
Performance Optimization using Multimodal Modeling and
Heterogeneous GNN

Akash Dutta
Department of Computer Science

Iowa State University
Ames, IA, USA

adutta@iastate.edu

Jordi Alcaraz
OACISS

University of Oregon
Eugene, Oregon, USA
jordia@uoregon.edu

Ali TehraniJamsaz
Department of Computer Science

Iowa State University
Ames, IA, USA

tehrani@iastate.edu

Eduardo Cesar
CAOS Department

Universitat Autònoma de Barcelona
Barcelona, Spain

Eduardo.Cesar@uab.cat

Anna Sikora
CAOS Department

Universitat Autònoma de Barcelona
Barcelona, Spain

Anna.Sikora@uab.cat

Ali Jannesari
Department of Computer Science

Iowa State University
Ames, IA, USA

jannesari@iastate.edu

ABSTRACT
Growing heterogeneity and configurability in HPC architectures
hasmade auto-tuning applications and runtime parameters on these
systems very complex. Users are presented with a multitude of op-
tions to configure parameters. In addition to application specific
solutions, a common approach is to use general purpose search
strategies, which often might not identify the best configurations
or their time to convergence is a significant barrier. There is, thus,
a need for a general purpose and efficient tuning approach that can
be easily scaled and adapted to various tuning tasks. We propose a
technique for tuning parallel code regions that is general enough to
be adapted to multiple tasks. In this paper, we analyze IR-based pro-
gramming models to make task-specific performance optimizations.
To this end, we propose the Multimodal Graph Neural Network
and Autoencoder (MGA) tuner, a multimodal deep learning based
approach that adapts Heterogeneous Graph Neural Networks and
Denoizing Autoencoders for modeling IR-based code representa-
tions that serve as separate modalities. This approach is used as part
of our pipeline tomodel a syntax, semantics, and structure-aware IR-
based code representation for tuning parallel code regions/kernels.
We extensively experiment on OpenMP and OpenCL code regions/ker-
nels obtained from PolyBench, Rodinia, STREAM, DataRaceBench,
AMD SDK, NPB, NVIDIA SDK, Parboil, SHOC, LULESH, XSBench,
RSBench, miniFE, miniAMR, and Quicksilver benchmarks and ap-
plications. We apply our multimodal learning techniques to the
tasks of (i) optimizing the number of threads, scheduling policy and
chunk size in OpenMP loops and, (ii) identifying the best device for
heterogeneous device mapping of OpenCL kernels. Our experiments
show that this multimodal learning based approach outperforms
the state-of-the-art in almost all experiments.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0155-9/23/06.
https://doi.org/10.1145/3588195.3592984

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; Machine learning.

KEYWORDS
Auto-tuning, Multimodal learning, Heterogeneous Graph Neural
Networks, OpenMP, OpenCL

ACM Reference Format:
Akash Dutta, Jordi Alcaraz, Ali TehraniJamsaz, Eduardo Cesar, Anna Sikora,
and Ali Jannesari. 2023. Performance Optimization using Multimodal Mod-
eling and Heterogeneous GNN . In Proceedings of the 32nd International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’23), June 16–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3588195.3592984

1 INTRODUCTION
With the onset of the exascale computing era, a lot of attention is
now focused on HPC landscapes. However, the benefits of parallel
programming is not just limited to supercomputers. Most systems
nowadays have multi/many-core architectures. These hardware
capabilities have led to the increased adoption of parallel program-
ming models such as OpenMP and OpenCL for writing parallel code.
Their shorter learning curves and ease of use has led to such pro-
gramming models being used extensively not just for CPU pro-
gramming, but also for programming accelerators such as GPUs.
Although these programming models have made it easier to convert
serial code to parallel, they do provide users and programmers with
various parameters that can be tweaked to highly impact perfor-
mance. However, selecting these parameters is often cumbersome
and often needs expert guidance. We aim to help address this by
proposing a deep learning based IR-modeling technique for faster
convergence and better results compared to state-of-the-art tools.
Motivation. As an example, we evaluate the execution time of
the OpenMP version of the kmeans kernel from the Rodinia [16, 17]
benchmark suite at different thread counts on an eight core system.
We see significant difference in performance by varying the number
of threads (Figure 1a). There are four thread counts that achieve
better performance than the default eight threads, improving exe-
cution time by upto 27%. kmeans, like many others, allows variable
user inputs. Repeating such a brute-force approach for a large set of

45

https://orcid.org/0009-0007-0947-1182
https://orcid.org/0000-0002-9640-6763
https://orcid.org/0009-0001-3678-5730
https://orcid.org/0000-0002-9729-8557
https://orcid.org/0000-0003-0090-4109
https://orcid.org/0000-0001-8672-5317
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588195.3592984
https://doi.org/10.1145/3588195.3592984
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588195.3592984&domain=pdf&date_stamp=2023-08-07

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Akash Dutta et al.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8Ex
ec
ut
io
n
Ti
m
es
 (i
n
se
co
nd

s)

of Threads

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Pe
rc
en

ta
ge

of Threads

a) b)

Figure 1: a) Execution times of kmeans benchmark with dif-
ferent threads. b) Distribution of best thread counts across
all OpenMP loops and inputs in the dataset

applications and variable inputs is not feasible. The full extent of the
tuning task at hand can be shown through Figure 1b, where across
45 OpenMP loops, and 30 different inputs, approximately 64% com-
binations require tuning to identify the best thread count. Larger
search spaces would render such a brute-force approach unrealistic.
Our process aims to ease this while achieving better results than
existing auto-tuners.
Prior Works. A majority of the performance optimization works
follow either static or dynamic analysis based approaches. Static
analysis based works regularly target compiler optimizations which
are a set of carefully handwritten heuristics [81]. Several works
have used machine learning algorithms to improve the optimization
decisions made by compilers [31, 33, 45, 51, 55, 70].

Dynamic analysis based autotuners have to extensively execute
source code and are usually search based tools [8, 74, 76]. Recently,
several tools have employed Bayesian optimization (BO) based sur-
rogate models for tuning purposes such as [9, 56, 64] to reduce
the execution overhead of autotuners. However, these still need a
number of evaluations for each combination of target application
and input. Overall, this can become quite expensive, when inputs to
code kernels vary with great regularity. Similar to BO, a deep learn-
ing (DL) based approach, can aggressively prune non-beneficial
points through learning. However, such DL models are usually
not application and (or) input dependent; thus are more general-
purpose in nature and almost always require minimal sampling
and evaluation during inference, making them good candidates for
deployment in real-world settings.

Several approaches using DL have been proposed for perfor-
mance optimization tasks. Most of these propose a new method of
representing code to achieve high-quality results [15, 20, 81]. These
approaches, however, only consider task specific features inherent
to one form of code representation. This exposes the shortcom-
ings of each representation and leads to a loss of some syntactic,
semantic, and structural characteristics of code. In contrast, we
propose combining more than one such representation, to use their
individual strengths to overcome the shortcomings of the other.
To this end, we propose a code modeling technique that builds on
existing representations and improves results by adapting multi-
modal learning to the task of code modeling.
Our contributions. We propose the MGA tuner, that models two
dissimilar static code representations as separate characterizations
of the same piece of code. This allows the conjunctive modeling
of multiple code representations targeted towards a common end

goal. To this end, we propose modeling a distributed program vec-
tor and a graphical code embedding as different modalities of our
multimodal learner. This can address the shortcomings of other
unimodal approaches. In this learner, the code graphs will be mod-
eled by a heterogeneous graph neural network, and the distributed
vectors are modeled using a denoising autoencoder. Moreover, as
static features themselves cannot model the execution behavior
with multiple inputs, we augment these with performance counters
(dynamic features). Similar to some of the approaches discussed in
the previous paragraph, our modeling technique is intermediate rep-
resenatation (IR)-based, making our code modeling language and
architecture agnostic. We will show later that for tuning OpenMP
runtime parameters, our approach produces better results than
state-of-the-art autotuners, while needing less executions. We will
also show that our approach outperforms existing techniques on
OpenCL-based heterogeneous device mapping tasks. To summarize,
our contributions are as follows:

• Designing a new IR based hardware-independentmultimodal
code modeling technique that encapsulates syntactic, seman-
tic, and structural code features.

• Developing heterogeneous graph neural network models for
modeling flow graphs.

• Using denoising autoencoders for modeling distributed code
vectors

• Designing a DL-based tuning approach for OpenMP runtime
parameters with geometric mean performance gains of 3.4×
while predicting OpenMP threads and 2.23× for predicting
threads, schedule, and chunk size.

• Quantifying the impact of performance counters on DL-
based performance tuning.

• Analyzing the 𝜇-architecture portability of our approach.
• Building a multimodal learner for the task of OpenCL based
heterogeneous device mapping achieving state-of-the-art
accuracy of ∼ 98%

Outline. Section 2 outlines the topics of interest for this paper,
followed by our approach and experiments in Sections 3 and 4,
respectively. We outline related works in Section 5, and discuss and
conclude our paper in Sections 6 and 7.

