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ARTICLE INFO ABSTRACT

Keywords: A consistent methodology is presented to extract carrier concentrations in n-type Ge from measurements of the
Gerrfnanium infrared dielectric function and the Hall effect. In the case of the optical measurements—usually carried out using
Doping spectroscopic ellipsometry—the carrier concentration is affected by the doping dependence of the conductivity
g:lll)iof?::ry effective mass, which is computed using a model of the electronic density of states that accounts for non-
Mobility parabolicity and is fit to electronic structure calculations. Carrier concentrations obtained from Hall measure-

ments require a knowledge of the Hall factor, which is arbitrarily set equal to unit in most practical applications.
We have calculated the Hall factor for n-Ge using a model that accounts for scattering with phonons and with
ionized impurities.

We show that determinations of the carrier concentration n using our computed effective mass and Hall factor
virtually eliminates any systematic discrepancy between the two types of measurement. We then use these results
to compute majority carrier mobilities from measured resistivity values, to compare with measurements of
minority carrier mobilities, and to fit empirical expressions to the doping dependence of the mobilities that can
be used to model Ge devices.

1. Introduction

The 1950s and early 1960’s represented the golden years of Ge
technology. The development of the semiconductor transistor and the
fabrication of detectors for nuclear applications led to dramatic im-
provements in Ge crystal growth techniques. The resulting material had
an unprecedented purity, which allowed for very detailed studies of its
basic properties. However, the subsequent introduction of MOS tech-
nology shifted the attention to Si, whose oxide lends itself almost ideally
for device applications. In a few years, Si became the dominant semi-
conductor, and this role was reinforced by a concomitant progress in Si
crystal growth, which lowered the cost of Si substrates dramatically.
This made it increasingly difficult for other materials to compete, even
in areas for which they have better properties than Si. In spite of these
odds, germanium is currently enjoying a renaissance fueled by the
replacement of SiO; by high-k dielectrics and the development of viable
epitaxial growth techniques that make it possible to deposit high-quality
Ge films on Si-substrates, leveraging the progress in Si-technology [1].
New applications for Ge have emerged as well, in fields such as opto-
electronics [2] and plasmonics [3]. Furthermore, the successful
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demonstration of Ge;.,Sny devices [4] confirms that alloying with Snis a
viable tool for further fine-tuning the material properties. In particular,
the alloy becomes a direct band gap semiconductor for modest Sn con-
centrations near 8% (Ref. [5]), which has led to the fabrication of
group-IV lasers on Si substrates [6].

The re-emergence of Ge as a prime semiconductor material requires
the development of modern modeling tools based on a detailed knowl-
edge of its physical properties. This ongoing effort has revealed signif-
icant gaps and some inconsistencies in the data collected in the early
days of this technology. Most of these issues have to do with the prop-
erties of doped Ge. For example, in contrast to Si, very limited infor-
mation is available on the difference in mobility between majority and
minority electrons and holes. Even more basically, carrier concentra-
tions have been determined almost universally from Hall effect mea-
surements assuming a Hall factor equal to unity. In the case of electrons,
the Hall carrier concentrations are matched by infrared reflectivity
measurements if the conductivity effective mass is about 30% higher
than the value determined from cyclotron resonance experiments [7].
Sixty years ago such discrepancy did not seem serious given the limited
knowledge of the Ge band structure, but today it cannot be brushed
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aside in view of modern electronic structure -calculations. In-
consistencies related to doping are exacerbated by the fact that modern
applications require ultra-highly doped materials that were not widely
available in the 50’s and 60’s. For these materials, degeneracy
effects—including incomplete ionization—and electronic structure
renormalization effects must be fully taken into account.

