
Running Head: FEATURE PROTECTION 1 

 

 

 

 

 

 

 

 

Suppression of a salient distractor protects the processing of target features    

William Narhi-Martinez, Blaire Dube, Jiageng Chen, Andrew B. Leber, & Julie D. Golomb 

Department of Psychology, The Ohio State University 

 

 

 

 

 

 

 

 

Author Note 

Correspondence concerning this article should be addressed to William Narhi-Martinez, 

Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH 43210, United 

States. Email: narhi-martinez.1@osu.edu 

  

mailto:XX@osu.edu


FEATURE PROTECTION 

 2 

 

Abstract 

We are often bombarded with salient stimuli that capture our attention and distract us from our 

current goals. Decades of research has shown the robust detrimental impacts of salient distractors on 

search performance and, of late, in leading to altered feature perception. These feature errors can be 

quite extreme, and thus, undesirable. In search tasks, salient distractors can be suppressed if they 

appear more frequently in one location, and this learned spatial suppression can lead to reductions in 

the cost of distraction as measured by reaction time slowing. Can learned spatial suppression also 

protect against visual feature errors? To investigate this question, participants were cued to report one 

of four briefly presented colored squares on a color wheel. On two-thirds of trials, a salient distractor 

appeared around one of the nontarget squares, appearing more frequently in one location over the 

course of the experiment. Participants' responses were fit to a model estimating performance 

parameters and compared across conditions. Our results showed that general performance (guessing 

and precision) improved when the salient distractor appeared in a likely location relative to elsewhere. 

Critically, feature swap errors (probability of misreporting the color at the salient distractor’s location) 

were also significantly reduced when the distractor appeared in a likely location, suggesting that learned 

spatial suppression of a salient distractor helps protect the processing of target features. This study 

provides evidence that, in addition to helping us avoid salient distractors, suppression likely plays a 

larger role in helping to prevent distracting information from being encoded.  
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Introduction 

  Effective attentional control requires not only accurate guidance towards relevant stimuli and 

locations, but also the ability to suppress irrelevant, but salient, stimuli. Driving to work requires 

attending to approaching stoplights while preventing ourselves from being distracted by things like text 

messages. The goal of external selective attention is to determine what in our environment is worthy of 

further processing (i.e., working memory encoding). However, an irrelevant stimulus may appear that is 

so salient that we are unable to ignore it, causing us to select the irrelevant stimulus for attention and 

hindering our ability to efficiently achieve our current goal. Such incidental shifts in attention are known 

as attentional capture. 

Much of the work on attentional capture has focused on the spatiotemporal impacts of 

attentional capture using measures of reaction time and forced-choice accuracy measures. These 

studies have converged on the finding that attentional capture can negatively impact behavior: 

participants take longer to respond and are less accurate when a distractor is present (Pashler, 1988; 

Theeuwes, 1994; Yantis & Jonides, 1984; for a review see Luck et al., 2021). More recent work, however, 

suggests that the consequences of attentional capture are broader than once thought. Chen, Leber, and 

Golomb (2019) measured the consequences of attentional capture on feature perception and recall 

using a delayed-estimation task with a continuous response modality. They conducted two experiments 

in which four colored squares were briefly shown, with the target being simultaneously outlined by a 

bolded white frame. On two-thirds of trials, a salient distractor appeared in the display: four white dots 

surrounded one of the colored squares, half of the time around one of the nontargets adjacent to the 

target square. Participants reported the color of the target square on a subsequent color wheel 

surrounding a post-cue of the target location. Probabilistic mixture modeling (Bays et al., 2009; Zhang & 

Luck, 2008) was used to analyze the distribution of each participant’s responses, which allowed for 

measurements revealing the specific types of errors a salient distractor could elicit from this continuous 
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feature space. Not only were participants more likely to guess and respond with less precision when a 

salient distractor was present, but significant amounts of swapping (selecting the color in the salient 

distractor location) and repulsion (near-target responses biased slightly away from the color in the 

salient distractor location) were also observed. These results showed, in addition to basic performance 

decrements in the presence of a salient distractor, that attentional capture by a distractor can lead to 

perceptual feature interference (even though the color appearing in the salient distractor location was 

no more salient than the other colors present).  