2 BACKGROUND AND OVERVIEW
In this section, we briefly describe the ideas and concepts relevant
to this work.

2.1 Code Representations and Deep Learning
Representation learning is being increasingly used for code mod-
eling tasks. A lot of previous works have represented programs
as a sequence of lexical tokens [20]. However, this fails to capture
program structure. To overcome this, syntax as well as semantics
based representations have been proposed [4, 5, 15, 23, 63]. But
these methods do not take into account control, data, and call flows
in a program. Several approaches have been suggested to represent
these flows [13, 47, 69]. However, these often lack the information
provided by syntactic and structural modeling of source code.

IR2Vec [81] is a flow-aware code representation that is not struc-
turally aware. It is a scalable encoding infrastructure that repre-
sents programs as a distributed embedding in continuous space.

46

Performance Optimization using Multimodal Modeling and Heterogeneous GNN HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Figure 2: Code graphs in JSON format. The left image shows
overall graph structure. The middle figure shows edge fea-
tures. The flow attribute denotes the type of program flow.
The right image shows the node features.

PROGRAML [20] is another IR-based code representation that can
model code flow information along with the code structure as
multi-graphs. Each multi-graph has a vertex for instruction and
control-flow edges between them. Data flow is represented by in-
cluding separate vertices for variables and constants and associated
data-flow edges to instructions. Call flow is represented by edges
between callee functions and caller instruction vertices. An example
of such a graph used in this paper is shown in Figure 2.

For modeling static code features, we represent code as a mul-
timodal problem that considers these two embedding techniques
as separate modalities allowing us to overcome the shortcomings
of each modality on its own. This multimodal approach allows our
model to extract the syntactic, semantic, and structural features of
code.

2.2 Performance Profiling
Static analysis is a powerful method for analyzing program proper-
ties. But, dynamic analysis is often essential for understanding the
execution behavior of programs with various input sizes. Perfor-
mance profiling is a means to this end. It is widely used to analyze
how code/code section impacts the hardware components. Perfor-
mance counters are used by developers to identify bottlenecks and
scope of improvement in code execution. In this work, we use such
counters to study the impact of various inputs on code execution.
perf, Likwid [79], PAPI [57] are a few commonly used tools for
profiling. We use PAPI to profile each loop in Section 4.1.

2.3 Graph Neural Networks
DL has revolutionized the application of machine learning in tasks
that deal with data from Euclidean space. However, data is being
increasingly generated from non-Euclidean space [86]. Such data
can more readily be represented as a graph. Graph Neural Net-
works (GNNs) were proposed as a means of modeling such data.
Almost all GNNs are implemented using Message Passing Neural
Networks[29] (MPNN). The goal of these networks is to learn the
latent space representation of each node through its neighbouring
nodes in the graph. There are 3 main functions for constructing an
MPNN: i)Message: constructs communication between neighboring
nodes, ii) Aggregate: aggregates messages received from neighbour-
ing nodes, iii) Update: updates the target node embedding according
to Message and Aggregate functions.

Recent advances in GNNs have led to the proposal of Hetero-
geneous Graph Neural Networks [82]. Such models are used to
accurately model diverse data with multiple relations. Real world
graphical data usually consists of different sets of entities and rela-
tions and cannot be effectively modelled by homogeneous GNNs
due to differences in node and edge features, and dimensionality. To
overcome this issue, heterogeneous GNNs were proposed. In this
work, we use heterogeneous GNNs to model our flow multi-graphs.

2.4 Autoencoders
Classic autoencoders are a type of deep learning model where the
inputs and outputs are ideally the same. Most autoencoders follow
the classic encode-code-decode setup. Given an input, the input is
passed through layers of fully connected neural networks (AN-
N/MLP), called the encoder, which aims to compress the input to
a smaller dimension. The encoder layers are followed by a code
layer, which is usually a single MLP layer with a user-defined di-
mensionality (number of nodes). The code layer are followed by
the decoder layers, which are nothing but layers of MLPs. The
last layer of the decoder must have the same dimensionality as
the input layer. Autoencoders are usually unsupervised techniques,
where these models usually learn to approximate the identity func-
tion. Autoencoders are commonly used for feature selection and
extraction.

Denoising autoencoders (DAEs) provide a twist on classic au-
toencoders where the inputs are selectively corrupted by randomly
modifying certain inputs. The most common practice is to set a
percentage of inputs to zero. The target in this case becomes the
uncorrupted inputs. Because the training process for DAEs makes
use of example/target pairs to gauge training quality, it becomes
a self-supervised technique. The main task for DAEs thus is com-
pression. In this work, we have used DAEs to model code vectors
obtained through IR2Vec for feature extraction and compression.

2.5 Multimodal Deep Learning
Multimodal learning refers to relating information from multiple
sources towards a common goal [59]. If there are multiple methods
of modeling a target task, a problem can be assigned as multimodal,
with each modeling technique defined as a unique modality. Multi-
modal learning has thus far mostly been applied to audio and video
analysis, speech synthesis, and gesture recognition tasks [72]. For
example, in image and video description tasks, the visual content
and the associated textual description can be considered as different
modalities with the same target – to enable the viewer to perceive
the content and meaning of the image/video.

We take inspiration from these ideas and apply it to the task of
code representation. A sequential and graphical code representation
can represent different modalities of the same piece of code. The
most common approach to multimodal modeling is to obtain high
level embeddings from different sources and associate them towards
a common task. Generally, early fusion and late fusion are two
techniques used for associating data from disparate sources in
multimodal learning [61]. On a high level, early fusion can be
thought of as feature level fusion, where data from multiple sources
are integrated into a single feature vector, before being used as input
to a machine-learning model. Late or decision-level fusion refers to

47

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Akash Dutta et al.

aggregating outputs from multiple models built on top of different
modalities. This is often used as errors from multiple models are
usually unrelated and such a method is feature independent. In
this paper, we use late fusion for merging the outputs obtained by
modeling two separate modalities.

3 THE MGA TUNER
This section presents a novel framework that adapts advanced deep
learning (DL) techniques to performance tuning tasks. We argue
that for DL-based code modeling, code syntax, semantics, and struc-
ture are extremely important for proper understanding of code.
However, using a combined representation would make modeling
them too complex, lead to increased feature overlap, reduced speci-
ficity in identifying relevant features, and introduction of noise and
conflicts. To this end, we propose using two different code repre-
sentations as separate modalities: i) a graphical code representation
that can encode the code structure as a graph, ii) a distributed pro-
gram vector representation that can encode syntactic and semantic
features. A distributed vector representation can capture the rela-
tions within an instruction, but cannot effectively capture program
structure. A graphical code representation, on the other hand, can
fully capture code structure along with certain semantic features
such as program flow. We aim to model the first modality using a
heterogeneous graph neural network, and the second one using a
denoising auto-encoder (DAE).

However, these static code features are not sufficient for model-
ing the execution behavior of code with different inputs. Therefore,
we augment these features with dynamic features such as perfor-
mance counters to include additional information about program
behavior/setup with varied inputs. Figure 3 presents an overview of
this tuning approach and Table 1 shows an overview of our model
architecture.

3.1 Representing the Code
Our multimodal code modeling is built on top of two very different
state-of-the-art code representations (IR2Vec [81] and PROGRAML
[20]). Although the following part of the modeling process is done
in parallel, we present these separately for improved readability
and understanding.

To represent the first modality, each IR is passed through the
PROGRAML tool to obtain the corresponding code graphs, as shown
in the upper half of Figure 4. Along with representing the code
structure, these code graphs also capture the data flow, control
flow, and call flow in a single unified multi-graph, as shown in
Figure 2. To represent the second modality, the code region/loop
IRs are used to generate a seed embedding vocabulary with the
IR2Vec encodings, as shown in the lower half of Figure 4. This
seed embedding is then used to obtain the code vectors for each
kernel used in the experiments. These code vectors and graphs are
then passed through the code and performance modeling step as
outlined in Section 3.2.

