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FEATURE PROTECTION

Abstract

We are often bombarded with salient stimuli that capture our attention and distract us from our
current goals. Decades of research has shown the robust detrimental impacts of salient distractors on
search performance and, of late, in leading to altered feature perception. These feature errors can be
quite extreme, and thus, undesirable. In search tasks, salient distractors can be suppressed if they
appear more frequently in one location, and this learned spatial suppression can lead to reductions in
the cost of distraction as measured by reaction time slowing. Can learned spatial suppression also
protect against visual feature errors? To investigate this question, participants were cued to report one
of four briefly presented colored squares on a color wheel. On two-thirds of trials, a salient distractor
appeared around one of the nontarget squares, appearing more frequently in one location over the
course of the experiment. Participants' responses were fit to a model estimating performance
parameters and compared across conditions. Our results showed that general performance (guessing
and precision) improved when the salient distractor appeared in a likely location relative to elsewhere.
Critically, feature swap errors (probability of misreporting the color at the salient distractor’s location)
were also significantly reduced when the distractor appeared in a likely location, suggesting that learned
spatial suppression of a salient distractor helps protect the processing of target features. This study
provides evidence that, in addition to helping us avoid salient distractors, suppression likely plays a

larger role in helping to prevent distracting information from being encoded.
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Introduction

Effective attentional control requires not only accurate guidance towards relevant stimuli and
locations, but also the ability to suppress irrelevant, but salient, stimuli. Driving to work requires
attending to approaching stoplights while preventing ourselves from being distracted by things like text
messages. The goal of external selective attention is to determine what in our environment is worthy of
further processing (i.e., working memory encoding). However, an irrelevant stimulus may appear that is
so salient that we are unable to ignore it, causing us to select the irrelevant stimulus for attention and
hindering our ability to efficiently achieve our current goal. Such incidental shifts in attention are known
as attentional capture.

Much of the work on attentional capture has focused on the spatiotemporal impacts of
attentional capture using measures of reaction time and forced-choice accuracy measures. These
studies have converged on the finding that attentional capture can negatively impact behavior:
participants take longer to respond and are less accurate when a distractor is present (Pashler, 1988;
Theeuwes, 1994; Yantis & Jonides, 1984; for a review see Luck et al., 2021). More recent work, however,
suggests that the consequences of attentional capture are broader than once thought. Chen, Leber, and
Golomb (2019) measured the consequences of attentional capture on feature perception and recall
using a delayed-estimation task with a continuous response modality. They conducted two experiments
in which four colored squares were briefly shown, with the target being simultaneously outlined by a
bolded white frame. On two-thirds of trials, a salient distractor appeared in the display: four white dots
surrounded one of the colored squares, half of the time around one of the nontargets adjacent to the
target square. Participants reported the color of the target square on a subsequent color wheel
surrounding a post-cue of the target location. Probabilistic mixture modeling (Bays et al., 2009; Zhang &
Luck, 2008) was used to analyze the distribution of each participant’s responses, which allowed for

measurements revealing the specific types of errors a salient distractor could elicit from this continuous
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feature space. Not only were participants more likely to guess and respond with less precision when a
salient distractor was present, but significant amounts of swapping (selecting the color in the salient
distractor location) and repulsion (near-target responses biased slightly away from the color in the
salient distractor location) were also observed. These results showed, in addition to basic performance
decrements in the presence of a salient distractor, that attentional capture by a distractor can lead to
perceptual feature interference (even though the color appearing in the salient distractor location was
no more salient than the other colors present).

