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Plants have evolved variable phenotypic plasticity to counteract different pathogens and 
pests during immobile life. Microbial infection invokes multiple layers of host immune 
responses, and plant gene expression is swiftly and precisely reprogramed at both the 
transcriptional level and post-transcriptional level. Recently, the importance of epigenetic 
regulation in response to biotic stresses has been recognized. Changes in DNA methylation, 
histone modification, and chromatin structures have been observed after microbial 
infection. In addition, epigenetic modifications may be preserved as transgenerational 
memories to allow the progeny to better adapt to similar environments. Epigenetic 
regulation involves various regulatory components, including non-coding small RNAs, 
DNA methylation, histone modification, and chromatin remodelers. The crosstalk between 
these components allows precise fine-tuning of gene expression, giving plants the 
capability to fight infections and tolerant drastic environmental changes in nature. Fully 
unraveling epigenetic regulatory mechanisms could aid in the development of more efficient 
and eco-friendly strategies for crop protection in agricultural systems. In this review, 
we discuss the recent advances on the roles of epigenetic regulation in plant biotic 
stress responses.

Keywords: epigenetics, DNA methylation, histone modification, small RNAs, chromatin remodelers, plant defense, 
plant-microbes interaction

INTRODUCTION

Epigenetic modification is a regulatory mechanism of gene expression caused by changes in 
chromatin structure and function without alteration of the DNA sequence. Epigenetic regulation 
of both mammalian and plant genomes has been intensely studied over the last two decades. 
Unlike animals, plants are sessile and unable to escape from variable environmental extremes 
or biotic stressors like herbivores and pathogens. To withstand pathogens and pests, plants 
have evolved highly sophisticated defense regulatory mechanisms (Jones et  al., 2016; Arnold 
et  al., 2019; Bakhtiari et  al., 2019; Zhou and Zhang, 2020). A growing number of studies 
have unveiled that epigenetic regulation is crucial for shaping plant immunity and phenotypic 
variations during plant-microbe interaction.

Plants lack an adaptive immune system or specialized cells for immune response. Plants 
detect conserved pathogen-associated molecular patterns (PAMPs) via the host plasma 
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membrane-associated pattern recognition receptors (PRRs). This 
recognition triggers general nonspecific immune responses, 
named PAMP-triggered immunity (PTI; Bigeard et  al., 2015; 
Nürnberger and Kemmerling, 2018). To suppress PTI and 
promote a successful invasion, pathogens evolved the ability 
to send effectors into plant cells to modulate host gene expression 
and suppress plant immunity (Irieda et  al., 2019). In turn, 
host cells have evolved the ability to recognize pathogen effectors 
using intracellular nucleotide-binding domain and leucine-rich 
repeat receptors (NLRs), which activate innate immune responses 
against pathogen infection (Jones et al., 2016; Zhou and Zhang, 
2020). The recognition of effectors by NLRs induces rapid and 
robust effector-triggered immunity (ETI; Cui et  al., 2015; Lolle 
et  al., 2020). Expression and activation of NLRs are precisely 
regulated at many different levels, including transcriptional 
regulation, alternative transcript splicing, non-coding small 
RNA (sRNA)-mediated post-transcriptional regulation, 
translational regulation, post-translational modification, NLR 
dimerization or oligomerization, and proteasome-mediated 
degradation (Li et  al., 2015; Lai and Eulgem, 2018). Failure 
of NLR activation or over accumulation of NLRs can lead to 
serious diseases or autoimmune responses, respectively. In 
plants, the local defense response triggers subsequent systemic 
acquired resistance (SAR) in distal leaves to prevent or reduce 
future infection (Fu and Dong, 2013). PTI, ETI, and SAR are 
associated with elevated levels of the phytohormone salicylic 
acid (SA), a phenolic compound produced by a wide range 
of prokaryotic and eukaryotic organisms. Besides SA, jasmonic 
acid (JA) and ethylene are also important phytohormones in 
biotic stress signaling (Burger and Chory, 2019). In addition, 
chemicals, such as microbe or host-derived molecules, can act 
as priming stimuli by inducing disease resistance, which enables 
a more robust response by the host defense system to future 
attacks. Further, this ability can sometimes be  transmitted to 
progeny (Conrath et  al., 2015; Mauch-Mani et  al., 2017; Lopez 
Sanchez et  al., 2021). This transgenerational priming is highly 
correlated to inherited epigenetic modifications.

