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Abstract—DNA Sequencing of microbial communities from en-
vironmental samples generates large volumes of data, which can
be analyzed using various bioinformatics pipelines. Unsupervised
clustering algorithms are usually an early and critical step in
an analysis pipeline, since much of such data are unlabeled,
unstructured, or novel. However, curated reference databases
that provide taxonomic label information are also increasing and
growing, which can help in the classification of sequences, and not
just clustering. In this contribution, we report on our progress
in developing a semi-supervised approach for genomic clustering
algorithms, such as U/'VSEARCH. The primary contribution of
this approach is the ability to recognize previously seen or unseen
novel sequences using an incremental approach: for sequences
whose examples were previously seen by the algorithm, the
algorithm can predict a correct label. For previously unseen novel
sequences, the algorithm assigns a temporary label and then
updates that label with a permanent one if/when such a label
is established in a future reference database. The incremental
learning aspect of the proposed approach provides the additional
benefit and capability to process the data continuously as new
datasets become available. This functionality is notable as most
sequence data processing platforms are static in nature, designed
to run on a single batch of data, whose only other remedy to
process additional data is to combine the new and old data and
rerun the entire analysis. We report our promising preliminary
results on an extended 16S rRNA database.

Index Terms—taxonomic classification, incremental learning,
VSEARCH, semi-supervised learning

I. INTRODUCTION

The biological diversity of the microbiome (the community
of bacteria that inhabits an environmental or clinical sample)
can be best observed from its genetic information. Morpholog-
ical differences between cells often fail to distinguish between
even distantly related microorganisms. The development of
next-generation sequencing technology enabled collection of
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“metagenome” sequences, which contain the genetic informa-
tion from potentially all the organisms in a sample, including
bacteria that could not be cultured and grown in a lab. While
metagenomic sequences can include all of an organism’s
genes, the 16S ribosomal RNA (rRNA) gene remains a useful
biomarker for taxonomic classifications of bacteria, as these
genes are both conserved across all bacteria and contain
variable regions that can be used to construct phylogenetic
trees that accurately reflect evolution [15]. With so much high-
throughput sequencing capacity now available, 16S rRNA and
metagenomic data have explosively grown in the last several
years. This growth makes the process of identifying taxa in
samples from their genetic content particularly challenging,
especially when novel (previously unknown) sequences that
cannot be classified are observed.

Metagenomic sequences are analyzed by online platforms,
such as MG-RAST [10], or locally by U/VSEARCH [6], [13],
DIAMOND [3], or MMseqs2 [11], which use unsupervised
clustering approaches. Unsupervised algorithms are reasonable
in this setting, since the data is often unstructured with many of
the sequences not having known labels. In this paper, we focus
on taxonomic classification at various depths (ranks), i.e., the
phylum, family, genus, etc., that identifies what organisms are
observed in a sample (answering the question “who is there?”
in a given environmental sample). Notably, the methods we
describe can potentially be extended to functional labels, i.e.,
what proteins are encoded by genetic information in a sample
(answering the question “what can they do?”). In either case,
however, clustering algorithms — in contrast to classification
algorithms that provide a label — provide only limited infor-
mation by only placing “similar” organisms, as judged by
the algorithm’s similarity metric, into the same cluster. As a
result, clustering algorithms only tell us which organisms are
alike, not who they are. Taxonomic identification requires a
supervised classification algorithm, but these algorithms need

1119

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 31,2023 at 07:50:55 UTC from IEEE Xplore. Restrictions apply.



previously curated training data with known correct labels to
learn how to classify any new data. Supervised algorithms gen-
erally require substantial training datasets to create accurate
classification models. But in real world biological applications,
curated datasets with correct label information, i.e., reference
datasets, are much smaller in size compared to experimental
(and hence unlabeled) datasets. Combining (small) labeled and
(large) unlabeled datasets for learning has long been known
to machine learning communities as semi-supervised learning
(SSL). Use of SSL in bioinformatics applications has been
very limited [4], and is the primary focus in this effort.