 In the real world, the consequences of feature interference could be detrimental, especially 

since there is an ever-increasing number of items being designed to capture our attention (e.g., online 

advertisements, phone notifications, storefront displays, etc.). How are we able to avoid these 

distractors to effectively navigate our environments? Prior work has shown suppression plays a key role 

in meeting this challenge (Gaspelin et al., 2015; Gaspelin & Luck, 2018; Sawaki et al., 2012; Sawaki & 

Luck, 2010). For example, when a particular location is more likely to contain a distractor, observers can 

learn this statistical regularity over time. They then begin to suppress that high probability distractor 

location, mitigating the consequences of attentional capture and improving performance. This general 

finding has been documented whether the high probability distractor location is fixed (Britton & 

Anderson, 2020; Huang et al., 2021; Kong et al., 2020; Wang & Theeuwes, 2018b, 2018a) or flexible (i.e., 

when the high probability distractor location is defined via its position relative to another display item; 

Leber et al., 2016). While information about statistical regularities can be explicit (i.e., directly cued) or 

implicit (i.e., learned over time), there is some evidence that implicit learning over time can be more 

effective in mitigating attentional capture effects (Moher & Egeth, 2012; Noonan et al., 2016; Wang & 

Theeuwes, 2018a).  

 A number of studies have explored the mechanisms behind this suppression (Failing et al., 2019; 

Gaspelin et al., 2015; Geng & Duarte, 2021; Gong & Theeuwes, 2021; Huang et al., 2021; Won et al., 
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2022), with debates regarding whether suppression effects can be explained better by distractor 

inhibition or target enhancement (Failing et al., 2019), or if it operates in a proactive (i.e., preemptively 

suppressing a distractor before selection) or reactive (e.g., “search and destroy”) manner (Chang et al., 

2023; Geng & Duarte, 2021; Huang et al., 2021; Kong et al., 2020). Recently, Gong and Theeuwes (2021) 

characterized a saliency-specific mechanism, while Won et al. (2022) suggested that attentional 

suppression serves to prevent salient, task-irrelevant information from entering working memory. 

However, much of the previous literature on experience-driven suppression has relied solely on simple 

search tasks with limited (often, two) response options, and these studies have largely focused on how 

suppression may protect against the prolonged behavioral response times characteristic of attentional 

capture (but see Won et al., 2022, for an investigation of how suppression affects memory precision for 

a salient distractor over time). As we now know, however, the consequences of distraction extend 

beyond disruptions to response time: dynamic distraction also causes systematic and measurable 

perceptual errors (Chen et al., 2019). Presently, it is unknown whether experience-driven suppression 

also protects target representations against distractor-induced perceptual errors.  

The present study aims to investigate whether – and to what extent –  experience-driven spatial 

suppression protects the processing of the target features. We employ a continuous color report 

paradigm – rather than reaction time or accuracy measurements –  to examine whether a salient 

distractor appearing in a learned likely location will result in reduced feature interference compared to a 

distractor appearing in a less likely location. We predict that spatial suppression of a high probability 

distractor location will not only result in improved overall performance when the salient distractor 

appears in the likely location (relative to when it appears elsewhere), but predictable distractors may 

interfere less with feature perception and working memory processes. This protection from feature 

interference could be evidenced by a reduction in the feature swapping and/or repulsion errors typically 

elicited by attention capture (Chen et al., 2019). 
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Methods 

Sample 

 Participants were recruited from The Ohio State University campus and received either course 

credit or payment for their time. To determine our sample size, we pre-registered an optional stopping 

rule based on a sequential Bayes factor design. This method of determining sample size has been 

demonstrated as an effective method that protects interpretability of the results and does not induce 

statistical bias or require penalization for checking (Rouder, 2014; Schönbrodt & Wagenmakers, 2018). 

Our stopping rule was pre-registered on OSF as follows (condensed here, see https://osf.io/ys3kc for full 

description): According to a sequential analysis of the Bayes factor for the swap effect in Experiment 1 of 

Chen et al., (2019), ‘strong evidence’ (BF10 > 10; Lee & Wagenmakers, 2014) was observed by their 20th 

participant. Therefore, we set our minimum sample size to 20. After that point, we collected data in 8-

participant intervals until sufficient evidence for or against our main comparison of interest was reached 

(or a maximum of N=60). Our main comparison of interest concerned whether the swap effect for the 

salient distractor in the probable location was significantly different compared to the salient distractor 

in a control location (see Analyses). We set our thresholds to BF10 > 6 as sufficiently in support of the 

alternative and BF10 < 1/6 as sufficiently in support of the null model.   

Our stopping-rule threshold was reached at 52 participants (29 female, 22 male, 1 non-binary, 

aged 18-36). Data from 8 additional participants who completed the experiment were excluded prior to 

analysis for not maintaining fixation on at least 75 trials in each condition of interest.  

