
Submitted 2 August 2022
Accepted 3 January 2023
Published 8 February 2023

Corresponding author
Gail L. Rosen, empr3ss@gmail.com

Academic editor
Mahesh Gokara

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.14779

Copyright
2023 Nguyen et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Complet+: a computationally scalable
method to improve completeness of
large-scale protein sequence clustering
Rachel Nguyen1, Bahrad A. Sokhansanj1, Robi Polikar2 and Gail L. Rosen1

1Drexel University, Philadelphia, United States of America
2Rowan University, Glassboro, NJ, United States of America

ABSTRACT
A major challenge for clustering algorithms is to balance the trade-off between
homogeneity, i.e., the degree to which an individual cluster includes only related
sequences, and completeness, the degree to which related sequences are broken up
into multiple clusters. Most algorithms are conservative in grouping sequences with
other sequences. Remote homologs may fail to be clustered together and instead
form unnecessarily distinct clusters. The resulting clusters have high homogeneity
but completeness that is too low. We propose Complet+, a computationally scalable
post-processing method to increase the completeness of clusters without an undue
cost in homogeneity. Complet+ proves to effectively merge closely-related clusters
of protein that have verified structural relationships in the SCOPe classification
scheme, improving the completeness of clustering results at little cost to homogeneity.
Applying Complet+ to clusters obtained using MMseqs2’s clusterupdate achieves an
increased V-measure of 0.09 and 0.05 at the SCOPe superfamily and family levels,
respectively. Complet+ also creates more biologically representative clusters, as shown
by a substantial increase in Adjusted Mutual Information (AMI) and Adjusted Rand
Index (ARI) metrics when comparing predicted clusters to biological classifications.
Complet+ similarly improves clustering metrics when applied to other methods, such
as CD-HIT and linclust. Finally, we show that Complet+ runtime scales linearly with
respect to the number of clusters being post-processed on a COG dataset of over
3 million sequences. Code and supplementary information is available on Github:
https://github.com/EESI/Complet-Plus.

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Protein clustering, Protein families, Homology

INTRODUCTION
A critical step in many bioinformatics pipelines is clustering similar nucleotide (DNA or
RNA) and protein sequences, such as clustering marker genes that may represent similar
taxa or clustering peptides that may have structural homology or similar functions. In
biological applications, the number of sequences that must be clustered is extremely large.
Annotated protein sequence databases contain hundreds of thousands (of experimentally
validated) and tens to hundreds of millions (of predicted) sequences. Metagenome
sequencing experiments routinely generate hundreds of millions of reads. As a result,

How to cite this article Nguyen R, Sokhansanj BA, Polikar R, Rosen GL. 2023. Complet+: a computationally scalable method to improve
completeness of large-scale protein sequence clustering. PeerJ 11:e14779 http://doi.org/10.7717/peerj.14779

https://peerj.com
mailto:empr3ss@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.14779
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/EESI/Complet-Plus
http://doi.org/10.7717/peerj.14779

bioinformatics demands scalable clustering methods. Clustering methods generally have
a trade-off of increased sensitivity with slower speed, making the protein clustering
a challenging problem. Protein clusters are groups of similar (homologous) proteins
that most likely share the same or similar function. Clustering procedures must allow
compression of information in comparison to the non-clustered representation and may
have different resolution levels (e.g., phyla/genus for taxa or superfamily/family for protein).

One of the key challenges in many biological applications is to generate clusters which
correspond to the ‘‘true’’ groupings of sequences in the application. For example, if the
task is to identify the phyla present in a data set of DNA sequences, ideally clusters should
correspond to groups of phyla. If the task is to identify protein families or superfamilies—the
focus of this article—then ideally clusters should correspond to protein families. This would
then permit clusters to be used for the labeling of unknown sequences. For example, if an
unknown protein clusters with proteins from a given family, then the clustering result may
be used to predict that the unknown protein is a member of that family. As described above,
however, protein sequence data sets are very large, and as a result the sensitivity-speed
trade-off requires lowering sensitivity, resulting in relatively tight clusters: clusters that are
made up of biologically similar proteins, but with groups of biologically similar proteins,
such as a family or superfamily, split up into multiple clusters. In other words, the resulting
clusters have relatively high homogeneity but relatively low completeness.

Optimizing homogeneity over completeness poses a barrier for certain important
applications—two examples of which are described here. First, a common use case
for clustering is to label otherwise unidentified sequences, such as hypothetical ORFs
identified from a metagenomic sequencing data set. Hypothetical ORFs that are most
proximate to a cluster, or cluster together with known proteins, can be labeled according
to the majority—otherwise, their cluster membership can be determined with consensus.
However, clustering methods with low completeness may generate lots of clusters with
only one member (singletons) or with only two or a few members—which may not have
reliable consensus annotation. Second, clusters can be used to identify and organize groups
of sequence homologs, for example to predict functional categories of proteins or groups
of proteins with common evolutionary histories. Low-completeness clusters fail in this task
as well, particularly as homologs become more remote or when the levels of organization
become higher, for example in identifying the members of the same superfamily as
opposed to family of protein sequences (Paccanaro, Casbon & Saqi, 2006; Bernardes et al.,
2015). Increasing completeness would require either a slower (more sensitive) clustering
method—not feasible for most biological sequence applications—or developing a method
to robustly and reliably combine clusters in a way that increases completeness without
excess cost in homogeneity. Notably, any decrease in homogeneity means a risk of false
positives, where a cluster includes members that are biologically dissimilar to each other.

In this article, we introduce Complet+, a novel method to increase the completeness
of clusters obtained using large-scale biological sequence clustering methods. Complet+
addresses a key problem with large-scale clustering methods, such as mmSeqs2 clustering
and CD-HIT. Because large-scale clustering tools generally use some kind of iterative or
heuristic method, like iterative greedy clustering, they will generally not generate a measure

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

of identity between representative sequences of clusters. Complet+ utilizes the fast search
capabilities of MMSeqs2 to identify reciprocal hits between the representative sequences,
which may be used to reform clusters and (1) reduce the number of singletons and small
clusters and (2) create larger clusters that better represent superfamilies composed of
remote homologs, proteins that share a very distant evolutionary origin. This article begins
with a background of the relevant methods and then describes the Complet+ algorithm and
the computational experiments used to demonstrate and validate Complet+ on extended
Structural Classification of Proteins (SCOPe) families and superfamilies of proteins with
structural homology (Chandonia et al., 2021). We show that Complet+ can effectively
increase completeness with a small or negligible cost to homogeneity on clusters generated
using MMSeqs2’s default cascade clustering method, singe-step clustering, incremental
clustering withMMSeqs2’s clusterupdatemodule (Steinegger & Söding, 2017), linclust
(a linear-time clustering method) (Steinegger & Söding, 2018), and the popular clustering
tool for very large-size sequence datasets, CD-HIT (Li & Godzik, 2006). We also show that
Complet+ can result in clusters that are far more representative of the true SCOPe family
and, in particular, superfamily organization. Finally, we demonstrate that Complet+ is
scalable, with linear-time performance with respect to the number of clusters using the
same clustering method, and with a manageable cost when used on methods that generate
highly similar clusters.