The introduction of novel precursors for low temperature in situ
doping of Ge and GeSn layers, such as SbD3, As(GeHs)s, P(GeHgs)s, As
(SiH3)3, and P(SiH3)3 (Refs. [8-12]), have led to doped layers with
extremely uniform doping profiles and very high levels of activation
without annealing. These are ideal for fundamental studies, which have
improved our knowledge of band gap renormalization effects [13],
revealed that incomplete ionization is virtually non-existent in Ge [14],
and enabled the observation of Fermi-level singularities in the dielectric
function of n-type Ge [15]. Spectroscopic ellipsometry in the visible has
played an important role in these experiments. The use of this technique
in the infrared provides more information than reflectivity studies [16]
because the real and imaginary part of the dielectric function are
determined independently. In this paper, we combine the latest exper-
imental results and a theoretical analysis of Hall and ellipsometry ex-
periments to show that the inconsistencies between Hall and optical
measurements can be largely eliminated, leading to an improved
determination of carrier concentrations that is free of systematic errors.
We combine these “self-consistent” values with resistivity measurements
to extract the mobility of P-, As-, and Sb-doped Ge, and we propose
empirical expressions that can be used for modeling the electrical
properties of doped Ge materials.

2. Experimental details and statement of the problem

We performed Hall effect and spectroscopic ellipsometry studies on a
set of 40 n-type Ge samples doped with P, As, and Sb with carrier con-
centrations ranging fromn =7 x 10®¥ em3ton =1.3 x 102 cm™3. The
samples were grown as described in Refs. [11,12,17]. Briefly, undoped
Ge buffer layers were first deposited on (001) Si substrates in a
gas-source molecular epitaxy (GSME) chamber using tetragermane
Ge4Hjg as the Ge source. The growth was carried out at temperatures
near 350 °C and the samples were typically subjected to in situ anneal-
ings at temperatures about 650 °C to reduce dislocation densities. The
use of higher-order germanes such as GesHg or GesH;o provides an
alternative to the standard two-step approach for the growth of Ge films
on Si substrates [18]. The advantage of the polygermane method is that
a high-defect sublayer is avoided. The Ge-buffered samples are trans-
ferred to an ultra-high vacuum chemical vapor deposition reactor
(UHV-CVD), in which mixtures of GesHg, Hs, and the above-mentioned
dopants were used to grow the thin doped films.

The carrier concentrations were obtained from Hall effect measure-
ments and spectroscopic ellipsometry. The Hall measurements were
performed at room temperature on approximately 10 mm square sam-
ples using a Ecopia 3000 system at room temperature. The magnetic
field was measured to be of the form B = B, — Ar2, where r is the radial
distance to the magnet’s axis, with B; = 0.584 Tand A = 3 X 10731/
mm? The field was averaged over the sample’s area for carrier con-
centration determinations. In-Sn contacts were formed at the sample
corners for measurements in the van der Pauw configuration. Resistivity
measurements were also made with the same arrangement. The contact-
size was less than 7% of the sample size, which implies a negligible error
for the resistivity and less than 5% error for the Hall coefficient Ry.
Based on the mobility u values shown below, we have uB< 1 for all
samples, which means that we can use low-field approximations. Under
these conditions the Hall coefficient is given by

Ry= -1 )
en

where yy is the so-called Hall factor and e is the absolute value of the
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electron charge.

Infrared spectroscopic ellipsometry measurements were performed
on a J. A. Woollam IR-VASE within an energy range 0.03 eV < E < 0.8
eV, using a step size of 1 meV and an angle of 70°. The experimental
complex dielectric function below 0.6 eV is assumed to be of the form

1
" eop(t0? + iw)

(2)

/6\((1)) = Som(a))

where p is the resistivity and 7 an average relaxation time. These two
parameters can be extracted from simultaneous fits of the real and
imaginary parts. The function e, (@) is the low-energy extrapolation of
the real part of the optical dielectric function. It originates from valence-
conduction interband transitions, and it is well approximated by ex-
pressions of the form ey, (0) = ee + 3 ;Ai/ (@* — ©?), where the sum is
over a series of “poles” related to critical points in the visible dielectric
function. The parameters in these expressions can be fit to our own
ellipsometric measurements in the visible or taken from the literature.
The specific model chosen has a very minor impact on the resistivity and
relaxation time extracted from the infrared fits, with differences that
never exceed 1%. For a cubic crystal,