Setup 

 Each participant was seated and placed their head against a chin and forehead rest 60cm away 

from the monitor. The 62cm LCD monitor’s resolution was adjusted to display a 4x3 presentation 

window (resolution: 1280x960, refresh rate: 200Hz) and was color calibrated with a Minolta CS-100 

https://osf.io/ys3kc
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colorimeter. Stimuli were generated using MATLAB (Mathworks) and the Psychophysics Toolbox 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) on a Windows computer. Eye position was recorded 

using an Eyelink 1000 eye-tracker (SR Research). 

Procedure 

 As displayed in Figure 1, every trial began with a black fixation cross appearing at the center of a 

grey background. Once this cross had been fixated (eye position accurately maintained within a 2° 

radius) for a consecutive 700ms, it changed into a black dot, and placeholders  (four thin, white frames) 

appeared outlining the locations of the upcoming stimuli. Fixation had to be maintained for an 

additional 300ms. If fixation was broken during this time (>2° deviation), the cross would re-appear, and 

this loop would continue until fixation was properly maintained for the entire 1000ms. This two-stage 

fixation period allowed us to maximize the number of usable trials, as we would exclude any trials from 

analyses in which fixation was broken following this period.  

 Once consistent fixation was achieved, the fixation dot remained on-screen while the stimulus 

array was presented for 50ms. The stimulus array was four colored squares (each sized 2° x 2°, centered 

at an eccentricity of 4°), which appeared in upper left, upper right, lower left, and lower right corner 

positions. The color of the squares varied on every trial. The color of the upper left square was chosen  

Figure 1. Experimental procedure (not drawn to scale). On every trial, participants were shown four colored 
squares and instructed to report the color within the target square (outlined by the bold white frame, also post-
cued during presentation of the color wheel). On two-thirds of trials, four white dots would appear around one of 
the nontarget locations (salient distractor). This salient distractor would appear in one particular location on 62.5% 
of distractor-present trials, with this high probability distractor location being counterbalanced across participants.  
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randomly from 180 possible color values that were evenly distributed along a color wheel in CIE L*a*b 

color space (L = 60, a = 22, b = -1, radius = 50). The colors of the squares in the upper right and lower left 

were then selected to be exactly 90° and -90° away in color space, direction randomly assigned on each 

trial, from the color in the upper left. The lower right square was always 180° away in color space from 

the color in the upper left. The target square was indicated by surrounding its location with a bold, thick 

frame for the duration of the stimulus array. The stimulus array was followed by a blank delay screen for 

100ms, followed by four scrambled-color square masks (each mask was a 22x22 grid of randomly 

generated colors created prior to the start of the experiment, with each mask always appearing in the 

same location for the duration of the experiment) for 200ms. Afterwards, the response screen 

appeared, consisting of a color wheel centered on the screen (diameter = 6.5°, width = 1°) displaying all 

180 possible color values, along with a white frame post-cue in the target location to remind 

participants which location they should try and recall the color from. After making their selection by 

clicking on a color, a white feedback line appeared over the correct color for 500ms before proceeding 

to the next trial. 

 On two thirds of trials, a salient distractor (four white dots) would appear around one of the 

nontarget locations. To create a high probability distractor location, one of the four stimulus locations 

was pre-determined (counterbalanced across participants) to contain the salient distractor on 62.5% of 

distractor-present trials, with the appearance of the salient distractor evenly split among the other three 

locations on the remaining (12.5% each) distractor-present trials. Note that target appearance was also 

unevenly distributed amongst the four locations, with the target appearing in the high probability 

distractor location less frequently (16.7% of trials) compared to each of the other three locations (27.8% 

of trials). We opted for this design with differential target regularities to more easily balance other 

factors, since previous research has shown that spatial suppression is mainly driven by statistical 

learning of distractor location probabilities, not target activation (Failing et al., 2019), and similar 
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suppression effects have been found for contexts that contain either balanced or unbalanced target 

probabilities (Chang et al., 2023).  

 Before beginning the experiment, participants were instructed to always report the color of the 

target stimulus on that trial (the color appearing in the location of the bold, white frame). No mention 

regarding the four white dots (salient distractor) was made, however, we strongly emphasized to 

participants that their target would be outlined in a bold white frame, the location of which was the only 

relevant stimulus to attend to in the array. (We also included a post-cue redisplaying the target location 

during the response stage, so it was unlikely participants would simply mistake the distractor cue for the 

target cue; Chen et al. (2019) verified with confidence reports that distractor-induced swap errors were 

made with high confidence even in the presence of the post-cue, suggesting that swap errors were due 

to disrupted color-location binding and not participants actively encoding the distractor color.) 