3.2 Performance Modeling
The kernel IRs in our dataset are first transformed to a form usable
by DL networks using techniques discussed in Section 3.1. Experi-
ment specific features are also used to augment the static feature

set. In case of the OpenMP experiments, performance counters are
collected and used to incorporate the impact of various inputs on
code execution. For the experiments on OpenCL kernels, we have
used transfer and workgroup sizes as additional input features to
our models. These are discussed in further detail in Section 4. These,
along with the static features, form the inputs to our models. As
shown in Figure 3, our multimodal learning-based performance
model can be abstracted into 3 high-level parts:
Heterogeneous GNN modeling of flow graphs. As mentioned
in Section 2.3, GNNs have been used for modeling graphical data.
Heterogeneous GNNs have been successfully used for modelling
real-world datasets with diverse node and edge attributes. The code
graphs used in this paper encapsulate the flow information in pro-
grams as three different types of relations. A homogeneous network
cannot always fully incorporate multiple relationships in a multi-
graph as shown in [73]. Therefore, to effectively model these flow
multi-graphs, we have designed a heterogeneous GNN network
capable of handling each of these three relations and the different
types of nodes in the graph. This model is an agglomeration of three
different GNNs to model each flow graph (data flow, control flow,
and call flow). Each of these three sub-networks are homogeneous
in nature as they are expected to model only a single relation and
the associated nodes. Our heterogeneous GNN, consisting of three
layers, models these flow graph representations and their node
features as shown in Figure 3. Each homogeneous sub-network in
the heterogeneous GNN network in this paper is a Gated Graph
Convolutional Network [48] with a "mean" aggregation scheme to
group the node embeddings from each relation. This heterogeneous
GNN model consists of approximately 350K trainable paramters.
Modeling code vectors usingDenoisingAutoencoders.The dataset
of code vectors obtained in Section 3.1 takes tabular structure, where
each row in the table represents a sequence of code vectors. The
usual practice while working with tabular data is to use gradient
boosted techniques such as XGBoost [18], LightGBM [42]. Indeed
such an approach has been used in [81] for their modeling tasks.
However, due to the inherent difficulty of adapting GNNs and XG-
Boost as part of the same infrastructure, we have used denoising
autoencoders as an alternative. The best submission on a Kaggle
competition with a tabular dataset [38] highlighted DAEs as a pos-
sible alternative to gradient boosted algorithms.

This is a self-supervised technique, where we initially collect the
code vectors in the training set and pass it through the DAE model.
Our simple DAE model consists of five fully connected ANN/MLP
layers, where the first two layers are the encoder layers, followed
by a code layer, followed by two decoder layers. As mentioned
in Section 2.4, the dimensions of the input and output layers are
identical. Prior to modeling, the input data is scaled into a standard
normal distribution using Gaussian rank scaling. During the encod-
ing phase of the encoder-decoder architecture, we introduce "swap
noise" into the dataset. Imagine a table of data, where for any given
column, a value in that column is replaced by a randomly sampled
value from the same column, such that 10% of values in a column
has been modified. This modified data is then input to the encoding
phase of the DAE with the target of predicting the correct input.
This technique allows the DAE model, with approximately 1.8M
trainable parameters, to better learn the distribution of the dataset.
Fully Connected Tuning. As discussed in Section 2.5, late fusion

48

Performance Optimization using Multimodal Modeling and Heterogeneous GNN HPDC ’23, June 16–23, 2023, Orlando, FL, USA

C/C++
Code

Compile to
IR

IR2Vec
Embeddings

PROGRAML
Graphs

Static Feature Extraction

DAE Model

Hetero GNN
Model

Multimodal
Code

Modeling

Additional
Features

ANN/MLP
Layers

Figure 3: MGA Pipeline: An overview of the tasks in our Heterogeneous GNN based Multimodal DL tuner. The compiled IR
is passed through IR2Vec and PROGRAML. The outputs are then passed through the DAE and heterogeneous GNN models
respectively. Additional features are experiment specific as shown in Sections 4.1 and 4.2.

Code
Region

IR

PROGRAML

IR2Vec

Code Graph

Code Vectors

Figure 4: Multimodal code representation

Table 1: Deep Learning Model Architecture.

Sub-Model Layers Network Activation
HeteroConv 3 Gated Graph Convo-

lution
ReLU

DAE. 5 Fully Connected
(Encoder-Decoder)

ReLU, Sigmoid

Classifier 3 Fully Connected ReLU

techniques were used to fuse the outputs from each modeled modal-
ity. The output tensors from the last level layers of the GNN and
DAE networks are initially concatenated. This fused tensor is then
concatenated with additional experiment-specific features as men-
tioned before and detailed in Section 4. These additional features
are performance counters for the OpenMP experiments in Section 4.1.
For the OpenCL experiments, these are the transfer size and work-
group size. Prior to concatenation, these features are normalized
and scaled to a [0,1] range. This feature vector is then fed as input
to the fully connected (dense/MLP) layers [66] as can be seen in
Figure 3. These layers are trained with the target of identifying the
best runtime configurations. The fully connected MLP layers model
all the aggregated features and classifies the loops/kernels and
corresponding inputs to the appropriate configurations. Our fully
connected network consists of only one hidden layer and around
200 trainable parameters. We have consciously designed a small
network to reduce training time at source. We show later that such
a multimodal modeling technique produces much better results
than other auto-tuners and state-of-the-art code representations
using a single modality.

4 EXPERIMENTS
We validate our hypothesis on tasks using two programming mod-
els, OpenMP and OpenCL. We chose to work primarily with OpenMP
as it is widely used in the parallel programming community, and
can be easily compiled to their intermediate representations (IRs).
We additionally used OpenCL to check the strength of our code rep-
resentation and modeling technique. We have worked with multiple
benchmarks and various input sizes to closely mimic real world
scenarios. We have compared our experiments with the state-of-
the-art tools available in literature. The setups for each experiment
are detailed in the corresponding sections.

Experimental Systems and Software. The experiments in Sec-
tion 4.1.3 targets an 8-core Intel i7-10700K (Comet Lake) processor.
The experiments in Section 4.1.4 target a 10 core Intel Xeon Silver
4114 (Skylake) processor with two hyper-threads per core. We work
with a dataset generated on Intel Core i7-3820 CPU and AMD Tahiti
7970 and NVIDIA GTX 970 GPUs in Section 4.2. Code regions are
compiled and extracted using Clang tools. PyTorch and Pytorch
Geometric libraries were used for building our DL models.

Identifying and Selecting Benchmarks. The first step in our
pipeline centers around the appropriate selection of benchmarks
for experimentation. The benchmark applications were selected
to have sufficient variability amongst them. We have used loops
and kernels from multiple applications targeting domains ranging
from arithmetic solvers to those targeting linear algebra, data min-
ing, bioinformatics, fluid dynamics, image processing and others.
For the OpenMP experiments, we used kernels from STREAM [54],
DataRaceBench [49], Polybench [60], NAS [12], Rodinia [16, 17],
LULESH [39, 40], XSBench [78], RSBench [77], miniFE [35], mini-
AMR [65], and Quicksilver [46]. The OpenCL experiments use ker-
nels from the AMD SDK [7], NPB [67], NVIDIA SDK [19], Parboil
[71], Polybench [30], Rodinia [16] and SHOC [24] benchmark suites.
The benchmark applications used across all experiments are listed
in Table 2.

4.1 OpenMP Tuning
In this section we have tried tuning OpenMP runtime parameters for
OpenMP loops. These parameters can highly impact performance
on CPUs and we try to identify those configurations that lead to
the fastest executions. We initially compile the code to their IRs

49

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Akash Dutta et al.

Table 2: List of benchmarks used in experiments

Benchmark Suite Applications Selected
Polybench [87] 2mm, 3mm, atax, adi, bicg, cholesky, convolution-2d, convolution-3d, correlation, covariance, doitgen, durbin,

fdtd-2d, fdtd-apml, gemm, gemver, gesummv, gramschmidt, jacobi-1d, jacobi-2d, lu, mvt, seidel-2d, symm, syrk,
syr2k, trisolv, trmm

Rodinia [16, 17] b+tree, backprop, bfs, cfd, gaussian, hotspot, kmeans, lavaMD, leukocyte, lud, nn, nw, needle, particlefilter,
pathfinder, srad, streamcluster

NAS [12] BT, CG, EP, FT, LU, MG, SP
STREAM [52, 53] stream.c
DataRaceBench [49] DRB045, DRB046, DRB061, DRB062, DRB093, DRB094, DRB121
AMD SDK [7] BinomialOption, BitonicSort, BlackScholes, FastWalshTransform, FloydWarshall, MatrixMultiplication, Matrix-

Transpose, PrefixSum, Reduction, ScanLargeArrays, SimpleConvolution, SobelFilter
NVIDIA SDK [19] DotProduct, FDTD3D, MatVecMul, MatrixMul, MersenneTwister, VectorAdd
Parboil [71] BFS, cutcp, lbm, sad, spmv, stencil
SHOC [24] BFS, FFT, GEMM, MD, MD5, Reduction, S3D, Scan, Sort, Spmv, Stencil2D, Triad
Proxy/Mini Applica-
tions

LULESH [39, 40], XSBench [78], RSBench [77], miniFE [35], miniAMR [65], Quicksilver [46]

and model them as described in Section 3. We augment these static
code features with dynamic features in the form of performance
counters. Performance counters are necessary for this experiment
to help analyze the impact of various inputs on an OpenMP loop.