BACKGROUND
Sequence clustering
The large scale and complexity of nucleotide and protein sequence data have motivated the
development of clustering methods specifically to address these applications. CD-HIT was
one of the first such large-scale clustering methods for DNA and protein sequences (Li &
Godzik, 2006). CD-HIT’s essential innovation was to estimate similarity between sequences
using k-mers (or short words) rather than performing costly O(mn) sequence alignment,
via dynamic programming, or a heuristically-sped up version like BLAST. CD-HIT
can be used for a wide range of applications due to its versatility, but one particular
application—16S rRNA clustering for de novo taxonomic grouping (a.k.a open-reference
OTU picking)—immediately became an important application due to the volume of such
data being generated (Chen et al., 2013). Competing clustering methods soon emerged,
each taking a different approach to speed-accuracy tradeoffs, such as UCLUST (Edgar,
2010). Historically, however, these tradeoffs have been evaluated to address 16S rRNA
sequence clustering, which has particular issues with accuracy that do not apply to protein
clustering (Nguyen et al., 2016; Schloss & McMahon, 2021).

Protein sequence clustering methods are similarly being investigated with an even
wider gap between speed and accuracy (Hauser, Steinegger & Söding, 2016). There are two
categories of clustering algorithms: alignment-based and alignment-free. The traditional
alignment-based methods, CD-HIT (Li & Godzik, 2006), UCLUST (Edgar, 2010), and
BlastClust (NCBI, 0000) can also be used for proteins in addition to 16S rRNA. Futher
developments of Markov Clustering (MCL) techniques were innovated (Enright, Van

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

Dongen & Ouzounis, 2002; Wong & Ragan, 2008). However MCL techniques, as well as
other alignment-based techniques, are computationally expensive. Alignment-free based
techniques are emerging, with MMSeqs2 (Steinegger & Söding, 2017) being the most
popular, and with emerging techniques in deep learning and embeddings (Karim et al.,
2020). MMSeqs2 clustering is widely used in a range of applications, including clustering
known and unknown genes in metagenomes (Vanni et al., 2022).

MMseqs2
Many-versus-many sequence searching (MMseqs2) is a software suite that offers a wide
array of tools for sequence alignment (Steinegger & Söding, 2017) and clustering (Steinegger
& Söding, 2018; Hauser, Steinegger & Söding, 2016) of both nucleotide and protein
sequences. It has high sensitivity and is efficient in both computation time and hardware
resources, as it is optimized for multi-threaded use. It is also highly scalable and excels at
working with large datasets. In this study, we examine MMseqs2’s sequence alignment and
clustering tools.

Sequence alignment (Steinegger & Söding, 2017) is performed using MMseqs2’s search
module, and is comprised of three steps: a k-mer match step, a vectorized ungapped
alignment, and a gapped (also known as Smith-Waterman) alignment. The k-mer
match step drastically reduces the number of Smith-Waterman alignments, and is a
main contributor to the search module’s high speed.

A search is characterized by many criteria and parameters, one of the more notable ones
being its sensitivity. A search run with a low sensitivity setting will be fast, but it will find
less hits than a search using a high sensitivity setting. The search module also offers the
ability to restrict the output to alignments that are within a specified significance threshold
(also known as expectation-value, or e-value).

Two major modules within MMseqs2 for clustering are: linclust, a linear method,
and cluster, a cascaded method that begins with linclust before performing additional
prefiltering, alignment, and clustering. Both clustering modules are unsupervised and their
results are independent of the order sequences are presented in. (MMseqs2 further offers
the option of simple clustering in a single step without cascading, but that is not its default
operation.)

MMseqs2’s implementation of linear clustering is the linclust module (Steinegger &
Söding, 2018). The computational runtime of linclust scales linearly with the number
of input sequences. The linclust algorithm begins by grouping sequences that share a
k-mer, selecting the longest of sequence of each group as the center (or representative
sequence). Every sequence is then compared(using Smith-Waterman alignment) to every
representative it shares a k-mer with, and if it passes the clustering criteria it is recruited
into the cluster.

The cascaded clustering module is the default setting of the cluster module in
MMseqs2 (Steinegger & Söding, 2018). The cascaded clustering method first runs the
linclust module to produce an initial clustering. It then performs a prefiltering step
followed by a Smith-Waterman alignment of the sequence pairs that passed. Next, an
initial clustering with low sensitivity and high significance threshold is done, which results

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 4/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

in a quick clustering that only yieldsmatches with high sequence identity. It then repeats the
process beginning at the prefiltering step, instead using the first step’s cluster representative
sequences rather than all sequences. It also uses a higher sensitivity than the first step. The
process is repeated a third time using the sensitivity specified by the user, and the results
are finally merged. Cascaded clustering can be performed with as many as seven steps, but
three is the default.

The cluster module’s sensitivity setting is similar to search’s sensitivity setting: a low
sensitivity clustering will be faster than one at the highest sensitivity, but the result will be
comprised of many more clusters due to finding less hits. The cluster-reassign option
will recompute the clusters’ representative sequences at each clustering step. Otherwise,
cluster will use the representative sequence initially chosen for each cluster at each step.

The cluster module’s single-step-clustering option changes the workflow to
perform the prefiltering, alignment, and clustering of the sequences using the user’s
specified criteria at the first and single step, as opposed to gradually over the course of three
steps like cluster.

Incremental learning and the cluster updating workflow in mmSeqs2
Incremental learning is a developing approach to handling the rapid growth of massive
amounts of biological sequence data, particularly in the era of next-generation sequencing.
Classically, a database needs to be de novo clustered or a supervised machine learning
classifier needs to be fully retrained each time a sequence database is updated with
new examples. An incremental approach can instead learn fundamental features
and classes of the data continuously as new examples are added (Zhao, Cristian &
Rosen, 2020). Both supervised and semi-supervised methods have been proposed
for classifying sequences (Ozdogan et al., 2021; Zhao, Cristian & Rosen, 2020; Dash
et al., 2021). One incrementalization approach is to reduce the time required for
sequence alignment by saving information and running only on new increments (Dash
et al., 2021). Another is to incrementally update gene/genome classifiers, such as
NBC++ (Zhao, Cristian & Rosen, 2020) and Struo2 (Youngblut & Ley, 2021). Our group
has begun to explore incrementalization methods for unsupervised methods that
update the cluster representatives, and semi-supervised methods that rely on clustering
information in combination with learning classifiers for both taxa and protein sequence
classification (Halac et al., 2021; Ozdogan et al., 2021).