Participants performed 10 practice trials (7 of which contained a salient distractor; all 10 excluded from 

analyses) before starting the main experiment. Participants then completed 1080 total trials (five blocks 

of 216 trials) within 1.5 to 2 hours.  

Following the completion of the experiment, a series of exit questions appeared on-screen for 

participants to answer. The first question (EQ1) asked, “Overall, on what percentage of trials did the four 

white dots seem to appear?”, and participants were asked to respond by selecting one of the number 

keys 1 through 9, corresponding to 10% to 90% of trials, in 10%-increments. Next, participants were 

asked (EQ2), “Did one location seem to be indicated more frequently by the four white dots?”, and they 

were told to press the Y-key for “yes” and the N-key for “no”. The next question (EQ3) asked, 

“Regardless of how you answered the previous question, take a guess at the location that the four white 

dots appeared in the most by pressing the corresponding number key.”, and a black frame appeared in 

each of the previous four stimulus locations numbered 1 through 4. The final question (EQ4) asked, “Did 

the target location ever appear to change within a trial?”, for which participants were again instructed 
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to press the Y-key for “yes” and the N-key for “no”. This final question was included as an exploratory 

measure to see if participants may have been confused about which location was initially the target. 

 

Analyses 

We restricted our analyses to trials where the distractor and target were in adjacent positions 

(to accommodate the analysis below), or where the distractor was absent but the target was in or 

adjacent to the high probability distractor location. We excluded any trials in which fixation was broken 

(>2° deviation from the fixation dot) during the stimulus array.  

For our main analyses, we focused on three types of trials, depicted in Figure 2A. In the “High 

Probability Distractor” condition (185-300 trials per subject, depending on fixation exclusions), the 

salient distractor appeared in its likely location on that trial. For ease of reference, we refer to this likely 

distractor location as the High Probability Distractor (HPD) location. In the “Low Probability Distractor” 

condition (83-120 trials per subject, depending on exclusions), the salient distractor appeared in one of 

the other locations (and the Target was also not in the HPD location). In the “Distractor Absent: Control” 

condition (190-270 trials per subject, depending on exclusions), there was no salient distractor and the 

target appeared in a control (not HPD) location. In a set of secondary analyses, we also analyzed an 

additional condition, “Distractor Absent: target in HPD” condition (75-90 trials per subject, depending on 

exclusions), when the salient distractor was absent and the target appeared in the high probability 

distractor location. Our design also resulted in additional trial types (e.g., distractor present: target in 

HPD) that we did not analyze due to their infrequency (<75 trials per subject) not allowing for sufficient 

trials to model. 

For every trial, the angular distance on the color wheel between the reported color and the 

target color was calculated as the response error. This error was then aligned such that the target color 

was centered at 0° and the reported color could be a maximum of ±180° away. On distractor-present 
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conditions of interest, in the actual display, the salient distractor color could have been located either 

+90° or -90° from the target on the color wheel; for the analyses, we re-aligned the direction of 

response errors on the -90 trials so that the salient distractor would always be coded as +90° and the 

control nontarget (the square located diagonal to the distractor location) as -90° in our analyses. This 

allowed us to label response errors with a positive sign as being ‘towards’ the distractor location’s color 

and response errors with a negative sign as ‘away’ from the distractor location’s color within the 

distractor-present conditions of interest. On half of the distractor-absent trials (randomly selected), the 

sign of the response error was flipped to match the distractor-present trials’ realignment process and 

eliminate any selection confounds driven by color direction on the color wheel. 

For each condition, each participant’s distribution of response errors was then fit with a 

probabilistic mixture model (Formula 1 for the distractor-present conditions and Formula 2 for the 

distractor-absent conditions) estimating five parameters: 𝛾 estimated for the proportion of random 

guesses (a uniform distribution); 𝛽sal estimated the probability of misreporting the nontarget in the 

salient distractor location on distractor-present trials (or 𝛽ntA for one of the control nontargets on 

distractor-absent trials; i.e., a von Mises distribution centered at +90°); 𝛽nt estimated the probability of 

misreporting the control nontarget on distractor-present trials (or 𝛽ntB for the other control nontarget 

on distractor-absent trials; i.e., a von Mises centered at -90°); and the probability of reporting the target 

(a von Mises distribution with a flexible mean 𝜇, and concentration 𝜅)	was estimated by 1 – 𝛽sal – 𝛽nt – 𝛾	

for distractor-present conditions and 1 – 𝛽ntA – 𝛽ntB – 𝛾	for distractor-absent conditions.  