In the real world, the consequences of feature interference could be detrimental, especially
since there is an ever-increasing number of items being designed to capture our attention (e.g., online
advertisements, phone notifications, storefront displays, etc.). How are we able to avoid these
distractors to effectively navigate our environments? Prior work has shown suppression plays a key role
in meeting this challenge (Gaspelin et al., 2015; Gaspelin & Luck, 2018; Sawaki et al., 2012; Sawaki &
Luck, 2010). For example, when a particular location is more likely to contain a distractor, observers can
learn this statistical regularity over time. They then begin to suppress that high probability distractor
location, mitigating the consequences of attentional capture and improving performance. This general
finding has been documented whether the high probability distractor location is fixed (Britton &
Anderson, 2020; Huang et al., 2021; Kong et al., 2020; Wang & Theeuwes, 2018b, 2018a) or flexible (i.e.,
when the high probability distractor location is defined via its position relative to another display item;
Leber et al., 2016). While information about statistical regularities can be explicit (i.e., directly cued) or
implicit (i.e., learned over time), there is some evidence that implicit learning over time can be more
effective in mitigating attentional capture effects (Moher & Egeth, 2012; Noonan et al., 2016; Wang &
Theeuwes, 2018a).

A number of studies have explored the mechanisms behind this suppression (Failing et al., 2019;

Gaspelin et al., 2015; Geng & Duarte, 2021; Gong & Theeuwes, 2021; Huang et al., 2021; Won et al.,
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2022), with debates regarding whether suppression effects can be explained better by distractor
inhibition or target enhancement (Failing et al., 2019), or if it operates in a proactive (i.e., preemptively
suppressing a distractor before selection) or reactive (e.g., “search and destroy”) manner (Chang et al.,
2023; Geng & Duarte, 2021; Huang et al., 2021; Kong et al., 2020). Recently, Gong and Theeuwes (2021)
characterized a saliency-specific mechanism, while Won et al. (2022) suggested that attentional
suppression serves to prevent salient, task-irrelevant information from entering working memory.
However, much of the previous literature on experience-driven suppression has relied solely on simple
search tasks with limited (often, two) response options, and these studies have largely focused on how
suppression may protect against the prolonged behavioral response times characteristic of attentional
capture (but see Won et al., 2022, for an investigation of how suppression affects memory precision for
a salient distractor over time). As we now know, however, the consequences of distraction extend
beyond disruptions to response time: dynamic distraction also causes systematic and measurable
perceptual errors (Chen et al., 2019). Presently, it is unknown whether experience-driven suppression
also protects target representations against distractor-induced perceptual errors.

The present study aims to investigate whether — and to what extent — experience-driven spatial
suppression protects the processing of the target features. We employ a continuous color report
paradigm — rather than reaction time or accuracy measurements — to examine whether a salient
distractor appearing in a learned likely location will result in reduced feature interference compared to a
distractor appearing in a less likely location. We predict that spatial suppression of a high probability
distractor location will not only result in improved overall performance when the salient distractor
appears in the likely location (relative to when it appears elsewhere), but predictable distractors may
interfere less with feature perception and working memory processes. This protection from feature
interference could be evidenced by a reduction in the feature swapping and/or repulsion errors typically

elicited by attention capture (Chen et al., 2019).
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Methods
Sample

Participants were recruited from The Ohio State University campus and received either course
credit or payment for their time. To determine our sample size, we pre-registered an optional stopping
rule based on a sequential Bayes factor design. This method of determining sample size has been
demonstrated as an effective method that protects interpretability of the results and does not induce
statistical bias or require penalization for checking (Rouder, 2014; Schonbrodt & Wagenmakers, 2018).
Our stopping rule was pre-registered on OSF as follows (condensed here, see https://osf.io/ys3kc for full
description): According to a sequential analysis of the Bayes factor for the swap effect in Experiment 1 of
Chen et al., (2019), ‘strong evidence’ (BF1o > 10; Lee & Wagenmakers, 2014) was observed by their 20"
participant. Therefore, we set our minimum sample size to 20. After that point, we collected data in 8-
participant intervals until sufficient evidence for or against our main comparison of interest was reached
(or a maximum of N=60). Our main comparison of interest concerned whether the swap effect for the
salient distractor in the probable location was significantly different compared to the salient distractor
in a control location (see Analyses). We set our thresholds to BF1 > 6 as sufficiently in support of the
alternative and BFyo < 1/6 as sufficiently in support of the null model.

