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Abstract—DNA Sequencing of microbial communities from en-
vironmental samples generates large volumes of data, which can
be analyzed using various bioinformatics pipelines. Unsupervised
clustering algorithms are usually an early and critical step in
an analysis pipeline, since much of such data are unlabeled,
unstructured, or novel. However, curated reference databases
that provide taxonomic label information are also increasing and
growing, which can help in the classification of sequences, and not
just clustering. In this contribution, we report on our progress
in developing a semi-supervised approach for genomic clustering
algorithms, such as U/VSEARCH. The primary contribution of
this approach is the ability to recognize previously seen or unseen
novel sequences using an incremental approach: for sequences
whose examples were previously seen by the algorithm, the
algorithm can predict a correct label. For previously unseen novel
sequences, the algorithm assigns a temporary label and then
updates that label with a permanent one if/when such a label
is established in a future reference database. The incremental
learning aspect of the proposed approach provides the additional
benefit and capability to process the data continuously as new
datasets become available. This functionality is notable as most
sequence data processing platforms are static in nature, designed
to run on a single batch of data, whose only other remedy to
process additional data is to combine the new and old data and
rerun the entire analysis. We report our promising preliminary
results on an extended 16S rRNA database.

Index Terms—taxonomic classification, incremental learning,
VSEARCH, semi-supervised learning

I. INTRODUCTION

The biological diversity of the microbiome (the community

of bacteria that inhabits an environmental or clinical sample)

can be best observed from its genetic information. Morpholog-

ical differences between cells often fail to distinguish between

even distantly related microorganisms. The development of

next-generation sequencing technology enabled collection of

This work is supported by U.S. National Science Foundation under Grant
#1936782.

“metagenome” sequences, which contain the genetic informa-

tion from potentially all the organisms in a sample, including

bacteria that could not be cultured and grown in a lab. While

metagenomic sequences can include all of an organism’s

genes, the 16S ribosomal RNA (rRNA) gene remains a useful

biomarker for taxonomic classifications of bacteria, as these

genes are both conserved across all bacteria and contain

variable regions that can be used to construct phylogenetic

trees that accurately reflect evolution [15]. With so much high-

throughput sequencing capacity now available, 16S rRNA and

metagenomic data have explosively grown in the last several

years. This growth makes the process of identifying taxa in

samples from their genetic content particularly challenging,

especially when novel (previously unknown) sequences that

cannot be classified are observed.

Metagenomic sequences are analyzed by online platforms,

such as MG-RAST [10], or locally by U/VSEARCH [6], [13],

DIAMOND [3], or MMseqs2 [11], which use unsupervised

clustering approaches. Unsupervised algorithms are reasonable

in this setting, since the data is often unstructured with many of

the sequences not having known labels. In this paper, we focus

on taxonomic classification at various depths (ranks), i.e., the

phylum, family, genus, etc., that identifies what organisms are

observed in a sample (answering the question ”who is there?”

in a given environmental sample). Notably, the methods we

describe can potentially be extended to functional labels, i.e.,

what proteins are encoded by genetic information in a sample

(answering the question ”what can they do?”). In either case,

however, clustering algorithms – in contrast to classification

algorithms that provide a label – provide only limited infor-

mation by only placing “similar” organisms, as judged by

the algorithm’s similarity metric, into the same cluster. As a

result, clustering algorithms only tell us which organisms are

alike, not who they are. Taxonomic identification requires a

supervised classification algorithm, but these algorithms need
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previously curated training data with known correct labels to

learn how to classify any new data. Supervised algorithms gen-

erally require substantial training datasets to create accurate

classification models. But in real world biological applications,

curated datasets with correct label information, i.e., reference

datasets, are much smaller in size compared to experimental

(and hence unlabeled) datasets. Combining (small) labeled and

(large) unlabeled datasets for learning has long been known

to machine learning communities as semi-supervised learning

(SSL). Use of SSL in bioinformatics applications has been

very limited [4], and is the primary focus in this effort.