4.1.1 Data Collection and Preprocessing. Initially, each application
is instrumented to accept variable input at runtime. Additionally
each OpenMP loop is instrumented to call appropriate PAPI [57]
APIs for profiling purposes. Each instrumented application is then
profiled for each input size and configuration. This is a one time
cost of creating the dataset and identifying the best configurations
as labels of the dataset. A major bottleneck of this process is the
large number of available performance counters. All systems used
for this experiment reports >50 preset counters. We collected 20
PAPI counters based on the ideas presented in [1–3] for the Poly-
bench suite. We extend and update these techniques to build our
own dataset of OpenMP loop signatures. For each loop, we used 30
input sizes ranging from 3.5KB to 0.5GB. Profiling with multiple
inputs provides insight into how these inputs impact the execution
behavior of each OpenMP loop. The input sizes were selected with
the intention of stressing each of the three cache levels (L1, L2,
L3) to different degrees. This type of input-driven profiling lets
us explore how varying runtime parameters can help alleviate la-
tency issues. However, including all counters while training our
tuning model leads to a feature explosion and negatively impacts
model convergence. To improve model convergence, we used Pear-
son’s correlation [14] and identified five performance counters that
are most correlated to execution time, and used these for training
purposes. For the remaining applications, we only profile them to
collect these five counters. For an application with multiple OpenMP
loops, the associated counters and execution times are collected in a
single run. This implicitly accounts for the effect on hardware com-
ponents a preceding loop might have on succeeding ones. These
steps reduce the profiling cost to a large degree. The selected per-
formance counters are L1, L2 cache misses, L3 load misses, number
of retired branch instructions, and mispredicted branches across

all loops, inputs and experiments. Overall, we collected more than
150k samples for the OpenMP experiments (Section 4.1).

4.1.2 Setting up Baselines. In this section, we have compared our
results with three autotuners, ytopt, OpenTuner, and BLISS and
two state-of-the-art code representations PROGRAML and IR2Vec.
ytopt [9] and BLISS [64] are autotuners based on Bayesian opti-
mization. OpenTuner [8] is a search-based autotuner which employs
various search techniques such as AUC Bandit, Nelder-Mead, Torc-
zon hillclimbers, etc. ytopt and OpenTuner have been previously
used for a variety of tuning tasks [32, 36, 44, 85, 88] and were hence
chosen as baselines for this paper. BLISS represents a more re-
cent state-of-the-art autotuner based on Bayesian optimization. We
have also compared against unimodal DL approaches that uses only
PROGRAML [20] or IR2Vec [81] as the code representations of choice.
In addition, we have also compared our results with brute-force
tuning results (𝑂𝑟𝑎𝑐𝑙𝑒), where every possible configuration in the
search space was evaluated to identify the absolute best configu-
ration. For comparisons with ytopt, OpenTuner, and BLISS, the
search and tuning methods specified in these tools were followed
without any changes. For each tool, the search space and compi-
lation and run commands were specified as per requirement. For
ytopt and BLISS, the number of maximum evaluations was set to
ten, and for OpenTuner, an upper bound time limit of 180 seconds
was set.

4.1.3 OpenMP Thread Prediction. One of the most widely used
techniques for improving the performance of OpenMP code is by
varying the thread-level parallelism. Simply allocating more threads
to a workload might not always produce the best results as shown
in Figure 1.

The heterogeneous GNNmodel used across our experiments con-
sists of three homogeneous GNN models. We experimented with a
few popular graph neural networks: graph convolution networks
(GCNs) [43], graph attention networks [80], GraphSAGE [34], and
gated graph neural networks (GGNN) [48]. We observed that using
GGNNs for modeling each relation in the flow graphs produces the

50

Performance Optimization using Multimodal Modeling and Heterogeneous GNN HPDC ’23, June 16–23, 2023, Orlando, FL, USA

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N
or
m
al
ize

d
Sp
ee
du

ps

Fold #

Default ytopt OpenTuner BLISS PROGRAML IR2Vec MGA Oracle

Figure 5: Thread Prediction: Normalized speedups (with re-
spect to oracle speedups) per validation fold. The MGA tuner
produces speedups of 2.71×, 4.68×, 8.09×, 3.51×, 1.31× for each
fold over default execution with all threads. Default speedup
is always 1.0×.[Higher is better]

best end results. The IR2Vec embeddings are modeled using DAE
layers with Sigmoid activation function as described in Section 3.2.
The output tensors from these models are then fused and concate-
nated with the performance counters and fed into the MLP layers
to predict the number of threads. This model is optimized with the
AdamW optimizer [50].

To evaluate our model performance, we perform 5-fold cross
validation. Here, we run the same experiment five times, where
the five validation folds are mutually exclusive sets and the union
of these five sets equal the set of all loops in the dataset. For each
validation fold, the other loops in the dataset (four-fifth of all loops)
are assigned to the training set. The model is then iteratively trained
and validated five times to ensure coverage of all loops in the dataset.
In the absence of a designated, representative test set, k-fold cross
validation allows us to test the skill of the model on unseen data.
Our model achieves geometric mean accuracy of 86% in identifying
the best threads across five folds.

The results in Figure 5 show that our approach performs better
compared to other approaches. For each loop in the validation set,
we use the predicted configuration for each input to obtain the
execution time for that combination, and calculate the speedup
(speedup = 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑑𝑒𝑓 𝑎𝑢𝑙𝑡

𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑛𝑒𝑤
) with respect to the default execution

time. We repeat this process for each loop in the validation set. The
geometric mean of these speedups is presented as each bar for each
fold in Figure 5.
Analyzing design choices and results. As mentioned before,
we compared our approach with two unimodal approaches using
PROGRAML and IR2Vec as the code representation of choice along
with the tuners ytopt, OpenTuner, and BLISS. The tuners using
unimodal code representation were modeled using the same un-
derlying sub-model as used in MGA. The unimodal approach based
only on PROGRAML graph features used the same GNN architecture
used in our work. Similarly, the unimodal approach built on IR2Vec
features used the DAE architecture designed as part the MGA tuner.
The hyper-parameters for each of these unimodal DL approaches
were tuned to the best of our ability to maximize performance. Such
feature extraction and modeling techniques were employed to ap-
proximately quantify the advantages of our multimodal modeling
approach in comparison to the other unimodal DL approaches and
also serves implicitly as an ablation study to show the benefits of

0 0.5 1 1.5 2 2.5 3 3.5 4

ytopt

BLISS

OpenTuner

Dynamic Only

PROGRAML-Static

PROGRAML

IR2Vec-Static

IR2Vec

MGA-Static

MGA

Speedups

Figure 6: Thread Prediction: Impact of static and dynamic fea-
tures. Red bars use both static and dynamic features. Green
bars use only static features. The blue bar uses only dynamic
features (perf. counters). Yellow bars are existing tuners in
literature (added for comparison) [Higher is better].

multimodality compared to individual state-of-the-art code repre-
sentations. We treated ytopt, OpenTuner, and BLISS as black boxes
and simply provided the target metric and other necessary infor-
mation as mentioned in Section 4.1.2. In this section, speedups are
calculated with respect to the execution time with default OpenMP
configurations (all threads, static scheduling, compiler calculated
chunk size). In three out of five folds, our approach produced nor-
malized speedups (with respect to Oracle speedups) of ≥ 0.95×,
and in one out of five folds normalized speedup between 0.9× and
0.95× of the oracle speedups. The IR2Vec tuner led to normalized
speedups of ≥ 0.9×, but < 0.95× in three out of five folds, and had
normalized speedups < 0.85× in the remaining folds. The PROGRAML
tuner produced normalized speedups of > 0.85× in one out of five
folds. As seen in Figure 5, ytopt produced normalized speedups
> 0.75× in one out of five folds. OpenTuner and BLISS produced
speedups of > 0.75× in two out of five folds. Our approach only
shows reduced performance gains in one fold. This is primarily
due to the presence of the trisolv kernel from Polybench. The
serial version of trisolv has better performance than the parallel
version used in this paper. This worsens the result of fold one, as
the DL model does not see similar trends for other loops based on
code modeling and execution behavior.

Amongst the considered tuning approaches, our method came
closest to the Oracle predictions. ytopt, OpenTuner, BLISS, the
PROGRAML tuner, the IR2Vec tuner, and the MGA tuner produced geo-
metric mean speedups of 1.46×, 2.33×, 1.67×, 2.79×, 3.17×, and 3.4×
across all folds compared to oracle speedups of 3.62×. We believe
that our approach is able to better capture andmodel code semantics
and structure which aids the process of identifying “good" configu-
rations in comparison to the other unimodal DL approaches. The
difference in performance between the MGA tuner, and PROGRAML
and IR2Vec tuners point to this.
Importance of dynamic information. Performance profiling is
an overhead of our approach. However, we posit that modeling
performance counters is essential for such DL-based tuning. As the
code features are static in nature, these cannot capture/convey to
the model runtime/execution information. Rather than handcraft-
ing such input related features (often requires expert knowledge),
performance counters were used to capture the impact of inputs in

51

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Akash Dutta et al.