Another concern with most clustering algorithms as used in
genomic data analysis is that they have been static approaches,
designed for a single run on a single batch of data. These
algorithms, when presented with additional data that may later
become available, are forced to discard all the clusters learned
from previous run, combine the old data with the new data,
and run the entire clustering algorithm again from scratch on
the combined data. Such an approach is not only inefficient,
it is increasingly untenable, intractable and simply unimple-
mentable with the explosive growth in new datasets. A better
approach would be to use incremental (continual) learning
algorithms that are designed to process batches of streaming
data as they become available without requiring access to —
or reprocessing of — the previously analyzed data. Just like
SSL approaches, incremental learning algorithms have also
long been known to machine learning communities, but are
only beginning to be explored for taxonomic classification
applications [16].

We recently proposed Incremental VSEARCH (I-
VSEARCH) as a wrapper approach to the well-established
USEARCH (and its open source version VSEARCH) [12].
In this paper, we further develop and explore the unique
behaviors of this algorithm through several newly defined
metrics, focusing on its semi-supervised classification
functionality, and its ability to recognize both previously
seen or unseen novel sequences. We show that, for sequences
whose samples were previously seen by the algorithm, the
algorithm can predict a correct label. Perhaps more beneficial
is the ability of the algorithm to process previously unseen
novel sequences, assigning them a temporary label in a
cluster, and then updating that label with a permanent one
if/when such a label is established in a future reference
database. We report our results on a new and expanded
version of the Ribosomal Database Project (RDP) 16s rRNA
dataset [5].

II. BACKGROUND
A. Genetic Clustering

USEARCH and CD-HIT, popular clustering algorithms,
follow a similar approach to genetic clustering: they first sort
the sequences from longest to shortest, and compare each
query sequence to the representatives (referred to as seeds in
USEARCH) of existing clusters, where the longest sequence
of each cluster serves as its representative. Both algorithms
follow a greedy approach: if the similarity of sequence and a

cluster representative is above a certain threshold, the search
stops and the query sequence is placed into that cluster. If
no matches are found, a new cluster is created and the query
sequence becomes its representative. VSEARCH, which we
discuss in more detail below, is essentially an open source ver-
sion of USEARCH, but also differs from USEARCH during its
decision making step. While USEARCH uses seed-and-extend
approach, VSEARCH aligns sequences globally to determine
similarity between query and target sequences. Other similar
clustering algorithms include kClust [7], BLASTclust, [1], and
MMseqs2, one of the latest additions to the online processing
platforms and one that provides a cluster update module [11].

B. VSEARCH

Most clustering algorithms have a similar workflow. As a
result, much of our proposed approach to add incremental
and SSL capability is applicable to most, if not all, clustering
algorithms mentioned above. However, we started our analysis
by selecting VSEARCH as the base algorithm, in part because
it is computationally efficient, it is open source and is well-
suited for 16S rRNA databases [14]. VSEARCH consists of
two steps, alignment and clustering. As mentioned above,
all sequences are sorted based on their length from longest
to shortest as a preprocessing step, followed by Needleman-
Wunsch algorithm to align the sequences. Needleman-Wunsch
is a global alignment algorithm that equalizes lengths of the
sequences by adding gaps between nucleotides/proteins while
pairing similar sections of different sequences.

Once the alignment is completed, VSEARCH starts clus-
tering with a list of sorted sequences and a user-selected
percent-similarity threshold, typically between 75% and 99%.
VSEARCH compares each new query sequence to the seeds
of each of the previously generated clusters. If the similarity
between the query and any of the cluster seeds exceeds the
user-selected similarity threshold, the query sequence is added
to that cluster. At algorithm initiation, the longest sequence in
the dataset becomes the seed of the first cluster. Then, the
second sequence is compared to the seed of the first cluster,
and placed into that cluster if their similarity exceeds the
threshold. Otherwise, a new cluster is created with this second
sequence becoming its seed. The algorithm than proceeds iter-
atively, with each new sequence being compared to all existing
cluster seeds in order of seed length. The query sequence is
placed into the first cluster for which the similarity exceeds the
threshold. If none of the existing cluster seeds have a similarity
higher than the threshold, then a new cluster is created with
the query sequence becoming its seed. VSEARCH follows this
greedy policy in placing the sequences into cluster, as each
new sequence is placed into the first cluster for which the
similarity threshold is met, saving considerable computation
time at little or negligible cost of clustering performance.

