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Plants have evolved variable phenotypic plasticity to counteract different pathogens and
pests during immobile life. Microbial infection invokes multiple layers of host immune
responses, and plant gene expression is swiftly and precisely reprogramed at both the
transcriptional level and post-transcriptional level. Recently, the importance of epigenetic
regulation in response to biotic stresses has been recognized. Changes in DNA methylation,
histone modification, and chromatin structures have been observed after microbial
infection. In addition, epigenetic modifications may be preserved as transgenerational
memories to allow the progeny to better adapt to similar environments. Epigenetic
regulation involves various regulatory components, including non-coding small RNAs,
DNA methylation, histone modification, and chromatin remodelers. The crosstalk between
these components allows precise fine-tuning of gene expression, giving plants the
capability to fight infections and tolerant drastic environmental changes in nature. Fully
unraveling epigenetic regulatory mechanisms could aid in the development of more efficient
and eco-friendly strategies for crop protection in agricultural systems. In this review,
we discuss the recent advances on the roles of epigenetic regulation in plant biotic
stress responses.

Keywords: epigenetics, DNA methylation, histone modification, small RNAs, chromatin remodelers, plant defense,
plant-microbes interaction

INTRODUCTION

Epigenetic modification is a regulatory mechanism of gene expression caused by changes in
chromatin structure and function without alteration of the DNA sequence. Epigenetic regulation
of both mammalian and plant genomes has been intensely studied over the last two decades.
Unlike animals, plants are sessile and unable to escape from variable environmental extremes
or biotic stressors like herbivores and pathogens. To withstand pathogens and pests, plants
have evolved highly sophisticated defense regulatory mechanisms (Jones et al., 2016; Arnold
et al,, 2019; Bakhtiari et al, 2019; Zhou and Zhang, 2020). A growing number of studies
have unveiled that epigenetic regulation is crucial for shaping plant immunity and phenotypic
variations during plant-microbe interaction.

Plants lack an adaptive immune system or specialized cells for immune response. Plants
detect conserved pathogen-associated molecular patterns (PAMPs) via the host plasma
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membrane-associated pattern recognition receptors (PRRs). This
recognition triggers general nonspecific immune responses,
named PAMP-triggered immunity (PTIL; Bigeard et al., 2015;
Nirnberger and Kemmerling, 2018). To suppress PTI and
promote a successful invasion, pathogens evolved the ability
to send effectors into plant cells to modulate host gene expression
and suppress plant immunity (Irieda et al, 2019). In turn,
host cells have evolved the ability to recognize pathogen effectors
using intracellular nucleotide-binding domain and leucine-rich
repeat receptors (NLRs), which activate innate immune responses
against pathogen infection (Jones et al., 2016; Zhou and Zhang,
2020). The recognition of effectors by NLRs induces rapid and
robust effector-triggered immunity (ETL; Cui et al,, 2015; Lolle
et al., 2020). Expression and activation of NLRs are precisely
regulated at many different levels, including transcriptional
regulation, alternative transcript splicing, non-coding small
RNA  (sRNA)-mediated  post-transcriptional  regulation,
translational regulation, post-translational modification, NLR
dimerization or oligomerization, and proteasome-mediated
degradation (Li et al, 2015; Lai and Eulgem, 2018). Failure
of NLR activation or over accumulation of NLRs can lead to
serious diseases or autoimmune responses, respectively. In
plants, the local defense response triggers subsequent systemic
acquired resistance (SAR) in distal leaves to prevent or reduce
future infection (Fu and Dong, 2013). PTI, ETI, and SAR are
associated with elevated levels of the phytohormone salicylic
acid (SA), a phenolic compound produced by a wide range
of prokaryotic and eukaryotic organisms. Besides SA, jasmonic
acid (JA) and ethylene are also important phytohormones in
biotic stress signaling (Burger and Chory, 2019). In addition,
chemicals, such as microbe or host-derived molecules, can act
as priming stimuli by inducing disease resistance, which enables
a more robust response by the host defense system to future
attacks. Further, this ability can sometimes be transmitted to
progeny (Conrath et al., 2015; Mauch-Mani et al., 2017; Lopez
Sanchez et al.,, 2021). This transgenerational priming is highly
correlated to inherited epigenetic modifications.