Another concern with most clustering algorithms as used in

genomic data analysis is that they have been static approaches,

designed for a single run on a single batch of data. These

algorithms, when presented with additional data that may later

become available, are forced to discard all the clusters learned

from previous run, combine the old data with the new data,

and run the entire clustering algorithm again from scratch on

the combined data. Such an approach is not only inefficient,

it is increasingly untenable, intractable and simply unimple-

mentable with the explosive growth in new datasets. A better

approach would be to use incremental (continual) learning

algorithms that are designed to process batches of streaming

data as they become available without requiring access to –

or reprocessing of – the previously analyzed data. Just like

SSL approaches, incremental learning algorithms have also

long been known to machine learning communities, but are

only beginning to be explored for taxonomic classification

applications [16].

We recently proposed Incremental VSEARCH (I-

VSEARCH) as a wrapper approach to the well-established

USEARCH (and its open source version VSEARCH) [12].

In this paper, we further develop and explore the unique

behaviors of this algorithm through several newly defined

metrics, focusing on its semi-supervised classification

functionality, and its ability to recognize both previously

seen or unseen novel sequences. We show that, for sequences

whose samples were previously seen by the algorithm, the

algorithm can predict a correct label. Perhaps more beneficial

is the ability of the algorithm to process previously unseen

novel sequences, assigning them a temporary label in a

cluster, and then updating that label with a permanent one

if/when such a label is established in a future reference

database. We report our results on a new and expanded

version of the Ribosomal Database Project (RDP) 16s rRNA

dataset [5].

II. BACKGROUND

A. Genetic Clustering

USEARCH and CD-HIT, popular clustering algorithms,

follow a similar approach to genetic clustering: they first sort

the sequences from longest to shortest, and compare each

query sequence to the representatives (referred to as seeds in

USEARCH) of existing clusters, where the longest sequence

of each cluster serves as its representative. Both algorithms

follow a greedy approach: if the similarity of sequence and a

cluster representative is above a certain threshold, the search

stops and the query sequence is placed into that cluster. If

no matches are found, a new cluster is created and the query

sequence becomes its representative. VSEARCH, which we

discuss in more detail below, is essentially an open source ver-

sion of USEARCH, but also differs from USEARCH during its

decision making step. While USEARCH uses seed-and-extend

approach, VSEARCH aligns sequences globally to determine

similarity between query and target sequences. Other similar

clustering algorithms include kClust [7], BLASTclust, [1], and

MMseqs2, one of the latest additions to the online processing

platforms and one that provides a cluster update module [11].

B. VSEARCH

Most clustering algorithms have a similar workflow. As a

result, much of our proposed approach to add incremental

and SSL capability is applicable to most, if not all, clustering

algorithms mentioned above. However, we started our analysis

by selecting VSEARCH as the base algorithm, in part because

it is computationally efficient, it is open source and is well-

suited for 16S rRNA databases [14]. VSEARCH consists of

two steps, alignment and clustering. As mentioned above,

all sequences are sorted based on their length from longest

to shortest as a preprocessing step, followed by Needleman-

Wunsch algorithm to align the sequences. Needleman-Wunsch

is a global alignment algorithm that equalizes lengths of the

sequences by adding gaps between nucleotides/proteins while

pairing similar sections of different sequences.

Once the alignment is completed, VSEARCH starts clus-

tering with a list of sorted sequences and a user-selected

percent-similarity threshold, typically between 75% and 99%.

VSEARCH compares each new query sequence to the seeds

of each of the previously generated clusters. If the similarity

between the query and any of the cluster seeds exceeds the

user-selected similarity threshold, the query sequence is added

to that cluster. At algorithm initiation, the longest sequence in

the dataset becomes the seed of the first cluster. Then, the

second sequence is compared to the seed of the first cluster,

and placed into that cluster if their similarity exceeds the

threshold. Otherwise, a new cluster is created with this second

sequence becoming its seed. The algorithm than proceeds iter-

atively, with each new sequence being compared to all existing

cluster seeds in order of seed length. The query sequence is

placed into the first cluster for which the similarity exceeds the

threshold. If none of the existing cluster seeds have a similarity

higher than the threshold, then a new cluster is created with

the query sequence becoming its seed. VSEARCH follows this

greedy policy in placing the sequences into cluster, as each

new sequence is placed into the first cluster for which the

similarity threshold is met, saving considerable computation

time at little or negligible cost of clustering performance.