It is important to emphasize that VSEARCH and other
algorithms mentioned above are all unsupervised clustering
algorithms and do not use any labels, even when they are
available. All processing, including sorting, alignment and
clustering, are done using the raw sequences only.
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III. METHODS
A. Incremental VSEARCH

We first described incremental VSEARCH (I-VSEARCH)
in [12] primarily to reduce the computational cost of con-
secutive clustering processes when new batches of data ar-
rive, while maintaining similar clustering performance. I-
VSEARCH takes advantage of VSEARCH’s algorithmic de-
sign decision that only the seeds are used for computing the
similarity metric during clustering, while other sequences are
no longer used once they are placed in their respective clusters.

I-VSEARCH is a wrapper for VSEARCH. For the first batch
of data received, I-VSEARCH first calls VSEARCH to have
the data sorted, aligned and clustered. Once the clustering is
complete, [-VSEARCH saves only the seeds of each cluster in
preparation to receive the next batch of data. When the next
batch of data is received, this batch is sorted based on length,
but seeds saved from the previous batch(es) are added to the
beginning of the new data file to ensure that the same clusters
created previously are recreated quickly before any new data
is processed. If the same similarity threshold is chosen, I-
VSEARCH replicates the same clusters by processing only
those seeds. Once the clusters from previous run are recreated,
regular clustering proceeds by processing new sequences ac-
cording to the same rules as before. After each batch of data,
the seeds are reassigned in case of any cluster receives a longer
sequence than its prior seed.

B. Semi-Supervised Incremental VSEARCH (SSI-VSEARCH)

We now focus on the SSL to determine the classifica-
tion capabilities and properties of our approach through a
comprehensive set of experiments. To do so, we describe
Semi-Supervised Incremental VSEARCH (SSI-VSEARCH),
which transforms the clustering algorithm to a semi-supervised
classification algorithm by taking advantage of any — however
small — labeled reference dataset available, with the additional
benefit of doing so incrementally.

SSI-VSEARCH is essentially another wrapper, this time
around I-VSEARCH, that adds the label information to the
unlabeled sequence. Here, we assume that a small portion
of the sequences do in fact have known labels, or there is a
reference database available that consists of labeled sequences,
some of which may or may not appear in the query dataset.
For the purposes of this discussion, we refer to sequences that
have known labels as known sequences, and those that do not
have labels as unknown sequences. We will also refer to novel
sequences, those that have never been seen before and has
never been labeled in any reference dataset.

In SSI-VSEARCH, the first step is to run the original I-
VSEARCH on the first batch of data. For this first step,
the labels of the known sequences are detached from the
sequences, and they are treated as if they are unlabeled. After
the clustering is completed, the labels of the known sequences
are re-attached to the data structure that holds the sequences.
At this stage, the algorithms faces three possible scenarios for
each cluster:

o The cluster includes one or more labeled sequences of the
same label and possibly one or more unlabeled sequences.
In this case, the cluster - and all unlabeled sequences
within it - are given the known label. Such a cluster is
deemed pure, as all of its sequences have the same label.

o The cluster includes multiple labeled sequences — but of
different labels — as well as unlabeled sequences. In this
case, the cluster is assigned the label that is determined
through a majority vote process. The label associated with
the largest number of (known) sequences in the cluster
is the winning label, and that label is then attached to
all unlabeled sequences. Ties can be broken randomly, or
by accepting the label of the longest known sequence as
the winning label. Such a cluster is an impure cluster,
since it includes sequences from at least one additional
label. In both this and the previous case, labels attached
to a previously unlabeled/unknown sequence, are referred
to as predicted labels and the corresponding sequence is
considered a predicted sequence.

o The cluster does not include any labeled (known) se-
quence. Then, the cluster — and all unknown / unlabeled
sequences in it — are given a random temporary label.