Epigenetic regulation of gene expression involves various
components, including enzymes that catalyze or remove DNA
methylation and histone post-translational modification (PTM),
sRNAs, and chromatin remodelers. Together, these components
contribute to the precise integrated transcriptional regulation
of gene expression. Molecular interactions, including protein-
protein, protein-DNA, protein-RNA, and RNA-DNA-protein
complexes, establish, erase, or edit epigenetic marks on both
genomic DNA or histones to alter chromatin structures and
accessibility. The major roles of DNA methylation include the
maintenance of plant genome stability by inhibiting the movement
of transposable elements (TEs), and the repression of gene
expression by recruiting gene expression suppressors or
preventing the binding of transcription factors to the methylated
DNA. Heterochromatic siRNAs (hc-siRNA) are associated with
RNA-directed DNA methylation (RdDM) involved in the
deposition of DNA methylation and transcriptional gene silencing
(TGS; Kim and Zilberman, 2014; Matzke and Mosher, 2014;
Bond and Baulcombe, 2015; Erdmann and Picard, 2020). PTMs
at the N-terminal tails of core histones (H2A, H2B, H3, and

H4) impact the interaction of histones with DNA, transcription
factors, and chromatin remodelers to regulate gene expression
(Liu et al., 2010; Deal and Henikoff, 2011). In addition, DNA
methylation and histone H1 jointly maintain transcriptional
homeostasis by silencing TEs and aberrant intragenic transcripts
(Choi et al, 2020). In plants, emerging evidence shows that
various epigenetic regulatory mechanisms including DNA
methylation dynamics, changes in histone density and variants,
and histone PTMs play important roles in regulating plant
defense responses (Deleris et al., 2016; Ramirez-Prado et al.,
2018; Huang et al, 2019). Different histone marks, together
with their specific writers, readers, and erasers coordinate the
transcription of defense-related genes (Ramirez-Prado et al,
2018; Hu et al., 2019). While the role of chromatin remodelers
and their crosstalk with DNA methylation and histone
modification in regulating plant growth and development has
been extensively studied (Han et al, 2015), their potential
roles in regulating plant immune responses require further
investigation. Here, we review recent discoveries on epigenetic
regulation of plant immune responses, including the responses
of the Arabidopsis mutant plants of DNA methylation components,
histone modification readers, and chromatin remodelers to
non-viral pathogens (Table 1), and in crop diseases (Table 2).

SMALL RNA-MEDIATED EPIGENETIC
MODIFICATION REGULATES PLANT
DEFENSE

In plants, sSRNAs, including microRNAs (miRNAs) and small-
interfering RNAs (siRNAs), are generated by the type III
ribonuclease Dicer or Dicer-like (DCL) proteins and are
incorporated into Argonaute (AGO) proteins to induce gene
silencing in a sequence-specific manner (Baulcombe, 2004).
An sRNA is loaded into an AGO protein and then induces
TGS or post-transcriptional gene silencing (PTGS) of their
target genes endogenously or even in interacting organisms
(Baulcombe, 2004; Weiberg et al., 2013; Cai et al., 2018; Huang
et al,, 2019). In general, miRNAs are processed from single-
stranded primary RNA precursors with stem-loop structures,
whereas siRNAs are generated from double-stranded RNAs
(dsRNAs) that are derived from invert repeats, sense-antisense
transcript pairs, or products of RNA-dependent RNA polymerases
(RDRs). Plant siRNAs can be further divided into trans-acting
siRNAs (ta-siRNAs; Allen et al, 2005) or secondary phased
siRNAs (phasiRNAs; Fei et al., 2013), hc-siRNAs, natural
antisense transcripts-derived siRNAs (nat-siRNAs; Katiyar-
Agarwal et al,, 2006), and long siRNAs (IsiRNAs; Katiyar- Agarwal
et al., 2007) based on their biogenesis pathways (Borges and
Martienssen, 2015; Huang et al., 2019). Different types of sRNAs
were reported to precisely regulate the expression of NLRs
and plant defense signaling genes to activate plant immune
responses and to balance the trade-off between plant growth
and defense (Huang et al,, 2019). Here, we mainly focus on
the functions of some sRNAs that play a direct role in epigenetic
regulation in the following sections.
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TABLE 1 | The responses of the Arabidopsis mutants plants of DNA methylation components, histone readers, and chromatin remodelers to different pathogens.