It is important to emphasize that VSEARCH and other

algorithms mentioned above are all unsupervised clustering

algorithms and do not use any labels, even when they are

available. All processing, including sorting, alignment and

clustering, are done using the raw sequences only.
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III. METHODS

A. Incremental VSEARCH

We first described incremental VSEARCH (I-VSEARCH)

in [12] primarily to reduce the computational cost of con-

secutive clustering processes when new batches of data ar-

rive, while maintaining similar clustering performance. I-

VSEARCH takes advantage of VSEARCH’s algorithmic de-

sign decision that only the seeds are used for computing the

similarity metric during clustering, while other sequences are

no longer used once they are placed in their respective clusters.

I-VSEARCH is a wrapper for VSEARCH. For the first batch

of data received, I-VSEARCH first calls VSEARCH to have

the data sorted, aligned and clustered. Once the clustering is

complete, I-VSEARCH saves only the seeds of each cluster in

preparation to receive the next batch of data. When the next

batch of data is received, this batch is sorted based on length,

but seeds saved from the previous batch(es) are added to the

beginning of the new data file to ensure that the same clusters

created previously are recreated quickly before any new data

is processed. If the same similarity threshold is chosen, I-

VSEARCH replicates the same clusters by processing only

those seeds. Once the clusters from previous run are recreated,

regular clustering proceeds by processing new sequences ac-

cording to the same rules as before. After each batch of data,

the seeds are reassigned in case of any cluster receives a longer

sequence than its prior seed.

B. Semi-Supervised Incremental VSEARCH (SSI-VSEARCH)

We now focus on the SSL to determine the classifica-

tion capabilities and properties of our approach through a

comprehensive set of experiments. To do so, we describe

Semi-Supervised Incremental VSEARCH (SSI-VSEARCH),

which transforms the clustering algorithm to a semi-supervised

classification algorithm by taking advantage of any – however

small – labeled reference dataset available, with the additional

benefit of doing so incrementally.

SSI-VSEARCH is essentially another wrapper, this time

around I-VSEARCH, that adds the label information to the

unlabeled sequence. Here, we assume that a small portion

of the sequences do in fact have known labels, or there is a

reference database available that consists of labeled sequences,

some of which may or may not appear in the query dataset.

For the purposes of this discussion, we refer to sequences that

have known labels as known sequences, and those that do not

have labels as unknown sequences. We will also refer to novel

sequences, those that have never been seen before and has

never been labeled in any reference dataset.

In SSI-VSEARCH, the first step is to run the original I-

VSEARCH on the first batch of data. For this first step,

the labels of the known sequences are detached from the

sequences, and they are treated as if they are unlabeled. After

the clustering is completed, the labels of the known sequences

are re-attached to the data structure that holds the sequences.

At this stage, the algorithms faces three possible scenarios for

each cluster:

• The cluster includes one or more labeled sequences of the

same label and possibly one or more unlabeled sequences.

In this case, the cluster - and all unlabeled sequences

within it - are given the known label. Such a cluster is

deemed pure, as all of its sequences have the same label.

• The cluster includes multiple labeled sequences – but of

different labels – as well as unlabeled sequences. In this

case, the cluster is assigned the label that is determined

through a majority vote process. The label associated with

the largest number of (known) sequences in the cluster

is the winning label, and that label is then attached to

all unlabeled sequences. Ties can be broken randomly, or

by accepting the label of the longest known sequence as

the winning label. Such a cluster is an impure cluster,

since it includes sequences from at least one additional

label. In both this and the previous case, labels attached

to a previously unlabeled/unknown sequence, are referred

to as predicted labels and the corresponding sequence is

considered a predicted sequence.

• The cluster does not include any labeled (known) se-

quence. Then, the cluster – and all unknown / unlabeled

sequences in it – are given a random temporary label.