 

𝑝(𝜃) = (1 – 𝛽sal – 𝛽nt – 𝛾)𝜙𝜇,𝜅 + 𝛽sal𝜙90°,𝜅 + 𝛽nt𝜙−90°,𝜅 + 𝛾( !"#)                                               (Formula 1) 

𝑝(𝜃) = (1 – 𝛽ntA – 𝛽ntB – 𝛾)𝜙𝜇,𝜅 + 𝛽ntA𝜙90°,𝜅 + 𝛽ntB𝜙−90°,𝜅 + 𝛾( !"#)                                (Formula 2) 
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The model was fit to individual participant data for each condition of interest by applying the 

Markov chain Monte Carlo method using MemToolbox (Suchow et al., 2013). Kolmogorov–Smirnov tests 

were then run on all main model fittings to ensure good fits to the raw data (all p values > .1). The best-

fitting parameter estimates obtained for each subject and condition were compared in JASP software 

(Version 0.11.1) and MATLAB (Mathworks) using one- and two-way repeated measures ANOVAs, along 

with paired- and one-sample two-tailed t-tests. Our main comparisons of note involved (1) comparisons 

of basic performance indicators, including the parameter estimates for random guessing (𝛾) and 

standard deviation (SD = '1/𝜅), and (2) comparisons of systematic feature errors, specifically feature 

swap errors indicated by comparing the probability of nontarget reports of the salient distractor vs 

control colors (𝛽sal vs 𝛽nt) and distortion errors indicated by mean shifts (𝜇) deviating from 0. 

While we have chosen to use a probabilistic mixture model (Bays et al., 2009; Zhang & Luck, 

2008) for our main data analyses, we recognize the criticisms of this type of model, particularly in 

comparison to the target confusability competition (TCC) model (Schurgin et al., 2020; Williams et al., 

2022). However, we note that we are not drawing conclusions based on an assumption that the 

parameters for guess rate and response precision reflect independent theoretical entities. Our main 

focus is on the swap rate parameter, and it has been shown that in cases where overall memory 

strength is high (e.g., in the current study the probability of reporting the target is greater than .9, on 

average), there is general agreement between swapping estimates obtained from a standard mixture 

model and the TCC-Swap model, according to Williams et al. (Williams et al., 2022). 

 

 

Results 

 On average, 7% of trials were discarded due to fixation broken across the 52 participants. 
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Attentional Capture: Basic Performance Indicators 

 Figure 2B shows the performance measures for our three main conditions of interest. As pre-

registered, we first tested the basic premise that the salient distractors captured attention and impaired 

performance in the control (Low Probability Distractor) condition. Indeed, we measured a significantly 

higher probability of random guessing (𝛾	parameter) on “Low Probability Distractor” trials compared to 

“Distractor Absent: Control” trials, t(51) = 5.980, p < .001, d = .829, BF10 = 6.72x104, as well as 

significantly worse precision (higher SD parameter), t(51) = 4.582, p < .001, d = .635, BF10 = 6.85x102. 

These results indicate that the presence of a salient distractor hampered overall performance, mirroring 

the analogous comparisons reported by Chen et al. (2019).  

We next examined whether the learned spatial suppression manipulation was effective, by 

comparing these basic performance indicators of attention capture on trials where the distractor was in 

the likely location versus a control location. The guess rate was indeed significantly lower on “High 

Probability Distractor” trials compared to “Low Probability Distractor” trials, t(51) = -3.696, p < .001, d = 

-.513, BF10 = 49.28. SD was also significantly lower on “High Probability Distractor” trials compared to 

“Low Probability Distractor” trials, t(51) = -2.589, p = .012, d = -.359, BF10 = 3.06. Together, these results  

suggest that spatial suppression was occurring when the salient distractor appeared in the likely 

location, leading to overall improved performance on those trials relative to when the salient distractor 

appeared in one of the less likely locations. 
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Figure 2. Probabilistic mixture results for main conditions of interest. A.) Schematics of “Low Probability 
Distractor”, “High Probability Distractor”, and “Distractor Absent: Control” conditions, illustrating example 
stimulus arrays based on the position of the salient distractor relative to the high probability (HP) distractor 
location. Nontargets are labeled in physical space (left) and color wheel space (right), for these illustrative 
examples. Response histograms collapsed across participants are shown for each condition at the right. All 
histograms are plotted as response errors relative to the correct target color (0° error), aligned with the salient 
distractor at +90° error when present. B.) Mean maximum likelihood parameter estimates for: probability of 

random guesses (𝛾), SD (#1/𝜅), mean shift (mu), and probability of nontarget responses (𝛽). Cartoons illustrating 
each parameter in the model are shown in red below each plot. In the distractor present condition, the nontarget 
in the distractor location is represented by 𝛽sal, while 𝛽nt represents the control nontarget; a negative mean shift 
indicates a biasing of target responses away from the color of the nontarget in the distractor location. Error bars 
indicate standard error from the mean, N=52. 
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Feature Interference Errors 