Arabidopsis mutants Phenotype DNA methylation Defense response References
RdDM pathway components
drm1/drm2/cmt3 (ddc) Resistant to Pst, Pst(AvrPphB) and hypo SA-dependent response is enhanced ~ Dowen etal, 2012; Luna
Pst(hrc) (bacterium) etal., 2012; Yu et al., 2013;
Cambiagno et al., 2021
Susceptible to Ab (necrotrophic JA-dependent defense is suppressed  Luna et al., 2012
fungus)
Susceptible to At (bacterium) ABA-dependent response is Gohlke et al., 2013
enhanced
drm1/drm2 Susceptible to Pc (necrotrophic hypo JA-dependent defense is suppressed  Lopez et al., 2011
fungus)
Resistant to Pst Primed state of defenses response Yu et al., 2013; Cambiagno
etal., 2021
nrpd1 (PollV) Resistant to Pst hypo SA-dependent response is enhanced  Dowen et al., 2012
nrpel (PolV) Resistant to Pst hypo SA-dependent response is enhanced  Lopez et al., 2011
Resistant to Hpa (biotrophic oomycete) SA-dependent response is enhanced  Lopez Sanchez et al., 2016
Susceptible to Pc and Bc (fungus) JA-dependent defense is suppressed  Lopez et al., 2011; Lopez
Sanchez et al., 2016
nrpd1/nrpet (PollV/ PolV) Resistant to Pst hypo SA-dependent response is enhanced  Lopez et al., 2011
Susceptible to Pc JA-dependent defense is suppressed  Lopez et al., 2011
nrpd2 (shared by PollV and Resistant to Pst hypo SA-dependent response is enhanced  Lopez et al., 2011; Yu et al.,
PolV) 2013
Susceptible to Pc and Bc JA-dependent defense is suppressed  Lopez et al., 2011
drd1 Susceptible to Pc hypo JA-dependent defense is suppressed  Lopez et al., 2011
Resistant to Pst SA-dependent response is enhanced  Dowen et al., 2012
Resistant to Hpa SA-dependent response is enhanced  Lopez Sanchez et al., 2016
ago4 Susceptible to Pst hypo RDR2 and DCL3 independent Agorio and Vera, 2007
susceptibility
Susceptible to At ABA-dependent response is enhanced Gohlke et al., 2013
rdr2 Resistant to Pst hypo SA-dependent response is enhanced  Dowen et al., 2012
Susceptible to Pc JA-dependent defense is suppressed  Lopez et al., 2011
rdré Susceptible to Pst(AvrRpt2) - Loss sRNAs contribute to RPS2- Katiyar-Agarwal et al., 2006
mediated ET/
Resistant to Pst - Dowen et al., 2012
Susceptible to Bc Loss the transfer siRNAs targets Caietal., 2018
pathogen genes
dcl2/3/4 Resistant to Pst hypo - Dowen et al., 2012
Susceptible to Bc - Loss the transfer siRNAs targets Cai et al., 2018
pathogen genes
DNA methylation (drm1/drm2/cmt3 (ddc) and drm1/drm2 see above)
cmt3 Resistant to Hpa hypo SA-dependent response is enhanced  Lopez Sanchez et al., 2016
met1 Resistant to Pst, Pst(AvrPphB) and hypo SA-dependent response is enhanced  Dowen et al., 2012; Yu
Pst(hrc™) etal, 2013
DNA demethylation
ros1 Susceptible to Pst hyper Methylation at the promoter of RMG1 ~ Yu et al., 2013; Halter et al.,
and RLP43 2021
Resistant to Pc JA-dependent defense is enhanced Lopez Sanchez et al., 2016
ros1/dml2/dmi3 (rdd) and rdd ~ Susceptible to Fo (hemibiotrophic hyper Fo responses gene is suppressed by  Schumann et al., 2019
DME RNAI vascular fungus) DNA methylation
Chromatin remodelers and epigenetic regulators
edmz2 Susceptible to Hpa - Control expression of RPP7 Eulgem et al., 2007
Resistant to Pst NLRs unsuppressed Lai et al., 2020
piel(swrl) Resistant to Pst - Constitutive SAR response March-Diaz et al., 2008
clsy1 Progeny is not prime to against Hpa - Transgenerational SAR is impaired Luna and Ton, 2012
ddm1 Resistant to Pst hypo SA-dependent response is enhanced ~ Stokes et al., 2002;
Cambiagno et al., 2021
syd-4 Resistant to Pst - SNC1 expression is enhanced Johnson et al., 2015
swp73a Resistant to Pst(AvrRpt2) and - NLRs unsuppressed Huang et al., 2021

Pst(AvrRps4)

Pathogens include bacterial pathogens Pseudomonas syringae pv. tomato DC3000 (Pst, secreted effectors AvrPphB, AvrRpt2, AvrRps4, and type Ill secretion system mutant hrc—)
and Agrobacterium tumefaciens (At), biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa), hemibiotrophic vascular fungus Fusarium oxysporum (Fo), fungus Botrytis cinerea
(Bc), Magnaporthe oryzae (Mo), necrotrophic fungus Plectosphaerella cucumerina (Pc), and Alternaria brassicicola (Ab).
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Heterochromatic siRNAs, which are typically 24-30nt in
length, play a central role in the canonical RADM pathway
(Figure 1A). The biogenesis of hc-siRNAs is dependent on
the RDR2-DCL3-AGO4/6/9 pathway and also requires plant-
specific RNA polymerase IV and V (PolIV and PolV; Figure 1A).
They are derived from TEs, repeats, and heterochromatic regions
and act to direct de novo DNA methylation and/or histone
modifications at the target region (Matzke and Mosher, 2014).
Many PRR/NLR loci or clusters are associated with TEs or
repeats (Cambiagno et al., 2018) and, thus, are regulated by
hc-siRNA-mediated epigenetic regulation. One example of this
is the rice NLR Pigm locus, which confers durable resistance
to the rice blast fungus Magnaporthe oryzae (Deng et al., 2017;
Table 2). The Pigm locus encodes a cluster of NLRs and NLR
pseudogenes, including PigmR and PigmS. Constitutive expression
of PigmR confers resistance to M. oryzae but causes yield
losses. PigmS, which is highly expressed in pollen and panicles,
forms a heterodimer with PigmR to suppress PigmR-mediated
resistance to avoid fitness costs. The PigmS promoter contains
two tandem miniature transposons (MITEs), which associate
with hc-siRNAs. Thus, the precise control of Pigm$ expression
is mediated by hc-siRNA at the epigenetic level.