Our stopping-rule threshold was reached at 52 participants (29 female, 22 male, 1 non-binary,
aged 18-36). Data from 8 additional participants who completed the experiment were excluded prior to
analysis for not maintaining fixation on at least 75 trials in each condition of interest.

Setup

Each participant was seated and placed their head against a chin and forehead rest 60cm away

from the monitor. The 62cm LCD monitor’s resolution was adjusted to display a 4x3 presentation

window (resolution: 1280x960, refresh rate: 200Hz) and was color calibrated with a Minolta CS-100
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colorimeter. Stimuli were generated using MATLAB (Mathworks) and the Psychophysics Toolbox
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) on a Windows computer. Eye position was recorded
using an Eyelink 1000 eye-tracker (SR Research).
Procedure

As displayed in Figure 1, every trial began with a black fixation cross appearing at the center of a
grey background. Once this cross had been fixated (eye position accurately maintained within a 2°
radius) for a consecutive 700ms, it changed into a black dot, and placeholders (four thin, white frames)
appeared outlining the locations of the upcoming stimuli. Fixation had to be maintained for an
additional 300m:s. If fixation was broken during this time (>2° deviation), the cross would re-appear, and
this loop would continue until fixation was properly maintained for the entire 1000ms. This two-stage
fixation period allowed us to maximize the number of usable trials, as we would exclude any trials from
analyses in which fixation was broken following this period.

Once consistent fixation was achieved, the fixation dot remained on-screen while the stimulus
array was presented for 50ms. The stimulus array was four colored squares (each sized 2° x 2°, centered
at an eccentricity of 4°), which appeared in upper left, upper right, lower left, and lower right corner

positions. The color of the squares varied on every trial. The color of the upper left square was chosen

Time
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Figure 1. Experimental procedure (not drawn to scale). On every trial, participants were shown four colored
squares and instructed to report the color within the target square (outlined by the bold white frame, also post-
cued during presentation of the color wheel). On two-thirds of trials, four white dots would appear around one of
the nontarget locations (salient distractor). This salient distractor would appear in one particular location on 62.5%
of distractor-present trials, with this high probability distractor location being counterbalanced across participants.

7
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randomly from 180 possible color values that were evenly distributed along a color wheel in CIE L*¥a*b
color space (L=60, a =22, b =-1, radius = 50). The colors of the squares in the upper right and lower left
were then selected to be exactly 90° and -90° away in color space, direction randomly assigned on each
trial, from the color in the upper left. The lower right square was always 180° away in color space from
the color in the upper left. The target square was indicated by surrounding its location with a bold, thick
frame for the duration of the stimulus array. The stimulus array was followed by a blank delay screen for
100ms, followed by four scrambled-color square masks (each mask was a 22x22 grid of randomly
generated colors created prior to the start of the experiment, with each mask always appearing in the
same location for the duration of the experiment) for 200ms. Afterwards, the response screen
appeared, consisting of a color wheel centered on the screen (diameter = 6.5°, width = 1°) displaying all
180 possible color values, along with a white frame post-cue in the target location to remind
participants which location they should try and recall the color from. After making their selection by
clicking on a color, a white feedback line appeared over the correct color for 500ms before proceeding
to the next trial.

On two thirds of trials, a salient distractor (four white dots) would appear around one of the
nontarget locations. To create a high probability distractor location, one of the four stimulus locations
was pre-determined (counterbalanced across participants) to contain the salient distractor on 62.5% of
distractor-present trials, with the appearance of the salient distractor evenly split among the other three

locations on the remaining (12.5% each) distractor-present trials. Note that target appearance was also
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suppression effects have been found for contexts that contain either balanced or unbalanced target

probabilities (Chang et al., 2023).

