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A B S T R A C T   

A consistent methodology is presented to extract carrier concentrations in n-type Ge from measurements of the 
infrared dielectric function and the Hall effect. In the case of the optical measurements—usually carried out using 
spectroscopic ellipsometry—the carrier concentration is affected by the doping dependence of the conductivity 
effective mass, which is computed using a model of the electronic density of states that accounts for non- 
parabolicity and is fit to electronic structure calculations. Carrier concentrations obtained from Hall measure-
ments require a knowledge of the Hall factor, which is arbitrarily set equal to unit in most practical applications. 
We have calculated the Hall factor for n-Ge using a model that accounts for scattering with phonons and with 
ionized impurities. 

We show that determinations of the carrier concentration n using our computed effective mass and Hall factor 
virtually eliminates any systematic discrepancy between the two types of measurement. We then use these results 
to compute majority carrier mobilities from measured resistivity values, to compare with measurements of 
minority carrier mobilities, and to fit empirical expressions to the doping dependence of the mobilities that can 
be used to model Ge devices.   

1. Introduction 

The 1950s and early 1960’s represented the golden years of Ge 
technology. The development of the semiconductor transistor and the 
fabrication of detectors for nuclear applications led to dramatic im-
provements in Ge crystal growth techniques. The resulting material had 
an unprecedented purity, which allowed for very detailed studies of its 
basic properties. However, the subsequent introduction of MOS tech-
nology shifted the attention to Si, whose oxide lends itself almost ideally 
for device applications. In a few years, Si became the dominant semi-
conductor, and this role was reinforced by a concomitant progress in Si 
crystal growth, which lowered the cost of Si substrates dramatically. 
This made it increasingly difficult for other materials to compete, even 
in areas for which they have better properties than Si. In spite of these 
odds, germanium is currently enjoying a renaissance fueled by the 
replacement of SiO2 by high-κ dielectrics and the development of viable 
epitaxial growth techniques that make it possible to deposit high-quality 
Ge films on Si-substrates, leveraging the progress in Si-technology [1]. 
New applications for Ge have emerged as well, in fields such as opto-
electronics [2] and plasmonics [3]. Furthermore, the successful 

demonstration of Ge1-ySny devices [4] confirms that alloying with Sn is a 
viable tool for further fine-tuning the material properties. In particular, 
the alloy becomes a direct band gap semiconductor for modest Sn con-
centrations near 8% (Ref. [5]), which has led to the fabrication of 
group-IV lasers on Si substrates [6]. 

The re-emergence of Ge as a prime semiconductor material requires 
the development of modern modeling tools based on a detailed knowl-
edge of its physical properties. This ongoing effort has revealed signif-
icant gaps and some inconsistencies in the data collected in the early 
days of this technology. Most of these issues have to do with the prop-
erties of doped Ge. For example, in contrast to Si, very limited infor-
mation is available on the difference in mobility between majority and 
minority electrons and holes. Even more basically, carrier concentra-
tions have been determined almost universally from Hall effect mea-
surements assuming a Hall factor equal to unity. In the case of electrons, 
the Hall carrier concentrations are matched by infrared reflectivity 
measurements if the conductivity effective mass is about 30% higher 
than the value determined from cyclotron resonance experiments [7]. 
Sixty years ago such discrepancy did not seem serious given the limited 
knowledge of the Ge band structure, but today it cannot be brushed 
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aside in view of modern electronic structure calculations. In-
consistencies related to doping are exacerbated by the fact that modern 
applications require ultra-highly doped materials that were not widely 
available in the 50’s and 60’s. For these materials, degeneracy 
effects—including incomplete ionization—and electronic structure 
renormalization effects must be fully taken into account. 