In addition to NLRs, hc-siRNAs also regulate signaling
components of plant defense. For example, a rice hc-siRNA,
TE-siR815, derived from a MITE in the first intron of the
transcription factor WRKY45-1 allele, induces TGS of a leucine-
rich repeat receptor kinase-type protein gene, ST1. STI is a
key component in the WRKY45 signaling pathway and this
suppression leads to attenuation of WRKY45-mediated resistance
to bacterial blight of rice caused by Xanthomonas oryzae pv.
Oryzae (Xoo; Zhang et al., 2016; Table 2). Unlike the WRKY45-1
allele, the WRKY45-2 allele does not contain the TE-siR815-
generating MITE, which allows signaling pathway activation
against Xoo. Other than hc-siRNA, miRNA can participate in
non-canonical RADM (Cuerda-Gil and Slotkin, 2016). A rice-
specific miR812w, which originates from the Stowaway MITE,
targets Stowaway MITE to suppress the expression of nearby
genes through miRNA-directed DNA methylation, contributing
to M. oryzae resistance (Campo et al,, 2021; Table 2). Taken
together, these studies demonstrate that sRNAs can regulate
plant defense response through RdADM.

DYNAMICS OF DNA METHYLATION IN
RESPONSE TO BIOTIC STRESSES

In plants, DNA methylation is observed on cytosine in the
context of symmetric CG and CHG, and asymmetric CHH
(where H=A, C, or T). CHH methylation is primarily established
by de novo DNA methylation through RADM by the RNA
scaffolds produced by PolV, which recruit DNA (cytosine-5)-
methyltransferase DRM2 and hc-siRNAs that are produced by
RDR2 and DCL3 and associated with AGO4/6/9 in Arabidopsis.
The PolIV-RDR2-DCL3-AGO4-PolV-DRM2 pathway forms a
feedback loop to reinforce DNA methylation at heterochromatin
regions and TEs (Figure 1). In addition to this canonical
RdDM, DNA methylation can also be established by the

RDR6-DCL2-derived 21 and 22nt siRNA pathway, which is
also dependent on AGO4 and AGO6 (Nuthikattu et al., 2013;
Cuerda-Gil and Slotkin, 2016). Afterward, spreading of CG
and CHG methylation is maintained by DNA (cytosine-5)
Methyltransferase 1 (MET1) and a  plant-specific
Chromomethylase 3 (CMT3), respectively (Zhang et al., 2018).
DNA methylation is reversible and the process of DNA
demethylation can be passive or active. The passive process
occurs in the absence of DNA methylation on newly synthesized
DNA strands. Active DNA demethylation requires the direct
removal of a methyl group from DNA by DNA demethylases.
Arabidopsis has four DNA demethylases, including DEMETER
(DME), DME-Like 1/Repressor of Silencing 1 (DML1/ROS1),
DML2, and DML3 (Kumar et al., 2018).

DNA methylation dynamics are dependent on the equilibrium
between methylation and demethylation pathways. In genome-
wide regulation, the DNA methylation within repetitive sequences
or TEs are altered in response to infection of the bacterial
pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) and
SA treatment and subsequently regulate the transcription of
neighboring genes (Agorio and Vera, 2007; Dowen et al.,, 2012).
In general, Arabidopsis mutant plants with DNA hypomethylation
are more resistant to disease and exhibit an elevated SA-dependent
response. For example, metl, drm1/drm2 and drml/drm2/cmt3
(ddc), nrpdl (PollV mutant), nrpel (PolV mutant), nrpdl/nrpel,
nrpd2 (subunit shared by PollV and PolV), drdl (defective in
RNA-directed DNA methylation), rdr2, and dcl2/3/4 are more
resistant to the bacterial pathogen Pst; cmt3, drdl, and nrpel
are more resistant to the obligate biotrophic oomycete pathogen
Hyaloperonospora arabidopsidis (Hpa; Lopez et al., 2011; Dowen
et al, 2012; Yu et al, 2013; Lopez Sanchez et al, 2016;
Cambiagno et al., 2021; Table 1 and Figure 1A).