Before beginning the experiment, participants were instructed to always report the color of the
target stimulus on that trial (the color appearing in the location of the bold, white frame). No mention

regarding the four white dots (salient distractor) was made, however, we strongly emphasized to

participants that their target would be outlined in a bold white frame, the location of which was the only

relevant stimulus to attend to in the array. (We also included a post-cue redisplaying the target location
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Participants performed 10 practice trials (7 of which contained a salient distractor; all 10 excluded from

analyses) before starting the main experiment. Participants then completed 1080 total trials |(five blocks
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of 216 trials) within 1.5 to 2 hours.

Following the completion of the experiment, a series of exit questions appeared on-screen for
participants to answer. The first question (EQ1) asked, “Overall, on what percentage of trials did the four
white dots seem to appear?”, and participants were asked to respond by selecting one of the number
keys 1 through 9, corresponding to 10% to 90% of trials, in 10%-increments. Next, participants were
asked (EQ2), “Did one location seem to be indicated more frequently by the four white dots?”, and they
were told to press the Y-key for “yes” and the N-key for “no”. The next question (EQ3) asked,
“Regardless of how you answered the previous question, take a guess at the location that the four white
dots appeared in the most by pressing the corresponding number key.”, and a black frame appeared in
each of the previous four stimulus locations numbered 1 through 4. The final question (EQ4) asked, “Did

the target location ever appear to change within a trial?”, for which participants were again instructed
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to press the Y-key for “yes” and the N-key for “no”. This final question was included as an exploratory

measure to see if participants may have been confused about which location was initially the target,

Analyses

We restricted our analyses to trials where the distractor and target were in adjacent positions
(to accommodate the analysis below), or where the distractor was absent but the target was in or
adjacent to the high probability distractor location. We excluded any trials in which fixation was broken
(>2° deviation from the fixation dot) during the stimulus array.

For our main analyses, we focused on three types of trials, depicted in Figure 2A. In the “High
Probability Distractor” condition (185-300 trials per subject, depending on fixation exclusions), the

salient distractor appeared in its likely location on that trial. For ease of reference, we refer to this likely
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target appeared in a control (not HPD) location. In a set of secondary analyses, we also analyzed an

(Deleted: a control )

(Deleted: a control

(Formatted: Font color: Text 1 )
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exclusions), when the salient distractor was absent and the target appeared in the high probability
distractor location. Our design also resulted in additional trial types (e.g., distractor present: target in
HPD) that we did not analyze due to their infrequency (<75 trials per subject) not allowing for sufficient
trials to model.

For every trial, the angular distance on the color wheel between the reported color and the
target color was calculated as the response error. This error was then aligned such that the target color

was centered at 0° and the reported color could be a maximum of £180° away. On distractor-present
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conditions of interest, in the actual display, the salient distractor color could have been located either
+90° or -90° from the target on the color wheel; for the analyses, we re-aligned the direction of
response errors on the -90 trials so that the salient distractor would always be coded as +90° and the
control nontarget (the square located diagonal to the distractor location) as -90° in our analyses. This
allowed us to label response errors with a positive sign as being ‘towards’ the distractor location’s color
and response errors with a negative sign as ‘away’ from the distractor location’s color within the
distractor-present conditions of interest. On half of the distractor-absent trials (randomly selected), the
sign of the response error was flipped to match the distractor-present trials’ realignment process and
eliminate any selection confounds driven by color direction on the color wheel.

For each condition, each participant’s distribution of response errors was then fit with a
probabilistic mixture model (Formula 1 for the distractor-present conditions and Formula 2 for the
distractor-absent conditions) estimating five parameters: y estimated for the proportion of random

guesses (a uniform distribution); Bsa estimated the probability of misreporting the nontarget in the
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The model was fit to individual participant data for each condition of interest by applying the
Markov chain Monte Carlo method using MemToolbox (Suchow et al., 2013). Kolmogorov-Smirnov tests
were then run on all main model fittings to ensure good fits to the raw data (all p values > .1). The best-
fitting parameter estimates obtained for each subject and condition were compared in JASP software
(Version 0.11.1) and MATLAB (Mathworks) using one- and two-way repeated measures ANOVAs, along
with paired- and one-sample two-tailed t-tests. Our main comparisons of note involved (1) comparisons
of basic performance indicators, including the parameter estimates for random guessing (y) and
standard deviation (SD = \/m), and (2) comparisons of systematic feature errors, specifically feature
swap errors indicated by comparing the probability of nontarget reports of the salient distractor vs

control colors (Ssai vs Bnt) and distortion errors indicated by mean shifts (1) deviating from 0.