The incremental learning ability of the algorithm may add

sequences to any of the existing clusters created in previous
runs on earlier batches of data. In such cases, the same pro-
cedure described above is repeated. Of particular importance
is the last scenario: if a known sequence is later added to a
previously unknown cluster with a temporary label, the cluster
and the sequences within the cluster are labeled according to
the majority vote scenario described above.

C. Evaluation

We define several new metrics to evaluate the algorithm’s
performance and behavior, as described below. To determine
the true ability of the algorithm to predict correct labels,
the ground truth, i.e., the actual correct labels are needed.
Therefore, we used the 16S rRNA dataset (described in more
detail below), for which all labels are in fact available to us.
To simulate reference data of known labels and experimental
data of unknown labels, we partitioned the entire dataset into
training and testing subsets, respectively. The training data
subset (simulating the reference dataset) consisted of 25% of
the entire dataset, whereas the remaining 75% was set aside
as test data (simulating experimental/environmental data). The
labels of training dataset were provided to the algorithm after
the clustering stage to be used during majority voting, whereas
the labels of the test data were kept hidden from the algorithm.
The labels of the test data were only used later as ground truth
(for computing various evaluation metrics) described below.

1) Unlabeled Cluster and Sequence: After the majority
voting, all sequences are assigned a label per the process
described above. Those sequences (and clusters) that do not
have a known label are assigned a temporary ID, but are
still considered unlabeled for evaluation and classification
purposes. Naturally, there is no actual prediction made for
these sequences. Hence unlabeled sequences are not counted
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Fig. 1. In given cluster, assume that red outlined sample A comes from
training/reference dataset, and hence has a known label. After majority voting
using reference samples, cluster is labeled as A. While calculating predicted
accuracy, we only consider samples from testing dataset (4A, 1B, 1C).
Accuracy for this cluster is then 4/6.

when computing accuracy since — in the absence of ground
truth — accuracy cannot be determined. These sequences are
counted, however, in determining the prediction rate of the
algorithm (defined below).

2) Labeled Cluster and Predicted Sequences: When a clus-
ter has at least one sample from reference dataset, that cluster
and its unlabeled sequences are labeled based on the majority
voting of the labels of known sequences. Such a cluster is
considered as a labeled cluster. All such sequences from
previously unknown experimental test data are then considered
as predicted sequences.

3) Prediction Accuracy: Prediction accuracy is the ratio of
the predicted sequences that are actually given the correct label
by the algorithm, as compared to the ground truth. Prediction
accuracy is only computed on the test dataset so that it is
not artificially increased with labels of the training data that
are already made available to the algorithm during the ma-
jority voting stage. Prediction accuracy is computed simply as
PA = PScow‘ect/(PScorrect+PSincorrect) Where, PScorrect
and PSincorrect are the number of predicted sequences in the
test dataset whose labels are determined to be correct and
incorrect, respectively, based on ground truth data.

4) Prediction Rate: While we cannot assign an accuracy
metric to sequences that are left unlabeled (but only given a
temporary ID), we do keep track of how many such sequences
are left in the dataset. We monitor them through the predic-
tion rate metric, which is the ratio of number of predicted
sequences to the total number of sequences (predicted and
unlabeled) in the dataset.

5) Unlabeled Accuracy: Recall that unlabeled clusters are
those that do not have any known reference data label, and
hence are provided a temporary ID by the algorithm. In a real
world scenario where the sequences in such clusters are truly
unknown, it is impossible to know whether these sequences
even belong to the same class. Nevertheless, since all labels
of the RDP dataset are known to us, we can in fact compute
the accuracy of even those sequences. We keep a separate
metric for such sequences, referred to as unlabeled accuracy
U A, distinct from prediction accuracy described above, and
ComPUte it as UA = UScorrect/(UScorrect + USincorrect)
where, UScorrect and USipcorrect are the number of test
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Fig. 2. All samples in this unlabeled cluster are from the test data and
a temporary label is assigned to the cluster. While calculating unlabeled
accuracy, we check ground truth and assign cluster label accordingly. Here,
let’s assume that the true labels are A, B and C as shown. Given that the
cluster has 5As, 1B and 1C, unlabeled accuracy is 5/7.

data sequences left unlabeled after the majority voting whose
labels are determined to be correct and incorrect, respectively,
compared to ground truth data. Figure 2 provides a graphical
interpretation of this metric.

