope in two ways for each 

time point: centered on the orientation of the initially attended item (CTFslope-O1) and centered 

on the orientation of the newly attended item (CTFslope-O2). During the first half of the trial, the 

orientation of the initially attended item was significantly reconstructed (CTFslope-O1 > 0, 

p<0.05 cluster-based permutation test) at all time points. After the shift cue there was a transient 

period (~170-400ms post-cue) where both the initially and newly attended orientations were 

significantly reconstructed, and then eventually only the orientation of the newly attended item 

was recoverable. We note that slope is just one of several possible measures to quantify 

reconstruction quality (for example, we found a similar pattern using the mean absolute error 

metric of Scotti et al., 2021), but it appears to reasonably well capture the fluctuations of 

attended orientation in the CTFs in Figure 5A. 

These results indicate that our dynamic IEM approach successfully tracked the attended 

orientation(s) across the shift of attention. Moreover, the period where both orientations seemed 

to be represented – with overlapping timepoints where both CTFslope-O1 and CTFslope-O2 

were significant – is particularly intriguing. Such a pattern is consistent with prior findings of 

temporal overlap in attentional facilitation during shifts of attention (Dowd & Golomb, 2019; 

Golomb, 2019; Khayat et al., 2006; Shulman et al., 1979), as we speculate on later in the 

Discussion. 
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Figure 5 Attended feature reconstructions and location decoding accuracy of Shift trials. 
A) Reconstructed channel tuning functions for each timepoint on Shift trials (based on IEM model trained 
on final second average from Hold trials). Trials were aligned in time, such that time 0 was when the shift 
cue appeared, and in orientation space, such that the orientation of the initially attended item was centered 
at 0° and the newly attended item’s orientation was always represented at 60°. Colors reflect the 
amplitude of the reconstructed signal. B) Reconstruction slopes across time, calculated based on the 
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initially attended target (CTFslope-O1 = blue line) and the newly attended target (CTFslope-O2 = orange 
line). C) Decoded location accuracy for each timepoint on Shift trials, aligned as in A-B. Before the shift 
cue, accuracy based on the correct initially attended location (LocAcc-L1 plotted in blue for consistency 
with B); after the shift cue, accuracy based on the correct newly attended location (LocAcc-L2 plotted in 
orange). In B-C, the shaded error bars reflect ±1 SEM across participants, dashed black lines indicate 
chance level, and the solid bars along the bottom of the plots indicate timepoints that significantly 
differed from chance (cluster-based permutation tests). O1 = orientation of target 1; O2 = orientation of 
target 2; L1 = location of target 1; L2 = location of target 2. 
 

We also examined the timecourse of attended location decoding (Figure 5C). This 

analysis was quantified as a simple decoding accuracy (attending left vs right location). Before 

the shift cue, we could decode the attended location (left vs right) consistently above chance 

(chance = .5; p<0.05, cluster-based permutation test). After the shift cue, the decoded location 

gradually shifted to the other side and became significantly above chance after 260ms, peaking 

around 600ms. 

Cluster-based permutation tests were performed for both the dynamic feature 

reconstruction and dynamic location decoding analyses. Although it is important to keep in mind 

that these are quantified by different measures, and location is a two-way decoding while 

orientation is a continuous reconstruction, there are some intriguing comparisons between the 

two timecourses that may be interesting to speculate on. Comparing the attended feature and 

location timecourses revealed what could be characterized as multiple distinct periods: a stable 

pre-cue period, potentially three distinct transition stages, and a stable post-cue period. Note that 

while we include time points corresponding to these stages in our descriptive summary below, 

this is primarily for ease of linking to Figure 5; we are not aiming to make specific claims about 

the precise temporal extents of these time periods, and emphasize caution in interpreting the 

specific time points, since cluster-based permutation tests are designed to correct for false-

positives at the cluster level, not the point level (Sassenhagen & Draschkow, 2019).  
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During the stable period before the shift cue, the correct currently attended location and 

orientation could both be significantly and robustly recovered from the EEG SSVEP signal. For 

the first 150ms following the shift cue, spatial attention appeared to still be primarily lingering at 

the initial location, though the signal was rapidly decaying to chance. During this time, neither 

orientation could be reconstructed above baseline. From around 150-250ms post-cue, location 

decoding was not significantly different from chance, suggesting spatial attention was truly in 

transition. Strikingly, during this ambiguous spatial attention period, both the initial and the 

newly attended orientations could be significantly reconstructed. Since the location decoding 

analysis was simply a two-way decoder, we can’t resolve whether spatial attention was 

simultaneously at both locations or neither (or highly variable across trials), but we are clearly 

capturing a transitory period of ambiguous spatial attention, during which both items’ 

orientations were represented. Starting around 280ms post-shift, the location decoding became 

significant for the newly attended location; yet interestingly, both orientations could still be 

significantly reconstructed for another 100ms. Finally, starting around 400ms post-cue, only the 

correct newly attended orientation and location were significantly represented. Reconstruction 

slope and location decoding accuracy both continued to increase for another 100ms or so, 

plateauing into the post-shift stable period. As another interesting point of comparison, it is also 

potentially notable that the location decoding timecourses remained at a relatively constant and 

stable accuracy over the duration of the static-attention periods, whereas the orientation 

reconstruction slopes seemed to oscillate throughout the trial; one possibility is the feature 

reconstruction technique is more sensitive to oscillations of attention and/or divided attention, a 

speculation we revisit in the Discussion. 
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Discussion 