MMseqs2 (Steinegger & Söding, 2018) is one of the most commonly used software suites
for protein sequences in academic and commercial applications. It is the only one that offers
incremental cluster updating. The clusterupdate module allows the user to update a
previous clustering result following the addition or removal of sequences. When updating
the clustering result, the module keeps the sequences’ identifiers consistent within the
original clustering’s databases. It also shares many of the settings the cluster module offers,
most notably the sensitivity setting. The clusterupdate module first compares the new
sequences to existing ones with a supervised process. Then, when sequences which are not
similar enough to any of the existing clusters are added, they are compared to each other
in an unsupervised process, with some becoming representatives of new clusters.

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

METHODS
All tests were performed utilizing a single CPU thread and 16 GB of memory.

Protein data sets
Structural classification of proteins (SCOP)
Developed byMRC Laboratory of Molecular Biology, the SCOP database classifies proteins
first by their secondary structure, followed by their evolutionary relationships primarily
through manual curation until work on it ceased June 2009 (Hubbard et al., 1997). Its
development was continued with the release of SCOP—extended (SCOPe) database (Fox,
Brenner & Chandonia, 2013) in March 2012 by Berkeley Lab and UC Berkeley, who
continue to expand it with a combination of manual curation and automated methods.
The data itself are the genetic domain sequences of proteins within PDB SEQRES records.

As of version 2.08, SCOPe contains 302,566 protein domain sequences in total. The
topmost level of classification is sequence class, followed by fold, superfamily, and lastly
family. SCOPe 2.08 is encompassed by seven classes, 1,257 folds, 2,067 superfamilies, and
5,084 families (Chandonia et al., 2021). For this study, we only evaluate the clustering
results on the superfamily and family levels of classification.

Clusters of orthologus genes (COG)
The COG database (Galperin et al., 2019) groups protein functional domains into COG’s
according to their orthologous relationships. Each COG thus represents a general function.
For example, glutamyl- or glutaminyl-tRNA synthetase proteins are classified under
COG0008. Each of these COGs are further defined by one or more functional groups, there
being 26 functional groups total. The current release as of May 12, 2022 includes 3,456,089
functional domains encompassed by 4877 COGs (Galperin et al., 2021).

Swiss-Prot COG
The Swiss-Prot database (Bairoch & Apweiler, 1999) is a subset of the Uniprot. The database
is composed of manually-annotated records with information extracted from literature
and curator-evaluated computational analysis. We filter the COG annotations using only
these manually-annotated proteins to obtain biologically-verified COGs. The Swiss-Prot
COG subset contains 122,202 functional domain sequences encompassed by 3,858 COGs.

The Complet+ algorithm
The Complet+ algorithm builds on unsupervised clustering results by aligning cluster
representatives (via MMSeqs2 search) and merging clusters that are reciprocal hits within
a particular e-value. In the results, we show that Complet+ can be used on any base
algorithm, thus it implements ‘‘incremental learning’’ without needing all previous data
(just cluster representatives and a mapping of sequences to clusters), and it runs in less
time than rerunning a more sensitive clustering algorithm from scratch. Also, currently,
there are no other postprocessing algorithms that improve completeness without having
to be rerun, from scratch, on all the data. Therefore, Complet+ fills a niche in optimizing
clustering for completeness in an incremental learning manner.

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

Complet+ takes any (1) FASTA file of representative (or all) sequences and (2) clustering
algorithm results as input after they have been converted to a particular TSV format, which
is a simple two-column data file of sequence IDs and the IDs of their cluster representatives.
For example, MMseqs2 results are obtained from MMseqs2’s createtsv command, but
Complet+ is compatible with any clustering data file regardless of its source, provided it is
converted into the same format. The FASTA file of the sequences only needs to contain the
sequences of the cluster representatives, but if there are additional sequences, the algorithm
extracts the relevant ones. Representative sequence extraction is performed through the use
of grep, a command-line tool used for searching patterns within files. The representative
sequences, as described in the cluster data file’s first column, are all extracted to a new
FASTA file. The clustering data file is used again in the relabeling step (Fig. 1).

With this FASTA file of representative sequences, Complet+ then performs a pairwise
sequence alignment between all representatives by using the MMseqs2 search function,
with the pairwise combinations as query and target arguments. We found that the
homogeneity-completeness was optimized at the highest sensitivity option, s= 7.5, of
the MMseqs2 search function. As shown in the Cascade-C+ results in the Results and
Discussion Section, a Complet+ search sensitivity of 7.5 (s= 7.5) increased the Default
completeness by 5.99% (while lowering homogeneity by 0.05%), while a Complet+ search

sensitivity of 5.7 (s= 5.7) only increased theDefault completeness by 3.63% (while lowering
homogeneity by 0.02%). The other settings, such as e-value threshold and query-coverage,
were left at the default values of 0.001 and 0.8, respectively. Also, Complet+ can even
improve upon Cascade Clustering and Connected Component (CC) clustering with the
max sensitivity of 7.5. The algorithm employed by Complet+ is similar to connected
component clustering (cluster mode 1 in MMSeqs2), but has an even looser constraint to
improve completeness. The looser constraint is that instead of connecting nodes that are
best reciprocal hits by raw score, Complet+ looks for all reciprocal hits that fall within a
user-defined e-value. From the reciprocal hits, we are able to deduce which clusters are
similar to each other, in order to merge them via the following described process.

After the pairwise alignments of the cluster representatives are obtained, the alignment
results are sorted from lowest e-value to highest and then filtered, retaining only sequences
that are reciprocal hits within the specified e-value to the algorithm. Reciprocal hits are
pairs of sequences where one is in the top hits of the other and vice-versa when queried
against all sequences (in this case, all the cluster representatives). Alignment results that
are self-hits (where the query and target sequences are the same sequence) are filtered out.
Figure 2 depicts how only the reciprocal hits are retained following the alignment filtering
step. It is important to note that the reciprocal hits need not be the ‘‘reciprocal best hits’’, or
best-scoring hits for the sequences. A sequence can and likely will have multiple sequences
to which it is reciprocal.

We observed that the reciprocal hits obtained through this method formed clusters
of their own. A given representative sequence would usually have between two and six
reciprocal hits, following the sequence alignment. Those reciprocal hits would tend to
only be reciprocal hits to each other. Figure 3 visualizes these reciprocal-hit results and the
clustering observed. As evident in the visualization, these reciprocal hits form numerous

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 7/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

Sample FASTA file

>sequence_1
sltsadkshvrsi

>sequence_2
skaggsaee

...
>sequence_10
ealgrmlesfpdn

MMseqs2
Clustering

Results

MMseqs2
cluster

MMseqs2
clusterupdate

Complet+ Complet+

MMseqs2
Clustering

Results

Sample FASTA file

>sequence_1
sltsadkshvrsi

>sequence_2
skaggsaee

...
>sequence_20
igaealrmsa

Sample MMseqs2

clustering file

Default Sequence_id

sequence_2 sequence_2
sequence_2 sequence_4
sequence_2 sequence_1
sequence_3 sequence_3
sequence_3 sequence_10
sequence_5 sequence_5

...