Conversely, some mutations in SRNA biogenesis and RADM-
dependent pathways are more susceptible to pathogen infection.
For example, mutation in RDR6, which is required for phasing
siRNA and nat-siRNA biogenesis and also mediates non-canonical
RdDM, does not have an obvious change on global DNA
methylation and is more susceptible to Pst strain that secrets
effector AvrRpt2, Pst (AvrRpt2), but displays minor changes
in response to Pst infection (Katiyar-Agarwal et al, 2006;
Dowen et al,, 2012; Nuthikattu et al., 2013). AvrRpt2 triggers
NLR RPS2-mediated ETT so this suggested that RDR6-mediated
siRNAs play a crucial role for RPS2-mediated ETI. The rdr6
and dcl2/3/4 mutants, which greatly reduce the biogenesis of
siRNAs, are more susceptible to fungal pathogen Botrytis cinerea
(Bc). This susceptible phenotype is caused by the fact that the
host plant has lost the siRNAs that move into fungal cells to
suppress fungal virulence-related genes (Cai et al., 2018). DrdlI,
nrpel, nrpdl/nrpel, and nrpd2 also display enhanced susceptibility
to the necrotrophic fungus Plectosphaerella cucumerina (Lopez
Sanchez et al., 2016) and the ddc mutant is more susceptible
to necrotrophic fungus Alternaria brassicicola (Lopez et al,
2011; Luna et al, 2012). This is due to the fact that the
defensive signaling against P. cucumerina and A. brassicicola
is JA-dependent, which is suppressed in nrpel and ddc mutants.
RADM mutant ago4 is more susceptible to Pst but this phenotype
is independent of other upstream components of the RADM
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TABLE 2 | Examples of molecular regulators or treatments which cause epigenetic modification and regulate crop disease response.

Epigenetic modification molecules Function

or treatment

Effect References

Rice
OsAGO4a-RNA Reduce siRNA accumulation and CHH
methylation at the PigmS promoter and
enhance PigmS expression

TE derived hc-siRNAs Control PigmS expression

TE derived hc-siRNAs, TE-siR815 Suppress ST1 expression

miR812w Targets Stowaway MITE to suppress
nearby gene

Common bean

BABA H3K4me3 and H3K36me3 are enhanced
at the promoter-exon regions of defense-
associated genes

Potato

BABA Adjust H3K4me2 and H3K27me3

dynamics; and genome-wide DNA
hypermethylation

Reduce DNA methylation on the promoter
of R3a NLR gene

The mutant plant is susceptible to Deng et al., 2017

Magnaporthe oryzae (fungus)

Avoid fithess cost due to the defense
response induced by PigmR against
Magnaporthe oryzae

Attenuation of WRKY45-mediated
resistance to Xanthomonas oryzae pv.
Oryzae (bacteria)

Deng et al., 2017

Zhang et al., 2016

Contribute to Magnaporthe oryzae
resistance

Campo et al., 2021

Induces resistance to R, syringae pv.
phaseolicola

Martinez-Aguilar et al., 2016

Induces intergenerational resistance
against Phytophthora infestans
(oomycete)

More resistant to virulent Phytophthora
infestans which secretes effector Avr3a

Meller et al., 2018

Kuznicki et al., 2019

pathway including RDR2 and DCL3 (Agorio and Vera, 2007).
Thus, this response could be caused by other regulatory
mechanism of AGO4, which is suggested from the following
study. The ddc and ago4 mutants were found to be more
susceptible to Agrobacterium tumefaciens, the bacterium that
causes crown gall tumors. This enhanced susceptibility phenotype
was abscisic acid (ABA) dependent, which is also regulated
by DNA methylation (Gohlke et al., 2013). ABA plays a pivotal
role in abiotic stress responses and has negative impacts on
plant immunity against diverse pathogens (Robert-Seilaniantz
et al, 2011). This impact is attributed to ABA-mediated
suppression of plant immune responses induced by immune
hormones SA, JA, and ethylene (Mine et al, 2017). Thus,
dynamic changes in DNA methylation in response to pathogen
infection play a pivotal role in plant immune responses.
Active  demethylation  also  shapes  transcriptional
reprogramming of immune response genes upon infection of
different pathogens (Table 1). In Arabidopsis, the bacterial
PAMP, flagellin-derived peptide flg22, derepresses RADM targeted
genes, such as an NLR gene, RMGI, and a PRR gene, RLP43,
through ROSI-directed demethylation on their promoters (Yu
et al., 2013; Halter et al., 2021; Figure 1B). In addition, ROS1
antagonizes RdDM-dependent methylation at RMGI locus,
which may also contribute to anti-bacterial response (Halter
et al., 2021). The ros] mutant shows hypermethylation and is
more susceptible to Hpa. Conversely, rosI is more resistant to
P. cucumerina, which is associated with JA-dependent defense
pathways (Lopez Sanchez et al., 2016). Furthermore, the triple
mutant of DNA demethylases ros1/dmi2/dmi3 (rdd) and the
quadruple mutant rdd DME RNAi lines display enhanced
susceptibility to a hemibiotrophic vascular fungal pathogen,

Fusarium oxysporum, that causes disease in many important
crops. The tissue-specific expression of four DNA demethylases
DME, ROS1, DML2, and DML3 act cooperatively to construct
resistance against E oxysporum (Schumann et al, 2019). It
was also found that some Arabidopsis NLRs can be demethylated
by ROS1, DML2, and DML3 within their promoters and
transcribed regions (Kong et al., 2020). Thus, active demethylation
processed by DNA demethylases regulates defense response
genes upon pathogen infection (Table 1).