While we have chosen to use a probabilistic mixture model (Bays et al., 2009; Zhang & Luck, R (Formatted: Indent: First line: 0.5"

2008) for our main data analyses, we recognize the criticisms of this type of model, particularly in

comparison to the target confusability competition (TCC) model (Schurgin et al., 2020; Williams et al.,

2022). However, we note that we are not drawing conclusions based on an assumption that the

parameters for guess rate and response precision reflect independent theoretical entities. Our main

focus is on the swap rate parameter, and it has been shown that in cases where overall memory

strength is high (e.g., in the current study the probability of reporting the target is greater than .9, on

average), there is general agreement between swapping estimates obtained from a standard mixture

model and the TCC-Swap model, according to Williams et al. (Williams et al., 2022).

Results

On average, 7% of trials were discarded due to fixation broken across the 52 participants.

12
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Attentional Capture: Basic Performance Indicators
Figure 2B shows the performance measures for our three main conditions of interest. As pre-
registered, we first tested the basic premise that the salient distractors captured attention and impaired

performance in the control (Low Probability Distractor) condition. Indeed, we measured a significantly

(Formatted: Font color: Text 1

higher probability of random guessing (y parameter) on “Low Probability Distractor” trials compared to
“Distractor Absent: Control” trials, t(51) = 5.980, p < .001, d = .829, BFio = 6.72x10%, as well as
significantly worse precision (higher SD parameter), t(51) = 4.582, p <.001, d = .635, BF1o = 6.85x102.
These results indicate that the presence of a salient distractor hampered overall performance, mirroring
the analogous comparisons reported by Chen et al. (2019).

We next examined whether the learned spatial suppression manipulation was effective, by
comparing these basic performance indicators of attention capture on trials where the distractor was in

the likely location versus a control location. The guess rate was indeed significantly lower on “High

Probability Distractor” trials compared to “Low Probability Distractor” trials, t(51) = -3.696, p <.001, d =
-.513, BF10 = 49.28. SD was also significantly lower on “High Probability Distractor” trials compared to
“Low Probability Distractor” trials, t(51) =-2.589, p =.012, d =-.359, BF10 = 3.06. Together, these results
suggest that spatial suppression was occurring when the salient distractor appeared in the likely
location, leading to overall improved performance on those trials relative to when the salient distractor

appeared in one of the Jess likely locations.
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stimulus arrays based on the position of the salient distractor relative to the high probability ([HP\) distractor
location. Nontargets are labeled in physical space (left) and color wheel space (right), for these illustrative

examples. Response histograms collapsed across participants are shown for each condition at the right. All

histograms are plotted as response errors relative to the correct target color (0° error), aligned with the salient
distractor at +90° error when present. B.) Mean maximum likelihood parameter estimates for: probability of
random guesses (y), SD (\/1/_K), mean shift (mu), and probability of nontarget responses (f3). Cartoons illustrating
each parameter in the model are shown in red below each plot. In the distractor present condition, the nontarget
in the distractor location is represented by fSsal, while S represents the control nontarget; a negative mean shift
indicates a biasing of target responses away from the color of the nontarget in the distractor location. Error bars
indicate standard error from the mean, N=52.
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Feature Interference Errors