Sample Complet+ file

Default Sequence_id Complet+

sequence_2 sequence_2 sequence_2
sequence_2 sequence_4 sequence_2
sequence_2 sequence_1 sequence_2
sequence_3 sequence_3 sequence_2
sequence_3 sequence_10 sequence_2
sequence_5 sequence_5 sequence_5

...

Sample MMseqs2

clustering file

Default Sequence_id

sequence_2 sequence_2
sequence_2 sequence_4
sequence_2 sequence_1
sequence_2 sequence_18
sequence_3 sequence_3
sequence_3 sequence_10

...

Sample Complet+ file

Default Sequence_id Complet+

sequence_2 sequence_2 sequence_2
sequence_2 sequence_4 sequence_2
sequence_2 sequence_1 sequence_2
sequence_2 sequence_18 sequence_2
sequence_3 sequence_3 sequence_2
sequence_3 sequence_10 sequence_2

...

Further
increments...

Figure 1 Example pipeline depicting Complet+ usage.Not all files required and produced by the MM-
seqs2 tools and Complet+ are depicted, merely the most prominent ones, for clarity. The pipeline depicted
only includes one clusterupdate module use following the initial clustering with the cluster module, but
the tests discussed later feature more successive increments with clusterupdate.

Full-size DOI: 10.7717/peerj.14779/fig-1

isolated groups akin to clusters. We relabel the members of these clusters with the ID of
one of the members in order to merge them.

Beginning with the first representative sequence in the file, all subsequent representative
sequences with which a sequence is reciprocal are relabeled as the original representative
sequence. Complet+ then iterates through each of those reciprocal hits’ own reciprocal
hits, which are also relabeled as that first sequence. Complet+ traverses through the data in
this recursive fashion, ignoring representative sequences that have already been passed. All
of the members of that original representative sequence are hence identified and relabeled.
Complet+ repeats this process for every representative sequence in the file, ignoring those
that have already been seen. This process results in a list of new representative sequences
which each former representative sequence and its cluster members are relabeled to. The

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 8/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-1
http://dx.doi.org/10.7717/peerj.14779

Sample MMseqs2
clustering file

Sample representative
sequence FASTA file

>sequence_2

skaggsaee

>sequence_3
grmlesfpdn
>sequence_5
tsadkshvrsiae

...

Sample alignment file

Query Hits
sequence_2 sequence_2
 sequence_3
 sequence_8
 sequence_9
sequence_3 sequence_3
 sequence_5
sequence_5 sequence_5
 sequence_3
 sequence_2

...

MMseqs2
representatives all-
against-all search

Sample filtered alignment file

sequence_2 sequence_9

sequence_3 sequence_5

sequence_5 sequence_3
(seq8 does not hit seq2)

...

Merge Clusters with
regrouped

representatives

Filter out Self-Hits &
Group sequences that

are Reciprocal Hits

Representative
sequence
extraction

Sample Complet+ file

Sample FASTA file

>sequence_1
sltsadkshvrsi

>sequence_2
skaggsaee

...
>sequence_10
ealgrmlesfpdn

Figure 2 The Complet+ algorithm. The alignment files contain additional data columns, including the
one containing each alignment’s e-value (not depicted) that is used in the alignment sorting and filtering
step.

Full-size DOI: 10.7717/peerj.14779/fig-2

old cluster ID and Complet+ cluster ID, corresponding to each sequence ID are then saved
into the Complet+ output, seen in Fig. 1.

The algorithm then passes through the data file of the MMseqs2 clustering results. If a
sequence’s representative is on the aforementioned relabeling list, that sequence is relabeled
with the new representative sequence ID. The resulting clustering data file contains the
data from the original clustering file, in addition to the new cluster representative of each
sequence (Table 1).

Clustering metrics
To evaluate the performance of both MMseqs2 and our post-processing algorithm, we
used Scikit-learn’s cluster metrics library (Pedregosa et al., 2011) to calculate homogeneity,
completeness, adjusted mutual information score (AMI), and adjusted Rand index (ARI).

Homogeneity and completeness
Homogeneity and completeness are two metrics often used together—and can also be
combined into a V-measure—to evaluate clustering results (Rosenberg & Hirschberg, 2007).
Homogeneity is ameasure of a clustering purity: a clustering result has perfect homogeneity
(of 1) if all members of any given cluster are truly of the same class. Homogeneity score is

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 9/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-2
http://dx.doi.org/10.7717/peerj.14779

Figure 3 Gephi visualization of the MMseqs2 search of the representative sequences.Depicted are the
reciprocal hits resulting from the sequence alignment. Each dot represents a representative sequence. Dots
in close proximity indicate a reciprocal hit. Groups of close reciprocal hits are effectively clusters. Com-
plet+ merges these clusters to improve completeness. Circled in red is one such cluster. Every representa-
tive sequence within this circle is a reciprocal hit to at least one other representative sequence in the circle.
Complet+ merges these representative sequences, resulting in a single cluster Every single sequence in the
image has a reciprocal hit; a dot that appears to be a single sequence is actually two or more dots on top of
each other.

Full-size DOI: 10.7717/peerj.14779/fig-3

penalized (reduced) if its clusters contain members that are of different classes. A clustering
result has perfect completeness (of 1) if all members of each class are within the same cluster.
Completeness score is penalized (reduced) if any class members are split amongst multiple
clusters. Finally, V-measure is the harmonic mean between homogeneity and completeness
and is also known as the normalized mutual information metric (Rosenberg & Hirschberg,
2007; Pedregosa et al., 2011).

Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI)
The mutual information score (MI) is an information theoretic measure of agreement
between two clusterings. In our case, the two clusterings are the true clusters (as determined
by ground-truth classes) and the predicted clusters. The AMI is obtained by correcting
MI for chance (Vinh, Epps & Bailey, 2009). The Rand index (RI) is a measure of similarity
between two clusterings. ARI is the RI adjusted for chance (Vinh, Epps & Bailey, 2009).

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 10/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-3
http://dx.doi.org/10.7717/peerj.14779

Table 1 The output of Complet+. The file retains the representative sequence ID for each sequence’s old
cluster label, allowing simple comparison between the old and new labels.

