2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS) | 979-8-3503-3766-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/IPDPS54959.2023.00060

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Power Constrained Autotuning using Graph Neural
Networks

Akash Dutta Jee Choi Ali Jannesari
lowa State University University of Oregon lowa State University
Iowa, USA Oregon, USA Iowa, USA

adutta@iastate.edu

Abstract—Recent advances in multi and many-core processors
have led to significant improvements in the performance of
scientific computing applications. However, the addition of a
large number of complex cores have also increased the overall
power consumption, and power has become a first-order design
constraint in modern processors. While we can limit power con-
sumption by simply applying software-based power constraints,
applying them blindly will lead to non-trivial performance
degradation. To address the challenge of improving the per-
formance, power, and energy efficiency of scientific applications
on modern multi-core processors, we propose a novel Graph
Neural Network based auto-tuning approach that (i) optimizes
runtime performance at pre-defined power constraints, and
(ii) simultaneously optimizes for runtime performance and energy
efficiency by minimizing the energy-delay product. The key idea
behind this approach lies in modeling parallel code regions as
flow-aware code graphs to capture both semantic and structural
code features. We demonstrate the efficacy of our approach by
conducting an extensive evaluation on 30 benchmarks and proxy-
/mini-applications with 68 OpenMP code regions. Our approach
identifies OpenMP configurations at different power constraints
that yield a geometric mean performance improvement of more
than 25% and 13% over the default OpenMP configuration on
a 32-core Skylake and a 16-core Haswell processor respectively.
In addition, when we optimize for the energy-delay product, the
OpenMP configurations selected by our auto-tuner demonstrate
both performance improvement of 21% and 11% and energy
reduction of 29% and 18% over the default OpenMP configuration
at Thermal Design Power for the same Skylake and Haswell
processors, respectively.

Index Terms—Auto-tuning, OpenMP, GNN, Power constraint

I. INTRODUCTION

High-performance computing (HPC) systems have exploded
in both capacity and complexity over the past decade, and this
has led to substantial improvement in performance of various
scientific applications. However, more complex larger systems
consume more power, and in the absence of expensive cool-
ing solutions, increased power consumption leads to higher
operational temperature and inefficient resource utilization
(via higher static power, shorter device lifespan, and more).
As a result, power consumption has become a first-order
hardware design constraint for modern multi- and many-core
systems. Unfortunately, focusing on hardware advancements
for reducing power consumption is insufficient, as inefficient
usage of the underlying hardware due to poor parallel coding
practices may negate any hardware improvements.

jeec@uoregon.edu

jannesari@iastate.edu

Many software solutions currently exist for controlling
power. At the processor level, vendor-provided tools can be
used to artificially lower power consumption. For example,
power consumption can be controlled in recent Intel processors
using the Running Average Power Limit (RAPL) interface
[1], which ensures that an application does not exceed a
predefined power budget. However, a common drawback of a
fixed power budget is that it slows down execution by lowering
the processor clock, and this can have adverse effects on real-
time or time-bound applications. At the data-center level, a
common approach to reducing power consumption is through
over-provisioning (i.e., have more hardware available than can
be powered simultaneously at any time) and constraining the
power limit for each node [2]. In such a setting, a static
algorithm for distributing power across nodes may lead to
degraded throughput, and a more sophisticated approach that
adjusts the execution dynamically is required to harness the
full potential of the underlying system.

One strategy to address both scenarios is to adjust the
execution of the application directly, such that they meet some
user-specified (e.g., individuals or data-centers) performance
and/or power constraints. This will allow users to tailor their
application to domain-specific environments (e.g., edge or
mobile computing) or design scheduling policies for data-
center power management. OpenMP, as the de-facto parallel
programming model for intra-node parallelism, provides a
number of tunable parameters that highly influence code
execution, which makes it highly suitable for this purpose.
While there is already a large body of work targeting perfor-
mance tuning, there are only a few studies that target power.
In addition, due to the large configuration search space for
OpenMP on modern multi- and many-core processors, most
of these studies require multiple executions to determine the
optimal configuration [3]-[7], which is both time consuming
and resource intensive.