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5N
or
m
al
ize

d
Sp
ee
du

ps

Fold #

Default MGA Oracle

Figure 7: Thread Prediction on unseen loops and input size.
Speedups normalized with respect to Oracle. The MGA tuner
produces 1.68×, 6.0×, 1.04×, 2.5×, 2.73× speedups across five
folds over default execution. [Higher is better]

an automated fashion. We performed a set of studies to validate this
claim. We trained three DL models with only static features and
observed performance degradation when performance counters
were not a part of the feature set. The results from the validation
set obtained by performing a randomized 80/20 split are shown in
Figure 6. Compared to achieved speedups of 3.9×, 3.6×, and 3.0×
by the MGA, IR2Vec and PROGRAML models (uses both static and dy-
namic features) respectively, the speedups fell to 2.8×, 2.5×, and
2.5× without performance counters. This is expected as these static
features do not explicitly provide information about the impact of
varied inputs on execution. In addition, we also train a model with
only dynamic features. It showed the smallest speedups amongst
all the DL-tuners designed in this paper, achieving speedups of only
2.1×. Therefore, using static and dynamic features together lead to
the best results.
Varying Input Sizes.To evaluate the generalizability of ourmethod,
this section primarily evaluates how our model performs when both
loops and input sizes are unknown. We initially selected at random
20% of the 30 input sizes considered in this paper, and set it aside
for validation. We then split the loops using 5-fold validation as
described before. Following this process, each validation fold now
consists of unseen loops and the unknown input sizes set aside
before. However, to reduce bias and preserve generalizability, the
loops in these validation folds are different from the validation
folds in the previous experiment (e.g. validation loops in fold one
of this experiment is different from the validation loops in fold
one of previous experiments). In the previous experiments, only
the OpenMP loops were unknown in the validation set. The model
had been trained on the training set of OpenMP loops and all input
sizes. In contrast, in this experiment, the model is trained on the
OpenMP loops in the training set and 80% of the input sizes. The
loops in the validation sets and the unknown inputs are tested in
this experiment and the results are shown in Figure 7. We observe
that our model performs well producing geometric mean speedups
of 2.35× across all folds, compared to mean oracle speedups of
2.68×. There is some performance drop as input sizes highly impact
performance counters and the best runtime configurations. With-
out prior knowledge of program behavior at these input sizes, the
model performance suffers.

4.1.4 Scaling up to a Larger Search Space. The experiments per-
formed in previous sections have achieved good results. However,
those search spaces are fairly small. In order to assess the scalabil-
ity of our approach to larger search spaces, we experimented with

tuning the number of threads, scheduling policy, and chunk sizes
at the same time. The search space is defined in Table 3 using ideas
from [10, 11]. In this experiment, we have used a smaller subset

Table 3: Search Space for Experiment in Section 4.1.4

OpenMP Parameter Parameter Values
Threads 1, 2, 4, 8, 12, 16, 20
Scheduling Policies static, dynamic, guided
Chunk Sizes 1, 8, 32, 64, 128, 256, 512

of the benchmarks considered before and worked on loops from
Polybench and Rodinia. We have additionally experimented with
LULESH [39, 40], XSBench [78], RSBench [77], miniFE [35], mini-
AMR [65], and Quicksilver [46] applications. For this experiment,
we performed leave-one-out validation instead of 5-fold validation,
to better show the results of each application on a larger search
space. In this method of validation, we leave out data associated
with one benchmark application (all loops in this application are
present in the validation set) as the validation set and train our
model on the rest. This process is repeated for each considered ap-
plication. As shown in Figure 8, this leads to normalized speedups
of ≥ 0.95× of the oracle speedups in 26 out of 35 applications, and
≥ 0.85× normalized speedups in 33 out of 35 applications. trisolv
is the worst performing application due to reasons discussed in
Section 4.1.3. Our approach outperforms ytopt, OpenTuner, and
BLISS in 32, 33, and 30 cases out of 35. ytopt, OpenTuner, and
BLISS produce > 0.95× of the oracle speedups in 11, 4, and 16 cases
out of 35. Overall, our model produces geometric mean speedups
of around 2.01× compared to oracle speedups of 2.13×. The im-
provement in performance of most kernels can be attributed to
better cache performance, branch predictions, and load balancing.
We show the impact of using the predicted OpenMP configurations
for this system on cache misses, clock cycles, and branch mispre-
dictions compared to the default configuration of using all threads
and static scheduling in Figure 9 for the 2mm kernel. There is a clear
relation between improved performance and reduced cache misses,
and branch mispredictions. In most kernels used in this paper, the
profitable configurations lead to improvements in most of these
factors, leading to improved performance.

4.1.5 Analyzing 𝜇-architecture Portability. In this section, we ana-
lyzed if our auto-tuner can predict the number of threads on other
𝜇-architectures. We re-used the model in Section 4.1.3 (trained on
data from Comet Lake 𝜇-architecture) to predict the number of
threads on single-socket 8 core systems belonging to the Broad-
well and SandyBridge 𝜇-architecture (access provided by Cloudlabs
infrastructure [25]). Limiting the scope of this experiment to test-
ing hardware portability to single-socket 8 core systems helps us
to directly use a pre-trained model without additional training
(different core/socket count would necessitate re-training). Static
code graphs, sequential code vectors, and the performance coun-
ters from the target systems (Broadwell/Sand Bridge) were passed
as inputs to the pre-trained model. We validated this approach
on 25 kernels from the PolyBench benchmark with STANDARD
and LARGE inputs. Similar to Section 4.1.4, we perform leave-one-
out validation for this experiment. The data from the Comet Lake

52

Performance Optimization using Multimodal Modeling and Heterogeneous GNN HPDC ’23, June 16–23, 2023, Orlando, FL, USA

0
0.2
0.4
0.6
0.8
1

2m
m lu

sy
rk

co
nv
ol
ut
i…

co
rr
el
at
io
n

fd
td
-2
d

se
id
el
-2
d

ja
co
bi
-2
d

tr
m
m

fd
td
-a
pm

l
ge
m
m

tr
iso

lv
do

itg
en m
vt

ge
m
ve
r

co
va
ria
nc
e

ge
su
m
m
v

sy
m
m

gr
am

sc
h…

bi
cg

du
rb
in

sy
r2
k

ch
ol
es
ky ad
i

at
ax

ba
ck
pr
op nn

km
ea
ns

st
re
am

cl
…

LU
LE
SH

RS
Be
nc
h

XS
Be
nc
h

m
in
iF
E

Q
ui
ck
si
lv
er

m
in
iA
M
R

N
or
m
al
ize

d
Sp
ee
du

ps

Benchmark Applications

Default ytopt OpenTuner BLISS MGA Oracle

Figure 8: Normalized speedups (w.r.t. oracle) for each application for Section 4.1.4 experiments. [Higher is better]

0
0.2
0.4
0.6
0.8
1

L3
_ca
ch
e_
mi
ss…

L1
_ca
ch
e_
mi
ss…

Bra
nc
he
s_m

is…

L2
_ca
ch
e_
mi
ss…

CP
U_
clo
ck
_cy
c…

Re
tir
ed
_b
ran
c…

N
or
m
al
ize

d
Va

lu
es

Performance Counters

Optimal Default

Figure 9: Normalized performance counter values for 2mm
benchmark: default (20 threads, static scheduling, dynami-
cally calculated chunk sizes) vs predicted configuration (16
threads, dynamic scheduling, chunks of 8). [Lower is better]

system was always used for training in this experiment. For each
validation fold, the validation kernel was executed twice on the
target 𝜇-architecture to collect the necessary counters. The L1,
L2, and L3 cache counters were then computed as a function of
the system cache sizes relative to the system on which the train-
ing data is collected (e.g. L1 cache misses for Sandy Bridge are
computed as 𝐿1_𝐶𝑀×𝐿1_𝑐𝑎𝑐ℎ𝑒_𝑠𝑖𝑧𝑒𝑆𝑎𝑛𝑑𝑦𝐵𝑟𝑖𝑑𝑔𝑒

𝐿1_𝑐𝑎𝑐ℎ𝑒_𝑠𝑖𝑧𝑒𝐶𝑜𝑚𝑒𝑡𝐿𝑎𝑘𝑒
). The branch mispre-

diction counters were divided by the number of reference clock
cycles. These counters were then normalized to a [0,1] scale and fed
into the model to predict the number of the threads. This process
completely removes the overhead of re-training models for other
similar 𝜇-architectures.

As shown in Figure 10, our approach performs well while predict-
ing the number of threads on Broadwell and Sandy Bridge with a
model trained on data fromComet Lake. Inmost cases, the predicted
configurations lead to optimal/better performance. We observed
that only using static features leads to the model making similar
predictions for Comet Lake, Broadwell, and Sandy Bridge. Without
modeling performance counters, the predictions for unseen loops
are what it would be for the training 𝜇-architecture. This led to
degraded performance on the target 𝜇-architectures.
Observations and Analysis. For these experiments, our approach
produces the best results overall. Search-based autotuners have
been commonly used for tuning tasks in the HPC community. How-
ever, these do need to execute code multiple times to identify prof-
itable configurations from the search space. Recently, Bayesian
optimization (BO) based tuners such as ytopt and BLISS have built

and improved on BO techniques to further improve the tuning pro-
cess. As an active learning technique, these need less executions
and evaluations by making smart data selection choices. Indeed
as shown in [64], such BO-based tuners reach closest to Oracle
predictions in comparison to search-based tools such as OpenTuner
with lesser number of evaluations. However, BO-based tuners also
require multiple code executions to effectively train their surrogate
models, and are usually application and input specific, i.e. in gen-
eral, these tuners need to be trained for each combination of code
and input. In contrast, our trained model is neither application or
input size specific. It is trained on data from multiple loops and
inputs. During inference, our model is expected to predict “good"
configurations for previously unknown applications and/or inputs.
During inference, an application should be compiled to its IR and
run only twice, irrespective of the size of the search space, to gather
the performance counters which are then fed into the MGA model
as inputs. This overhead is much less than existing tuners consid-
ered in this paper, but still produces better results. The number of
maximum evaluations defined for ytopt, OpenTuner, and BLISS
were limited to a small number as mentioned in Section 4.1.2. This
was done to perform a fair comparison with our tool. Increasing
the number of evaluations/executions for these tuners do lead to
improved results at a higher tuning cost.