Our primary question of interest is whether suppression of the high probability distractor
location protects targets from feature interference errors. We compared our distractor present
conditions (“High Probability Distractor” vs “Low Probability Distractor”) and their rates of nontarget
misreports (Bsa Vs Bnt) using a repeated-measures ANOVA. We observed a significant main effect of
condition, F(1, 51) = 31.739, p < .001, n? = .106, condition model BFio = 7.97x10?, such that misreport
errors were greater for low than high probability distractors; and a significant main effect of nontarget,
F(1,51) = 16.153, p < .001, n? =.122, nontarget model BF;o = 3.28x10°, such that misreports more
frequently reflected the salient distractor than the control nontarget. Importantly, there was a
significant interaction, F(1, 51) = 8.795, p = .005, n? = .032, with strongest evidence for the condition +
nontarget + condition x nontarget model BFio = 3.29x10” compared to the null model (next strongest
evidence: condition + nontarget model BFyo = 8.20x10°), indicating that the difference between S, and
Bt Was greater in the “Low Probability Distractor” condition compared to the “High Probability
Distractor” condition. Follow-up simple effect t-tests found the Bsa vs. Snc comparison was significant for
both conditions (“Low Probability Distractor”: t(51) = 3.756, p <.001, d = .521, BFyo = 58.42, “High
Probability Distractor”: t(51) = 3.321, p =.002, d = .461, BF1o = 17.86). Together, these results suggest
that distractor-induced swap errors were present in both conditions, but there was indeed a significant
difference in the rate of these errors depending on whether the salient distractor appeared in its likely
location or elsewhere. In other words, suppression of the likely salient distractor location reduced the

likelihood of swap error feature interference.
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difference between “High Probability Distractor” and “Low Probability Distractor” swaps was evident

[Deleted: within the first block there was already a visible )

even within the first block of trials (216 trials), suggesting these statistical regularities were learned

relatively quickly.

Finally, we assessed target distortion errors, by comparing the target distribution’s mean
parameter estimate to the true, aligned value of 0. One-sample t-tests did not show a significant mean
shift in either the “High Probability Distractor”, t(51) =.109, p =.914, d =.015, BF1 = .15, nor “Low
Probability Distractor”, t(51) = -.164, p =.871, d = -.023, BF1o = .15, conditions. The latter result was

surprising to us, as we had anticipated observing a repulsion effect for the mean of the target

distribution when the distractor was present jn a Jow-probability location, based on previous work (Chen ‘

et al., 2019). Possible explanations for the lack of a repulsion effect are explored in the Discussion

section below.

Secondary Analysis: Distractor Absent Conditions Comparison

The primary results above showed that participants spatially suppressed the high probability
distractor location, and that this suppression aided in preventing feature interference by reducing swap
errors induced by the salient distractor. As a secondary question, we can ask what additional effects this
spatial suppression may have on feature perception on trials when the target appeared in the high
probability distractor location, as prior studies examining (non-learning related) suppression have
reported worse memory performance at the location of a suppressed salient distractor (e.g., Gaspelin et
al., 2015; Gaspelin & Luck, 2018). To assess this, we compared distractor absent conditions which
differed only on whether the target was in the high probability distractor location (“Distractor Absent:
target in HPD”) or a control location (“Distractor Absent: Control”; Figure 3). A paired-samples t-test
revealed no significant difference in guess rate between the “Distractor Absent: target in HPD” condition

and the “Distractor Absent: Control” condition, t(51) =-1.531, p =.132, d =-.212, BF;o = .45. There was,
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however, a significantly higher SD in the “Distractor Absent: target in HPD” condition compared to the
“Distractor Absent: Control” condition, t(51) = 2.399, p =.020, d = .333, BF1o = 2.04, suggesting worse
overall response precision when the target appeared in the high probability distractor location (but see

Schurgin et al., 2020, for arguments against interpreting guess rate and SD as separate parameters).