R OE(K)\’
— _W/dl;ﬁ dk( - ) S[E — E(k)] &)
0

where f(E) is the Fermi-Dirac distribution function, and x is a direction
along any one of the cubic axes. If the dispersion is parabolic, this
expression reduces to

- 4

where m* is the conductivity effective mass. For electrons in the con-
duction band lowest valley, located in Ge around the L point of the
Brillouin Zone, this conductivity effective mass satisfies

L (22) ®
m- m| m;

where my is the dispersion mass along the <111> direction and m, the
equivalent mass in a perpendicular direction. Eq. (4) can then be used to
determine the carrier concentration from the ellipsometry parameters if
my and m, are known.

For carrier concentration determinations, it is customary to assume a
Hall factor y; = 1 and the conductivity effective mass that results from
cyclotron resonance, magnetoabsorption, and magnetopiezo-
transmission measurements [19-21] of m and m;, m* = 0.12 my,
where my is the free electron’s rest mass. Using these assumptions, we
show in Fig. 1(a) the carrier concentrations n.;, obtained from ellips-
ometry meausurements versus the carrier concentrations ny,, obtained
from Hall measurements. A fit of the form n.y;, = any. gives a = 0.80 +
0.02, indicating a significant systematic error, most likely associated
with our choice of the Hall factor and/or the value of the conductivity
effective mass. To address these possibilities, we present below a
calculation of the effective mass and the Hall factor.

3. Effective mass calculation
The validity of Eq. (4) rests on the assumption of parabolic disper-

sion. To include non-parabolicity effects, we note that the perpendicular
effective mass that appears in Eq. (5) is given in k-p theory by [13]

—2
mo P /1 1
—=lt— (e 6
my my <E| E1+A1> ©

where E; (2.11 eV) and E; + A; (2.31 eV) are the lowest direct band

gaps at the L point, and P’ is a momentum matrix element that can be
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Fig. 1. (a) Carrier concentrations n;, in n-type Ge measured by spectroscopic
ellipsometry versus carrier concentrations ny,, from Hall measurements. A
fixed conductivity effective mass m* = 0.12m, was assumed for the ellipsom-
etry analysis, and a Hall factor y; = 1 was assumed for the Hall data. The solid
line is a fit neyp = a nyau.(b) Same as (a) but after recomputing ney, and N
using the effective mass from Fig. 2 and the Hall factor from Fig. 3.

determined from the experimental value of m; at 4K [19]. In the limit
A; =0, the 3 x 3 k-p problem leading to Eq. (6) can be trivially diag-
onalized, leading to a dispersion relation of the form

E(k)=apki +\/A] + 1k, — AL )

where o = #* /(2my), Ay = E1/2, and 2 = h*(A + P /myg) /my. This
expression neglects non-parabolicity in the parallel direction, which is
justified by the fact that in this direction k-p coupling occurs with more
distant bands. While derived for the special case A; = 0, the fact that A
is considerably smaller than E; suggests that we use Eq. (7) as an
approximate expression in the general case, but redefining the param-
eter Ay as

p 1 1

p_1 . _ 8
A, EE A ®

where p is a constant (expected to be close to unity if our approach is
reasonable) that can be adjusted to match the dispersion relation ob-
tained from an accurate band structure calculation. We have done this
using the 30-band k-p model from Ref. [22], and we find p = 0.786.