Epigenetic regulation of gene expression involves various 
components, including enzymes that catalyze or remove DNA 
methylation and histone post-translational modification (PTM), 
sRNAs, and chromatin remodelers. Together, these components 
contribute to the precise integrated transcriptional regulation 
of gene expression. Molecular interactions, including protein-
protein, protein-DNA, protein-RNA, and RNA-DNA-protein 
complexes, establish, erase, or edit epigenetic marks on both 
genomic DNA or histones to alter chromatin structures and 
accessibility. The major roles of DNA methylation include the 
maintenance of plant genome stability by inhibiting the movement 
of transposable elements (TEs), and the repression of gene 
expression by recruiting gene expression suppressors or 
preventing the binding of transcription factors to the methylated 
DNA. Heterochromatic siRNAs (hc-siRNA) are associated with 
RNA-directed DNA methylation (RdDM) involved in the 
deposition of DNA methylation and transcriptional gene silencing 
(TGS; Kim and Zilberman, 2014; Matzke and Mosher, 2014; 
Bond and Baulcombe, 2015; Erdmann and Picard, 2020). PTMs 
at the N-terminal tails of core histones (H2A, H2B, H3, and 

H4) impact the interaction of histones with DNA, transcription 
factors, and chromatin remodelers to regulate gene expression 
(Liu et  al., 2010; Deal and Henikoff, 2011). In addition, DNA 
methylation and histone H1 jointly maintain transcriptional 
homeostasis by silencing TEs and aberrant intragenic transcripts 
(Choi et  al., 2020). In plants, emerging evidence shows that 
various epigenetic regulatory mechanisms including DNA 
methylation dynamics, changes in histone density and variants, 
and histone PTMs play important roles in regulating plant 
defense responses (Deleris et  al., 2016; Ramirez-Prado et  al., 
2018; Huang et  al., 2019). Different histone marks, together 
with their specific writers, readers, and erasers coordinate the 
transcription of defense-related genes (Ramirez-Prado et  al., 
2018; Hu et al., 2019). While the role of chromatin remodelers 
and their crosstalk with DNA methylation and histone 
modification in regulating plant growth and development has 
been extensively studied (Han et  al., 2015), their potential 
roles in regulating plant immune responses require further 
investigation. Here, we  review recent discoveries on epigenetic 
regulation of plant immune responses, including the responses 
of the Arabidopsis mutant plants of DNA methylation components, 
histone modification readers, and chromatin remodelers to 
non-viral pathogens (Table  1), and in crop diseases (Table  2).

SMALL RNA-MEDIATED EPIGENETIC 
MODIFICATION REGULATES PLANT 
DEFENSE

In plants, sRNAs, including microRNAs (miRNAs) and small-
interfering RNAs (siRNAs), are generated by the type III 
ribonuclease Dicer or Dicer-like (DCL) proteins and are 
incorporated into Argonaute (AGO) proteins to induce gene 
silencing in a sequence-specific manner (Baulcombe, 2004). 
An sRNA is loaded into an AGO protein and then induces 
TGS or post-transcriptional gene silencing (PTGS) of their 
target genes endogenously or even in interacting organisms 
(Baulcombe, 2004; Weiberg et al., 2013; Cai et al., 2018; Huang 
et  al., 2019). In general, miRNAs are processed from single-
stranded primary RNA precursors with stem-loop structures, 
whereas siRNAs are generated from double-stranded RNAs 
(dsRNAs) that are derived from invert repeats, sense-antisense 
transcript pairs, or products of RNA-dependent RNA polymerases 
(RDRs). Plant siRNAs can be  further divided into trans-acting 
siRNAs (ta-siRNAs; Allen et  al., 2005) or secondary phased 
siRNAs (phasiRNAs; Fei et  al., 2013), hc-siRNAs, natural 
antisense transcripts-derived siRNAs (nat-siRNAs; Katiyar-
Agarwal et al., 2006), and long siRNAs (lsiRNAs; Katiyar-Agarwal 
et  al., 2007) based on their biogenesis pathways (Borges and 
Martienssen, 2015; Huang et al., 2019). Different types of sRNAs 
were reported to precisely regulate the expression of NLRs 
and plant defense signaling genes to activate plant immune 
responses and to balance the trade-off between plant growth 
and defense (Huang et  al., 2019). Here, we  mainly focus on 
the functions of some sRNAs that play a direct role in epigenetic 
regulation in the following sections.
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TABLE 1  |  The responses of the Arabidopsis mutants plants of DNA methylation components, histone readers, and chromatin remodelers to different pathogens.

Arabidopsis mutants Phenotype DNA methylation Defense response References

RdDM pathway components

drm1/drm2/cmt3 (ddc) Resistant to Pst, Pst(AvrPphB) and 
Pst(hrc−) (bacterium)

hypo SA-dependent response is enhanced Dowen et al., 2012; Luna 
et al., 2012; Yu et al., 2013; 
Cambiagno et al., 2021

Susceptible to Ab (necrotrophic 
fungus)

JA-dependent defense is suppressed Luna et al., 2012

Susceptible to At (bacterium) ABA-dependent response is 
enhanced

Gohlke et al., 2013

drm1/drm2 Susceptible to Pc (necrotrophic 
fungus)

hypo JA-dependent defense is suppressed Lopez et al., 2011

Resistant to Pst Primed state of defenses response Yu et al., 2013; Cambiagno 
et al., 2021

nrpd1 (PolIV) Resistant to Pst hypo SA-dependent response is enhanced Dowen et al., 2012
nrpe1 (PolV) Resistant to Pst hypo SA-dependent response is enhanced Lopez et al., 2011

Resistant to Hpa (biotrophic oomycete) SA-dependent response is enhanced Lopez Sanchez et al., 2016
Susceptible to Pc and Bc (fungus) JA-dependent defense is suppressed Lopez et al., 2011; Lopez 