 
In the current study, we used EEG and IEM to reconstruct the neural response profiles 

during dynamic shifts of attention in high temporal resolution. Specifically, we demonstrated that 

we could simultaneously read out both location and feature information from an attended 

stimulus to produce reliable reconstructions of attended location and feature information from 

multi-stimulus displays. Moreover, we examined how that readout evolves over time during the 

dynamic process of attentional shifts.  

Our study offers several methodological and theoretical contributions. In terms of 

methodological contributions, our study can be thought of as a proof of concept that EEG can be 

used to construct timecourses of the neural representations of attended features (timepoint-by-

timepoint IEM reconstructions) and attended location (timepoint-by-timepoint decoding) during 

both stable periods and across dynamic spatial shifts of attention. Our approach builds off of 

prior studies using machine learning and IEM to decode/reconstruct the locations or features of a 

stimulus, either visually presented or in memory, from neuroimaging data (Brouwer & Heeger, 

2009, 2011; De Martino et al., 2008; Foster et al., 2016; Foster, Sutterer, et al., 2017; Foster et 

al., 2021; Garcia et al., 2013; Naselaris et al., 2011; Norman et al., 2006; Scolari et al., 2012; 

Sprague & Serences, 2013, 2015). However, unlike most of the previous studies, we focused on 

(1) both the location and feature information, (2) for an attended stimulus in a multi-stimulus 

display, (3) explored how the readout information evolved over time, and (4) showed that a 

model trained on Hold-attention trials could be used to reliably track the updating of neural 

representations on Shift-attention trials. To our knowledge this is the first study to successfully 

attempt this combination of goals. Our approach also carries advantages because it uses the same 

exact neural signal for both location and orientation reconstructions, giving us an unbiased 
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window into the contents of attention. Moreover, our supplemental results comparing an 

alternative EEG signal commonly used for location decoding – alpha power – suggest that our 

approach offers practical benefits in terms of quality as well.  Of course, as we discuss more 

below, with all new approaches there is room for improvement and refinement, but the current 

results demonstrate that this approach is both feasible and carries substantial potential for 

versatile extensions and applications.  

In addition to the methodological contributions of this study, our results reveal some 

intriguing aspects of attentional updating that contribute to various theoretical issues in the 

attention literature. One aspect is how attended and unattended items are represented in a multi-

item display. A number of prior studies have demonstrated that neural reconstructions of object 

features are more precise for attended than unattended items (Ester et al., 2016; Jehee et al., 

2011), and that the attended orientation can be decoded from ambiguous stimuli (Kamitani & 

Tong, 2005). In the current study, we similarly found that we could reliably reconstruct the 

attended orientation during the static attention periods. We also found some evidence for a 

weaker but detectable reconstruction of the other orientation in the display. It is unclear if this 

secondary peak was due to participants also allocating some attention to the other item in the 

display, or if it simply reflects the visual stimulus representation. A supplemental analysis where 

we trained the IEM on the unattended orientation did not produce reliable reconstructions 

(Figure S3), suggesting that the secondary peak may indeed reflect an attentional effect, though 

this is not a definitive test. If the secondary peak does reflect attentional sampling, this could 

potentially be driven by intrinsic rhythmic sampling (Fiebelkorn et al., 2013; Landau & Fries, 

2012; Re et al., 2019; VanRullen, 2016) and/or anticipatory sampling prior to expected 

attentional shifts (Jones et al., 2021). In the first half of the trial, participants did not know if they 
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would be holding attention or shifting attention, so there may have been some incentive to 

represent both items in the display. However, we note that it is unlikely that participants were 

simply distributing their attention across both items, as the behavioral task required sustained 

focused attention on the attended item for the unpredictable and challenging change-detection 

task, and the results showed that participants were indeed focusing their attention on the current 

target item, as both the attended feature and attended location could be reliably extracted from 

the neural signal. These questions also bear similarities to the working memory literature, where 

studies have examined how representations change when items are added to or dropped from 

working memory (Balaban & Luria, 2017; Lewis-Peacock et al., 2018; Souza et al., 2014; Wan 

et al., 2020; Yu et al., 2020), except in the current study, only one orientation needed to be 

attended and held in WM at a time. 