The incremental learning ability of the algorithm may add

sequences to any of the existing clusters created in previous

runs on earlier batches of data. In such cases, the same pro-

cedure described above is repeated. Of particular importance

is the last scenario: if a known sequence is later added to a

previously unknown cluster with a temporary label, the cluster

and the sequences within the cluster are labeled according to

the majority vote scenario described above.

C. Evaluation

We define several new metrics to evaluate the algorithm’s

performance and behavior, as described below. To determine

the true ability of the algorithm to predict correct labels,

the ground truth, i.e., the actual correct labels are needed.

Therefore, we used the 16S rRNA dataset (described in more

detail below), for which all labels are in fact available to us.

To simulate reference data of known labels and experimental

data of unknown labels, we partitioned the entire dataset into

training and testing subsets, respectively. The training data

subset (simulating the reference dataset) consisted of 25% of

the entire dataset, whereas the remaining 75% was set aside

as test data (simulating experimental/environmental data). The

labels of training dataset were provided to the algorithm after

the clustering stage to be used during majority voting, whereas

the labels of the test data were kept hidden from the algorithm.

The labels of the test data were only used later as ground truth

(for computing various evaluation metrics) described below.

1) Unlabeled Cluster and Sequence: After the majority

voting, all sequences are assigned a label per the process

described above. Those sequences (and clusters) that do not

have a known label are assigned a temporary ID, but are

still considered unlabeled for evaluation and classification

purposes. Naturally, there is no actual prediction made for

these sequences. Hence unlabeled sequences are not counted

2022 IEEE SSCI — Symposium on Computational Intelligence in Data Mining 1121Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 31,2023 at 07:50:55 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. In given cluster, assume that red outlined sample A comes from
training/reference dataset, and hence has a known label. After majority voting
using reference samples, cluster is labeled as A. While calculating predicted
accuracy, we only consider samples from testing dataset (4A, 1B, 1C).
Accuracy for this cluster is then 4/6.

when computing accuracy since – in the absence of ground

truth – accuracy cannot be determined. These sequences are

counted, however, in determining the prediction rate of the

algorithm (defined below).

2) Labeled Cluster and Predicted Sequences: When a clus-

ter has at least one sample from reference dataset, that cluster

and its unlabeled sequences are labeled based on the majority

voting of the labels of known sequences. Such a cluster is

considered as a labeled cluster. All such sequences from

previously unknown experimental test data are then considered

as predicted sequences.

3) Prediction Accuracy: Prediction accuracy is the ratio of

the predicted sequences that are actually given the correct label

by the algorithm, as compared to the ground truth. Prediction

accuracy is only computed on the test dataset so that it is

not artificially increased with labels of the training data that

are already made available to the algorithm during the ma-

jority voting stage. Prediction accuracy is computed simply as

PA = PScorrect/(PScorrect+PSincorrect) where, PScorrect

and PSincorrect are the number of predicted sequences in the

test dataset whose labels are determined to be correct and

incorrect, respectively, based on ground truth data.

4) Prediction Rate: While we cannot assign an accuracy

metric to sequences that are left unlabeled (but only given a

temporary ID), we do keep track of how many such sequences

are left in the dataset. We monitor them through the predic-

tion rate metric, which is the ratio of number of predicted

sequences to the total number of sequences (predicted and

unlabeled) in the dataset.

5) Unlabeled Accuracy: Recall that unlabeled clusters are

those that do not have any known reference data label, and

hence are provided a temporary ID by the algorithm. In a real

world scenario where the sequences in such clusters are truly

unknown, it is impossible to know whether these sequences

even belong to the same class. Nevertheless, since all labels

of the RDP dataset are known to us, we can in fact compute

the accuracy of even those sequences. We keep a separate

metric for such sequences, referred to as unlabeled accuracy

UA, distinct from prediction accuracy described above, and

compute it as UA = UScorrect/(UScorrect + USincorrect)
where, UScorrect and USincorrect are the number of test

Fig. 2. All samples in this unlabeled cluster are from the test data and
a temporary label is assigned to the cluster. While calculating unlabeled
accuracy, we check ground truth and assign cluster label accordingly. Here,
let’s assume that the true labels are A, B and C as shown. Given that the
cluster has 5As, 1B and 1C, unlabeled accuracy is 5/7.

data sequences left unlabeled after the majority voting whose

labels are determined to be correct and incorrect, respectively,

compared to ground truth data. Figure 2 provides a graphical

interpretation of this metric.