Sanchez et al., 2016
nrpd1/nrpe1 (PolIV/ PolV) Resistant to Pst hypo SA-dependent response is enhanced Lopez et al., 2011

Susceptible to Pc JA-dependent defense is suppressed Lopez et al., 2011
nrpd2 (shared by PolIV and 
PolV)

Resistant to Pst hypo SA-dependent response is enhanced Lopez et al., 2011; Yu et al., 
2013

Susceptible to Pc and Bc JA-dependent defense is suppressed Lopez et al., 2011

drd1 Susceptible to Pc hypo JA-dependent defense is suppressed Lopez et al., 2011
Resistant to Pst SA-dependent response is enhanced Dowen et al., 2012
Resistant to Hpa SA-dependent response is enhanced Lopez Sanchez et al., 2016

ago4 Susceptible to Pst hypo RDR2 and DCL3 independent 
susceptibility

Agorio and Vera, 2007

Susceptible to At ABA-dependent response is enhanced Gohlke et al., 2013
rdr2 Resistant to Pst hypo SA-dependent response is enhanced Dowen et al., 2012

Susceptible to Pc JA-dependent defense is suppressed Lopez et al., 2011
rdr6 Susceptible to Pst(AvrRpt2) – Loss sRNAs contribute to RPS2-

mediated ETI
Katiyar-Agarwal et al., 2006

Resistant to Pst – Dowen et al., 2012
Susceptible to Bc Loss the transfer siRNAs targets 

pathogen genes
Cai et al., 2018

dcl2/3/4 Resistant to Pst hypo – Dowen et al., 2012
Susceptible to Bc – Loss the transfer siRNAs targets 

pathogen genes
Cai et al., 2018

DNA methylation (drm1/drm2/cmt3 (ddc) and drm1/drm2 see above)

cmt3 Resistant to Hpa hypo SA-dependent response is enhanced Lopez Sanchez et al., 2016
met1 Resistant to Pst, Pst(AvrPphB) and 

Pst(hrc−)
hypo SA-dependent response is enhanced Dowen et al., 2012; Yu 

et al., 2013

DNA demethylation

ros1 Susceptible to Pst hyper Methylation at the promoter of RMG1 
and RLP43

Yu et al., 2013; Halter et al., 
2021

Resistant to Pc JA-dependent defense is enhanced Lopez Sanchez et al., 2016
ros1/dml2/dml3 (rdd) and rdd 
DME RNAi

Susceptible to Fo (hemibiotrophic 
vascular fungus)

hyper Fo responses gene is suppressed by 
DNA methylation

Schumann et al., 2019

Chromatin remodelers and epigenetic regulators

edm2 Susceptible to Hpa – Control expression of RPP7 Eulgem et al., 2007
Resistant to Pst NLRs unsuppressed Lai et al., 2020

pie1(swr1) Resistant to Pst – Constitutive SAR response March-Diaz et al., 2008
clsy1 Progeny is not prime to against Hpa – Transgenerational SAR is impaired Luna and Ton, 2012
ddm1 Resistant to Pst hypo SA-dependent response is enhanced Stokes et al., 2002; 

Cambiagno et al., 2021
syd-4 Resistant to Pst – SNC1 expression is enhanced Johnson et al., 2015
swp73a Resistant to Pst(AvrRpt2) and 

Pst(AvrRps4)
– NLRs unsuppressed Huang et al., 2021

Pathogens include bacterial pathogens Pseudomonas syringae pv. tomato DC3000 (Pst, secreted effectors AvrPphB, AvrRpt2, AvrRps4, and type III secretion system mutant hrc−) 
and Agrobacterium tumefaciens (At), biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa), hemibiotrophic vascular fungus Fusarium oxysporum (Fo), fungus Botrytis cinerea 
(Bc), Magnaporthe oryzae (Mo), necrotrophic fungus Plectosphaerella cucumerina (Pc), and Alternaria brassicicola (Ab).
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Heterochromatic siRNAs, which are typically 24–30 nt in 
length, play a central role in the canonical RdDM pathway 
(Figure  1A). The biogenesis of hc-siRNAs is dependent on 
the RDR2-DCL3-AGO4/6/9 pathway and also requires plant-
specific RNA polymerase IV and V (PolIV and PolV; Figure 1A). 
They are derived from TEs, repeats, and heterochromatic regions 
and act to direct de novo DNA methylation and/or histone 
modifications at the target region (Matzke and Mosher, 2014). 
Many PRR/NLR loci or clusters are associated with TEs or 
repeats (Cambiagno et  al., 2018) and, thus, are regulated by 
hc-siRNA-mediated epigenetic regulation. One example of this 
is the rice NLR Pigm locus, which confers durable resistance 
to the rice blast fungus Magnaporthe oryzae (Deng et al., 2017; 
Table  2). The Pigm locus encodes a cluster of NLRs and NLR 
pseudogenes, including PigmR and PigmS. Constitutive expression 
of PigmR confers resistance to M. oryzae but causes yield 
losses. PigmS, which is highly expressed in pollen and panicles, 
forms a heterodimer with PigmR to suppress PigmR-mediated 
resistance to avoid fitness costs. The PigmS promoter contains 
two tandem miniature transposons (MITEs), which associate 
with hc-siRNAs. Thus, the precise control of PigmS expression 
is mediated by hc-siRNA at the epigenetic level.