6) Completeness and Homogeneity: Completeness and ho-
mogeneity are popular metrics used in analysis of genomic
sequences. They are both information theoretic metrics, based
on entropy, and are normalized to have a value between 0 and
1. Completeness measures the degree to which members of
a particular label are all in one cluster. Completeness can be
calculated as

Completeness =1 — % M
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where H(-) and H(-|-) are entropy and conditional entropy,
respectively, [ is an index on labels with L as the total number
of labels, ¢ is an index on clusters with C' as the total number
of clusters, n. is the number of samples in cluster ¢, n; . is
the number of samples with label [ in cluster ¢, and n is the
total number of samples in the dataset.

Homogeneity, on the other hand, is a measure of purity
of clusters. If all clusters are pure, i.e., each cluster contains
members of the same class label, and none of the other labels,
then the homogeneity is 1 for that clustering. Homogeneity
can be calculated as
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Fig. 3. In the first case, there is only one cluster, so completeness is
1 by definition, however homogeneity is less than 1. In the middle case,
homogeneity is 1 since each of the clusters is pure, but completeness is
less than 1 since not all ”A” labels are in one cluster. In the third case,
both completeness and homogeneity are 1 since all clusters are pure, and all
sequences of a given label are in one cluster each.

where previously mentioned variables are the same (with
ne1 = ng.) and ny is the number of samples with label .
Figure 3 illustrates completeness and homogeneity.

7) V. Measure: V Measure is a composite metric that
combines completeness and homogeneity (through geometric
mean) to provide an overall assessment of the clustering
algorithm. V-measure is computed as

(1+ B) * Homogeneity x Completeness

V Measure =
B« Homogeneity + Completeness

@)
where [ weighs the relative importance of homogeneity over
completeness. We used 3 = 1 to keep the relative importance
of completeness and homogeneity the same.

8) Singletons: Singletons are those sequences that are left
alone and are not clustered with any other sequence. Sin-
gletons, whether labeled or otherwise, are not included in
accuracy calculations to keep these metrics as fair as possible.

IV. EXPERIMENTAL SETUP
A. RDPI18 Dataset

RDPI18 is the 18" and the most recent release (in 2020) of
the 16S rRNA dataset, provided by the Ribosomal Database
Project [5]. RDP18 consists of 21,195 16S rRNA sequences
from Bacteria and Archaea. 20,198 of these have six levels of
taxonomic rank information (Kingdom, Phylum, Class, Order,
Family and Genus). 25% of the dataset was used for training
where labels were provided to the algorithm at the majority-
vote stage, and the remaining 75% set aside for testing (or
prediction) whose labels were not provided to the algorithm.
We removed 6 phyla that had fewer than four total samples.
The final dataset had 20,186 samples from 32 phyla, divided
into training (5,035) and testing (15,151) datasets. Training
dataset is further divided into five batches to simulate an
incremental learning setting using two experimental protocols.

B. Experiments

In our first experiment, the five training batches are created
by assigning samples to each batches completely at random.
This sampling results in each batch having a similar distri-
bution as the original dataset. We refer to this experiment as

the random sampling (RS) experiment, since the training data
subsets used for each batch are randomly sampled from the
original training dataset, following the same distribution of the
original data. The algorithm is incrementally run with consec-
utively using the five batches of training subsets, updating the
clusters after each batch. After each update, we evaluate the
performance of SSI-VSEARCH on the test dataset.