As a motivating example, we consider the ApplyAcceler-
ationBoundaryConditionsForNodes kernel from the LULESH
[8] proxy application. On a 16-core dual-socket Haswell
processor with a Thermal Design Power (TDP) of 85W, an ex-
haustive search of the OpenMP configuration space yields the
highest speedups of 7.54x, 2.11x, 1.80x and 1.67x over the
typical (or default) OpenMP configuration at power constraints
of 40W, 60W, 70W and 85W, respectively. However, none

1530-2075/23/$31.00 ©2023 IEEE 535
DOI 10.1109/IPDPS54959.2023.00060
Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

of these OpenMP configurations lead to the highest energy
efficiency. The most energy-efficient execution occurs at a
power constraint of 60W using a OpenMP configuration that
leads to a greenup (i.e., greenup = % [9]) of 3.89x,
but a speedup of 0.95x (i.e., a slowdown) over the typical
OpenMP configuration at TDP (85W). This contradicts the
commonly held belief of race-to-halt [10] (i.e., the idea that
the lower energy consumption occurs at the highest speedup),
and shows that optimizing for time and optimizing for energy
may not yield the same OpenMP configuration. In addition,
for applications where a slowdown is unacceptable, we can
simultaneously optimize for time and energy by targeting
the energy-delay product (EDP) metric [11]. Through an
exhaustive search through the OpenMP configurations space,
we observe that minimizing EDP yields a speedup of 1.64x
and a greenup of 2.7, at a yet another OpenMP configuration
and power constraint.

In summary, optimizing for performance, power, and energy
consumption all require different strategies for identifying
the optimal OpenMP configuration, and optimizing for one
metric (e.g., performance) does not necessarily optimize for
another (e.g., energy). To this end, we propose a graph neural
network (GNN)-based technique that can be used to (i) identify
OpenMP configurations at prescribed power constraints that
maximizes performance and (ii) optimize for the energy-delay
product to identify configurations for both energy-efficient and
performant execution.

In this study, OpenMP code regions are first transformed
to a flow-aware graphical representation. These code graphs
are then modeled by a GNN, and used for predicting the best
configurations for the appropriate target. In contrast to prior
studies, we use only these code graphs (i.e., static features) as
inputs to our model, which does not require expensive code
execution. The benefit of using a deep learning (DL)-based
approach is that it automatically helps reduce the search space
exploration by aggressively pruning non-beneficial points in
the search space.

The works in [6], [7] studied the impacts of power con-
straints and OpenMP configurations on time and energy and
are, to the best of our knowledge, most similar to the problem
considered in this paper. To demonstrate the effectiveness of
our static approach, we compare our results against a Bayesian
Optimization based tuner BLISS [5], and a search-based tuner
OpenTuner [4]. Through this study, we propose two separate
approaches for tuning performance and energy/power. The first
approach aims to identify the tuning configuration that can
produce the fastest execution at a predefined power constraint.
The second approach looks at both time and energy as target
metrics and aims to optimize for both at the same time by
identifying configurations that lead to the lowest energy-delay
product. The key contributions of our work are as follows:

e We build an RGCN network to model flow-aware
OpenMP code region graphs that captures both semantic
and structural features of code regions, and is portable
across different architectures.

536

e We build an auto-tuning framework that identifies
OpenMP configurations yielding near optimal execution
times at different power constraints. We achieve a geo-
metric mean speedup of 1.33x and 1.15x over default
OpenMP configurations at four power constraints across
30 applications on Skylake and Haswell systems.

Our DL-based framework also optimizes for both time
and energy simultaneously by minimizing the EDP. We
achieve geometric mean speedup of 1.27x and 1.12,
and greenup of 1.40x and 1.22x respectively on Sky-
lake and Haswell, over default OpenMP configurations
running at TDP (i.e., no power constraint).

We compare our framework against the state-of-the-art
BLISS [5] tuner and OpenTuner [4] and demonstrate
better performance without the need for executing code.

II. BACKGROUND AND OTHER RELATED WORKS

This section outlines ideas and works relevant to this paper.

A. Autotuning for Performance Optimization

Autotuning is a widely-used technique employed in com-
piler and runtime optimization tasks for performance enhance-
ments. Automated techniques of autotuning have been the
focus of research over the past several decades. Autotuners
improve upon brute-force approaches by using/proposing sev-
eral search space optimization techniques which largely re-
duce the tuning overhead. Algorithm-based autotuners employ
multiple techniques for such tasks. Simplex based optimiza-
tion algorithms were used in ActiveHarmony [3]. More
recent algorithm-based tuners such as OpenTuner [4] have
used various techniques, including Nelder-Mead, Torczon hill-
climbers, AUC Bandit for optimizing search spaces.