The density of states corresponding to Eq. (7) can be written, ac-
counting for the 8 degenerate <111> directions, as

CAV2ZmpNe (o, 2 B
8(8)="" () (E 38, ©)

where m;, = (mHmi)l/ % is the density-of-states effective mass. If we use
Egs. (7) and (9) in Eq. (3), we find that Eq. (4) can be used if we define
the effective mass as

_ 2\ (2m-m\ —
3 2 17 TipEe/keT) — () (e ) 7 32 (Er /ksT)
- |:7+7:| (A’-><2 1+ ) (10)
m. o my

F1pErkT) + (45) 7 312 (Er /Ko T)
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Here kg is Boltzmann’s constant, T the absolute temperature, and Er the
Fermi level measured from the bottom of the conduction band. The
functions .7 1/5(y) and .7 3/2(y) are Fermi-Dirac integrals defined as in
Ref. [23]. It is apparent that the effective mass so defined depends on the
amount of doping, which affects the position of the Fermi level. Note
that the expression that appears in Refs. [13,24] is an expansion of Eq.
(10) valid in the limit of small non-parabolicity. We use the exact
expression here because such expansion is not accurate enough for our
purposes. We computed m* from Eq. (10) using a Fermi level calculated
from the model presented in detail in Ref. [25], which includes the three
lowest valleys in the conduction band (L, I, and A) (with
non-parabolicity corrections for the lowest two), and also accounts for
non-parabolicity and warping in the valence bands. The model has been
shown to reproduce the experimental intrinsic carrier concentrations
extremely well [26]. The doping-induced renormalization of all relevant
band structure features was included based on results from Ref. 13. To
calculate the effective mass at 295 K, we assume that m is independent
of temperature, so that we can use the 4K value [19]. For m,, we can
obtain the room temperature value from Eq. (6) using the known tem-
perature dependence of E; and E; + A; and the expected dependence of

P on the lattice parameter [13]. Results are shown in Fig. 2, and we see
that the conductivity effective mass increases rapidly when the doping

level moves beyond 10*° cm ™3,

4. Hall factor calculation

The Hall factor corresponding to electrons in the lowest conduction
band valley in Ge is given by [27,28].
3(F 2]
Yu= <7 e an
w) (1
252+

my

where 7, and 7| are the perpendicular and parallel components of the
anisotropic relaxation time tensor. The averages in the expression are
defined as

2 [dEEPHEN(E)L —f(E)
[ dE EVF(E)

W=37 (12)

for any function h(E). In the non-degenerate Maxwell-Boltzmann limit,
Eq (12) approaches the standard expressions for these averages given in
textbooks [29]. For our highly doped samples, however, it is important
to account for degeneracy.
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Fig. 2. Conductivity effective mass for n-type Ge, calculated using Eq. (10) and
experimental values for m; and m,.
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In doped Ge, the relaxation time is mainly due to the electron-
phonon interaction and to the interaction of carriers with ionized im-
purities. If we assume that the anisotropy of the relaxation time is only
due to ionized impurity scattering, we can write [30].

RN
)y (o) (T
1 /l 1 as)

@) () (@)

The mobility is then
u=s (S ) (14)

3 m, m

We model the lattice scattering by assuming 7,r, = 7n = gigE ¢, and
we adjust the constants a and a to match the experimental temperature
dependence of the electron mobility in undoped Ge (Ref. [31]). We find
a=0.69 and a = 8.51 x 10736 erg!"®® 5. For impurity scattering, we
reproduce the calculation of Ito [30], except that we compute the av-
erages as prescribed in Eq. (12) rather than approximating them by their
value at the Fermi level.

The resulting Hall factor is shown in Fig. 3. For self-consistency, the
calculated average relaxation times should reproduce the experimental
mobility. This is shown in Fig. 4 below, and it is apparent that the
agreement is excellent. We see that the predicted Hall factor has a
complicated dependence on the doping concentration. To understand
this behavior, we note that the Hall factor associated with lattice scat-
tering alone is smaller than the Hall factor associated with ionized im-
purity scattering as shown in elementary calculations of these effects
[29]. At low carrier concentrations the Hall factor is dominated by lat-
tice scattering. If we expand Eq. (11) as a series in the small quantities
Tph/7i) @and 7 /7i 1, we find that the first-order correction depends on the
anisotropy of the ionized impurity scattering, and it is negative when
7y > 7i.1, as is the case here. This explains the initial decrease in yy for
concentrations between n = 10'® cm™ and n = 10'” cm™3. For higher
concentrations, ionized impurity scattering becomes dominant, and the
Hall factor rises, as expected from the elementary results. However, our
calculations also show that as the carrier concentration increases, both
Hall factors associated with lattice and ionized impurity scattering
decrease as a result of band structure and degeneracy effects, so that a
new local maximum is predicted near n = 10'° cm 3.