For the second experiment, the training batches are cu-
rated such that phyla are mutually exclusive to batches. This
scenario simulates a more challenging setting, where the
algorithm can only see samples of any given label only once.
We refer to this second experiment as the incremental phyla
(IP) experiment, where each batch of data includes a different
(mutually exclusive) set of phyla. There are 32 phyla in the
dataset, but four of these phyla are dominant and compose
90.42% of the dataset. Sequences from these four dominant
phyla are used exclusively in the first four batches, and the
final batch included samples from all remaining 28 phyla.
In this experiment, novel information from new phyla are
introduced incrementally to test the ability of the algorithm
to learn new classes one at a time.

The primary free parameter of SSI-VSEARCH is the simi-
larity threshold. In general, lower thresholds are used to ana-
lyze the sequences at more general taxonomic ranks (such as
phyla), whereas higher thresholds are used for analyzing more
specific taxonomic ranks (such as genus). For completeness,
we run all experiments on all thresholds from 75% to 97% at
all taxonomic ranks.

We used prediction accuracy, prediction rate and unlabeled
accuracy to evaluate the classification performances of SSI-
VSEARCH. We also compared SSI-VSEARCH to the original
VSEARCH on its clustering capabilities. Note that VSEARCH
processes all available data at once, and hence has the luxury
of using all sequences to determine the clusters, whereas
SSI-VSEARCH sees only a subset of the sequences at a
time. We then use completeness, homogeneity and V-Measure
to compare clustering performance and time consumption to
compare efficiency of these two methods.

V. RESULTS AND DISCUSSION
A. SSI-VSEARCH vs. VSEARCH on Clustering Performance

We first compare SSI-VSEARCH and VSEARCH perfor-
mance with respect to completeness, homogeneity and v-
measure on all similarity thresholds. These results represent
the quantities as computed after SSI-VSEARCH completed
its five incremental batches, and after VSEARCH completed
its single run on the entire dataset.

Figures 4 and 5 compare the clustering metrics for
VSEARCH vs. SSI-VSEARCH for both random sampling
and incremental phyla experiments, respectively, at the genus
level. The primary takeaway from these figures is that SSI-
VSEARCH does not lose any performance despite processing
the data incrementally, seeing only some of the data at a time,
while VSEARCH has the luxury of having access to all of
the data at once. This observation is all the more remarkable
considering that SSI-VSEARCH only carries the cluster seeds
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from one batch to the other, and discards all other — what
appears to be nonessential — data.
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Fig. 4. Comparison of VSEARCH and SSI-VSEARCH for completeness,
homogeneity and v-measure at similarity thresholds 75-97 and genus level
for random sampling experiment.
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Fig. 5. Comparison of VSEARCH and SSI-VSEARCH using completeness,
homogeneity and v-measure at similarity thresholds 75-97 and genus level for
incremental phyla experiment.

We note that — while we did compute these quantities for
all taxonomic ranks, we report the results only for the genus
level for brevity, which are the most conservative results. The
comparisons at other levels were similar (with no difference
between SSI-VSEARCH and VSEARCH), with the absolute
results for more general taxonomic ranks in fact being higher
for each of the metrics.

We also note that carrying only the seed information from
one batch to the next and removal of non-essential data
saves space and speeds up the clustering process. If run on
combined new and old data, VSEARCH would recluster the
same (old) data over and over again, a step avoided by SSI-
VSEARCH. Fig. 6 shows the percentage of time saved by SSI-
VSEARCH over VSEARCH when clustering incrementally.
Figure 6 shows that SSI-VSEARCH saves as much as 60-70%
time over VSEARCH at lower thresholds, though relative time
saved at higher thresholds is less. This is because, it is harder
to cluster samples together and there are significantly more
clusters at higher similarity thresholds. Therefore, more cluster
seeds must be transferred to the next step, which means only
a smaller part of the data is nonessential and hence less data
are discarded. For lower similarity thresholds, significantly
more samples are deemed nonessential and discarded after first

~
o

D
o

(%)}
o

N
o

w
o

N
(=)

Percentage Time Saved (%)

N
=)

5 80 85 90 95
Similarity Threshold

Fig. 6. Percentage time saved by using SSI-VSEARCH instead of VSEARCH
for clustering the same data.

processing by SSI-VSEARCH. Regardless of the similarity
threshold, however, SSI-VSEARCH always saves time without
losing any performance on any of the evaluation metrics.