6) Completeness and Homogeneity: Completeness and ho-

mogeneity are popular metrics used in analysis of genomic

sequences. They are both information theoretic metrics, based

on entropy, and are normalized to have a value between 0 and

1. Completeness measures the degree to which members of

a particular label are all in one cluster. Completeness can be

calculated as

Completeness =1−
H(C|L)

H(C)
(1)

H(C|L) =−
C
∑

c=1

L
∑

l=1

nc,l

n
log

(

nc,l

nl

)

(2)

H(C) =−
C
∑

c=1

nc

n
log

(nc

n

)

(3)

where H(·) and H(·|·) are entropy and conditional entropy,

respectively, l is an index on labels with L as the total number

of labels, c is an index on clusters with C as the total number

of clusters, nc is the number of samples in cluster c, nl,c is

the number of samples with label l in cluster c, and n is the

total number of samples in the dataset.

Homogeneity, on the other hand, is a measure of purity

of clusters. If all clusters are pure, i.e., each cluster contains

members of the same class label, and none of the other labels,

then the homogeneity is 1 for that clustering. Homogeneity

can be calculated as

Homogeneity =1−
H(L|C)

H(L)
(4)

H(L|C) =−
L
∑

l=1

C
∑

c=1

nl,c

n
log

(

nl,c

nc

)

(5)

H(L) =−

L
∑

l=1

nl

n
log

(nl

n

)

(6)
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Fig. 3. In the first case, there is only one cluster, so completeness is
1 by definition, however homogeneity is less than 1. In the middle case,
homogeneity is 1 since each of the clusters is pure, but completeness is
less than 1 since not all ”A” labels are in one cluster. In the third case,
both completeness and homogeneity are 1 since all clusters are pure, and all
sequences of a given label are in one cluster each.

where previously mentioned variables are the same (with

nc,l = nl,c) and nl is the number of samples with label l.
Figure 3 illustrates completeness and homogeneity.

7) V Measure: V Measure is a composite metric that

combines completeness and homogeneity (through geometric

mean) to provide an overall assessment of the clustering

algorithm. V-measure is computed as

VMeasure =
(1 + β) ∗Homogeneity ∗ Completeness

β ∗Homogeneity + Completeness
(7)

where β weighs the relative importance of homogeneity over

completeness. We used β = 1 to keep the relative importance

of completeness and homogeneity the same.

8) Singletons: Singletons are those sequences that are left

alone and are not clustered with any other sequence. Sin-

gletons, whether labeled or otherwise, are not included in

accuracy calculations to keep these metrics as fair as possible.

IV. EXPERIMENTAL SETUP

A. RDP18 Dataset

RDP18 is the 18th and the most recent release (in 2020) of

the 16S rRNA dataset, provided by the Ribosomal Database

Project [5]. RDP18 consists of 21,195 16S rRNA sequences

from Bacteria and Archaea. 20,198 of these have six levels of

taxonomic rank information (Kingdom, Phylum, Class, Order,

Family and Genus). 25% of the dataset was used for training

where labels were provided to the algorithm at the majority-

vote stage, and the remaining 75% set aside for testing (or

prediction) whose labels were not provided to the algorithm.

We removed 6 phyla that had fewer than four total samples.

The final dataset had 20,186 samples from 32 phyla, divided

into training (5,035) and testing (15,151) datasets. Training

dataset is further divided into five batches to simulate an

incremental learning setting using two experimental protocols.

B. Experiments

In our first experiment, the five training batches are created

by assigning samples to each batches completely at random.

This sampling results in each batch having a similar distri-

bution as the original dataset. We refer to this experiment as

the random sampling (RS) experiment, since the training data

subsets used for each batch are randomly sampled from the

original training dataset, following the same distribution of the

original data. The algorithm is incrementally run with consec-

utively using the five batches of training subsets, updating the

clusters after each batch. After each update, we evaluate the

performance of SSI-VSEARCH on the test dataset.