Comparing Figs. 2 and 3, we conclude that for concentrations below
10'° em ™2 optical measurements may be less prone to error, since the
effective mass is essentially constant while the Hall factor has a strong
oscillation. The opposite is true for concentrations above 10'° cm™3,
since the effective mass is predicted to change by more than 30%

1.00 —r—rrrm—rrrrr

Ge
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L 1 1 B

o
©
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T
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Fig. 3. Hall factor for electrons in n-type Ge, calculated as explained in the text.
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Fig. 4. Electron mobilities in n-type Ge at room temperature. Darker colors
represent our samples, lighter colors were taken from the literature and cor-
rected using our calculated Hall factors. The empty circles correspond to mi-
nority electron mobilities in p-Ge at the doping concentrations corresponding to
the horizontal axis. The solid line is the theoretical calculation of the mobility,
as described in the text. Notice that the excellent agreement with experiment is
obtained without any adjustable parameter for the ionized impurity scattering
contribution to the mobility.

between n = 10'° cm™2 and n = 102! cm™3, while the Hall factor only
changes by 4% over the same range.

5. Recalculated carrier concentrations

Using the carrier-concentration dependence of the effective masses
in Fig. 2 and the carrier concentration of the Hall factor in Fig. 3, we
have recomputed the carrier concentrations determined from ellips-
ometry and Hall experiments. The results are shown in Fig. 1(b), and we
see that slope of the n., = anyu curve is now a = 0.97 + 0.02, much
closer to unity. We then believe that we have addressed the main con-
tributions to systematic errors in the determination of carrier
concentrations.

Further improvements may be possible from the observation that the
correction that we applied to the ellipsometry result is not fully
consistent with the correction calculated for the Hall results. For the
effective mass calculation, we account for non-parabolicity in the
context of an isotropic, energy-independent relaxation time. On the
other hand, for the Hall factor calculation we consider the full energy
dependence and anisotropy of the relaxation time, but assume parabolic
dispersion. The inconsistency is mitigated by the fact that the plasma
frequency wp [wg = ne?/(m*e,)] for our samples satisfies wpr > 2, s0
that the dielectric functions obtained from the ellipsometric fits are not
too far from the high-frequency limit in which they become independent
of the relaxation time. As to the Hall factor,we would expect a partial
compensation that reduces the impact of non-parabolicity, since both
the numerator and denominator in Eq. (12) are affected. We note that in
order to include non parabolicity in the Hall factor calculation it is not
enough to modify Eq. (12) by replacing factors of E*/2 by factors of E/2 4-
2E%/2 /A, as suggested by Eq. (9). This is because the additional factor of
E in the numerator of Eq. (12), which arises from the electron velocities,
is only obtained for parabolic dispersion. Furthermore, the expressions
for ionized impurity scattering in Ref. 30 were also derived assuming
parabolic dispersion, and they should be modified for full consistency.

Even if the effective mass and Hall factor calculation are made fully
consistent, the fact remains that for carrier concentrations in the range
shown in Fig. 1, the impurity band and the conduction band have
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merged [14]. In this regime one may be able to continue using effective
masses in the context of a “virtual crystal” description of the electronic
structure, but it is by no means obvious that the masses should be the
ones computed here. From this perspective, the agreement between Hall
and ellipsometry measurements in Fig. 1(b) is quite remarkable.