A more recent trend has been the use Bayesian optimization
for search space optimization and pruning. Works such as
ytopt [12], HiPerBOt [13], BLISS [5] have successfully
adapted Bayesian optimization ideas to autotuning tasks. These
works usually define a (or sets of) probabilistic surrogate
model(s) which is usually a surrogate of the true objective
function. These surrogate functions are faster to compute and
are usually less resource intensive than previous approaches.

Machine learning (ML) has also been used frequently
used for such tuning tasks. Classical ML techniques such
as Decision Trees, Random Forests, SVMs have been used
for compiler-based tuning tasks [14]. Deep learning or Artifi-
cial Neural Networks (ANN) have also found favor amongst
researchers. Works such as [15], [16] have effectively used
deep learning for various tuning tasks. Recently, a few works
[17], [18] have also used reinforcement learning for targeted
optimization tasks.

In this paper, we use a deep learning based approach for
our tuning tasks, and compare our results with results obtained
from OpenTuner and BLISS.

B. Power Constraining and Energy Usage Reduction

As mentioned in Section I, power and energy are nowa-
days first-order design considerations. Power constraining is a

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

software based easy-to-use technique that can be used to limit
the power supply to various system components. Starting with
the SandyBridge parchitecture, Intel introduced the RAPL
software tool that enables power/energy monitoring and power
capping through a simple interface. The power to several
subsytems of the processor, such as memory, DRAM, CPU,
etc. can be controlled via RAPL.

Most autotuning works in existing literature, however, do
not consider such power constraints in their work. A few
papers have focused on dynamic voltage frequency scaling
(DVFS) and dynamic concurrency throttling (DCT) techniques
for improving energy efficiency [19]-[21]. Wang et al. in
[22] proposed using CPU clock modulation and concurrency
throttling for improving the energy efficiency of OpenMP
loops. In [23], Nandamuri et al. analyzed the performance
and energy conumption of OpenMP programs under various
conditions using OpenMP Runtime API. The impact of CPU
parameters on performance and energy for OpenMP dense
linear algebra kernels was presented in [24]. Rountree et al.
in [25] provided a first insight into the impacts of power
capping or constraints on power and performance. Patki et al.
in [26] outlined how overprovisioning hardware and hardware
enforced power bounds leads to improved performance. Bari
et al. in [6] propose ARCS with the goal of automatically
selecting best runtime configurations for OpenMP parallel
regions at specified power constraints and in [7] analyzed
the impact of power constraints on performance and energy
consumption on five NAS benchmarks. To the best of our
knowledge, the works in [6], [7] are the closest to this paper. In
contrast to [6], [7], our approach uses an Al-assisted technique
based on GNNs to identify OpenMP runtime configurations
and power constraints.

C. Static Code Representations for Deep learning

Deep learning is being increasingly used in modeling code
for various tasks [27]. However, the use of deep learning ne-
cessitates the use of a code representation capable of capturing
its inherent features. A lot of prior studies have represented
programs as a sequence of lexical tokens [28]. But, these fail
to capture the structured nature of programs. To overcome this,
representations capturing syntactic as well as semantic features
have been proposed [27], [29] .

These methods, however, often do not take into account
control, data, or call flows in the program. PROGRAML [28]
is a tool that represents the semantic and structural features
of code in a flow-aware multi-graph. These multi-graphs
have a vertex for each instruction and control-flow edges
between them. Data flow is represented by separate vertices
for variables and constants and associated data-flow edges to
instructions. Call flow is represented by edges between callee
functions and caller instruction vertices. We use this tool to
transform code region IRs to their corresponding graphs.

D. Graph Neural Network based Code Modeling

Recent advances in deep learning have now enabled the
application of DL on data generated from non-Euclidean

537

space [30]. The relations and dependencies between objects
in such data can more readily be represented as a graph.
Graph Neural Networks (GNNs) were proposed as a means
of modeling such data. Most such networks use message
passing to update the embeddings in neighboring nodes in
a graph. Graph Convolutional Networks (GCNs) are a form
of GNNs aimed at generalizing the common sliding window
convolution operation on grid data in regular Convolutional
Neural Networks to graphs [30]. A GCN network updates
its node representation by aggregating the features from the
node’s neighbors along with the node. Similar to CNNs,
GCNs stack multiple convolutional layers to extract high-level
node representation. We use Relational Graph Convolutional
Network (RGCN), a variation of GCN, to model our program
graphs. RGCNs were proposed to enable networks to better
model large-scale relational data [31]. RGCNs differ from
GCNs in that they work with relation specific transformations
annotated by the type and direction of edges. RGCNs accu-
mulate transformed feature vectors through a normalized sum.