As all deep learning tasks, our approach also suffers a training
overhead. We offset this overhead to some degree by designing
simple models with only a few layers. These efforts led to training
time of around 10minutes per epoch with a batch_size of 32 on an
8-core Intel CometLake CPU for ∼ 140K samples. During inference,
individual predictions take around 200𝜇s on the same CPU.

4.2 OpenCL Tuning
OpenCL is another programming model that is widely used in par-
allel programming. With this experiment we aim to validate if our
approach works for a compiler optimization task for another IR-
based programming model. Heterogeneous device mapping is a
commonly used task to validate the effectiveness of code representa-
tions and modeling. Grewe et al. [31] proposed the device mapping
task to map OpenCL kernels to the CPU or GPU. This task has been
used in later works [13, 20, 81] to evaluate their performance. We
also use this task to evaluate the effectiveness of our approach.

4.2.1 Dataset. We use the dataset published by Ben-Nun et al. [13]
for this experiment. It has 256 unique OpenCL kernels from seven

53

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Akash Dutta et al.

0
0.2
0.4
0.6
0.8
1

1.2
1.4

2m
m lu syr

k

co
nvo

lut
ion
-2d

co
rre
lat
ion

fdt
d-2

d

sei
de
l-2
d

jac
ob
i-2
d
trm

m

fdt
d-a
pm
l

ge
mm

tris
olv

do
i tg
en mv

t

ge
mv
er

co
var
ian
ce

ge
sum

mv
sym

m

gra
ms
ch
mi
dt bic

g

du
rbi
n
syr
2k

ch
ole
sky ad

i
ata
x

Sp
ee
du

ps

Benchmark Applications

Predicted-SB Oracle-SB Predicted-BW Oracle-BW

Figure 10: Speedups for experiment in Section 4.1.5. Predictions for Broadwell (BW) and SandyBridge (SB) by model trained on
data from Comet Lake [Higher is better]

benchmark suites comprising of AMD SDK, NPB, NVIDIA SDK, Par-
boil, Polybench, Rodinia and SHOC. The data size and workgroup
size were varied for each kernel to obtain a labeled dataset with
670 CPU- or GPU-labeled data points for each of the two devices,
AMD Tahiti 7970 and NVIDIA 970. As this is a published dataset,
no modifications were made to it, and performance counters have
not been used in this experiment.

4.2.2 Heterogeneous Device Mapping. For modeling purposes, we
use similar techniques used in the previous section. We initially
use the extracted IR of the OpenCL kernels in the dataset. The IRs
are then passed through PROGRAML and IR2Vec to obtain the code
graphs and code vectors. As before, the code graphs are modeled
using Heterogeneous GNNs and the code vectors are modeled using
DAEs. For this experiment, the modeled outputs from the GNN and
DAE models are concatenated as before. In addition, we also add
transfer and workgroup sizes from the dataset to the feature set
before passing the feature set onto the fully connected MLP layers.
Following the techniques used in [20, 81], we have also used ten-
fold stratified cross-validation to evaluate our results. We were able
to replicate the experiments reported in [81], and these results are
used to compare our results. The results from [20] are used directly
to compare our results. In this task, we validate if our approach
can outperform the state-of-the-art to reinforce our hypothesis
that existing code representations are good enough to be used in
conjunction for better performance.

Table 4: Accuracy: Heterogeneous device mapping
(CPU/GPU). All numbers are in percentage. Numbers
in parenthesis are percentage improvements in accuracy of
MGA model over corresponding approaches.

State-of-the-art NVIDIA GPU AMD GPU
Grewe et al. [31] 74.56 (31.3) 70.29 (39.0)
DeepTune [21] 80.88 (21.04) 83.24 (17.37)
inst2Vec [13] 82.65 (18.45) 82.35 (18.64)
PROGRAML [20] 80 (22.38) 86.6 (12.82)
IR2Vec [81] 89.68 (9.17) 92.82 (5.26)
MGA (ours) 97.9 97.7

Our experimental setup leads to state-of-the-art results in identi-
fying the correct device. We achieve accuracy of 97.9% and F1-score
of 0.98 in identifying the best device on the NVIDIA GPU. On the
AMD GPU, we achieve accuracy and F1-score of 97.7% and 0.97. In
comparison, PROGRAML achieves accuracies of 80% and 86.6% on
the NVIDIA and AMD GPUs and corresponding F1-scores of 0.88
and 0.8. IR2Vec (flow-aware representation) achieves accuracies of
89.68% and 92.82% on the NVIDIA and AMD GPUs. Comparisons
with other works on this dataset are shown in Table 4. The accuracy
numbers for Grewe at al. [31], DeepTune [21], and inst2vec [13]
are cited from [81].

We have also analyzed performance improvements due to the
predictions by our model. The speedups are calculated in com-
parison to static mappings as done in [81]. On the NVIDIA 970
system, our approach leads to speedups of 1.3× compared to oracle
speedups of 1.34×. The oracle speedups are calculated by analyzing
the execution time on the best device and comparing it to the static
mapping baseline. In comparison, the predictions in [81] led to
speedups of 1.26×. On the AMD Tahiti system, our predictions lead
to speedups of 1.62× compared to speedups of 1.58× produced by
IR2Vec [81] and oracle speedups of 1.66×.
Observations and Analysis.We have shown in this section that
our approach produces better results than the state-of-the-art in
this field without the need of a completely new code representation
technique. We analyzed our model’s predictions to identify those
cases where our model outperformed the state-of-the-art. We were
only able to replicate the experiments in [81] (best results in exist-
ing literature) and our observations are with respect to this paper.
Our overall performance was better as our edge case predictions
were better. We noticed that our model outperformed in corner
cases where kernels with small inputs were mapped to the GPU,
and kernels with large inputs were mapped to the CPU. As an illus-
trative example, consider the makea kernel from the CG benchmark
in NPB. In the dataset, this kernel gets mapped to a GPU with a
small input class S, whereas the same kernel with much larger input
class C gets mapped to the CPU. This behavior can be due to the
presence of multiple function calls from inside a loop. The called
functions, also have parallel loops in them. This, we believe, creates
an overhead which leads to faster execution on the CPU for larger
inputs. For the smaller inputs, the number of function calls are

54

Performance Optimization using Multimodal Modeling and Heterogeneous GNN HPDC ’23, June 16–23, 2023, Orlando, FL, USA

much less which does not create a bottleneck for GPU execution,
leading to much faster execution on GPUs. The MGA model is
able to identify such edge cases as our approach can capture the
characteristics of individual instructions and arguments along with
the data, control, and call flows in a kernel.

5 RELATED WORK
This paper proposes a new multimodal code representation tech-
nique built on top of state-of-the-art representation techniques and
its usage for DL based tuning of runtime configurations for OpenMP
and OpenCL kernels. These programming models expose a number
of configurations for runtime optimization. Thus auto-tuning is
essential for identifying the optimum configurations.

There already exists a large body of research on tuning run-
time/code parameters or configurations for parallel code [28, 37,
41, 58, 68, 74]. OpenTuner [8] and ActiveHarmony [74] are auto-
tuning frameworks for domain-specific tuning that is much faster
than exhaustive search-based auto-tuners. These tuners employ
a variety of search techniques for search space exploration and
optimizations.

An alternative to search-based auto-tuning is to use machine
learning based approaches. Search-based auto-tuners mostly de-
pend on manually or pre-defined heuristics to identify optimum
points in the search space. Such an approach iteratively explores
the search space to identify patterns that might point to profitable
configurations in the search space. Such tuners, however, need to ex-
ecute applications a number of times, which is often expensive. ML
tuners can reduce this exploration because of its pre-training and
ability to associate similarities between applications. To this end,
[62, 83] propose machine learning based approaches to OpenMP au-
totuning. Artemis [84] is an automatic parameter tuning framework
that uses machine learning to predict the execution parameters of
parallel regions. ytopt [9] is an evolution of the work in [68] which
iterates over a set of user-defined configurations and their possible
values to arrive at a tuned configuration. These approaches are
often domain or application specific. Although often faster than
search-based alternatives, these do need multiple code executions
as evidenced by our experiments with ytopt [9].