In addition to NLRs, hc-siRNAs also regulate signaling 
components of plant defense. For example, a rice hc-siRNA, 
TE-siR815, derived from a MITE in the first intron of the 
transcription factor WRKY45-1 allele, induces TGS of a leucine-
rich repeat receptor kinase-type protein gene, ST1. ST1 is a 
key component in the WRKY45 signaling pathway and this 
suppression leads to attenuation of WRKY45-mediated resistance 
to bacterial blight of rice caused by Xanthomonas oryzae pv. 
Oryzae (Xoo; Zhang et al., 2016; Table 2). Unlike the WRKY45-1 
allele, the WRKY45-2 allele does not contain the TE-siR815-
generating MITE, which allows signaling pathway activation 
against Xoo. Other than hc-siRNA, miRNA can participate in 
non-canonical RdDM (Cuerda-Gil and Slotkin, 2016). A rice-
specific miR812w, which originates from the Stowaway MITE, 
targets Stowaway MITE to suppress the expression of nearby 
genes through miRNA-directed DNA methylation, contributing 
to M. oryzae resistance (Campo et  al., 2021; Table  2). Taken 
together, these studies demonstrate that sRNAs can regulate 
plant defense response through RdDM.

DYNAMICS OF DNA METHYLATION IN 
RESPONSE TO BIOTIC STRESSES

In plants, DNA methylation is observed on cytosine in the 
context of symmetric CG and CHG, and asymmetric CHH 
(where H = A, C, or T). CHH methylation is primarily established 
by de novo DNA methylation through RdDM by the RNA 
scaffolds produced by PolV, which recruit DNA (cytosine-5)-
methyltransferase DRM2 and hc-siRNAs that are produced by 
RDR2 and DCL3 and associated with AGO4/6/9 in Arabidopsis. 
The PolIV-RDR2-DCL3-AGO4-PolV-DRM2 pathway forms a 
feedback loop to reinforce DNA methylation at heterochromatin 
regions and TEs (Figure  1). In addition to this canonical 
RdDM, DNA methylation can also be  established by the 

RDR6-DCL2-derived 21 and 22 nt siRNA pathway, which is 
also dependent on AGO4 and AGO6 (Nuthikattu et  al., 2013; 
Cuerda-Gil and Slotkin, 2016). Afterward, spreading of CG 
and CHG methylation is maintained by DNA (cytosine-5) 
Methyltransferase 1 (MET1) and a plant-specific 
Chromomethylase 3 (CMT3), respectively (Zhang et  al., 2018). 
DNA methylation is reversible and the process of DNA 
demethylation can be  passive or active. The passive process 
occurs in the absence of DNA methylation on newly synthesized 
DNA strands. Active DNA demethylation requires the direct 
removal of a methyl group from DNA by DNA demethylases. 
Arabidopsis has four DNA demethylases, including DEMETER 
(DME), DME-Like 1/Repressor of Silencing 1 (DML1/ROS1), 
DML2, and DML3 (Kumar et  al., 2018).

DNA methylation dynamics are dependent on the equilibrium 
between methylation and demethylation pathways. In genome-
wide regulation, the DNA methylation within repetitive sequences 
or TEs are altered in response to infection of the bacterial 
pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) and 
SA treatment and subsequently regulate the transcription of 
neighboring genes (Agorio and Vera, 2007; Dowen et al., 2012). 
In general, Arabidopsis mutant plants with DNA hypomethylation 
are more resistant to disease and exhibit an elevated SA-dependent 
response. For example, met1, drm1/drm2 and drm1/drm2/cmt3 
(ddc), nrpd1 (PolIV mutant), nrpe1 (PolV mutant), nrpd1/nrpe1, 
nrpd2 (subunit shared by PolIV and PolV), drd1 (defective in 
RNA-directed DNA methylation), rdr2, and dcl2/3/4 are more 
resistant to the bacterial pathogen Pst; cmt3, drd1, and nrpe1 
are more resistant to the obligate biotrophic oomycete pathogen 
Hyaloperonospora arabidopsidis (Hpa; Lopez et al., 2011; Dowen 
et  al., 2012; Yu et  al., 2013; Lopez Sanchez et  al., 2016; 
Cambiagno et  al., 2021; Table  1 and Figure  1A).