The introduction of novel precursors for low temperature in situ 
doping of Ge and GeSn layers, such as SbD3, As(GeH3)3, P(GeH3)3, As 
(SiH3)3, and P(SiH3)3 (Refs. [8–12]), have led to doped layers with 
extremely uniform doping profiles and very high levels of activation 
without annealing. These are ideal for fundamental studies, which have 
improved our knowledge of band gap renormalization effects [13], 
revealed that incomplete ionization is virtually non-existent in Ge [14], 
and enabled the observation of Fermi-level singularities in the dielectric 
function of n-type Ge [15]. Spectroscopic ellipsometry in the visible has 
played an important role in these experiments. The use of this technique 
in the infrared provides more information than reflectivity studies [16] 
because the real and imaginary part of the dielectric function are 
determined independently. In this paper, we combine the latest exper-
imental results and a theoretical analysis of Hall and ellipsometry ex-
periments to show that the inconsistencies between Hall and optical 
measurements can be largely eliminated, leading to an improved 
determination of carrier concentrations that is free of systematic errors. 
We combine these “self-consistent” values with resistivity measurements 
to extract the mobility of P-, As-, and Sb-doped Ge, and we propose 
empirical expressions that can be used for modeling the electrical 
properties of doped Ge materials. 

2. Experimental details and statement of the problem 

We performed Hall effect and spectroscopic ellipsometry studies on a 
set of 40 n-type Ge samples doped with P, As, and Sb with carrier con-
centrations ranging from n = 7 × 1018 cm−3 to n = 1.3 × 1020 cm−3. The 
samples were grown as described in Refs. [11,12,17]. Briefly, undoped 
Ge buffer layers were first deposited on (001) Si substrates in a 
gas-source molecular epitaxy (GSME) chamber using tetragermane 
Ge4H10 as the Ge source. The growth was carried out at temperatures 
near 350 ◦C and the samples were typically subjected to in situ anneal-
ings at temperatures about 650 ◦C to reduce dislocation densities. The 
use of higher-order germanes such as Ge3H8 or Ge4H10 provides an 
alternative to the standard two-step approach for the growth of Ge films 
on Si substrates [18]. The advantage of the polygermane method is that 
a high-defect sublayer is avoided. The Ge-buffered samples are trans-
ferred to an ultra-high vacuum chemical vapor deposition reactor 
(UHV-CVD), in which mixtures of Ge3H8, H2, and the above-mentioned 
dopants were used to grow the thin doped films. 

The carrier concentrations were obtained from Hall effect measure-
ments and spectroscopic ellipsometry. The Hall measurements were 
performed at room temperature on approximately 10 mm square sam-
ples using a Ecopia 3000 system at room temperature. The magnetic 
field was measured to be of the form B = B0 − Ar2, where r is the radial 
distance to the magnet’s axis, with B0 = 0.584 T and A = 3 × 10−3 T/ 
mm2. The field was averaged over the sample’s area for carrier con-
centration determinations. In–Sn contacts were formed at the sample 
corners for measurements in the van der Pauw configuration. Resistivity 
measurements were also made with the same arrangement. The contact- 
size was less than 7% of the sample size, which implies a negligible error 
for the resistivity and less than 5% error for the Hall coefficient RH. 
Based on the mobility μ values shown below, we have μB≪ 1 for all 
samples, which means that we can use low-field approximations. Under 
these conditions the Hall coefficient is given by 

RH = − γH

en , (1)  

where γH is the so-called Hall factor and e is the absolute value of the 

electron charge. 
Infrared spectroscopic ellipsometry measurements were performed 

on a J. A. Woollam IR-VASE within an energy range 0.03 eV < E < 0.8 
eV, using a step size of 1 meV and an angle of 70◦. The experimental 
complex dielectric function below 0.6 eV is assumed to be of the form 

ε̂(ω) = εopt(ω) − 1
ε0ρ(τω2 + iω)

(2)  

where ρ is the resistivity and τ an average relaxation time. These two 
parameters can be extracted from simultaneous fits of the real and 
imaginary parts. The function εopt(ω) is the low-energy extrapolation of 
the real part of the optical dielectric function. It originates from valence- 
conduction interband transitions, and it is well approximated by ex-
pressions of the form εopt(ω) = ε∞ +

∑
iAi/

(
ω2 − ω2

i
)
, where the sum is 

over a series of “poles” related to critical points in the visible dielectric 
function. The parameters in these expressions can be fit to our own 
ellipsometric measurements in the visible or taken from the literature. 
The specific model chosen has a very minor impact on the resistivity and 
relaxation time extracted from the infrared fits, with differences that 
never exceed 1%. For a cubic crystal, 