Deep learning provides another alternative to the aforemen-
tioned techniques. A suitable code representation technique is es-
sential for such deep learning based code modeling. To this end,
several code representations have been proposed [5, 6, 13, 15, 20,
22, 23, 63, 81], which have been used to good effect for several
optimization tasks such as heterogeneous device mapping, thread
coarsening factor, etc. to name a few. PROGRAML [20] and IR2Vec
[81] are two state-of-the-art such code representations, which have
addressed the shortcomings of seminal works in code representa-
tion such as inst2vec [13]. However, as mentioned before, each of
these representations suffer from some limitations. Given the com-
plexity of developing new code representation techniques, building
on top of existing ones seems wise. Unlike the papers mentioned be-
fore, this study considers two code representations as two separate
modalities for improving performance over unimodal approaches.

We have modeled our modalities using heterogeneous GNNs
and DAEs. A few works such as [20, 26, 27, 75], in the recent past
have successfully used GNNs for code modeling tasks. However, to

the best of our knowledge, this is the first work that employs het-
erogeneous GNNs for such tasks. Additionally, we believe no other
work has previously used denoising autoencoders to model code
vectors and adapted multimodal learning for code representation
learning.

6 DISCUSSION
Through this work, we have presented the idea of using heteroge-
neous GNNs, denoising autoencoders, and multimodal deep learn-
ing for the purpose of DL-based code modeling. We believe the
next phase of innovation in performance optimization will come
from deep learning approaches. As evidenced by works such as
[13, 20, 21, 75, 81], deep learning has been successfully used for
compiler and performance optimizations. Our experimental results
in this paper further reinforce that belief. However, DL is not a
"silver bullet" for all problems. These approaches do come with
overheads in model training. To address this, we have consciously
designed shallow networks to speed up training and inference at
source. The strength of any deep learning model lies in the set of
features it models. For the tasks considered in this paper, along with
the static code features, it was essential to incorporate runtime/dy-
namic features into the feature set. A good option is to carefully
handcraft such features for each experiment. But this requires ex-
pert intervention and is costly. Thus a limited number performance
counters were incorporated to represent such dynamic features in
a more automated way. This allows us to easily collect and repre-
sent some runtime features while keeping the profiling overhead
constrained.

7 CONCLUSION AND FUTUREWORKS
The presented technique of utilizing varied code representations as
different modalities is unique and promising for optimization tasks.
The multimodal code representation outperforms both unimodal
code representations considered in this paper. Our multimodal
learner also performs well when faced with unknown code and
inputs. This technique has led to us setting state-of-the-art results
in the task of OpenCL device mapping, and to the development of
a multimodal OpenMP tuner, producing better results than exist-
ing auto-tuners. We aim to incorporate transfer and reinforcement
learning in future efforts for developing an online tuner with cus-
tomizable search spaces and expand our work to GPUs and FPGAs.

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under Grant number 2211982. We would also like to thank the Re-
searchIT team 1 at Iowa State University for their constant support.
This work was also supported by the Ministerio de Ciencia e Inno-
vación MCIN AEI/10.13039/501100011033 under contract PID2020-
113614RB-C21 and by the Catalan government under contract 2021
SGR 00574.

REFERENCES
[1] Jordi Alcaraz, Anna Sikora, and Eduardo César. 2019. Hardware counters’ space

reduction for code region characterization. In European Conference on Parallel
Processing. Springer, 74–86.

1https://researchit.las.iastate.edu

55

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Akash Dutta et al.

[2] Jordi Alcaraz, Steven Sleder, Ali TehraniJamsaz, Anna Sikora, Ali Jannesari, Joan
Sorribes, and Eduardo Cesar. 2021. Building representative and balanced datasets
of OpenMP parallel regions. In 2021 29th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP). IEEE, 67–74.

[3] Jordi Alcaraz, Ali TehraniJamsaz, Akash Dutta, Anna Sikora, Ali Jannesari, Joan
Sorribes, and Eduardo Cesar. 2022. Predicting number of threads using balanced
datasets for openMP regions. Computing (2022), 1–19.

[4] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[5] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning
to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).

[6] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-
based representation for predicting program properties. ACM SIGPLAN Notices
53, 4 (2018), 404–419.

[7] AMD. [n.d.]. AMD OpenCL accelerated parallel processing SDK.
https://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/.

[8] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303–316.

[9] P Balaprakash, R Egele, and P Hovland. 2020. ytopt. https://github.com/ytopt-
team/ytopt (GitHub repository). Argonne National Laboratory. (2020).

[10] Md Abdullah Shahneous Bari, Nicholas Chaimov, Abid M Malik, Kevin A Huck,
Barbara Chapman, Allen D Malony, and Osman Sarood. 2016. Arcs: Adaptive
runtime configuration selection for power-constrained openmp applications. In
2016 IEEE international conference on cluster computing (CLUSTER). IEEE.

[11] Md Abdullah Shahneous Bari, Abid M Malik, Ahmad Qawasmeh, and Barbara
Chapman. 2019. Performance and energy impact of OpenMP runtime configu-
rations on power constrained systems. Sustainable Computing: Informatics and
Systems 23 (2019), 1–12.

[12] E Barszcz, J Barton, L Dagum, P Frederickson, T Lasinski, R Schreiber, V
Venkatakrishnan, S Weeratunga, D Bailey, D Browning, et al. 1991. The nas
parallel benchmarks. In The International Journal of Supercomputer Applications.
Citeseer.

[13] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural Code
Comprehension: A Learnable Representation of Code Semantics. Advances in
Neural Information Processing Systems 31 (2018), 3585–3597.

[14] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson
correlation coefficient. In Noise reduction in speech processing. Springer, 1–4.

[15] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon.
2020. Compiler-based graph representations for deep learning models of code.
In Proceedings of the 29th International Conference on Compiler Construction.
201–211.

[16] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[17] Shuai Che, Jeremy W Sheaffer, Michael Boyer, Lukasz G Szafaryn, Liang Wang,
and Kevin Skadron. 2010. A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads. In IEEE International Symposium
on Workload Characterization (IISWC’10). IEEE, 1–11.

[18] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu
Cho, Kailong Chen, et al. 2015. Xgboost: extreme gradient boosting. R package
version 0.4-2 1, 4 (2015), 1–4.

[19] NVIDIACorporation. [n.d.]. CUDA. http://developer.nvidia.com/object/cuda.html.

[20] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP
O’Boyle, and Hugh Leather. 2021. PROGRAML: A Graph-based Program Repre-
sentation for Data Flow Analysis and Compiler Optimizations. In International
Conference on Machine Learning. PMLR, 2244–2253.

[21] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.
End-to-end deep learning of optimization heuristics. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
219–232.

[22] Christopher Edward Cummins. 2020. Deep learning for compilers. (2020).
[23] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya

Ghose, Taeksu Kim, and Chul-Joo Kim. 2018. A deep tree-based model for
software defect prediction. arXiv preprint arXiv:1802.00921 (2018).

[24] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. 2010. The scalable
heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
workshop on general-purpose computation on graphics processing units. 63–74.

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical

Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19
[26] Akash Dutta, Jordi Alcaraz, Ali TehraniJamsaz, Anna Sikora, Eduardo Cesar, and

Ali Jannesari. 2022. Pattern-based autotuning of openmp loops using graph neural
networks. In 2022 IEEE/ACM International Workshop on Artificial Intelligence and
Machine Learning for Scientific Applications (AI4S). IEEE, 26–31.

[27] Akash Dutta, Jee Choi, and Ali Jannesari. 2023. Power Constrained Autotuning
using Graph Neural Networks. In IPDPS 2023-37th IEEE International Parallel &
Distributed Processing Symposium.

[28] Davide Gadioli, Emanuele Vitali, Gianluca Palermo, and Cristina Silvano. 2018.
Margot: a dynamic autotuning framework for self-aware approximate computing.
IEEE transactions on computers 68, 5 (2018), 713–728.

[29] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[30] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In 2012
innovative parallel computing (InPar). Ieee, 1–10.

[31] Dominik Grewe, Zheng Wang, and Michael FP O’Boyle. 2013. Portable mapping
of data parallel programs to opencl for heterogeneous systems. In Proceedings of
the 2013 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, 1–10.

[32] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and
Christophe Dubach. 2018. High performance stencil code generation with lift.
In Proceedings of the 2018 International Symposium on Code Generation and Opti-
mization. 100–112.

[33] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-end vectorization with
deep reinforcement learning. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization. 242–255.

[34] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[35] Si Hammond, Christian Trott, and Noah Evans. 2022. miniFE. https://github.
com/Mantevo/miniFE. GitHub repository (2022).

[36] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
2020. Unicorn: Runtime provenance-based detector for advanced persistent
threats. arXiv preprint arXiv:2001.01525 (2020).

[37] Zia Ul Huda, Rohit Atre, Ali Jannesari, and Felix Wolf. 2016. Automatic par-
allel pattern detection in the algorithm structure design space. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 43–52.