Recently, researchers have started applying GNN-based
techniques to the task of code modeling [16], [32]. This, in
most cases, involves compiling source code into their graph
forms and then using these code graphs as inputs to the GNN
models. The greatest progress in this field has been seen
in software engineering tasks such as code clone detection,
code summarization, etc. Previous works such as [33], [34]
have achieved state-of-the-art results in various tasks using
GNN-based code modeling. However, GNNs have rarely been
used for the task of parallel code modeling with energy
and performance optimizations in mind. The works in [16],
[32] are examples from a very small set that have used
GNNs for the purpose of modeling parallel code with specific
performance optimizations in mind.

In this work, we have used RGCNs to model the code graphs
of OpenMP code regions. The results in the following sections
clearly shows that such an approach produces good results in
comparison to general purpose autotuners.

III. THE PNP AUTO-TUNER: A GNN BASED POWER AND
PERFORMANCE TUNER

In this section, we outline our two-pronged approach to
tuning performance and power. We consider two scenarios
with real-world implications: i) Because of cost and energy
considerations, clusters and data-centers must usually work
under strict power budgets. However, constraining power di-
rectly impacts performance by limiting the power delivered to
hardware components. Therefore, assuming no code changes
or compiler optimizations, tuning available runtime parameters
becomes essential for improving application performance. ii) It
is of utmost importance in most HPC systems to reduce energy
consumption. This has a direct monetary and environmental
impact. However, as shown in Section I, simply optimizing for
energy, can potentially lead to slower executions. Therefore,
we must optimize for a metric that considers both energy and
performance. To this end, we target the multi-obejctive metric
energy-delay product (EDP). We use GNNs to build a model

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

= [Jiinks

= {}o

@ {}1

#{}2

3 {}sson 50
4 directed : true L

4 {} graph -
[Jiinks :
4 multigraph : true -

[Jnodes 3{}4
| |

| |

| |

| |

[

=] [] nodes
@ {Jo

flow: 0 {31
key: 0 ® block : 0
position : 0 = { } features

; = [Jtul_text
sotrped ® 0:"%2 = alloca i32, align 4"
target : 5 u function : 0

wid:1

flow : 1 u text : "alloca"
key : 0 type: 0
position : 1

source : 6

target: 5

Fig. 1: High-level view of code graphs used in this paper in JSON format. The left image shows the overall structure of a
graph. The figure in the middle shows the edge features in the graph. The flow attribute denotes the type of program flow. The
right-most image shows the node level feautures (each IR instruction forms a node).

Code Outlining & IR Extraction

< Outlined Code 1==>IR1
— | Outlined Code 2=IR2 | —

& Outlined Code ne=>IRn

Training
Programs

Code Representation

= FGT
Flow Graph — FG2 |— and —
Generator —> FGn Pre-processing

Dataset Creation PnP Tuning

Model

Fig. 2: PnP Tuner Pipeline: An overview of tasks in our GNN based power and performance tuner

that will be used for the aforementioned tasks. The inputs to
the GNNs are code flow graphs of OpenMP regions. Using
such graphs allows us to model the semantics and structure of
source code. These convey relevant information to the model
about the code region being tuned. We refer to these input
code graphs as static features, as these are obtained statically
without any code executions. An overview of this pipeline is
shown in Figure 2, and outlined in the following paragraphs.

A. Representing the Code

In this study, we aim to optimize OpenMP code regions.
These code regions are usually the primary computational
bottlenecks in such applications. Instead of focusing on in-
dividual loops inside these parallel regions, we aim to opti-
mize the parallel region as a whole for larger performance
improvements. Tuning sub-regions within an OpenMP code
region adds additional overhead. Switching between config-
urations can improve the performance of each sub-region
(loops for example), but can degrade the performance of
each OpenMP region and the application as a whole. The
benchmark applications are initially compiled to their inter-
mediate representations (IR). Compiling OpenMP code to its
corresponding IR automatically encloses the parallel region
in an outlined function. We use the 11vm-extract tool to
extract the outlined parallel region. As shown in Figure 2, to
represent the code regions in a form usable by DL models,
we use PROGRAML [28] to obtain the corresponding graph
embeddings. Each code graph has a structure as shown in

538

Figure 1. The features for each node in the graph and the
features for each edge are shown in the Figure. The type of
flow in these graphs are used to denote the different relations
for our RGCN model.