1
ρτ= − e2

4π3ℏ2

∫∞

0

dE ∂f
∂E

∫
dk

(∂E(k)
∂kx

)2
δ[E−E(k)] (3)  

where f(E) is the Fermi-Dirac distribution function, and x is a direction 
along any one of the cubic axes. If the dispersion is parabolic, this 
expression reduces to 

1
ρτ=

e2n
m∗ (4)  

where m∗ is the conductivity effective mass. For electrons in the con-
duction band lowest valley, located in Ge around the L point of the 
Brillouin Zone, this conductivity effective mass satisfies 

3
m∗ =

( 1
m‖

+ 2
m⊥

)
(5)  

where m‖ is the dispersion mass along the <111> direction and m⊥ the 
equivalent mass in a perpendicular direction. Eq. (4) can then be used to 
determine the carrier concentration from the ellipsometry parameters if 
m‖ and m⊥ are known. 

For carrier concentration determinations, it is customary to assume a 
Hall factor γH = 1 and the conductivity effective mass that results from 
cyclotron resonance, magnetoabsorption, and magnetopiezo- 
transmission measurements [19–21] of m‖ and m⊥, m∗ = 0.12 m0, 
where m0 is the free electron’s rest mass. Using these assumptions, we 
show in Fig. 1(a) the carrier concentrations nellip obtained from ellips-
ometry meausurements versus the carrier concentrations nHall obtained 
from Hall measurements. A fit of the form nellip = anHall gives a = 0.80 ±
0.02, indicating a significant systematic error, most likely associated 
with our choice of the Hall factor and/or the value of the conductivity 
effective mass. To address these possibilities, we present below a 
calculation of the effective mass and the Hall factor. 

3. Effective mass calculation 

The validity of Eq. (4) rests on the assumption of parabolic disper-
sion. To include non-parabolicity effects, we note that the perpendicular 
effective mass that appears in Eq. (5) is given in k⋅p theory by [13] 

m0
m⊥

= 1 + P2

m0

( 1
E1

+ 1
E1 + Δ1

)
(6)  

where E1 (2.11 eV) and E1 + Δ1 (2.31 eV) are the lowest direct band 
gaps at the L point, and P2 is a momentum matrix element that can be 
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determined from the experimental value of m⊥ at 4K [19]. In the limit 
Δ1 = 0, the 3 × 3 k⋅p problem leading to Eq. (6) can be trivially diag-
onalized, leading to a dispersion relation of the form 

E(k)= αLk2
‖ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δ2

L + β2
Lk2

⊥

√
− ΔL (7)  

where αL = ℏ2 /(2m‖), ΔL = E1/2, and β2
L = ℏ2(ΔL + P2

/m0) /m0. This 
expression neglects non-parabolicity in the parallel direction, which is 
justified by the fact that in this direction k⋅p coupling occurs with more 
distant bands. While derived for the special case Δ1 = 0, the fact that Δ1 
is considerably smaller than E1 suggests that we use Eq. (7) as an 
approximate expression in the general case, but redefining the param-
eter ΔL as 

p
ΔL

= 1
E1

+ 1
E1 + Δ1

, (8)  

where p is a constant (expected to be close to unity if our approach is 
reasonable) that can be adjusted to match the dispersion relation ob-
tained from an accurate band structure calculation. We have done this 
using the 30-band k⋅p model from Ref. [22], and we find p = 0.786. 

The density of states corresponding to Eq. (7) can be written, ac-
counting for the 8 degenerate <111> directions, as 

g(E)= 4
̅̅̅
2

√

π2

(mL

ℏ2

)3/2
(

E1/2 + 2
3

E3/2

ΔL

)
(9)  

where mL = (m‖m2
⊥)

1/3 is the density-of-states effective mass. If we use 
Eqs. (7) and (9) in Eq. (3), we find that Eq. (4) can be used if we define 
the effective mass as 

3
m∗ =

[ 2
m⊥

+ 1
m‖

] F 1/2(EF/kBT) −
(

kBT
ΔL

)(
2m‖−m⊥
2m‖+m⊥

)
F 3/2(EF/kBT)