For the second experiment, the training batches are cu-

rated such that phyla are mutually exclusive to batches. This

scenario simulates a more challenging setting, where the

algorithm can only see samples of any given label only once.

We refer to this second experiment as the incremental phyla

(IP) experiment, where each batch of data includes a different

(mutually exclusive) set of phyla. There are 32 phyla in the

dataset, but four of these phyla are dominant and compose

90.42% of the dataset. Sequences from these four dominant

phyla are used exclusively in the first four batches, and the

final batch included samples from all remaining 28 phyla.

In this experiment, novel information from new phyla are

introduced incrementally to test the ability of the algorithm

to learn new classes one at a time.

The primary free parameter of SSI-VSEARCH is the simi-

larity threshold. In general, lower thresholds are used to ana-

lyze the sequences at more general taxonomic ranks (such as

phyla), whereas higher thresholds are used for analyzing more

specific taxonomic ranks (such as genus). For completeness,

we run all experiments on all thresholds from 75% to 97% at

all taxonomic ranks.

We used prediction accuracy, prediction rate and unlabeled

accuracy to evaluate the classification performances of SSI-

VSEARCH. We also compared SSI-VSEARCH to the original

VSEARCH on its clustering capabilities. Note that VSEARCH

processes all available data at once, and hence has the luxury

of using all sequences to determine the clusters, whereas

SSI-VSEARCH sees only a subset of the sequences at a

time. We then use completeness, homogeneity and V-Measure

to compare clustering performance and time consumption to

compare efficiency of these two methods.

V. RESULTS AND DISCUSSION

A. SSI-VSEARCH vs. VSEARCH on Clustering Performance

We first compare SSI-VSEARCH and VSEARCH perfor-

mance with respect to completeness, homogeneity and v-

measure on all similarity thresholds. These results represent

the quantities as computed after SSI-VSEARCH completed

its five incremental batches, and after VSEARCH completed

its single run on the entire dataset.

Figures 4 and 5 compare the clustering metrics for

VSEARCH vs. SSI-VSEARCH for both random sampling

and incremental phyla experiments, respectively, at the genus

level. The primary takeaway from these figures is that SSI-

VSEARCH does not lose any performance despite processing

the data incrementally, seeing only some of the data at a time,

while VSEARCH has the luxury of having access to all of

the data at once. This observation is all the more remarkable

considering that SSI-VSEARCH only carries the cluster seeds
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from one batch to the other, and discards all other – what

appears to be nonessential – data.

Fig. 4. Comparison of VSEARCH and SSI-VSEARCH for completeness,
homogeneity and v-measure at similarity thresholds 75-97 and genus level
for random sampling experiment.

Fig. 5. Comparison of VSEARCH and SSI-VSEARCH using completeness,
homogeneity and v-measure at similarity thresholds 75-97 and genus level for
incremental phyla experiment.

We note that – while we did compute these quantities for

all taxonomic ranks, we report the results only for the genus

level for brevity, which are the most conservative results. The

comparisons at other levels were similar (with no difference

between SSI-VSEARCH and VSEARCH), with the absolute

results for more general taxonomic ranks in fact being higher

for each of the metrics.

We also note that carrying only the seed information from

one batch to the next and removal of non-essential data

saves space and speeds up the clustering process. If run on

combined new and old data, VSEARCH would recluster the

same (old) data over and over again, a step avoided by SSI-

VSEARCH. Fig. 6 shows the percentage of time saved by SSI-

VSEARCH over VSEARCH when clustering incrementally.

Figure 6 shows that SSI-VSEARCH saves as much as 60-70%

time over VSEARCH at lower thresholds, though relative time

saved at higher thresholds is less. This is because, it is harder

to cluster samples together and there are significantly more

clusters at higher similarity thresholds. Therefore, more cluster

seeds must be transferred to the next step, which means only

a smaller part of the data is nonessential and hence less data

are discarded. For lower similarity thresholds, significantly

more samples are deemed nonessential and discarded after first

Fig. 6. Percentage time saved by using SSI-VSEARCH instead of VSEARCH
for clustering the same data.

processing by SSI-VSEARCH. Regardless of the similarity

threshold, however, SSI-VSEARCH always saves time without

losing any performance on any of the evaluation metrics.