Distractor Absent: . Distractor Absent: .
control target in HPD
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Figure 3. Probabilistic mixture results for distractor absent conditions. A.) “Distractor Absent: Control” (target not
in the high probability distractor [HPD] location) and “Distractor Absent: target in HPD” condition response
histograms collapsed across participants. B.) Mean maximum likelihood parameter estimates for: probability of
random guesses (y), SD (\/1/_}6), and probability of nontarget responses (). Error bars indicate standard error
from the mean, N=52.
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Next, we examined the probability of misreporting a nontarget color between these two

distractor absent conditions. We compared our distractor absent conditions (“Distractor Absent: target

in HPD” vs “Distractor Absent: Control”) and their rates of nontarget misreports (Bapa and Sng) using a [Formatted: Font color: Text 1

(Formatted: Font color: Text 1

NN

repeated-measures ANOVA. We observed a significant main effect of condition, F(1, 51) = 14.499, p
<.001, n? =.134, such that misreport errors were greater in the “Distractor Absent: target in HPD”
condition, and the strongest evidence for the condition model BFi = 6.98x10° compared to the null
model (next strongest evidence: condition + nontarget model BFyo = 1.08x103). The main effect of
nontarget was not significant, F(1, 51) =.052, p = .820, n? = 1.87x10*, nontarget model BFio = .15; nor
was there a significant interaction, F(1, 51) = .281, p = .598, n? = .001, condition + nontarget + condition
x nontarget model BF1o = 2.39x102. Significant increases in overall nontarget reports but not random
guesses in the “Distractor Absent: target in HPD” condition (Figure 3) suggests that suppression of the
high probability distractor location may have led participants to allocate relatively more of their
attention to the control locations, so they were more likely to select a control nontarget color instead of
the target when the target appeared in the high probability distractor location compared to when it

appeared elsewhere.

Exit Questions

On average, participants reported that the four white dots appeared on 45% of trials (EQ1),
significantly less than the true frequency of 67%, t(51) = -6.731, p <.001, d = -.933, BFy, = 8.82x10°.
Accordingly, most participants (37/52) responded “no” when asked if they noticed the salient distractor
being biased to one location (EQ2), and only 10 of 52 participants correctly identified their high

probability distractor location (EQ3), which did not significantly differ from chance (25%) according to a

binomial test (p = .423). Finally, 30/52 participants answered “yes” when asked if the target probe ever [Deleted: most participants (

[Deleted: )

NN

changed location between the memory array and response screen (EQ4). Importantly, none of these exit
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question results showed significant interactions with our key findings (all p-values > .22), suggesting that
the resulting effects of suppression we measured did not depend on conscious awareness of the

distractor or its manipulated regularities.

Discussion

Salient distractors can not only slow our reaction times (Folk et al., 1992; Pashler, 1988;
Theeuwes, 1994; Yantis & Jonides, 1984), but they also interfere with our perception of a nearby
target’s features (Chen et al., 2019). We investigated how distractor suppression could potentially
attenuate the detrimental effects of attentional capture on feature processing. We found that
experienced-based suppression of a high probability distractor location led to decreased interference
from a salient distractor appearing in that location. This was evidenced by lower guessing rates, SD, and
swap rates when a salient distractor appeared in a high probability distractor location, compared to
when it appeared in a less high probability distractor location. These results expand upon the extent of
experience-driven suppression’s role in cognitive processes beyond benefits to reaction time and simple
accuracy measures (Britton & Anderson, 2020; Huang et al., 2021; Kong et al., 2020; Leber et al., 2016;

Wang & Theeuwes, 2018b, 2018a).}

Here, we showed that the suppression of a salient distractor aided in protecting target feature
processing. In addition to overall performance improving when the distractor was suppressed, there was
a significantly lower likelihood of mistakenly reporting the color (swap errors) in the suppressed
location. This suggests that the reduction in capture by the salient distractor reduced the ability for co-
located features to inadvertently enter working memory and potentially interfere with the target
representation. The idea that the features of suppressed distractors are less likely to be processed and
enter working memory is supported by the findings of Won et al. (2022). Won et al. (2022) studied a