F 1/2(EF/kBT) +
(

kBT
ΔL

)
F 3/2(EF/kBT)

(10)  

Here kB is Boltzmann’s constant, T the absolute temperature, and EF the 
Fermi level measured from the bottom of the conduction band. The 
functions F 1/2(y) and F 3/2(y) are Fermi-Dirac integrals defined as in 
Ref. [23]. It is apparent that the effective mass so defined depends on the 
amount of doping, which affects the position of the Fermi level. Note 
that the expression that appears in Refs. [13,24] is an expansion of Eq. 
(10) valid in the limit of small non-parabolicity. We use the exact 
expression here because such expansion is not accurate enough for our 
purposes. We computed m∗ from Eq. (10) using a Fermi level calculated 
from the model presented in detail in Ref. [25], which includes the three 
lowest valleys in the conduction band (L, Γ, and Δ) (with 
non-parabolicity corrections for the lowest two), and also accounts for 
non-parabolicity and warping in the valence bands. The model has been 
shown to reproduce the experimental intrinsic carrier concentrations 
extremely well [26]. The doping-induced renormalization of all relevant 
band structure features was included based on results from Ref. 13. To 
calculate the effective mass at 295 K, we assume that m‖ is independent 
of temperature, so that we can use the 4K value [19]. For m⊥, we can 
obtain the room temperature value from Eq. (6) using the known tem-
perature dependence of E1 and E1 + Δ1 and the expected dependence of 
P2 on the lattice parameter [13]. Results are shown in Fig. 2, and we see 
that the conductivity effective mass increases rapidly when the doping 
level moves beyond 1019 cm−3. 

4. Hall factor calculation 

The Hall factor corresponding to electrons in the lowest conduction 
band valley in Ge is given by [27,28]. 

γH =
3
(

〈τ2
⊥〉

m2
⊥
+ 2 〈τ⊥τ‖〉

m⊥m‖

)

[
2 〈τ⊥〉

m⊥
+ 〈τ‖〉

m‖

]2 (11)  

where τ⊥ and τ‖ are the perpendicular and parallel components of the 
anisotropic relaxation time tensor. The averages in the expression are 
defined as 

〈h〉= 2
3kBT

∫
dE E3/2h(E)f (E)[1 − f (E)]∫

dE E1/2f (E) (12)  

for any function h(E). In the non-degenerate Maxwell-Boltzmann limit, 
Eq (12) approaches the standard expressions for these averages given in 
textbooks [29]. For our highly doped samples, however, it is important 
to account for degeneracy. 

Fig. 1. (a) Carrier concentrations nellip in n-type Ge measured by spectroscopic 
ellipsometry versus carrier concentrations nHall from Hall measurements. A 
fixed conductivity effective mass m∗ = 0.12m0 was assumed for the ellipsom-
etry analysis, and a Hall factor γH = 1 was assumed for the Hall data. The solid 
line is a fit nellip = a nHall.(b) Same as (a) but after recomputing nellip and nHall 
using the effective mass from Fig. 2 and the Hall factor from Fig. 3. 

Fig. 2. Conductivity effective mass for n-type Ge, calculated using Eq. (10) and 
experimental values for m‖ and m⊥. 
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In doped Ge, the relaxation time is mainly due to the electron- 
phonon interaction and to the interaction of carriers with ionized im-
purities. If we assume that the anisotropy of the relaxation time is only 
due to ionized impurity scattering, we can write [30]. 

1
〈τ‖〉

= 1
〈τph〉 +

1
〈τi,‖〉

1
〈τ⊥〉 =

1
〈τph〉 +

1
〈τi,⊥〉

(13) 

The mobility is then 

μ= e
3

(2〈τ⊥〉
m⊥

+
〈τ‖〉
m‖

)
(14) 

We model the lattice scattering by assuming τph = τph = a
kBTE−α, and 

we adjust the constants a and α to match the experimental temperature 
dependence of the electron mobility in undoped Ge (Ref. [31]). We find 
α = 0.69 and a = 8.51 × 10−36 erg1.69 s. For impurity scattering, we 
reproduce the calculation of Ito [30], except that we compute the av-
erages as prescribed in Eq. (12) rather than approximating them by their 
value at the Fermi level. 