 Our primary question of interest is whether suppression of the high probability distractor 

location protects targets from feature interference errors. We compared our distractor present 

conditions (“High Probability Distractor” vs “Low Probability Distractor”) and their rates of nontarget 

misreports (𝛽sal vs 𝛽nt) using a repeated-measures ANOVA. We observed a significant main effect of 

condition, F(1, 51) = 31.739, p < .001, η2 = .106, condition model BF10 = 7.97x102, such that misreport 

errors were greater for low than high probability distractors; and a significant main effect of nontarget, 

F(1, 51) = 16.153, p < .001, η2 = .122, nontarget model BF10 = 3.28x103, such that misreports more 

frequently reflected the salient distractor than the control nontarget. Importantly, there was a 

significant interaction, F(1, 51) = 8.795, p = .005, η2 = .032, with strongest evidence for the condition + 

nontarget + condition × nontarget model BF10 = 3.29x107 compared to the null model (next strongest 

evidence: condition + nontarget model BF10 = 8.20x106), indicating that the difference between 𝛽sal and 

𝛽nt was greater in the “Low Probability Distractor” condition compared to the “High Probability 

Distractor” condition. Follow-up simple effect t-tests found the 𝛽sal vs. 𝛽nt comparison was significant for 

both conditions (“Low Probability Distractor”: t(51) = 3.756, p < .001, d = .521, BF10 = 58.42, “High 

Probability Distractor”: t(51) = 3.321, p = .002, d = .461, BF10 = 17.86). Together, these results suggest 

that distractor-induced swap errors were present in both conditions, but there was indeed a significant 

difference in the rate of these errors depending on whether the salient distractor appeared in its likely 

location or elsewhere. In other words, suppression of the likely salient distractor location reduced the 

likelihood of swap error feature interference.  

As a purely exploratory analysis for potential learning effects, we aggregated trials across all 

participants to increase power so that we could analyze each of the five blocks separately. Swaps to the 

salient distractor decreased over time, as expected based on distractor habituation literature (e.g., 

Turatto et al. 2018). However, the rate of decrease was similar for both distractor conditions, and the 
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difference between “High Probability Distractor” and “Low Probability Distractor” swaps was evident 

even within the first block of trials (216 trials), suggesting these statistical regularities were learned 

relatively quickly. 

Finally, we assessed target distortion errors, by comparing the target distribution’s mean 

parameter estimate to the true, aligned value of 0. One-sample t-tests did not show a significant mean 

shift in either the “High Probability Distractor”, t(51) = .109, p = .914, d = .015, BF10 = .15, nor “Low 

Probability Distractor”, t(51) = -.164, p = .871, d = -.023, BF10 = .15, conditions. The latter result was 

surprising to us, as we had anticipated observing a repulsion effect for the mean of the target 

distribution when the distractor was present in a low-probability location, based on previous work (Chen 

et al., 2019). Possible explanations for the lack of a repulsion effect are explored in the Discussion 

section below. 

 

Secondary Analysis: Distractor Absent Conditions Comparison 

 The primary results above showed that participants spatially suppressed the high probability 

distractor location, and that this suppression aided in preventing feature interference by reducing swap 

errors induced by the salient distractor. As a secondary question, we can ask what additional effects this 

spatial suppression may have on feature perception on trials when the target appeared in the high 

probability distractor location, as prior studies examining (non-learning related) suppression have 

reported worse memory performance at the location of a suppressed salient distractor (e.g., Gaspelin et 

al., 2015; Gaspelin & Luck, 2018). To assess this, we compared distractor absent conditions which 

differed only on whether the target was in the high probability distractor location (“Distractor Absent: 

target in HPD”) or a control location (“Distractor Absent: Control”; Figure 3).  A paired-samples t-test 

revealed no significant difference in guess rate between the “Distractor Absent: target in HPD” condition 

and the “Distractor Absent: Control” condition, t(51) = -1.531, p = .132, d = -.212, BF10 = .45. There was, 
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however, a significantly higher SD in the “Distractor Absent: target in HPD” condition compared to the 

“Distractor Absent: Control” condition, t(51) = 2.399, p = .020, d = .333, BF10 = 2.04, suggesting worse 

overall response precision when the target appeared in the high probability distractor location (but see 

Schurgin et al., 2020, for arguments against interpreting guess rate and SD as separate parameters). 