Another finding of the current study is that there appeared to be a transitional period 

following the shift cue during which both the previously attended and the currently attended 

orientations could be significantly reconstructed. In other words, after the spatial shift of 

attention, the previously relevant orientation was not immediately discarded, but was still 

temporarily represented in the neural signals. Because these reconstructions averaged across 

trials, it is difficult to say whether this effect was due to variable timing of attentional updating 

across trials or simultaneous representations of both items. However, a prior study in primate V1 

found that during spatial shifts of attention, attentional enhancement is found for the item that is 

newly attended (distractor to target status) faster than attention is withdrawn from the initially 

attended item (target to distractor status) (Khayat et al., 2006). ERP evidence has also suggested 

that attention can be maintained at its previous location while it is simultaneously allocated to a 

new target object (Eimer & Grubert, 2014). Similar temporal overlap of attentional facilitation 
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has been found when attention is updated across eye movements, resulting in a dual spotlight 

(Golomb, 2019) or soft handoff (Fabius et al., 2020; Marino & Mazer, 2018) of attention, and 

soft handoffs of attention are also found across hemispheres during multiple object tracking 

(Drew et al., 2014). 

Indeed, the timecourse of attentional shifting has been debated over the years across 

behavioral (Duncan et al., 1994; Shulman et al., 1979; Wolfe, 1994), monkey neurophysiological 

(Khayat et al., 2006), and human EEG (Müller et al., 1998; Woodman & Luck, 1999) studies. 

Our current study offers a unique addition of providing several simultaneous measures that can 

track the timecourse of attentional shifts, including the N2pc, decoding of attended location, and 

reconstruction of attended orientation. The reconstruction timecourse for attended orientation 

revealed that the newly attended orientation first became significant around 170ms post-cue, 

similar to Khayat et al’s distractor-to-target latency of 144ms post-switch (Khayat et al., 2006). 

Meanwhile, the previously attended orientation was still significantly reconstructed at 400ms 

(substantially after Khayat et al’s target-to-distractor latency of 210ms). The location decoding 

timecourse crossed the chance point around 150ms and then became significant for the new 

location at 250ms. And the N2pc peaked 229ms after the shift cue. Meanwhile, both the location 

decoding and orientation reconstructions didn’t reach their peaks until 500-600ms after the cue. 

One takeaway from these data is that attentional shifting is perhaps better thought of as a more 

nuanced set of multiple processes or steps that unfold over an extended time window, rather than 

a single unitary switch.    

Moreover, other previous literature has suggested that location plays a vital role in the 

process of binding features into cohesive objects (Treisman, 1996, 1998). When we talk about 

attention shifting from one object to another object, we generally do not separate the attended 



Running title: Neural reconstructions across attention shifts 

 38 

location and attended feature. But in fact, during the shift of attention, both the attended location 

and feature representations are updated, and location and feature representations may involve 

different brain regions (Ungerleider, 1994). An important question that this paradigm opens up is 

whether these two processes are temporally linked such that the timing of location updates is 

correlated with the timing of feature updates. The data presented here suggest some intriguing 

links, but an exciting future direction of this paradigm would be investigating correlations 

between the feature and location timecourses across subjects and/or trials. Because we only 

collected a single session of EEG data per subject, the current experiment was not powered to get 

reliable measures of transition timepoints in individual subjects, but future studies employing 

more extensive sampling may be better powered to investigate individual differences.  

Another appealing direction for future applications of this technique would be to try to 

link individual or trial-wise behavior with the attended location and feature reconstruction 

measures. We did not find significant correlations between behavioral report measures and 

location or feature reconstructions in the current study, but we note that the behavioral tasks were 

not optimized to detect subtle variations in attentional state, but rather primarily meant to ensure 

that participants were attending to the correct item. As such, performance in the post-trial 

behavioral task (orientation report) was essentially at ceiling, exhibiting very low variability, and 

the frequency of the probes in the ongoing change detection task was too low to use for this 

purpose. That said, this paradigm may carry even more enticing potential for investigating 

attentional contexts that produce more behavioral errors and variability, such as divided attention 

(Dowd & Golomb, 2019), attentional capture by salient distractors (Chen et al., 2019), 

remapping across eye movements (Golomb et al., 2014), vigilance/distraction (Esterman et al., 
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2013; Rosenberg et al., 2015), and rhythmic oscillations of attention (Fiebelkorn et al., 2013; 

Landau & Fries, 2012). 

One limitation of the current study is that the measures we used for assessing the attended 

feature and attended location representations are not directly comparable in terms of quality. We 

chose to focus on a single shift of attention between two fixed locations in the current study for a 

well-powered and clean proof of concept, and thus our attended location measure was limited to 

two-way decoding. In principle, future tasks could be designed such that a continuous 

reconstruction measure (IEM or other model-based technique) could be used to evaluate both 

attended location and attended orientation on the same scale, though likely multiple sessions of 

EEG data would be needed per subject.  

In conclusion, by applying IEM and machine learning methods to EEG data, we 

simultaneously reconstructed feature representations and the location of spatial attention over the 

shift of attention in a multi-stimulus design. Our results showed that both feature reconstructions 

and location decoding dynamically track the shift of attention, and that there may be timepoints 

during the shifting of attention when (1) feature and location representations become uncoupled, 

and (2) both the previously-attended and currently-attended orientations are represented with 

roughly equal strength. The results offer insight into our understanding of attentional shifts, and 

the techniques developed in the current study lend themselves well to a wide variety of future 

applications. 
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