The resulting Hall factor is shown in Fig. 3. For self-consistency, the 
calculated average relaxation times should reproduce the experimental 
mobility. This is shown in Fig. 4 below, and it is apparent that the 
agreement is excellent. We see that the predicted Hall factor has a 
complicated dependence on the doping concentration. To understand 
this behavior, we note that the Hall factor associated with lattice scat-
tering alone is smaller than the Hall factor associated with ionized im-
purity scattering as shown in elementary calculations of these effects 
[29]. At low carrier concentrations the Hall factor is dominated by lat-
tice scattering. If we expand Eq. (11) as a series in the small quantities 
τph/τi,‖ and τph/τi,⊥, we find that the first-order correction depends on the 
anisotropy of the ionized impurity scattering, and it is negative when 
τi,‖ > τi,⊥, as is the case here. This explains the initial decrease in γH for 
concentrations between n = 1015 cm−3 and n = 1017 cm−3. For higher 
concentrations, ionized impurity scattering becomes dominant, and the 
Hall factor rises, as expected from the elementary results. However, our 
calculations also show that as the carrier concentration increases, both 
Hall factors associated with lattice and ionized impurity scattering 
decrease as a result of band structure and degeneracy effects, so that a 
new local maximum is predicted near n = 1019 cm−3. 

Comparing Figs. 2 and 3, we conclude that for concentrations below 
1019 cm−3 optical measurements may be less prone to error, since the 
effective mass is essentially constant while the Hall factor has a strong 
oscillation. The opposite is true for concentrations above 1019 cm−3, 
since the effective mass is predicted to change by more than 30% 

between n = 1019 cm−3 and n = 1021 cm−3, while the Hall factor only 
changes by 4% over the same range. 

5. Recalculated carrier concentrations 

Using the carrier-concentration dependence of the effective masses 
in Fig. 2 and the carrier concentration of the Hall factor in Fig. 3, we 
have recomputed the carrier concentrations determined from ellips-
ometry and Hall experiments. The results are shown in Fig. 1(b), and we 
see that slope of the nellip = anHall curve is now a = 0.97 ± 0.02, much 
closer to unity. We then believe that we have addressed the main con-
tributions to systematic errors in the determination of carrier 
concentrations. 

Further improvements may be possible from the observation that the 
correction that we applied to the ellipsometry result is not fully 
consistent with the correction calculated for the Hall results. For the 
effective mass calculation, we account for non-parabolicity in the 
context of an isotropic, energy-independent relaxation time. On the 
other hand, for the Hall factor calculation we consider the full energy 
dependence and anisotropy of the relaxation time, but assume parabolic 
dispersion. The inconsistency is mitigated by the fact that the plasma 
frequency ωp [ω2

p = ne2/(m∗ε∞)] for our samples satisfies ωpτ > 2, so 
that the dielectric functions obtained from the ellipsometric fits are not 
too far from the high-frequency limit in which they become independent 
of the relaxation time. As to the Hall factor,we would expect a partial 
compensation that reduces the impact of non-parabolicity, since both 
the numerator and denominator in Eq. (12) are affected. We note that in 
order to include non parabolicity in the Hall factor calculation it is not 
enough to modify Eq. (12) by replacing factors of E1/2 by factors of E1/2 +
2
3E3/2/ΔL, as suggested by Eq. (9). This is because the additional factor of 
E in the numerator of Eq. (12), which arises from the electron velocities, 
is only obtained for parabolic dispersion. Furthermore, the expressions 
for ionized impurity scattering in Ref. 30 were also derived assuming 
parabolic dispersion, and they should be modified for full consistency. 

Even if the effective mass and Hall factor calculation are made fully 
consistent, the fact remains that for carrier concentrations in the range 
shown in Fig. 1, the impurity band and the conduction band have Fig. 3. Hall factor for electrons in n-type Ge, calculated as explained in the text.  