B. Prediction Capabilities of SSI-VSEARCH

As described in previous sections, a significant advantage of
SSI-VSEARCH over VSEARCH is its incremental and semi
supervised training, which allows it to make a classification
prediction and provide labels to unknown samples by pro-
cessing the data one batch at a time. Recall that only labels
of the training data are provided to the algorithm during the
majority voting stage, whereas the algorithm is asked to predict
the labels of the test data, whose labels are not shown to
the algorithm. The ground truth labels for the test data are
only used later during evaluation for computing prediction
accuracy. For these set of experiments, we therefore focus on
the classification performance and other incremental learning
properties of SSI-VSEARCH. Specifically, we provide predic-
tion accuracy, prediction rate, and unlabeled accuracy of the
algorithm at all similarity thresholds and for all taxonomic
depths (ranks).
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Fig. 7. Prediction accuracy of SSI-VSEARCH at every similarity threshold
and taxonomic level in random sampling (solid lines) and incremental phyla
(dotted lines) experiments.

We start with prediction accuracy of SSI-VSEARCH, for
both the random sampling (RS) and incremental phyla (IP)
experiments, which are shown in Figure 7. As expected, the
prediction accuracy is higher for higher similarity thresholds
and for more general taxonomic ranks (such as phylum).
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Also as expected, the prediction accuracy is lower for more
specific taxonomic ranks (such as genus) particularly at lower
similarity thresholds, but improves dramatically towards 100%
at higher similarity thresholds. We observe that the prediction
accuracy is effectively 100% for phylum, class, and order at
90% or higher similarity thresholds. For genus rank, appro-
priate similarity threshold is considered to be over 95% and
prediction accuracy for genus in that range is around 80%.
Another interesting metric to consider for SSI-VSEARCH is
the prediction rate, percentage of unknown sequences that the
algorithm can actually predict. Recall that not all sequences
can be labeled. Specifically, sequences that end up in a cluster
that does not include any known labels cannot be classified.
Fig. 8 shows the prediction rate of the algorithm (on the
random sampling experiment) for each similarity threshold
after each batch of incremental learning. We observe that the
percentage of the sequences that can be predicted increases
from Batch 1 (blue) to Batch 5 (orange), as we would hope
and expect from an incremental learning algorithm. This
observation demonstrates that the algorithm is indeed learning
new information with each new batch, and predict labels of
previously unknown sequences. We also see that — again as
expected — the prediction rate is higher for lower similarity
thresholds. At a typical threshold of 90%, the algorithm
classifies about 90% of the unknown test sequences after
completing its training on the 5" batch (orange curve).
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Fig. 8. Prediction rate of SSI-VSEARCH at every similarity threshold after
every batch in random sampling experiment.
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Fig. 9. Prediction rate of SSI-VSEARCH at every similarity threshold after
every batch in incremental phyla experiment.

The incremental phyla experiment more clearly demon-
strates the incremental learning ability of the algorithm. Fig.
9 plots the prediction rate of SSI-VSEARCH in incremental
phyla experiment, which shows distinct differences from that
of random sampling experiment in Fig. 8. Recall that in
random sampling experiment, there are examples of all phyla
even in the first batch, and each batch that comes after that.
Therefore, there is ample information for majority of samples
to be predicted even after the first batch, with modest addi-
tional new information provided with each subsequent batch.
As a result, the initial prediction rate is much higher after the
first batch for the random sampling experiment compared to
incremental phyla experiment (blue curves in Figures 8 and
9). For the same reason, there are relatively modest additional
prediction rate improvements after each subsequent batch from
Batch 1 through Batch 5 in Fig. 8. When different phyla are
exclusive to each batch in the incremental phyla experiment,
however, the initial prediction rate is only around 20% after
the first batch, which makes sense since the algorithm has seen
only about a fifth of all available labels. With this experiment,
there is considerably more — and novel — information provided
to the algorithm by each batch, and the algorithm does indeed
learn more with each batch as demonstrated by the more
significant jumps in prediction rate from each batch to the
next as seen in Fig. 9.