[38] Michael Jahrer. 2017. Porto Seguro’s Safe Driver Pre-
diction. https://www.kaggle.com/c/porto-seguro-safe-driver-
prediction/discussion/44629. (2017).

[39] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan
Cohen, Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang,
David Richards, Martin Schulz, and Charles Still. 2013. Exploring Traditional
and Emerging Parallel Programming Models using a Proxy Application. In 27th
IEEE International Parallel & Distributed Processing Symposium (IEEE IPDPS 2013).
Boston, USA.

[40] Ian Karlin, Jeff Keasler, and J Robert Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[41] Jakub Katarzyński and Maciej Cytowski. 2014. Towards autotuning of OpenMP
applications on multicore architectures. arXiv preprint arXiv:1401.4063 (2014).

[42] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).

[43] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[44] Jaehoon Koo, Prasanna Balaprakash, Michael Kruse, Xingfu Wu, Paul Hovland,
and Mary Hall. 2021. Customized Monte Carlo Tree Search for LLVM/Polly’s
Composable Loop Optimization Transformations. arXiv preprint arXiv:2105.04555
(2021).

[45] Sameer Kulkarni, John Cavazos, Christian Wimmer, and Douglas Simon. 2013.
Automatic construction of inlining heuristics using machine learning. In Pro-
ceedings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 1–12.

[46] Lawrence Livermore National Lab. 2022. Quicksilver. https://github.com/LLNL/
Quicksilver.

[47] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph matching networks for learning the similarity of graph structured objects.
In International conference on machine learning. PMLR, 3835–3845.

[48] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[49] Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin.
2017. DataRaceBench: a benchmark suite for systematic evaluation of data race
detection tools. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

56

https://www.flux.utah.edu/paper/duplyakin-atc19
https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE
https://github.com/LLNL/Quicksilver
https://github.com/LLNL/Quicksilver

Performance Optimization using Multimodal Modeling and Heterogeneous GNN HPDC ’23, June 16–23, 2023, Orlando, FL, USA

[50] Ilya Loshchilov and Frank Hutter. 2018. Fixing weight decay regularization in
adam. (2018).

[51] Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Automatic
optimization of thread-coarsening for graphics processors. In Proceedings of the
23rd international conference on Parallel architectures and compilation. 455–466.

[52] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/ A continually updated technical
report. http://www.cs.virginia.edu/stream/.

[53] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19–25.

[54] JohnDMcCalpin. 1995. Stream benchmark. Link: www. cs. virginia. edu/stream/ref.
html# what 22, 7 (1995).

[55] Charith Mendis, Cambridge Yang, Yewen Pu, Dr Amarasinghe, Michael Carbin,
et al. 2019. Compiler auto-vectorization with imitation learning. Advances in
Neural Information Processing Systems 32 (2019).

[56] Harshitha Menon, Abhinav Bhatele, and Todd Gamblin. 2020. Auto-tuning
parameter choices in HPC applications using Bayesian optimization. In 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
831–840.

[57] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. 1999. PAPI:
A portable interface to hardware performance counters. In Proceedings of the
department of defense HPCMP users group conference, Vol. 710. Citeseer.

[58] Dheya Mustafa, Rudolf Eigenmann, et al. 2011. Performance analysis and tuning
of automatically parallelized OpenMP applications. In International Workshop on
OpenMP. Springer, 151–164.

[59] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drew Y Ng. 2011. Multimodal deep learning. In ICML.

[60] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench 437 (2012), 1–1.

[61] Dhanesh Ramachandram and GrahamWTaylor. 2017. Deep multimodal learning:
A survey on recent advances and trends. IEEE signal processing magazine 34, 6
(2017), 96–108.

[62] Piyumi Rameshka, Pasindu Senanayake, Thulana Kannangara, Praveen Senevi-
ratne, Sanath Jayasena, Tharindu Rusira, and Mary Hall. 2019. Rigel: A Frame-
work for OpenMP PerformanceTuning. In 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 2093–2102.

[63] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from" big code". ACM SIGPLAN Notices 50, 1 (2015), 111–124.

[64] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. 2021. Bliss:
auto-tuning complex applications using a pool of diverse lightweight learning
models. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 1280–1295.

[65] Aparna Sasidharan and Marc Snir. 2016. MiniAMR-A miniapp for Adaptive Mesh
Refinement. (2016).

[66] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85–117.

[67] Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance characterization of
the NAS Parallel Benchmarks in OpenCL. In 2011 IEEE international symposium
on workload characterization (IISWC). IEEE, 137–148.

[68] Vinu Sreenivasan, Rajath Javali, Mary Hall, Prasanna Balaprakash, Thomas RW
Scogland, and Bronis R de Supinski. 2019. A framework for enabling OpenMP
autotuning. In International Workshop on OpenMP. Springer, 50–60.

[69] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. 2021. Value
learning for throughput optimization of deep learning workloads. Proceedings of
Machine Learning and Systems 3 (2021).

[70] Mark Stephenson and Saman Amarasinghe. 2005. Predicting unroll factors using
supervised classification. In International symposium on code generation and

optimization. IEEE, 123–134.
[71] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,

Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012), 27.

[72] Jabeen Summaira, Xi Li, Amin Muhammad Shoib, Songyuan Li, and Jabbar Abdul.
2021. Recent Advances and Trends in Multimodal Deep Learning: A Review.
arXiv preprint arXiv:2105.11087 (2021).

[73] Jianing Sun and Yingxue Zhang. 2019. Multi-graph convolutional neural networks
for representation learning in recommendation. In IEEE ICDM.

[74] Cristian Tapus, I-Hsin Chung, and Jeffrey K Hollingsworth. 2002. Active har-
mony: Towards automated performance tuning. In SC’02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing. IEEE, 44–44.

[75] Ali Tehranijamsaz, Mihail Popov, Akash Dutta, Emmanuelle Saillard, and Ali
Jannesari. 2022. Learning Intermediate Representations using Graph Neural
Networks for NUMA and Prefetchers Optimization. In IPDPS 2022-36th IEEE
International Parallel & Distributed Processing Symposium.

[76] Jayaraman J Thiagarajan, Nikhil Jain, Rushil Anirudh, Alfredo Gimenez, Rahul
Sridhar, Aniruddha Marathe, Tao Wang, Murali Emani, Abhinav Bhatele, and
Todd Gamblin. 2018. Bootstrapping parameter space exploration for fast tuning.
In Proceedings of the 2018 international conference on supercomputing. 385–395.

[77] John R Tramm, Andrew R Siegel, Benoit Forget, and Colin Josey. 2014. Per-
formance analysis of a reduced data movement algorithm for neutron cross
section data in monte carlo simulations. In International Conference on Exascale
Applications and Software. Springer, 39–56.

[78] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014.
XSBench-the development and verification of a performance abstraction for
Monte Carlo reactor analysis. The Role of Reactor Physics toward a Sustainable
Future (PHYSOR) (2014).

[79] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In 2010 39th
International Conference on Parallel Processing Workshops. IEEE, 207–216.

[80] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[81] S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar,
Ramakrishna Upadrasta, and YN Srikant. 2020. Ir2vec: Llvm ir based scalable
program embeddings. ACM Transactions on Architecture and Code Optimization
(TACO) 17, 4 (2020), 1–27.

[82] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S Yu. 2020.
A survey on heterogeneous graph embedding: methods, techniques, applications
and sources. arXiv preprint arXiv:2011.14867 (2020).

[83] Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael FP O’boyle. 2014.
Integrating profile-driven parallelism detection and machine-learning-based
mapping. ACM Transactions on Architecture and Code Optimization (TACO) 11, 1
(2014), 1–26.

[84] Chad Wood, Giorgis Georgakoudis, David Beckingsale, David Poliakoff, Alfredo
Gimenez, Kevin Huck, Allen Malony, and Todd Gamblin. 2021. Artemis: Auto-
matic Runtime Tuning of Parallel Execution Parameters Using Machine Learning.
In International Conference on High Performance Computing. Springer, 453–472.

[85] Xingfu Wu, Michael Kruse, Prasanna Balaprakash, Hal Finkel, Paul Hovland,
Valerie Taylor, and Mary Hall. 2021. Autotuning PolyBench Benchmarks with
LLVM Clang/Polly Loop Optimization Pragmas Using Bayesian Optimization
(extended version). arXiv preprint arXiv:2104.13242 (2021).

[86] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[87] Tomofumi Yuki and Louis-Noël Pouchet. 2015. Polybench 4.0.
[88] Yunming Zhang,Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and

Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. Proceedings
of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

57

http://www.cs.virginia.edu/stream/

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Code Representations and Deep Learning
	2.2 Performance Profiling
	2.3 Graph Neural Networks
	2.4 Autoencoders
	2.5 Multimodal Deep Learning

	3 The MGA Tuner
	3.1 Representing the Code
	3.2 Performance Modeling

	4 Experiments
	4.1 OpenMP Tuning
	4.2 OpenCL Tuning

	5 Related Work
	6 Discussion
	7 Conclusion and Future Works
	Acknowledgments
	References