HISTONE MODIFICATION AND
CROSSTALK WITH DNA METHYLATION
MODULATE PLANT DEFENSE
RESPONSES

Post-translational modifications on histone proteins have direct
impacts on the chromatin structure and contribute to the
transcriptional ~regulation of gene expression. Histone
modification is a reversible process and is modulated by specific
writers that add the modification, erasers that remove the
modification, or readers that sense the modification and transduce
the downstream signaling pathways. Some histone PTMs are
associated with specific transcriptional states. In general, H3K4me
(methylation of Histone 3 at Lys4), H3K36me, H3K9ac
(acetylation of H3 at Lys9), and H3K27ac are markers for
transcriptional activation, whereas H3K27me3 is mainly linked
to transcriptional silencing of genes (Xiao et al., 2016). H3K9me2
and H3K9me3 are enriched in heterochromatic regions with
a high density of TEs or repeats, where they have a constitutive
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FIGURE 1 | The epigenetic regulatory mechanisms act coordinately in reprogramming gene expression when plants encounter biotic stress. The known factors in
Arabidopsis that regulate the biotic stress involve small RNAs, RdDM, methylation and demethylation of DNA, histone modification, and chromatin remodelers,
which are present here. (A) Small RNAs participate in conical and non-canonical RdDM pathways to regulate DNA methylation on TEs and defense-related genes.
The RDR2- and DCL3-dependent hc-siRNAs are key components in PollV-RDR2-DCL3-AGO4-PolV-DRM2, the conical RADM pathway, which establish and
reinforce DNA methylation at TEs and regulate the nearby defense response genes. The siRNAs derived from mRNA precursor, TE non-coding RNAs (TE ncRNAs),
inverted repeats, or dsRNAs produced by RDR6 are processed by DCL2/4 also participate in establishing the DNA methylation and regulate the expression of
defense-related genes. (B) Deposition of DNA methylation and on the NLRs, PRRs, or defense response genes leads to a transcriptionally suppressed status. Other
components acting with the chromatin remodeler SWP73A (dark red oval) are not clear (unknown component is shown in gray oval). RdDM components including
PollV and PolV, DCLs, RDRs, AGO4/6, and DRD1 are shown in a dark green oval. DNA methyltransferases DRM2, MET1, and CMT3 are shown in a light green
oval. SWI2/SNF2-like ATPases Decreased DNA Methylation 1 (DDM1), Swi2/Snf2-related 1 (SWRT), and Classy1 (CLSY1) are shown in an orange oval. The
H3K9me2 reader EDM2 is shown in the light brown oval. Mutant plants that display a resistant phenotype to pathogen (such as Pst) relying on an SA-dependent
response are surrounded with a red outline, whereas the blue outline indicates a more susceptible phenotype.
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repressive function (Liu et al, 2010; He et al, 2011). In
euchromatic regions, H3K9me2 has been observed to span
the entire gene and is correlated with low expression levels
(Zhou et al., 2010; West et al., 2014).

The epigenetic regulation of defense-related genes mediated
by histone modification was comprehensively discussed in recent
reviews (Ramirez-Prado et al, 2018; Hu et al., 2019). Here,
we emphasize the crosstalk between histone modification and
DNA methylation on plant biotic stress as methylation of DNA
and H3K9 is highly correlated with gene silencing in eukaryotes.
This link between DNA methylation and H3K9 modification
was revealed by binding of CMT3 with the histone
methyltransferase Kryptonite/SUVH4 (KYP). The interaction of
CMT3 and KYP/SUVH4 constitutes a self-reinforcing loop between
histone and DNA methylation in plants which is important for
TE silencing (Du et al,, 2015; Figure 1B). In addition to DNA
methylation on TEs regulating the transcription of neighboring
NLR genes (Dowen et al, 2012), some NLR loci or clusters
associated with TEs are also controlled by histone marks, such
as H3K9me?2 (Lai and Eulgem, 2018). Through Arabidopsis mutant
screening, the methylation of DNA and H3K9 was observed to
regulate resistance against Pst infection (Cambiagno et al., 2021)
and infestation by the pest, green peach aphid Myzus persicae
(Annacondia et al., 2021). The study revealed that nrpdl and
kyp mutant plants are more resistant to aphids (Annacondia
et al., 2021). Whether and how does the crosstalk between DNA
and H3K9 methylation contribute to aphid resistance is still
largely unknown. The drml/drm2, ddc, and suvh4/5/6 mutant
plants do not exhibit constitutive expression of the defense gene
marker PRI (PATHOGENESIS-RELATED GENE 1) but are more
resistant to Pst due to a faster and stronger PRI induction after
Pst infection compared to wild-type plants (Cambiagno et al.,
2021). This suggest that drml1/drm2, ddc, and suvh4/5/6 mutant
plants acquired a primed state of defense against Pst, which is
regulated by both DNA and H3K9 methylation levels. Another
example of genes participating in the crosstalk of DNA and
H3K9 methylation is Increase in Bonsai Methylation 1 (IBM1I),
which encodes a histone demethylase and directly associates
with the gene body that has the repressive mark, H3K9me2.
IBM1 removes mono- and dimethylation of histone lysines and
negatively regulates DNA methylation at CHG loci in the genic
regions. IBM1I positively regulates Arabidopsis defense responses
against Pst at the chromatic level by derepressing the defense
marker genes PRI, PR2, and the PTI marker FRKI (Chan and
Zimmerli, 2019). Thus, the crosstalk between histone modification
and DNA methylation contributes to the epigenetic regulation
of gene expression in response to pathogen infection.