Conversely, some mutations in sRNA biogenesis and RdDM-
dependent pathways are more susceptible to pathogen infection. 
For example, mutation in RDR6, which is required for phasing 
siRNA and nat-siRNA biogenesis and also mediates non-canonical 
RdDM, does not have an obvious change on global DNA 
methylation and is more susceptible to Pst strain that secrets 
effector AvrRpt2, Pst (AvrRpt2), but displays minor changes 
in response to Pst infection (Katiyar-Agarwal et  al., 2006; 
Dowen et  al., 2012; Nuthikattu et  al., 2013). AvrRpt2 triggers 
NLR RPS2-mediated ETI so this suggested that RDR6-mediated 
siRNAs play a crucial role for RPS2-mediated ETI. The rdr6 
and dcl2/3/4 mutants, which greatly reduce the biogenesis of 
siRNAs, are more susceptible to fungal pathogen Botrytis cinerea 
(Bc). This susceptible phenotype is caused by the fact that the 
host plant has lost the siRNAs that move into fungal cells to 
suppress fungal virulence-related genes (Cai et al., 2018). Drd1, 
nrpe1, nrpd1/nrpe1, and nrpd2 also display enhanced susceptibility 
to the necrotrophic fungus Plectosphaerella cucumerina (Lopez 
Sanchez et  al., 2016) and the ddc mutant is more susceptible 
to necrotrophic fungus Alternaria brassicicola (Lopez et  al., 
2011; Luna et  al., 2012). This is due to the fact that the 
defensive signaling against P. cucumerina and A. brassicicola 
is JA-dependent, which is suppressed in nrpe1 and ddc mutants. 
RdDM mutant ago4 is more susceptible to Pst but this phenotype 
is independent of other upstream components of the RdDM 
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pathway including RDR2 and DCL3 (Agorio and Vera, 2007). 
Thus, this response could be  caused by other regulatory 
mechanism of AGO4, which is suggested from the following 
study. The ddc and ago4 mutants were found to be  more 
susceptible to Agrobacterium tumefaciens, the bacterium that 
causes crown gall tumors. This enhanced susceptibility phenotype 
was abscisic acid (ABA) dependent, which is also regulated 
by DNA methylation (Gohlke et al., 2013). ABA plays a pivotal 
role in abiotic stress responses and has negative impacts on 
plant immunity against diverse pathogens (Robert-Seilaniantz 
et  al., 2011). This impact is attributed to ABA-mediated 
suppression of plant immune responses induced by immune 
hormones SA, JA, and ethylene (Mine et  al., 2017). Thus, 
dynamic changes in DNA methylation in response to pathogen 
infection play a pivotal role in plant immune responses.

Active demethylation also shapes transcriptional 
reprogramming of immune response genes upon infection of 
different pathogens (Table  1). In Arabidopsis, the bacterial 
PAMP, flagellin-derived peptide flg22, derepresses RdDM targeted 
genes, such as an NLR gene, RMG1, and a PRR gene, RLP43, 
through ROS1-directed demethylation on their promoters (Yu 
et  al., 2013; Halter et  al., 2021; Figure  1B). In addition, ROS1 
antagonizes RdDM-dependent methylation at RMG1 locus, 
which may also contribute to anti-bacterial response (Halter 
et  al., 2021). The ros1 mutant shows hypermethylation and is 
more susceptible to Hpa. Conversely, ros1 is more resistant to 
P. cucumerina, which is associated with JA-dependent defense 
pathways (Lopez Sanchez et  al., 2016). Furthermore, the triple 
mutant of DNA demethylases ros1/dml2/dml3 (rdd) and the 
quadruple mutant rdd DME RNAi lines display enhanced 
susceptibility to a hemibiotrophic vascular fungal pathogen, 

Fusarium oxysporum, that causes disease in many important 
crops. The tissue-specific expression of four DNA demethylases 
DME, ROS1, DML2, and DML3 act cooperatively to construct 
resistance against F. oxysporum (Schumann et  al., 2019). It 
was also found that some Arabidopsis NLRs can be demethylated 
by ROS1, DML2, and DML3 within their promoters and 
transcribed regions (Kong et al., 2020). Thus, active demethylation 
processed by DNA demethylases regulates defense response 
genes upon pathogen infection (Table  1).

HISTONE MODIFICATION AND 
CROSSTALK WITH DNA METHYLATION 
MODULATE PLANT DEFENSE 
RESPONSES

Post-translational modifications on histone proteins have direct 
impacts on the chromatin structure and contribute to the 
transcriptional regulation of gene expression. Histone 
modification is a reversible process and is modulated by specific 
writers that add the modification, erasers that remove the 
modification, or readers that sense the modification and transduce 
the downstream signaling pathways. Some histone PTMs are 
associated with specific transcriptional states. In general, H3K4me 
(methylation of Histone 3 at Lys4), H3K36me, H3K9ac 
(acetylation of H3 at Lys9), and H3K27ac are markers for 
transcriptional activation, whereas H3K27me3 is mainly linked 
to transcriptional silencing of genes (Xiao et al., 2016). H3K9me2 
and H3K9me3 are enriched in heterochromatic regions with 
a high density of TEs or repeats, where they have a constitutive 

TABLE 2  |  Examples of molecular regulators or treatments which cause epigenetic modification and regulate crop disease response.