6. Electron mobilities

Using the recalculated carrier concentrations and the measured re-
sistivities, we have computed the mobilities for all of our samples. The
results are shown in Fig. 4, where we have added older data in the
literature for As- and Sb-doped Ge [7,32,33]. These earlier papers used
yu = 1, and we have corrected their data based on Fig. 3. The results
clearly display the well-known Sb > P > As donor-dependence of the
mobilities. The theoretical calculation, which assumes exactly the same
potential for all donors, runs nicely through the average of the
mobilities.

For modeling purposes, it is convenient to have empirical expres-
sions that reproduce the experimental mobilities. Inspired by the work
of Hillsum (Ref. [34]), we have fit the data with

Ho

H= 1 n ag
+ (A X 1017cm*3)

_ Ho
H= I

1+ (1 —%) (D" + (%?) (/%)QM‘ W>

The parameters y,, A, and @, are constrained to be the same for all
donors, and only the parameter o, is allowed to vary according to donor.
The expression in the denominator for n > 107 cm™2 ensures that the
function p(n) and its derivative are continuous atn = 107 em~3, Eq (15)
is the simplest way to account for the difference between donors with a
single parameter, while ignoring the difference between donors at low
concentrations. The fit parameters are shown in Table 1.

forn < 107cm?

17,3
@ forn > 10"cm

(15)

7. Majority versus minority mobilities

We have added to Fig. 4 the minority electron mobilities in p-type Ge
as measured by Prince [35]. We see that within the error of the data the
mobility values for majority and minority electrons are very similar and
there is little motivation to model them separately for device simula-
tions. This result is consistent with prior observations in silicon [36,37],
although the latter are based on modern minority mobility measure-
ments that may be more reliable.

As to the mobilities of minority holes, a comparison with majority
holes would require a calculation of the Hall factor for holes similar to
that performed for electrons. Unfortunately, this is a more challenging
task given the strong non-parabolicity and warping of the valence bands
and the presence of interband scattering. Current available data for
majority holes [38] are shown in Fig. 5. When the measured mobility
from minority holes [35] in n-type Ge are added to the figure, no clear
indication of a mismatch is observed. The solid line shows a fit of the
majority hole data with Eq. (15). The parameter y, is set to y, = 1776
cm?/(Vs) to match the hole mobility in intrinsic Ge (Ref. [39]), and
constraining ap = a; produces a very good fit with A = 1.393, and ag =
0.434.

8. Conclusions

We have presented a methodology to reconcile carrier concentra-
tions in n-type Ge as determined from Hall and ellipsometry measure-
ments. For the optical measurements, we computed the doping
dependence of the effective conductivity mass assuming a non-
parabolicity model that was fit to accurate band structure calculations.
For the correction of the Hall measurements, we computed the Hall

Materials Science in Semiconductor Processing 164 (2023) 107596

Table 1
Parameters of fits of the electron mobility in n-Ge using the model expression in
Eq. (15).

Ho (cmZ/Vs) A ao [¢5]
Ge:P 4.90 x 107 T-1% (T in K) 1.393 0.695 0.357
Ge:As 0.424
Ge:Sb 0.232

10 10" 10" 10" 10
Carrier concentration p (cm™)

Fig. 5. Hole mobilities in p-type Ge at room temperature. Red squares are data
from Trumbore (Ref. 38). The empty circles correspond to minority hole mo-
bilities in n-Ge at the doping concentrations corresponding to the horizontal
axis. The solid line is a fit with Eq. (15).

factor assuming lattice and ionized impurity scattering in a model. The
model is fit to the electron mobility in undoped Ge and uses no addi-
tional adjustable parameters to account for ionized impurity scattering
in n-type samples. It gives excellent agreement with the experimental
mobility, which suggest it is appropriate for calculating Hall factors.

The corrected carrier concentrations were combined with experi-
mental resistivities to compute carrier mobilities, and these mobilities
were fit with empirical expressions that can be used for device modeling.
A comparison of minority and majority carrier mobilities does not reveal
any significant difference for the data currently available for Ge.
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