CHROMATIN REMODELERS AND
EPIGENETIC REGULATORS MODULATE
PLANT IMMUNITY

While defense-related genes are regulated by covalent DNA and
histone modifications, chromatin remodeling proteins also play
an important role in regulating NLRs, plant defense signaling

components, SA-, and JA-pathway genes. Conserved chromatin
remodeling complexes are composed of multiple subunits which
regulate gene expression by altering nucleosome composition
and interactions at the chromatin structure level. The SWI/SNF
chromatin remodeling complexes were initially identified from
Saccharomyces cerevisiae. They have been broadly studied in
many different organisms and can either “read” or “shape” the
chromatin landscapes to regulate gene transcription (Raab et al.,
2015; Pulice and Kadoch, 2016). SWI/SNF complexes facilitate
the activation or repression of the target gene transcription by
binding to the DNA or interacting with histones and transcription
factors (Zhu et al., 2013; Grossi et al., 2020).

In Arabidopsis, the SWI/SNF complex has a well-established
role in gene expression regulation in plant growth and development
(Han et al,, 2015), but only a few studies link the function of
SWI/SNF complex subunits to plant immunity (Figure 1B). Most
studies on the role of SWI/SNF complexes in plant defense
response focus on the SWI2/SNF2-like ATPase subunits. For
instance, Swi2/Snf2-related 1 (SWR1) complex replaces the histone
H2A with the histone variant H2A.Z to maintain the suppression
of several SA-dependent defense genes (March-Diaz et al., 2008).
These genes include CLASSY1 (CLSY1), which is implicated in
the RADM pathway, is required for accumulation of hc-siRNA,
and interacts with H3K9 methylation (Luna and Ton, 2012; Zhang
et al., 2013; Zhou et al, 2018), as well as DDMI, which is
required for DNA methylation and regulates expression of NLRs
(Jeddeloh et al., 1998, 1999; Stokes et al., 2002; Li et al., 2010;
Cambiagno et al, 2021). In addition, the expression of NLR
SNCI1 is suppressed by SPLAYED (SYD), another SWI2/SNE2-
like ATPase, which is confirmed by the elevated transcription
in the syd mutant. However, no direct SYD binding site or DNA
region has been identified (Walley et al, 2008; Johnson et al.,
2015). This could be a result of indirect regulation mediated by SYD.

Other than the SWI2/SNF2-like ATPase subunits, a recent
study revealed that Arabidopsis SWP73A, a SWI/SNF2
non-ATPase subunit and an ortholog of the mammalian BRG1-
Associated Factor 60 (BAF60), acts as a negative regulator of
a group of NLRs to prevent autoimmunity in the absence of
pathogens (Huang et al., 2021). Upon infection of Pst (AvrRpt2)
or Pst (AvrRPS4), SWP73A is silenced by two bacterial-induced
sRNAs post-transcriptionally, which allows rapid induction of
these NLRs to activate plant immune responses (Figure 1B).
For some NLRs, such as RPS2 and ZARI, SWP73A binds
with H3K9me?2 at their transcription starting site and promoter
regions directly to potentiate its suppression function on the
expression of these NLRs. For some other NLRs, such as RPS4
and RRSI, SWP73 does not bind to their promoters and
transcription starting sites, but instead suppresses their expression
indirectly by suppressing Cell Division Cycle 5 (CDC5), a key
regulator of RNA splicing, which subsequently interferes with
the alternative splicing of these NLRs (Huang et al., 2021).
This finding uncovers a new layer of epigenetic control over
the precise regulation of NLRs. Potential roles of other SWI/
SNF complex subunits in plant immunity remain to be explored.