 

Figure 3. Probabilistic mixture results for distractor absent conditions. A.) “Distractor Absent: Control” (target not 
in the high probability distractor [HPD] location) and “Distractor Absent: target in HPD” condition response 
histograms collapsed across participants. B.) Mean maximum likelihood parameter estimates for: probability of 
random guesses (𝛾), SD (#1/𝜅), and probability of nontarget responses (𝛽). Error bars indicate standard error 
from the mean, N=52. 
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Next, we examined the probability of misreporting a nontarget color between these two 

distractor absent conditions. We compared our distractor absent conditions (“Distractor Absent: target 

in HPD” vs “Distractor Absent: Control”) and their rates of nontarget misreports (𝛽ntA and 𝛽ntB) using a 

repeated-measures ANOVA. We observed a significant main effect of condition, F(1, 51) = 14.499, p  

<.001, η2 = .134, such that misreport errors were greater in the “Distractor Absent: target in HPD” 

condition, and the strongest evidence for the condition model BF10 = 6.98x103 compared to the null 

model (next strongest evidence: condition + nontarget model BF10 = 1.08x103). The main effect of 

nontarget was not significant, F(1, 51) = .052, p = .820, η2 = 1.87x10-4, nontarget model BF10 = .15; nor 

was there a significant interaction, F(1, 51) = .281, p = .598, η2 = .001, condition + nontarget + condition 

× nontarget model BF10 = 2.39x102. Significant increases in overall nontarget reports but not random 

guesses in the “Distractor Absent: target in HPD” condition (Figure 3) suggests that suppression of the 

high probability distractor location may have led participants to allocate relatively more of their 

attention to the control locations, so they were more likely to select a control nontarget color instead of 

the target when the target appeared in the high probability distractor location compared to when it 

appeared elsewhere.  

 

Exit Questions 

 On average, participants reported that the four white dots appeared on 45% of trials (EQ1), 

significantly less than the true frequency of 67%, t(51) = -6.731, p < .001, d = -.933, BF10 = 8.82x105. 

Accordingly, most participants (37/52) responded “no” when asked if they noticed the salient distractor 

being biased to one location (EQ2), and only 10 of 52 participants correctly identified their high 

probability distractor location (EQ3), which did not significantly differ from chance (25%) according to a 

binomial test (p = .423). Finally, 30/52 participants answered “yes” when asked if the target probe ever 

changed location between the memory array and response screen (EQ4). Importantly, none of these exit 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Deleted: most participants (

Deleted: )



FEATURE PROTECTION 

 19 

question results showed significant interactions with our key findings (all p-values > .22), suggesting that 

the resulting effects of suppression we measured did not depend on conscious awareness of the 

distractor or its manipulated regularities.  

 

Discussion 

 Salient distractors can not only slow our reaction times (Folk et al., 1992; Pashler, 1988; 

Theeuwes, 1994; Yantis & Jonides, 1984), but they also interfere with our perception of a nearby 

target’s features (Chen et al., 2019). We investigated how distractor suppression could potentially 

attenuate the detrimental effects of attentional capture on feature processing. We found that 

experienced-based suppression of a high probability distractor location led to decreased interference 

from a salient distractor appearing in that location. This was evidenced by lower guessing rates, SD, and 

swap rates when a salient distractor appeared in a high probability distractor location, compared to 

when it appeared in a less high probability distractor location. These results expand upon the extent of 

experience-driven suppression’s role in cognitive processes beyond benefits to reaction time and simple 

accuracy measures (Britton & Anderson, 2020; Huang et al., 2021; Kong et al., 2020; Leber et al., 2016; 

Wang & Theeuwes, 2018b, 2018a).  