Epigenetic modification molecules 
or treatment

Function Effect References

Rice
OsAGO4a-RNAi Reduce siRNA accumulation and CHH 

methylation at the PigmS promoter and 
enhance PigmS expression

The mutant plant is susceptible to 
Magnaporthe oryzae (fungus)

Deng et al., 2017

TE derived hc-siRNAs Control PigmS expression Avoid fitness cost due to the defense 
response induced by PigmR against 
Magnaporthe oryzae

Deng et al., 2017

TE derived hc-siRNAs, TE-siR815 Suppress ST1 expression Attenuation of WRKY45-mediated 
resistance to Xanthomonas oryzae pv. 
Oryzae (bacteria)

Zhang et al., 2016

miR812w Targets Stowaway MITE to suppress 
nearby gene

Contribute to Magnaporthe oryzae 
resistance

Campo et al., 2021

Common bean
BABA H3K4me3 and H3K36me3 are enhanced 

at the promoter-exon regions of defense-
associated genes

Induces resistance to P. syringae pv. 
phaseolicola

Martinez-Aguilar et al., 2016

Potato

BABA Adjust H3K4me2 and H3K27me3 
dynamics; and genome-wide DNA 
hypermethylation

Induces intergenerational resistance 
against Phytophthora infestans 
(oomycete)

Meller et al., 2018

Reduce DNA methylation on the promoter 
of R3a NLR gene

More resistant to virulent Phytophthora 
infestans which secretes effector Avr3a

Kuznicki et al., 2019
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FIGURE 1  |  The epigenetic regulatory mechanisms act coordinately in reprogramming gene expression when plants encounter biotic stress. The known factors in 
Arabidopsis that regulate the biotic stress involve small RNAs, RdDM, methylation and demethylation of DNA, histone modification, and chromatin remodelers, 
which are present here. (A) Small RNAs participate in conical and non-canonical RdDM pathways to regulate DNA methylation on TEs and defense-related genes. 
The RDR2- and DCL3-dependent hc-siRNAs are key components in PolIV-RDR2-DCL3-AGO4-PolV-DRM2, the conical RdDM pathway, which establish and 
reinforce DNA methylation at TEs and regulate the nearby defense response genes. The siRNAs derived from mRNA precursor, TE non-coding RNAs (TE ncRNAs), 
inverted repeats, or dsRNAs produced by RDR6 are processed by DCL2/4 also participate in establishing the DNA methylation and regulate the expression of 
defense-related genes. (B) Deposition of DNA methylation and on the NLRs, PRRs, or defense response genes leads to a transcriptionally suppressed status. Other 
components acting with the chromatin remodeler SWP73A (dark red oval) are not clear (unknown component is shown in gray oval). RdDM components including 
PolIV and PolV, DCLs, RDRs, AGO4/6, and DRD1 are shown in a dark green oval. DNA methyltransferases DRM2, MET1, and CMT3 are shown in a light green 
oval. SWI2/SNF2-like ATPases Decreased DNA Methylation 1 (DDM1), Swi2/Snf2-related 1 (SWR1), and Classy1 (CLSY1) are shown in an orange oval. The 
H3K9me2 reader EDM2 is shown in the light brown oval. Mutant plants that display a resistant phenotype to pathogen (such as Pst) relying on an SA-dependent 
response are surrounded with a red outline, whereas the blue outline indicates a more susceptible phenotype.
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repressive function (Liu et  al., 2010; He et  al., 2011). In 
euchromatic regions, H3K9me2 has been observed to span 
the entire gene and is correlated with low expression levels 
(Zhou et  al., 2010; West et  al., 2014).

The epigenetic regulation of defense-related genes mediated 
by histone modification was comprehensively discussed in recent 
reviews (Ramirez-Prado et  al., 2018; Hu et  al., 2019). Here, 
we  emphasize the crosstalk between histone modification and 
DNA methylation on plant biotic stress as methylation of DNA 
and H3K9 is highly correlated with gene silencing in eukaryotes. 
This link between DNA methylation and H3K9 modification 
was revealed by binding of CMT3 with the histone 
methyltransferase Kryptonite/SUVH4 (KYP). The interaction of 
CMT3 and KYP/SUVH4 constitutes a self-reinforcing loop between 
histone and DNA methylation in plants which is important for 
TE silencing (Du et  al., 2015; Figure  1B). In addition to DNA 
methylation on TEs regulating the transcription of neighboring 
NLR genes (Dowen et  al., 2012), some NLR loci or clusters 
associated with TEs are also controlled by histone marks, such 
as H3K9me2 (Lai and Eulgem, 2018). Through Arabidopsis mutant 
screening, the methylation of DNA and H3K9 was observed to 
regulate resistance against Pst infection (Cambiagno et al., 2021) 
and infestation by the pest, green peach aphid Myzus persicae 
(Annacondia et  al., 2021). The study revealed that nrpd1 and 
kyp mutant plants are more resistant to aphids (Annacondia 
et al., 2021). Whether and how does the crosstalk between DNA 
and H3K9 methylation contribute to aphid resistance is still 
largely unknown. The drm1/drm2, ddc, and suvh4/5/6 mutant 
plants do not exhibit constitutive expression of the defense gene 
marker PR1 (PATHOGENESIS-RELATED GENE 1) but are more 
resistant to Pst due to a faster and stronger PR1 induction after 
Pst infection compared to wild-type plants (Cambiagno et  al., 
2021). This suggest that drm1/drm2, ddc, and suvh4/5/6 mutant 
plants acquired a primed state of defense against Pst, which is 
regulated by both DNA and H3K9 methylation levels. Another 
example of genes participating in the crosstalk of DNA and 
H3K9 methylation is Increase in Bonsai Methylation 1 (IBM1), 
which encodes a histone demethylase and directly associates 
with the gene body that has the repressive mark, H3K9me2. 
IBM1 removes mono- and dimethylation of histone lysines and 
negatively regulates DNA methylation at CHG loci in the genic 
regions. IBM1 positively regulates Arabidopsis defense responses 
against Pst at the chromatic level by derepressing the defense 
marker genes PR1, PR2, and the PTI marker FRK1 (Chan and 
Zimmerli, 2019). Thus, the crosstalk between histone modification 
and DNA methylation contributes to the epigenetic regulation 
of gene expression in response to pathogen infection.