It is also interesting to note that adding new information
phylum by phylum versus adding a mixture of phyla at each
batch does not actually change the final prediction rate of the
algorithm. We observe from Figures 8 and 9 that the prediction
rates after Batch 5 (orange curves) are similar to each other.

We note that some of the unlabeled sequences are left
unlabeled because they end up as singletons, i.e., clusters of
one sequence. The number and percentage of sequences left as
singletons increase with the similarity threshold. This is also
expected: with increasing similarity threshold, the algorithm
requires more overlap in sequences before they can be grouped
into the same cluster. We observed that about 5000 sequences
were left as singletons at 97% similarity, which constitutes
about 30% of the total test data. At the more typical 93%
similarity threshold, about only 1000 singletons (about 6.6%
of the total test data) were left unclassified, and about 25% of
all unlabeled sequences were singletons.

Singletons and other unlabeled clusters are not included in
our prediction accuracy results as they do not have labels.
However, since the ground truth labels of all sequences are
known in the RDP dataset, we can in fact calculate the
accuracy of unlabeled clusters. We refer to this metric as un-
labeled accuracy to keep it distinct from prediction accuracy
as described above. Figures 10 and 11 show the unlabeled
accuracy of SSI-VSEARCH in both random sampling and
incremental phyla experiments at every similarity threshold
and taxonomic rank. The unlabeled accuracy is similar to
— or even better than — the prediction accuracy (in Fig.
7), which indicates that SSI-VSEARCH actually clusters the
unknown sequences accurately while waiting for additional
label information from a future reference dataset. Accordingly,
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Fig. 10. Unlabeled accuracy of SSI-VSEARCH at every similarity threshold
and taxonomic level for random sampling experiment.
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Fig. 11. Unlabeled accuracy of SSI-VSEARCH at every similarity threshold
and taxonomic level for incremental phyla experiment.

as information about as-yet-unlabeled sequences does become
available in the future, the algorithm will be able to correctly
identify previously unlabeled novel sequences with the correct
label. This observation is one of the most reassuring aspects
of SSI-VSEARCH in its ability to identify novel sequences
through incremental processing.

VI. CONCLUSIONS

In this paper, we demonstrated the additional capabilities
of SSI-VSEARCH over the original VSEARCH, while also
illustrating its behaviour and properties over several care-
fully designed experiments on the RDP18 16S-rRNA dataset.
We showed that through a semi-supervised approach, SSI-
VSEARCH converts VSEARCH - an otherwise purely clus-
tering algorithm that can only group similar sequences in
clusters — to a classification algorithm that can predict labels
of unknown sequences with high accuracy at all taxonomic
levels. The algorithm can do so whether the sequences are
introduced randomly or one/few phyla at a time. Furthermore,
SSI-VSEARCH can incrementally process additional data that
later become available without access to — or reprocessing —
the old data, saving computational time without any loss on
clustering based metrics compared to VSEARCH. We have
also shown that clusters that SSI-VSEARCH leaves unlabeled,
i.e., the sequences in unlabeled clusters, can be predicted
accurately once the necessary label information is added to
a reference database.

Our immediate future work primarily includes expanding
the experimental analysis to larger datasets, such as the 9%
million sequence SILVA database, as well as protein datasets
to make sure that the algorithm is scalable and versatile.
Future work also includes integrating the general approach
of adding semi-supervised incremental learning capability to
bioinformatics platforms and pipelines other than VSEARCH,
such as MG-RAST and MMseqs2. Given that most platforms
generally use similar clustering approaches, those platforms
may also benefit from additional semi-supervised classification
capabilities with suitable modifications. Finally, we will also
explore mechanisms that can be added to the algorithm to
further minimize, or properly combine, the singletons or other
unlabeled clusters into (larger) clusters when appropriate.
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