 Here, we showed that the suppression of a salient distractor aided in protecting target feature 

processing. In addition to overall performance improving when the distractor was suppressed, there was 

a significantly lower likelihood of mistakenly reporting the color (swap errors) in the suppressed 

location. This suggests that the reduction in capture by the salient distractor reduced the ability for co-

located features to inadvertently enter working memory and potentially interfere with the target 

representation. The idea that the features of suppressed distractors are less likely to be processed and 

enter working memory is supported by the findings of Won et al. (2022). Won et al. (2022) studied a 

different type of distractor suppression: rather than learned spatial suppression of a predictable 
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distractor location, their suppression was based on distractor frequency (the idea that an initial 

unexpected distractor captures attention more than a repeated distractor in a context where distractors 

are frequently present). Moreover, whereas our study focused on distractor-induced interference for 

target feature reports, Won et al. (2022) probed memory for the salient distractor feature itself. Their 

design combined a typical singleton search task with a one-shot memory probe for the color of the 

salient distractor after a varying number of trials that differed across participants. Their results showed 

that, in addition to search times for the target decreasing over time, feature report performance for the 

color of the salient distractor also decreased over time. In other words, those participants who saw 

more salient distractors - before being asked to report what one looked like - had worse feature 

memory compared to participants who saw fewer salient distractors before the memory probe (Won et 

al., 2022). These findings suggest that the features of a suppressed salient distractor are less likely to be 

processed, at least in the case of spatially-generic distractor suppression via repeated exposure context. 

The results of the current study suggest that experience-driven suppression of a spatial location 

expected to contain a distractor also results in reduced processing of that distractor’s features. 

Moreover, we provide novel evidence for an additional consequence of this effect: that learned spatial 

suppression also benefits encoding and recall of the target features.  

A secondary question which the present study may provide some insight into is the ongoing 

debate over whether learned suppression effects are proactive (Chang et al., 2023; Geng & Duarte, 

2021; Huang et al., 2021; Kong et al., 2020). In addition to testing feature reporting depending on the 

location of the salient distractor, we included a secondary analysis to examine if we would observe any 

differences between distractor-absent conditions depending on where the target was located. This 

comparison was conducted to see whether we would find evidence for worse performance when the 

target appeared in the high probability distractor location, which might have suggested that location 

was being proactively suppressed. Alternatively, if our main results were driven by reactive suppression, 
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we would predict performance would not be worse when the target appeared in the high probability 

distractor location, as on these distractor-absent trials there was no distractor to trigger suppression. 

While we did observe higher SD and nontarget reporting when the target appeared in the location 

where the distractor was expected, there was no significant difference in guess rate and, in fact, the 

average guess rate was numerically lower when the target appeared in the high probability distractor 

location compared to when it appeared elsewhere. Although the present results do not provide 

definitive evidence that reduced feature interference is driven by either a proactive or reactive 

mechanism of suppression, these distractor absent results may support predictions made by the Priority 

Accumulation Framework (PAF), which proposes that priorities can be assigned and updated for 

locations over time before an attentional shift is triggered to the highest priority location (Darnell & 

Lamy, 2022; Lamy et al., 2018). According to the PAF, the learned suppression we measured here can be 

attributed to deprioritization of the high probability distractor location. This would suggest the other 

three locations would have relatively higher priority, thus leading to a higher likelihood of attentional 

selection and explaining the greater tendency to misreport nontargets when the target appeared in the 

high probability distractor location.  

 Finally, an unanticipated finding was the absence of any repulsion effects. Chen et al. (2019) 

observed that attentional capture caused both significant swapping to the salient distractor and a target 

response distribution shifted significantly away from the salient distractor’s color. Therefore, we 

expected to observe a repulsion effect, at the very least, when our salient distractor appeared in a less 

likely (control) location. We observed no such effect, however. One potential explanation could be a 

difference in experimental design: in the current study, to maximize power for our critical distractor 

probability manipulation, there were no “valid” trial types where the salient cue surrounded the target 

location, which had occurred on one third of the trials in Chen et al. (2019). Here, the salient cue was 

always a distractor and never overlapped with the target, making it a more pure “distracting cue” that 
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participants should always avoid. This design decision regarding the distracting cue could actually 

represent another learned regularity that resulted in additional distractor suppression. Previous 

research has shown that distractor regularities beyond its spatial location can be learned about and 

affect performance, such as features (Stilwell et al., 2019), frequency (Geyer et al., 2008), and prior 

value (Anderson et al., 2011). Thus, it is possible that learned distractor suppression could be 

contributing to a protection from feature repulsion errors as well, but future work would be needed to 

investigate this more definitively.  

 To conclude, we measured feature encoding and recall under salient distraction, which could be 

spatially suppressed on a majority of trials by learning where the salient distractor was likely to appear. 

We found that, in addition to helping us avoid other known distractor costs, suppression plays a larger 

role in helping to prevent features associated with the distractor from interfering with the processing of 

our target item.  
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