Old cluster ID Sequence ID Complet+ cluster ID

d1u9ca_ d1u9ca_ d1u9ca_
d1u9ca_ d1pv2c_ d1u9ca_
d1u9ca_ d1pv2d_ d1u9ca_
d1n57a_ d1n57a_ d1u9ca_
d1n57a_ d1izya_ d1u9ca_
d1n57a_ d1izza_ d1u9ca_

While superficially similar, AMI and ARI in fact reflect different relationships between
predicted clusters and ground-truth classifications depending on whether the clustering
solutions are balanced or imbalanced. A balanced clustering solution is one of equally-sized
clusters, whereas an imbalanced solution’s cluster sizes vary greatly. An imbalanced solution
is more likely to present clusters that are pure, due to likely having more small clusters than
a balanced solution. Specifically, AMI tends to give higher scores to (or is biased towards)
unbalanced clustering solutions, while ARI is biased towards those that are balanced
(Romano et al., 2015).

RESULTS AND DISCUSSION
A primary goal of Complet+ is to serve as a versatile approach that can be used with any
clustering algorithm. Therefore, we evaluated Complet+ on a variety of initial clustering
algorithms. We also evaluated Complet+ on both classical single-batch analysis and the
incremental multi-batch analysis used for incremental learning applications: specifically,
single-batch clustering tests, two 5-batch incremental learning tests, and a 50-batch
incremental learning test.

In single-batch clustering, Complet+ is run after the SCOPe dataset is clustered with
a single cluster call (using variety of methods provided by mmSeqs2, as well as CD-
HIT). Complet+ was then run on the resulting clustering output. In addition, two batch
partitioning test data sets were created to help further evaluate the performance and
scalability of the method as described below: (1) for each of the five batches, ∼20% of the
new classes (previously unseen by the clustering method) were added to each batch, and
(2) each of the sequences in the five batches were randomly chosen. Both tests result in
five folds of approximately equal number of proteins. To evaluate incremental learning
applications, we create a simulated scenario by inputting the first batch to MMseqs2’s
default cascaded cluster module, then sequentially adding each of the remaining four
groups to the database using MMseqs2’s clusterupdate module. Complet+ is then run
on the MMseqs2’s clustering results from each of these five steps. Using a cross-validation
approach, this is repeated an additional four times, for a total of five folds. For the new
classes and random partitioned data, the clustering metrics were averaged (and standard
deviation was calculated) across the five folds. Clustering metrics were calculated between
predicted labels (the clustering result) and true labels (SCOPe family/superfamily).

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 11/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

Complet+ improves clustering metrics
Applying Complet+ to MMseqs2 clustering and CD-HIT
We first show that Complet+ significantly reduces the number of singletons and small
clusters that are formed. Figure 4 shows the reduction in the number of small clusters when
applying Complet+ to the results of mmSeqs’ single-step clustering on the SCOPe data set.
There is a significant reduction in the number of singletons, and consistent reductions of
up to 50% in the numbers of clusters with few representatives. While not shown on the
graph, Complet+ also generates larger clusters than default methods.

Overall, CD-HIT produces numerous clusters, clustering the 303,000 SCOPe sequences
down to about 204,000 clusters. The proliferation of clusters is evident in CD-HIT’s low
completeness score shown in Fig. 5. MMseqs2 generated fewer clusters than CD-HIT,
its linclust module producing about 30,000 clusters, and the cascaded clustering tests
generated between 9,000 and 10,000 clusters. These results are shown in Figs. 5A and 5B.
All default results had excellent homogeneity scores as well, at or above 0.95.

Figures 5A and 5B show the homogeneity/completeness, AMI, and ARI for the single-
batch tests using MMSeqs2 and CD-HIT. For all tests, Complet+ was able to substantially
improve completeness without measurable loss in homogeneity at the superfamily level
and minimal loss at the family levels of classification. The composite of homogeneity
and completeness, also known as the V-measure (not shown in the graph but but can be
calculated from the homogeneity and completeness) is substantially higher when applying
Complet+ at the superfamily-level when averaged across all single-batch tests: 0.80 vs. 0.89.
The increase in V-measure is less pronounced but still favorable at the family-level: 0.86 vs.
0.91. As indicated by Figs. 5A and 5B, the V-measure increase is due to the homogeneity
of the default Complet+ clustering remaining mostly unchanged, while completeness
increasing.

The lower homogeneity of both Default and Complet+ results at the family versus
superfamily level are expected. There are many more families than superfamilies. If there
is a mis-clustering at the superfamily-level, it will be reflected on the family level as well,
but not vice versa. On the other hand, completeness is higher on the family level because
there are more families than superfamilies. Both Default and Complet+ are conservative
with their clustering, having a tendency to create multiple smaller clusters over large ones,
which then results in lower completeness. Furthermore, since the superfamily is the larger
clade above family, the score is more penalized when evaluated on the superfamily level.

As shown in Figs. 5A and Fig. 5B, Complet+ also results in an increase in both AMI
and ARI when compared to the Default clustering. Regardless of how low the Default AMI
score was, Complet+ was able to improve it to a score above 0.8. The improvement to ARI
was also notable across most test cases, where Complet+ scores were higher relative to the
Default scores. For both Default and Complet+, AMI was notably higher than ARI in most
cases, which was expected due to AMI’s previously discussed bias towards datasets with
unbalanced ground-truth classes.

We can see from the plots in Fig. 5 that while there is improvement in completeness
over connected clustering, the overal AMI/ARI are quite similar. In fact, for family-level,
the difference in AMI is only by 1%. Upon further investigation, this small yet overall

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14779

Figure 4 Number of clusters having one (singletons) through tenmembers for the MMSeqs single-
step clustering before and after applying Complet+.

Full-size DOI: 10.7717/peerj.14779/fig-4

Figure 5 The homogeneity, completeness, AMI, and ARI of the single-batch tests. (A) All tests aside
from ‘‘CD-HIT’’ use MMseqs2 the clustering module stated. The sensitivity specified in parentheses refers
to the MMseqs2 search run by Complet+, not the clustering sensitivity, which was the default value of
4.0 where applicable. Overall, Complet+ substantially improves each test case’s completeness at little ex-
pense to homogeneity. The loss in homogeneity is more notable when evaluating the clustering results on
the family-level of classification, however still to a lesser degree than the increase in completeness. Com-
plet+ also improves the AMI and ARI of each clustering to varying degrees, having a generally greater im-
provement. (B) The two leftmost tests are Complet+ run at minimum, and maximumMMseqs2 search
sensitivity, each on the same Default linclust test results. The two following tests are identical aside from
one using the cluster-reassign setting. The last test is the Connected Component (CC) clustering method
of MMSeqs2, run at the highest sensitivity. Like the results in (A), AMI and ARI are improved with each
case while completeness is also improved without significant loss of homogeneity.

Full-size DOI: 10.7717/peerj.14779/fig-5

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 13/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-4
https://doi.org/10.7717/peerj.14779/fig-5
http://dx.doi.org/10.7717/peerj.14779

Figure 6 Homogeneity/Completeness scatterplots demonstrating base-algorithm + Complet+ vs. base
algorithms (Default, Connected Component clustering both with highest sensitivity of 7.5). Complet+
can improve completeness of each algorithm by a greater amount than is lost in homogeneity. By merging
clusters whose representatives are reciprocal hits (given an e-value threshold) of each other allows more
clusters to be merged than stricter connected node criteria by the CC algorithm.