CHROMATIN REMODELERS AND 
EPIGENETIC REGULATORS MODULATE 
PLANT IMMUNITY

While defense-related genes are regulated by covalent DNA and 
histone modifications, chromatin remodeling proteins also play 
an important role in regulating NLRs, plant defense signaling 

components, SA-, and JA-pathway genes. Conserved chromatin 
remodeling complexes are composed of multiple subunits which 
regulate gene expression by altering nucleosome composition 
and interactions at the chromatin structure level. The SWI/SNF 
chromatin remodeling complexes were initially identified from 
Saccharomyces cerevisiae. They have been broadly studied in 
many different organisms and can either “read” or “shape” the 
chromatin landscapes to regulate gene transcription (Raab et al., 
2015; Pulice and Kadoch, 2016). SWI/SNF complexes facilitate 
the activation or repression of the target gene transcription by 
binding to the DNA or interacting with histones and transcription 
factors (Zhu et  al., 2013; Grossi et  al., 2020).

In Arabidopsis, the SWI/SNF complex has a well-established 
role in gene expression regulation in plant growth and development 
(Han et  al., 2015), but only a few studies link the function of 
SWI/SNF complex subunits to plant immunity (Figure 1B). Most 
studies on the role of SWI/SNF complexes in plant defense 
response focus on the SWI2/SNF2-like ATPase subunits. For 
instance, Swi2/Snf2-related 1 (SWR1) complex replaces the histone 
H2A with the histone variant H2A.Z to maintain the suppression 
of several SA-dependent defense genes (March-Diaz et al., 2008). 
These genes include CLASSY1 (CLSY1), which is implicated in 
the RdDM pathway, is required for accumulation of hc-siRNA, 
and interacts with H3K9 methylation (Luna and Ton, 2012; Zhang 
et  al., 2013; Zhou et  al., 2018), as well as DDM1, which is 
required for DNA methylation and regulates expression of NLRs 
(Jeddeloh et  al., 1998, 1999; Stokes et  al., 2002; Li et  al., 2010; 
Cambiagno et  al., 2021). In addition, the expression of NLR 
SNC1 is suppressed by SPLAYED (SYD), another SWI2/SNF2-
like ATPase, which is confirmed by the elevated transcription 
in the syd mutant. However, no direct SYD binding site or DNA 
region has been identified (Walley et  al., 2008; Johnson et  al., 
2015). This could be a result of indirect regulation mediated by SYD.

Other than the SWI2/SNF2-like ATPase subunits, a recent 
study revealed that Arabidopsis SWP73A, a SWI/SNF2 
non-ATPase subunit and an ortholog of the mammalian BRG1-
Associated Factor 60 (BAF60), acts as a negative regulator of 
a group of NLRs to prevent autoimmunity in the absence of 
pathogens (Huang et al., 2021). Upon infection of Pst (AvrRpt2) 
or Pst (AvrRPS4), SWP73A is silenced by two bacterial-induced 
sRNAs post-transcriptionally, which allows rapid induction of 
these NLRs to activate plant immune responses (Figure  1B). 
For some NLRs, such as RPS2 and ZAR1, SWP73A binds 
with H3K9me2 at their transcription starting site and promoter 
regions directly to potentiate its suppression function on the 
expression of these NLRs. For some other NLRs, such as RPS4 
and RRS1, SWP73 does not bind to their promoters and 
transcription starting sites, but instead suppresses their expression 
indirectly by suppressing Cell Division Cycle 5 (CDC5), a key 
regulator of RNA splicing, which subsequently interferes with 
the alternative splicing of these NLRs (Huang et  al., 2021). 
This finding uncovers a new layer of epigenetic control over 
the precise regulation of NLRs. Potential roles of other SWI/
SNF complex subunits in plant immunity remain to be explored.

Other epigenetic regulators, such as ENHANCED DOWNY 
MILDEW 2 (EDM2), also help modulate the expression of 
Arabidopsis NLRs (Eulgem et al., 2007; Lai et al., 2020). EDM2 
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binds to the H3K9me2 at the proximal polyadenylation sites 
of RPP7 and RPP4, which suppresses the maturation of the 
short transcripts and promotes the accumulation of full length 
functional RPP7 and RPP4 (Tsuchiya and Eulgem, 2013). 
EDM2 binds to H3K9me2 at TEs inside or near NLR genes 
and plays a role in balancing transcript levels of these NLRs. 
While the expression level of full length RPP7 mRNA increases, 
EDM2 also represses the expression of other NLRs, which 
is evidenced by the fact that the edm2 mutant is more 
resistant to Pst.