different type of distractor suppression: rather than learned spatial suppression of a predictable
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distractor location, their suppression was based on distractor frequency (the idea that an initial
unexpected distractor captures attention more than a repeated distractor in a context where distractors
are frequently present). Moreover, whereas our study focused on distractor-induced interference for
target feature reports, Won et al. (2022) probed memory for the salient distractor feature itself. Their
design combined a typical singleton search task with a one-shot memory probe for the color of the
salient distractor after a varying number of trials that differed across participants. Their results showed
that, in addition to search times for the target decreasing over time, feature report performance for the
color of the salient distractor also decreased over time. In other words, those participants who saw
more salient distractors - before being asked to report what one looked like - had worse feature
memory compared to participants who saw fewer salient distractors before the memory probe (Won et
al., 2022). These findings suggest that the features of a suppressed salient distractor are less likely to be
processed, at least in the case of spatially-generic distractor suppression via repeated exposure context.
The results of the current study suggest that experience-driven suppression of a spatial location
expected to contain a distractor also results in reduced processing of that distractor’s features.
Moreover, we provide novel evidence for an additional consequence of this effect: that learned spatial
suppression also benefits encoding and recall of the target features.

A secondary question which the present study may provide some insight into is the ongoing
debate over whether learned suppression effects are proactive (Chang et al., 2023; Geng & Duarte,
2021; Huang et al., 2021; Kong et al., 2020). In addition to testing feature reporting depending on the
location of the salient distractor, we included a secondary analysis to examine if we would observe any
differences between distractor-absent conditions depending on where the target was located. This
comparison was conducted to see whether we would find evidence for worse performance when the
target appeared in the high probability distractor location, which might have suggested that location

was being proactively suppressed. Alternatively, if our main results were driven by reactive suppression,
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we would predict performance would not be worse when the target appeared in the high probability
distractor location, as on these distractor-absent trials there was no distractor to trigger suppression.
While we did observe higher SD and nontarget reporting when the target appeared in the location
where the distractor was expected, there was no significant difference in guess rate and, in fact, the
average guess rate was numerically lower when the target appeared in the high probability distractor
location compared to when it appeared elsewhere. Although the present results do not provide
definitive evidence that reduced feature interference is driven by either a proactive or reactive
mechanism of suppression, these distractor absent results may support predictions made by the Priority
Accumulation Framework (PAF), which proposes that priorities can be assigned and updated for
locations over time before an attentional shift is triggered to the highest priority location (Darnell &
Lamy, 2022; Lamy et al., 2018). According to the PAF, the learned suppression we measured here can be
attributed to deprioritization of the high probability distractor location. This would suggest the other
three locations would have relatively higher priority, thus leading to a higher likelihood of attentional
selection and explaining the greater tendency to misreport nontargets when the target appeared in the
high probability distractor location.

Finally, an unanticipated finding was the absence of any repulsion effects. Chen et al. (2019)
observed that attentional capture caused both significant swapping to the salient distractor and a target
response distribution shifted significantly away from the salient distractor’s color. Therefore, we
expected to observe a repulsion effect, at the very least, when our salient distractor appeared in a less
likely (control) location. We observed no such effect, however. One potential explanation could be a
difference in experimental design: in the current study, to maximize power for our critical distractor
probability manipulation, there were no “valid” trial types where the salient cue surrounded the target
location, which had occurred on one third of the trials in Chen et al. (2019). Here, the salient cue was

always a distractor and never overlapped with the target, making it a more pure “distracting cue” that
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participants should always avoid. This design decision regarding the distracting cue could actually
represent another learned regularity that resulted in additional distractor suppression. Previous
research has shown that distractor regularities beyond its spatial location can be learned about and
affect performance, such as features (Stilwell et al., 2019), frequency (Geyer et al., 2008), and prior
value (Anderson et al., 2011). Thus, it is possible that learned distractor suppression could be
contributing to a protection from feature repulsion errors as well, but future work would be needed to
investigate this more definitively.

To conclude, we measured feature encoding and recall under salient distraction, which could be
spatially suppressed on a majority of trials by learning where the salient distractor was likely to appear.
We found that, in addition to helping us avoid other known distractor costs, suppression plays a larger
role in helping to prevent features associated with the distractor from interfering with the processing of

our target item.
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