B. Prediction Capabilities of SSI-VSEARCH

As described in previous sections, a significant advantage of

SSI-VSEARCH over VSEARCH is its incremental and semi

supervised training, which allows it to make a classification

prediction and provide labels to unknown samples by pro-

cessing the data one batch at a time. Recall that only labels

of the training data are provided to the algorithm during the

majority voting stage, whereas the algorithm is asked to predict

the labels of the test data, whose labels are not shown to

the algorithm. The ground truth labels for the test data are

only used later during evaluation for computing prediction

accuracy. For these set of experiments, we therefore focus on

the classification performance and other incremental learning

properties of SSI-VSEARCH. Specifically, we provide predic-

tion accuracy, prediction rate, and unlabeled accuracy of the

algorithm at all similarity thresholds and for all taxonomic

depths (ranks).

Fig. 7. Prediction accuracy of SSI-VSEARCH at every similarity threshold
and taxonomic level in random sampling (solid lines) and incremental phyla
(dotted lines) experiments.

We start with prediction accuracy of SSI-VSEARCH, for

both the random sampling (RS) and incremental phyla (IP)

experiments, which are shown in Figure 7. As expected, the

prediction accuracy is higher for higher similarity thresholds

and for more general taxonomic ranks (such as phylum).
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Also as expected, the prediction accuracy is lower for more

specific taxonomic ranks (such as genus) particularly at lower

similarity thresholds, but improves dramatically towards 100%

at higher similarity thresholds. We observe that the prediction

accuracy is effectively 100% for phylum, class, and order at

90% or higher similarity thresholds. For genus rank, appro-

priate similarity threshold is considered to be over 95% and

prediction accuracy for genus in that range is around 80%.

Another interesting metric to consider for SSI-VSEARCH is

the prediction rate, percentage of unknown sequences that the

algorithm can actually predict. Recall that not all sequences

can be labeled. Specifically, sequences that end up in a cluster

that does not include any known labels cannot be classified.

Fig. 8 shows the prediction rate of the algorithm (on the

random sampling experiment) for each similarity threshold

after each batch of incremental learning. We observe that the

percentage of the sequences that can be predicted increases

from Batch 1 (blue) to Batch 5 (orange), as we would hope

and expect from an incremental learning algorithm. This

observation demonstrates that the algorithm is indeed learning

new information with each new batch, and predict labels of

previously unknown sequences. We also see that – again as

expected – the prediction rate is higher for lower similarity

thresholds. At a typical threshold of 90%, the algorithm

classifies about 90% of the unknown test sequences after

completing its training on the 5th batch (orange curve).

Fig. 8. Prediction rate of SSI-VSEARCH at every similarity threshold after
every batch in random sampling experiment.

Fig. 9. Prediction rate of SSI-VSEARCH at every similarity threshold after
every batch in incremental phyla experiment.

The incremental phyla experiment more clearly demon-

strates the incremental learning ability of the algorithm. Fig.

9 plots the prediction rate of SSI-VSEARCH in incremental

phyla experiment, which shows distinct differences from that

of random sampling experiment in Fig. 8. Recall that in

random sampling experiment, there are examples of all phyla

even in the first batch, and each batch that comes after that.

Therefore, there is ample information for majority of samples

to be predicted even after the first batch, with modest addi-

tional new information provided with each subsequent batch.

As a result, the initial prediction rate is much higher after the

first batch for the random sampling experiment compared to

incremental phyla experiment (blue curves in Figures 8 and

9). For the same reason, there are relatively modest additional

prediction rate improvements after each subsequent batch from

Batch 1 through Batch 5 in Fig. 8. When different phyla are

exclusive to each batch in the incremental phyla experiment,

however, the initial prediction rate is only around 20% after

the first batch, which makes sense since the algorithm has seen

only about a fifth of all available labels. With this experiment,

there is considerably more – and novel – information provided

to the algorithm by each batch, and the algorithm does indeed

learn more with each batch as demonstrated by the more

significant jumps in prediction rate from each batch to the

next as seen in Fig. 9.