Full-size DOI: 10.7717/peerj.14779/fig-6

improvement can be seen for all sensitivity levels, as shown in the connected component
with Complet+ supplementary graph on the Github page (https://github.com/EESI/
Complet-Plus/blob/main/figures/connected_component_study/cc_fam_superfam.pdf).
Examining the homogeneity/completeness in scatterplot form, Fig. 6 illustrates that
improvement in completeness is still a few percentage points at the cost of a fraction of a
percentage point in homogeneity for even the highest sensitivity of 7.5. Interestingly,
for sensitivity of 4 (in the supplementary graphs, https://github.com/EESI/Complet-
Plus/blob/main/figures/connected_component_study), the default+Complet+ is similar
in performance to connected component clustering—however, improved completeness
can be gained by running Complet+ on connected clustering. While these algorithms are
similar, due to the incremental learning nature of Complet+, it can usually make some
improvements given general similarities of the cluster representatives.

Finally, we can see that the improvements in completeness are notable but overall
improvement is less at higher sensitivities. The runtime of both the default MMseqs2 and
Complet+ significantly increase as the sensitivity increases, as shown with the connected
component (CC) clustering runtimes vs. sensitivity for the two algorithms shown in Fig. 7.

Batch incremental learning using MMseqs2 clusterupdate

The results of incremental tests are consistent with the single-batch tests. As Fig. 8 shows,
applying Complet+ results in an increase in completeness significantly greater than any
concomitant reduction in homogeneity for incremental clustering (i.e., V-measure is
higher) as well. Notably, in Fig. 8, the new classes (class-partitioned) results have a higher
variance than that of the random partitioning. This is due to the difference in the data
partitioning; in the case of the new classes test, 20% of the classes are added in each
batch. In the case of the randomly-partitioned test, 20% of the data is added in each
batch so the algorithm has seen the vast majority of the classes within the very first batch.
MMseqs2 performs best when clustering incoming sequences if their true class is already
represented in the database. This is consistent with the low variance seen in the metrics
of the randomly-partitioned results. In the class-partitioned test, it is possible that some

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 14/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-6
https://github.com/EESI/Complet-Plus/blob/main/figures/connected_component_study/cc_fam_superfam.pdf
https://github.com/EESI/Complet-Plus/blob/main/figures/connected_component_study/cc_fam_superfam.pdf
https://github.com/EESI/Complet-Plus/blob/main/figures/connected_component_study
https://github.com/EESI/Complet-Plus/blob/main/figures/connected_component_study
http://dx.doi.org/10.7717/peerj.14779

0

50

100

150

200

250

300

350

400

s=4 s=5.7 s=7.5

Ti
m
e(
s)

MMSeqs2 Complet+

Figure 7 Algorithm runtime vs. sensitivity levels for MMSeqs2 and Complet+. Both algorithms’ run-
times increase polynomially.

Full-size DOI: 10.7717/peerj.14779/fig-7

incoming classes may be similar to classes that have already been seen. Such sequences
may then be clustered with existing clusters rather than being placed into new clusters. The
batch that these clusters are in will vary between the tests, potentially causing increased
variance in clustering metrics.

For the class-partitioned incremental tests, the metrics of Batch 1 clustering
were lower than those of the single-batch clustering. With each successive batch,
homogeneity/completeness, and AMI increased, and by the last batch they were nearly
as high as the metrics of the single-batch test. ARI slightly decreased with successive
batches indicating a bias in clustering sequences together rather than making false
positives/negatives randomly (which ARI rewards). As previously explained, AMI is
the better measure for ground truth clusterings that are unbalanced, and ARI is better
for balanced ground truth clusterings. Both SCOPe and Swiss-Prot COG are unbalanced
datasets and thus favored by AMI. With the random tests, the metrics of the MMseqs2
clusterupdate algorithm never reached the single-batch metrics—however, Complet+
relatively stayed the same. The homogeneity and completeness of both the new class and
random tests were relatively close in value by the final batch.

To further evaluate the potential applicability of Complet+, we also tested it
on the aforementioned MMSeqs2 clustering methods and CD-HIT on the Swiss-
Prot COG database. Full results are provided at our GitHub site for this article,
(https://github.com/EESI/Complet-Plus.) In brief, when applying Complet+, the Swiss-
Prot COG (only the Swiss-Prot portion of the COG database) class-partitioned test saw
similar improvements in V-measure across the board. However, single-batch and random-
partitioned tests do not show the same level of improvement. While Complet+ increased
the completeness of the Default clusterings, the losses in homogeneity were greater than
those observed in the SCOPe tests. This result is likely due to nearly identical sequences
being classified in different COGs. Accordingly, schemes like COG, which classify sequences
apart despite a high degree of similarity, are not well suited for Complet+.

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 15/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-7
https://github.com/EESI/Complet-Plus
http://dx.doi.org/10.7717/peerj.14779

Figure 8 Homogeneity, completeness, AMI, and ARI of the superfamily- vs. family- level for both (A)
‘‘new classes’’ and (B) ‘‘random’’ test batching partitions (for five batches) for MMSeqs cluster and
clusterupdate followed by Complet+. The tick labeled ‘‘All’’ on the graphs represents clustering all se-
quences in one single batch. Overall, Complet+ increases MMSeqs2 completeness by substantially more
than it reduces homogeneity relative to the default MMseqs2-generated clusters. Using Complet+ results
in an increased AMI and ARI at both family and super-family levels. Also, we can see that discovery of new
classes yield a large variance in performance as opposed to the base algorithm obtaining most classes in the
first batch. The variance is due to the number of actual families or super-families (‘‘true’’ clusters). (C &
D) Number of true and predicted clusters for default MMseqs2 and Complet+. The number of true clus-
ters is always lower than what Default MMseqs2 finds, and Complet+ is able to reduce them 10–20% by
merging proteins that belong to the same family/superfamily.

Full-size DOI: 10.7717/peerj.14779/fig-8

Complet+ is computationally scalable
Batch learning, which is a type of incremental learning, demands that an algorithm should
scale linearly with increasing data.We therefore ran several types of experiments to examine
the runtime performance of Complet+. Taking the runtimes of all the different modes
in SCOPe from (Figs. 5A and 5B), we plotted the run times vs. # of clusters input into
the algorithm, shown in Fig. 9. We fit a power law to the curves, and SCOPe runtime-
inputclusters follows an x1.36 while the Swissprot COG curve follows x1.2. While it can be

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 16/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-8
http://dx.doi.org/10.7717/peerj.14779

of Clusters (on Dataset type), input to Complet+

C
om

pl
et

+
Ti

m
e

(m
in

ut
es

)

1

5

10

50

100

5000 10000 50000 100000

Swiss-Prot COG SCOPe Full COG (50-batch Incremental)

Figure 9 The Complet+ time vs. the number of clusters produced by a variety of algorithmmodes in
MMseqs2. Some algorithms deviate from the line on the log–log plot due to the output cluster represen-
tatives and the different relationships between them (e.g.: cascaded tends to produce more less similar rep-
resentatives while linclust produces more similar ones). Using the same type of algorithm on the 50-
batch large dataset, Complet+ scales linearly vs. the number of input clusters.