Fig. 4. Electron mobilities in n-type Ge at room temperature. Darker colors 
represent our samples, lighter colors were taken from the literature and cor-
rected using our calculated Hall factors. The empty circles correspond to mi-
nority electron mobilities in p-Ge at the doping concentrations corresponding to 
the horizontal axis. The solid line is the theoretical calculation of the mobility, 
as described in the text. Notice that the excellent agreement with experiment is 
obtained without any adjustable parameter for the ionized impurity scattering 
contribution to the mobility. 
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merged [14]. In this regime one may be able to continue using effective 
masses in the context of a “virtual crystal” description of the electronic 
structure, but it is by no means obvious that the masses should be the 
ones computed here. From this perspective, the agreement between Hall 
and ellipsometry measurements in Fig. 1(b) is quite remarkable. 

6. Electron mobilities 

Using the recalculated carrier concentrations and the measured re-
sistivities, we have computed the mobilities for all of our samples. The 
results are shown in Fig. 4, where we have added older data in the 
literature for As- and Sb-doped Ge [7,32,33]. These earlier papers used 
γH = 1, and we have corrected their data based on Fig. 3. The results 
clearly display the well-known Sb > P > As donor-dependence of the 
mobilities. The theoretical calculation, which assumes exactly the same 
potential for all donors, runs nicely through the average of the 
mobilities. 

For modeling purposes, it is convenient to have empirical expres-
sions that reproduce the experimental mobilities. Inspired by the work 
of Hillsum (Ref. [34]), we have fit the data with 

μ = μ0

1 +
( n

A × 1017cm−3

)α0 for n ≤ 1017cm3

μ = μ0

1 +
(

1 − α0
α1

)(1
A
)α1 +

(α0
α1

) (1
A
)α0−α1

( n
A × 1017cm−3

)α1
for n > 1017cm3

(15) 

The parameters μ0, A, and α0 are constrained to be the same for all 
donors, and only the parameter α1 is allowed to vary according to donor. 
The expression in the denominator for n > 1017 cm−3 ensures that the 
function μ(n) and its derivative are continuous at n = 1017 cm−3. Eq (15) 
is the simplest way to account for the difference between donors with a 
single parameter, while ignoring the difference between donors at low 
concentrations. The fit parameters are shown in Table 1. 

7. Majority versus minority mobilities 

We have added to Fig. 4 the minority electron mobilities in p-type Ge 
as measured by Prince [35]. We see that within the error of the data the 
mobility values for majority and minority electrons are very similar and 
there is little motivation to model them separately for device simula-
tions. This result is consistent with prior observations in silicon [36,37], 
although the latter are based on modern minority mobility measure-
ments that may be more reliable. 

As to the mobilities of minority holes, a comparison with majority 
holes would require a calculation of the Hall factor for holes similar to 
that performed for electrons. Unfortunately, this is a more challenging 
task given the strong non-parabolicity and warping of the valence bands 
and the presence of interband scattering. Current available data for 
majority holes [38] are shown in Fig. 5. When the measured mobility 
from minority holes [35] in n-type Ge are added to the figure, no clear 
indication of a mismatch is observed. The solid line shows a fit of the 
majority hole data with Eq. (15). The parameter μ0 is set to μ0 = 1776 
cm2/(Vs) to match the hole mobility in intrinsic Ge (Ref. [39]), and 
constraining α0 = α1 produces a very good fit with A = 1.393, and α0 =
0.434. 

8. Conclusions 

We have presented a methodology to reconcile carrier concentra-
tions in n-type Ge as determined from Hall and ellipsometry measure-
ments. For the optical measurements, we computed the doping 
dependence of the effective conductivity mass assuming a non- 
parabolicity model that was fit to accurate band structure calculations. 
For the correction of the Hall measurements, we computed the Hall 

factor assuming lattice and ionized impurity scattering in a model. The 
model is fit to the electron mobility in undoped Ge and uses no addi-
tional adjustable parameters to account for ionized impurity scattering 
in n-type samples. It gives excellent agreement with the experimental 
mobility, which suggest it is appropriate for calculating Hall factors. 

The corrected carrier concentrations were combined with experi-
mental resistivities to compute carrier mobilities, and these mobilities 
were fit with empirical expressions that can be used for device modeling. 
A comparison of minority and majority carrier mobilities does not reveal 
any significant difference for the data currently available for Ge. 
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