It is also interesting to note that adding new information

phylum by phylum versus adding a mixture of phyla at each

batch does not actually change the final prediction rate of the

algorithm. We observe from Figures 8 and 9 that the prediction

rates after Batch 5 (orange curves) are similar to each other.

We note that some of the unlabeled sequences are left

unlabeled because they end up as singletons, i.e., clusters of

one sequence. The number and percentage of sequences left as

singletons increase with the similarity threshold. This is also

expected: with increasing similarity threshold, the algorithm

requires more overlap in sequences before they can be grouped

into the same cluster. We observed that about 5000 sequences

were left as singletons at 97% similarity, which constitutes

about 30% of the total test data. At the more typical 93%

similarity threshold, about only 1000 singletons (about 6.6%

of the total test data) were left unclassified, and about 25% of

all unlabeled sequences were singletons.

Singletons and other unlabeled clusters are not included in

our prediction accuracy results as they do not have labels.

However, since the ground truth labels of all sequences are

known in the RDP dataset, we can in fact calculate the

accuracy of unlabeled clusters. We refer to this metric as un-

labeled accuracy to keep it distinct from prediction accuracy

as described above. Figures 10 and 11 show the unlabeled

accuracy of SSI-VSEARCH in both random sampling and

incremental phyla experiments at every similarity threshold

and taxonomic rank. The unlabeled accuracy is similar to

– or even better than – the prediction accuracy (in Fig.

7), which indicates that SSI-VSEARCH actually clusters the

unknown sequences accurately while waiting for additional

label information from a future reference dataset. Accordingly,
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Fig. 10. Unlabeled accuracy of SSI-VSEARCH at every similarity threshold
and taxonomic level for random sampling experiment.

Fig. 11. Unlabeled accuracy of SSI-VSEARCH at every similarity threshold
and taxonomic level for incremental phyla experiment.

as information about as-yet-unlabeled sequences does become

available in the future, the algorithm will be able to correctly

identify previously unlabeled novel sequences with the correct

label. This observation is one of the most reassuring aspects

of SSI-VSEARCH in its ability to identify novel sequences

through incremental processing.

VI. CONCLUSIONS

In this paper, we demonstrated the additional capabilities

of SSI-VSEARCH over the original VSEARCH, while also

illustrating its behaviour and properties over several care-

fully designed experiments on the RDP18 16S-rRNA dataset.

We showed that through a semi-supervised approach, SSI-

VSEARCH converts VSEARCH – an otherwise purely clus-

tering algorithm that can only group similar sequences in

clusters – to a classification algorithm that can predict labels

of unknown sequences with high accuracy at all taxonomic

levels. The algorithm can do so whether the sequences are

introduced randomly or one/few phyla at a time. Furthermore,

SSI-VSEARCH can incrementally process additional data that

later become available without access to – or reprocessing –

the old data, saving computational time without any loss on

clustering based metrics compared to VSEARCH. We have

also shown that clusters that SSI-VSEARCH leaves unlabeled,

i.e., the sequences in unlabeled clusters, can be predicted

accurately once the necessary label information is added to

a reference database.

Our immediate future work primarily includes expanding

the experimental analysis to larger datasets, such as the 9+

million sequence SILVA database, as well as protein datasets

to make sure that the algorithm is scalable and versatile.

Future work also includes integrating the general approach

of adding semi-supervised incremental learning capability to

bioinformatics platforms and pipelines other than VSEARCH,

such as MG-RAST and MMseqs2. Given that most platforms

generally use similar clustering approaches, those platforms

may also benefit from additional semi-supervised classification

capabilities with suitable modifications. Finally, we will also

explore mechanisms that can be added to the algorithm to

further minimize, or properly combine, the singletons or other

unlabeled clusters into (larger) clusters when appropriate.
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