Full-size DOI: 10.7717/peerj.14779/fig-9

interpreted that Complet+ runs polynomial in time as a function of the number of input
clusters, there is additional computational complexity. The time is due to the number
of input clusters as well as the representative sequence similarity. If more representative
sequences are similar than other clustering algorithms, the search will take more time.
This is the case with the furthest blue and red point along the x-axis, which are due to
the algorithm linclust. linclust yields cluster representatives that are more similar
to each other, and therefore, adds another variable in the time complexity. We then
conducted another experiment that considered the large dataset of 3 million proteins
from the COG database shown in Fig. 10. After splitting it into 50 batches and only using
the clusterupdate algorithm, the curve (in green) fits a x1 power law which is exactly
linear in time to the number of clusters. Therefore, if the same underlying algorithm
is used, Complet+ is linear in time given the number of input clusters; otherwise, the
relationship between representative sequences also needs to be taken into account between
the algorithms.

Complet+ demonstrates linear time performance on the 50-batch incremental
experiment on the full COG database in Fig. 10. Because the current implementation
of Complet+ can take 80% to 175% of the original MMseqs2 cluster time, we questioned
the scalability of the method. As mentioned, the time that Complet+ takes is a function of
how many clusters that the original algorithm (i.e., MMseqs2 clusterupdate) produces,
and the distances between cluster representative sequences. Also, cascaded clustering
produces many fewer clusters than linclust or single-step clustering, and therefore,
running Complet+ halves in time. Complet+ takes less time than the default cascaded
algorithm, shown in the single-batch ‘‘All’’ bar of Fig. 10. Complet+ does take longer
than clusterupdate on all sequences. However, in incremental learning settings, where
batches of sequences are being incrementally added, Complet+ is shown again in Fig. 10

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 17/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-9
http://dx.doi.org/10.7717/peerj.14779

Figure 10 Runtimes of MMseqs2 cascade clustering of sequences in a single batch and 50 increments
of MMseqs2 clusterupdate, shown for a 3 million protein sequence data set from the COG database,
with and without running Complet+ at each step.While Complet+ takes significantly longer than MM-
seqs2 clusterupdate, it scales linearly to the number of input clusters.

Full-size DOI: 10.7717/peerj.14779/fig-10

(in addition to the green curve in Fig. 9) to increase linearly with the amount of input
clusters. Therefore, Complet+ is scalable to large datasets in an incremental setting.

CONCLUSIONS
Complet+ offers a transparent and easy-to-use solution for merging clusters to improve
completeness and reduce the number of potentially redundant, similar clusters. Complet+
demonstrates consistent improvements to completeness with low penalty to homogeneity,
all the while possessing linear scalability. Running Complet+ substantially reduces
the number of singletons and very small clusters, which is critical for improving the
performance of unsupervised methods for biological analysis. Complet+ also produces
more biologically representative clusters: achieving a substantial increase in AMI and ARI
metrics, which compare predicted clusters to biological classifications. Complet+ is also
a versatile tool, improving clustering metrics on clusters generated using a wide range of
algorithms, including MMseqs2’s single-step, cascade clustering, connected component
clustering, and clusterupdate modules, as well as linclust and CD-HIT. Finally, we
show that Complet+ is linearly scalable with respect to the number of clusters being
post-processed, by testing it on a COG dataset of over 3 million sequences. The software
and source code are available at https://github.com/EESI/Complet-Plus.

ACKNOWLEDGEMENTS
We would like to thank Drexel University’s University Research Computing Facility
(URCF) for providing hardware where some of the computations were run. We thank
Evan Yan for helping with the command line interface and compiling the Complet+
Docker container.

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 18/21

https://peerj.com
https://doi.org/10.7717/peerj.14779/fig-10
https://github.com/EESI/Complet-Plus
http://dx.doi.org/10.7717/peerj.14779

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by NSF grants #1936791, #1919691, #1936782, and #2107108. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
NSF grants: #1936791, #1919691, #1936782, #2107108.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Rachel Nguyen conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Bahrad A. Sokhansanj conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.
• Robi Polikar conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• Gail L Rosen conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Github: https://github.com/EESI/Complet-Plus;
rtn28, gailrosen, & ev4nyan. (2022). EESI/Complet-Plus: Complet-Plus v1.0 (1.0).

Zenodo. https://doi.org/10.5281/zenodo.7449402.

REFERENCES
Bairoch A, Apweiler R. 1999. The SWISS-PROT protein sequence data bank

and its supplement TrEMBL in 1999. Nucleic Acids Research 27(1):49–54
DOI 10.1093/nar/27.1.49.

Bernardes JS, Vieira FR, Costa LM, Zaverucha G. 2015. Evaluation and improvements
of clustering algorithms for detecting remote homologous protein families. BMC
Bioinformatics 16(1):34 DOI 10.1186/s12859-014-0445-4.

Chandonia J-M, Guan L, Lin S, Yu C, Fox NK, Brenner SE. 2021. SCOPe: improvements
to the structural classification of proteins—extended database to facilitate variant
interpretation and machine learning. Nucleic Acids Research 50(D1):D553–D559
DOI 10.1093/nar/gkab1054.

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 19/21

https://peerj.com
https://github.com/EESI/Complet-Plus
https://doi.org/10.5281/zenodo.7449402
http://dx.doi.org/10.1093/nar/27.1.49
http://dx.doi.org/10.1186/s12859-014-0445-4
http://dx.doi.org/10.1093/nar/gkab1054
http://dx.doi.org/10.7717/peerj.14779

ChenW, Zhang CK, Cheng Y, Zhang S, Zhao H. 2013. A comparison of meth-
ods for clustering 16S rRNA sequences into OTUs. PLOS ONE 8(8):1–10
DOI 10.1371/journal.pone.0070837.

Dash S, Rahman SR, Hines HM, FengW-c. 2021. iBLAST: incremental BLAST
of new sequences via automated e-value correction. PLOS ONE 16(4):1–16
DOI 10.1371/journal.pone.0249410.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinfor-
matics 26(19):2460–2461 DOI 10.1093/bioinformatics/btq461.

Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Research 30(7):1575–1584
DOI 10.1093/nar/30.7.1575.

Fox NK, Brenner SE, Chandonia J-M. 2013. SCOPe: structural classification of
Proteins—extended, integrating SCOP and ASTRAL data and classification of new
structures. Nucleic Acids Research 42(D1):D304–D309 DOI 10.1093/nar/gkt1240.