Other epigenetic regulators, such as ENHANCED DOWNY
MILDEW 2 (EDM2), also help modulate the expression of
Arabidopsis NLRs (Eulgem et al., 2007; Lai et al., 2020). EDM2
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binds to the H3K9me2 at the proximal polyadenylation sites
of RPP7 and RPP4, which suppresses the maturation of the
short transcripts and promotes the accumulation of full length
functional RPP7 and RPP4 (Tsuchiya and Eulgem, 2013).
EDM?2 binds to H3K9me2 at TEs inside or near NLR genes
and plays a role in balancing transcript levels of these NLRs.
While the expression level of full length RPP7 mRNA increases,
EDM2 also represses the expression of other NLRs, which
is evidenced by the fact that the edm2 mutant is more
resistant to Pst.

EPIGENETIC MEMORIES AND DEFENSE
PRIMING

Biotic stress-induced epigenetic changes, triggered by bacteria,
fungi, or insect herbivory, can sometimes be transmitted to
the progeny, leading to transgenerational priming (Luna et al,,
2012; Rasmann et al, 2012; Lopez Sanchez et al., 2021;
Moran-Diez et al., 2021). A global clustering DNA methylation
study revealed transgenerational acquired resistance-related
patterns, which were identified after three generations of Pst
exposure. The major change to DNA methylated regions
occurred at the CG context in gene bodies (Stassen et al,
2018). A screening for Hpa-resistant Arabidopsis was performed
using epigenetic recombinant inbred lines (epiRILs) generated
from ddml mutant, which has reduced DNA methylation in
all sequence contexts, crossing to wild-type plants. The selected
Hpa-resistant lines had no growth defect and a stronger PRI
induction after Hpa infection compared to wild-type plants
which revealed a priming of SA-inducible defenses. Through
transcriptome and DNA methylome analysis of these Hpa-
resistant epiRILs lines, it was found that genome-wide priming
of defense-related genes is sufficient to provide quantitative
disease resistance and is heritable (Furci et al., 2019). Therefore,
Arabidopsis epigenomic responses at the DNA methylation
level in previous generations could contribute to
transgenerational acquired resistance.

In addition, several studies have revealed that chemical
treatment can lead to epigenetic adjustment for enhanced
plant disease resistance. For instance, P-aminobutyric acid
(BABA) treatment primes Arabidopsis PTI against the
necrotrophic bacteria, Pectobacterium carotovorum. This priming
is mediated by H3K9K14ac and H3K4me2 (Po-Wen et al,
2013).  Additionally,  treatment  with BABA  or
2,6-dichloroisonicotinic acid in the common bean leads to
enhancement in H3K4me3 and H3K36me3 at the promoter-
exon regions of defense-associated genes (Martinez-Aguilar
et al., 2016; Table 2). BABA treatment also has priming effects
in potatoes and induces intergenerational resistance against
oomycete Phytophthora infestans through epigenetic adjustment
of H3K4me2 and H3K27me3 dynamics. After BABA treatment,
H3K4me2 was shown to be transiently induced in NPRI
(Non-expressor of PR genes) and SNII (Suppressor of NPRI
Inducible 1) resulting in tuning of the SA-responsive gene
and enhanced occupancy on the gene body of defense response
genes WRKYI1, PRI, and PR2 in primed plants and their

descendants (Meller et al, 2018; Table 2). Progeny of the
BABA-primed potato was shown to carry lower DNA
methylation on the promoter of R3a NLR gene with a higher
transcription level of R3a and activate to virulent P. infestans
which secretes effector Avr3a (Kuznicki et al., 2019; Table 2).
Thus, the priming response from chemical-primed treatment
is highly regulated at the DNA and histone methylation levels.

CONCLUSION AND PERSPECTIVES

Here, we reviewed recent advances on the regulatory role
of epigenetic mechanisms, including RADM, DNA methylation
dynamics, histone modifications, and chromatin remodeling,
in plant immune responses. The role of hc-siRNAs in guiding
DNA methylation endogenously in the RADM pathway has
been well demonstrated, but whether hc-siRNAs can also
direct cross-kingdom DNA methylation of target genes in
interacting  pathogens and organisms remains to
be investigated. Epigenetic modifications, including DNA
methylation and histone modification, could be heritable
without the need to introduce an initial trigger for targeted
manipulation, making it an attractive approach to modify
a locus for the desired disease-resistant trait. Notably, the
components needed to manipulate methylation can
be delivered by direct application of RNAs, protein regulators,
or priming molecules to plant cells (Mauch-Mani et al,
2017; Que et al., 2019; Gallego-Bartolome, 2020; Watanabe
et al., 2021). Therefore, it is possible to bypass genetic
transformation to manipulate gene expression through
epigenetic  modification in  economically important
crops.

A major challenge in crop management lies in the multiple
biotic and abiotic stresses occurring concurrently in the field.
The limited information of crosstalk between abiotic stress
and biotic stress responses in crop plants makes it difficult
to develop strategies to trigger an efficient broad-spectrum
resistance response. Though studies probing the relationship
between epigenetic regulation and plant biotic stress are
emerging, the connection between epigenetic modification at
gene loci and disease-resistant traits in different varieties of
crops still needs further exploration. In the future, this could
become even more important to deal with unpredictable effects
due to climate change.
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