EPIGENETIC MEMORIES AND DEFENSE 
PRIMING

Biotic stress-induced epigenetic changes, triggered by bacteria, 
fungi, or insect herbivory, can sometimes be  transmitted to 
the progeny, leading to transgenerational priming (Luna et al., 
2012; Rasmann et  al., 2012; Lopez Sanchez et  al., 2021; 
Moran-Diez et al., 2021). A global clustering DNA methylation 
study revealed transgenerational acquired resistance-related 
patterns, which were identified after three generations of Pst 
exposure. The major change to DNA methylated regions 
occurred at the CG context in gene bodies (Stassen et  al., 
2018). A screening for Hpa-resistant Arabidopsis was performed 
using epigenetic recombinant inbred lines (epiRILs) generated 
from ddm1 mutant, which has reduced DNA methylation in 
all sequence contexts, crossing to wild-type plants. The selected 
Hpa-resistant lines had no growth defect and a stronger PR1 
induction after Hpa infection compared to wild-type plants 
which revealed a priming of SA-inducible defenses. Through 
transcriptome and DNA methylome analysis of these Hpa-
resistant epiRILs lines, it was found that genome-wide priming 
of defense-related genes is sufficient to provide quantitative 
disease resistance and is heritable (Furci et al., 2019). Therefore, 
Arabidopsis epigenomic responses at the DNA methylation 
level in previous generations could contribute to 
transgenerational acquired resistance.

In addition, several studies have revealed that chemical 
treatment can lead to epigenetic adjustment for enhanced 
plant disease resistance. For instance, β-aminobutyric acid 
(BABA) treatment primes Arabidopsis PTI against the 
necrotrophic bacteria, Pectobacterium carotovorum. This priming 
is mediated by H3K9K14ac and H3K4me2 (Po-Wen et  al., 
2013). Additionally, treatment with BABA or 
2,6-dichloroisonicotinic acid in the common bean leads to 
enhancement in H3K4me3 and H3K36me3 at the promoter-
exon regions of defense-associated genes (Martinez-Aguilar 
et al., 2016; Table 2). BABA treatment also has priming effects 
in potatoes and induces intergenerational resistance against 
oomycete Phytophthora infestans through epigenetic adjustment 
of H3K4me2 and H3K27me3 dynamics. After BABA treatment, 
H3K4me2 was shown to be  transiently induced in NPR1 
(Non-expressor of PR genes) and SNI1 (Suppressor of NPR1 
Inducible 1) resulting in tuning of the SA-responsive gene 
and enhanced occupancy on the gene body of defense response 
genes WRKY1, PR1, and PR2 in primed plants and their 

descendants (Meller et  al., 2018; Table  2). Progeny of the 
BABA-primed potato was shown to carry lower DNA 
methylation on the promoter of R3a NLR gene with a higher 
transcription level of R3a and activate to virulent P. infestans 
which secretes effector Avr3a (Kuznicki et  al., 2019; Table  2). 
Thus, the priming response from chemical-primed treatment 
is highly regulated at the DNA and histone methylation levels.

CONCLUSION AND PERSPECTIVES

Here, we  reviewed recent advances on the regulatory role 
of epigenetic mechanisms, including RdDM, DNA methylation 
dynamics, histone modifications, and chromatin remodeling, 
in plant immune responses. The role of hc-siRNAs in guiding 
DNA methylation endogenously in the RdDM pathway has 
been well demonstrated, but whether hc-siRNAs can also 
direct cross-kingdom DNA methylation of target genes in 
interacting pathogens and organisms remains to 
be  investigated. Epigenetic modifications, including DNA 
methylation and histone modification, could be  heritable 
without the need to introduce an initial trigger for targeted 
manipulation, making it an attractive approach to modify 
a locus for the desired disease-resistant trait. Notably, the 
components needed to manipulate methylation can 
be delivered by direct application of RNAs, protein regulators, 
or priming molecules to plant cells (Mauch-Mani et  al., 
2017; Que et  al., 2019; Gallego-Bartolome, 2020; Watanabe 
et  al., 2021). Therefore, it is possible to bypass genetic 
transformation to manipulate gene expression through 
epigenetic modification in economically important  
crops.

A major challenge in crop management lies in the multiple 
biotic and abiotic stresses occurring concurrently in the field. 
The limited information of crosstalk between abiotic stress 
and biotic stress responses in crop plants makes it difficult 
to develop strategies to trigger an efficient broad-spectrum 
resistance response. Though studies probing the relationship 
between epigenetic regulation and plant biotic stress are 
emerging, the connection between epigenetic modification at 
gene loci and disease-resistant traits in different varieties of 
crops still needs further exploration. In the future, this could 
become even more important to deal with unpredictable effects 
due to climate change.
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