GalperinMY, Kristensen DM,Makarova KS,Wolf YI, Koonin EV. 2019.Microbial
genome analysis: the COG approach. Briefings in Bioinformatics 20(4):1063–1070
DOI 10.1093/bib/bbx117.

GalperinMY,Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin
EV. 2021. COG database update: focus on microbial diversity, model organ-
isms, and widespread pathogens. Nucleic Acids Research 49(D1):D274–D281
DOI 10.1093/nar/gkaa1018.

Halac M, Sokhansanj B, TrimbleWL, Coard T, Sabin NC, Ozdogan E, Polikar R, Rosen
GL. 2021. Incremental amp; semi-supervised learning for functional analysis of
protein sequences. In: 2021 IEEE symposium series on computational intelligence
(SSCI). Piscataway: IEEE, 01–08 DOI 10.1109/SSCI50451.2021.9659958.

Hauser M, Steinegger M, Söding J. 2016.MMseqs software suite for fast and deep clus-
tering and searching of large protein sequence sets. Bioinformatics 32(9):1323–1330
DOI 10.1093/bioinformatics/btw006.

Hubbard TJP, Murzin AG, Brenner SE, Chothia C. 1997. SCOP: a structural
classification of proteins database. Nucleic Acids Research 25(1):236–239
DOI 10.1093/nar/25.1.236.

KarimMR, Beyan O, Zappa A, Costa IG, Rebholz-Schuhmann D, CochezM, Decker
S. 2020. Deep learning-based clustering approaches for bioinformatics. Briefings in
Bioinformatics 22(1):393–415 DOI 10.1093/bib/bbz170.

LiW, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659
DOI 10.1093/bioinformatics/btl158.

National Center for Biotechnology Information (NCBI). Documentation of the
BLASTCLUST-algorithm. Available at ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.
html .

Nguyen N-P,Warnow T, PopM,White B. 2016. A perspective on 16S rRNA operational
taxonomic unit clustering using sequence similarity. NPJ Biofilms and Microbiomes
2:16004 DOI 10.1038/npjbiofilms.2016.4.

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 20/21

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0070837
http://dx.doi.org/10.1371/journal.pone.0249410
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/nar/30.7.1575
http://dx.doi.org/10.1093/nar/gkt1240
http://dx.doi.org/10.1093/bib/bbx117
http://dx.doi.org/10.1093/nar/gkaa1018
http://dx.doi.org/10.1109/SSCI50451.2021.9659958
http://dx.doi.org/10.1093/bioinformatics/btw006
http://dx.doi.org/10.1093/nar/25.1.236
http://dx.doi.org/10.1093/bib/bbz170
http://dx.doi.org/10.1093/bioinformatics/btl158
ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html
ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html
http://dx.doi.org/10.1038/npjbiofilms.2016.4
http://dx.doi.org/10.7717/peerj.14779

Ozdogan E, Sabin NC, Gracie T, Portley S, Halac M, Coard T, TrimbleW, Sokhansanj
B, Rosen G, Polikar R. 2021. Incremental and semi-supervised learning of 16S-rRNA
genes for taxonomic classification. In: 2021 IEEE symposium series on computational
intelligence (SSCI). Piscataway: IEEE, 1–7 DOI 10.1109/SSCI50451.2021.9660093.

Paccanaro A, Casbon JA, Saqi MAS. 2006. Spectral clustering of protein sequences.
Nucleic Acids Research 34(5):1571–1580 DOI 10.1093/nar/gkj515.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. 2011. Scikit-Learn: machine learning in
Python. Journal of Machine Learning Research 12:2825–2830.

Romano S, Vinh NX, Bailey J, Verspoor K. 2015. Adjusting for chance clustering
comparison measures. arXiv DOI 10.48550/ARXIV.1512.01286.

Rosenberg A, Hirschberg J. 2007. V-Measure: a conditional entropy-based external
cluster evaluation measure. In: Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computational natural language learning
(EMNLP-CoNLL). Prague, Czech Republic: Association for Computational Linguis-
tics, 410–420.

Schloss PD, McMahon K. 2021. Amplicon sequence variants artificially split bacterial
genomes into separate clusters.MSphere 6(4):e00191–21
DOI 10.1128/mSphere.00191-21.

Steinegger M, Söding J. 2017.MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature Biotechnology 35(11):1026–1028
DOI 10.1038/nbt.3988.

Steinegger M, Söding J. 2018. Clustering huge protein sequence sets in linear time.
Nature Communications 9:2542 DOI 10.1038/s41467-018-04964-5.

Vanni C, Schechter MS, Acinas SG, Barberán A, Buttigieg PL, Casamayor EO, Del-
mont TO, Duarte CM, Eren AM, Finn RD, Kottmann R, Mitchell A, Sánchez
P, Siren K, Steinegger M, Gloeckner FO, Fernàndez-Guerra A. 2022. Unifying
the known and unknown microbial coding sequence space. ELife 11:e67667
DOI 10.7554/eLife.67667.

Vinh NX, Epps J, Bailey J. 2009. Information theoretic measures for clusterings com-
parison: is a correction for chance necessary? In: Proceedings of the 26th annual
international conference on machine learning, ICML ’09. New York, NY, USA:
Association for Computing Machinery, 1073–1080 DOI 10.1145/1553374.1553511.

Wong S, RaganMA. 2008.MACHOS: markov clusters of homologous subsequences.
Bioinformatics 24(13):i77–i85 DOI 10.1093/bioinformatics/btn144.

Youngblut ND, Ley RE. 2021. Struo2: efficient metagenome profiling database
construction for ever-expanding microbial genome datasets. PeerJ 9:e12198
DOI 10.7717/peerj.12198.

Zhao Z, Cristian A, Rosen G. 2020. Keeping up with the genomes: efficient learning
of our increasing knowledge of the tree of life. BMC Bioinformatics 21(1):412
DOI 10.1186/s12859-020-03744-7.

Nguyen et al. (2023), PeerJ, DOI 10.7717/peerj.14779 21/21

https://peerj.com
http://dx.doi.org/10.1109/SSCI50451.2021.9660093
http://dx.doi.org/10.1093/nar/gkj515
http://dx.doi.org/10.48550/ARXIV.1512.01286
http://dx.doi.org/10.1128/mSphere.00191-21
http://dx.doi.org/10.1038/nbt.3988
http://dx.doi.org/10.1038/s41467-018-04964-5
http://dx.doi.org/10.7554/eLife.67667
http://dx.doi.org/10.1145/1553374.1553511
http://dx.doi.org/10.1093/bioinformatics/btn144
http://dx.doi.org/10.7717/peerj.12198
http://dx.doi.org/10.1186/s12859-020-03744-7
http://dx.doi.org/10.7717/peerj.14779