B. Configuring the Search Space

One of the primary motivations behind using a DL technique
for this work was to develop a method that can work with
large search spaces easily. Unlike most existing auto-tuners,
which have to extensively execute programs to identify the
best configurations, our DL-based framework will not need
to execute programs. For the proposed DL approach to scale
well to unseen code and inputs, it is necessary to feed the
model with code graphs with enough variability. Along with
variability in considered parallel code regions, it is essential
to model the effect of various tuning parameters on these
code regions. Different configurations impact code execution
by affecting the load balancing and cache behavior, which in
turn impacts performance.

As our goal is to target performance optimization and energy
efficiency, we must simultaneously consider the impact of
power constraints and OpenMP parameters on code execu-
tions. To this end, we have defined a search space (shown in
Table I) with 504 valid configurations. In addition, the default
OpenMP configurations for each of the four power limits have
also been considered as valid configurations leading to a total
of 508 configurations. The search space used in this study has
been selected based on ideas presented by Bari et al. in [7].

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Search space for performance and power tuning on
Skylake and Haswell nodes.

Parameter Values

75W, 100W, 120W, 150W (Skylake)
40W, 60W, 70W, 85W (Haswell)

1, 4, 8, 16, 32, 64 (Skylake)

1, 2, 4, 8, 16, 32 (Haswell)
STATIC, DYNAMIC, GUIDED

1, 8, 32, 64, 128, 256, 512

Search Space
Power Limits

Number of threads

Scheduling Policy
Chunk Sizes

C. Power Constraining and Dataset Creation

In this work, we used the Variorum [35] tool for constrain-
ing power levels on each of the experimental systems. We used
Variorum APIs to interface with RAPL and device MSRs to
constrain power to the values described in Table 1.

To validate our hypothesis, we chose to work with multiple
OpenMP applications with varied complexity. These OpenMP
regions consists of parallel regions with simple do-all loops
to regions with multiple loops with varying levels of nesting
and diverse programmatic constructs. We have worked with
25 applications from the PolyBench suite [36], and mini
and proxy applications XSBench [37], RSBench [38], miniFE
[39], miniAMR [40], Quicksilver [41], and LULESH [8] with
combined total of 68 OpenMP regions.

At each power level, parallel OpenMP regions in all consid-
ered applications were executed for each runtime configuration
in Table I and default OpenMP configurations (all threads,
static scheduling, and compiler defined chunk sizes) on each
system. The execution times obtained as such are then ana-
lyzed to identify the best configuration for each code region.
The best configurations are used as labels during training.

D. Performance and Power Modeling

This section outlines our GNN-based approach towards
performance and power optimizations. We propose two tuning
scenarios with different objectives:

o In the first scenario, we aim to identify the OpenMP
configuration that lead to the fastest executions at a given
power constraint.

o In the second scenario, we aim to identify both the
OpenMP configuration and the power level that mini-
mizes the EDP. By minimizing the EDP, we hope to
improve the execution time and energy efficiency in
comparison to default OpenMP configuration at TDP.

1) Code Graph Modeling using GNNs: For both scenarios,
the code modeling technique is similar. Modeling code graphs
allows us to model code semantics and structure. Analyzing
code structure allows us to better capture the interdependence
between code blocks. Simply looking at code as a sequence
of text does not afford this information. The code graphs
generated in Section III-A are initially passed through a GNN
network for modeling the code graphs. Specifically, Relational
Graph Convolutional Networks (RGCNs) are used as these
allow modeling relation specific features. Each code graph
consists of three types of edges denoting the type of flow
(Section III-A). The type of edges are used as edge features

539

during modeling. For each node in a graph, the node features
are the type of node, and the associated IR code block.
Before modeling, the code region IRs are used to generate an
embedding. This embedding maps IR text to tensors. These
tensors are then passed to the model as node features along
with the type of the node. Based on these features, the GNN
layers model these by passing “messages” between neighbor-
ing nodes, aggregation, and subsequent weight updations [42].
The output tensors from the GNN layers then fed into fully
connected neural network layers with the aim of identifying
the best configurations.

2) Power Constraint Specific Auto-tuning: As noted in
Section I, one way of meeting power consumption goals
is to enforce a specific power constraint. Such power con-
straints can help limit the power drawn by a node or its
subsystems. However, simply using default OpenMP runtime
configurations at different power constraints for code execution
may lead to performance degradation, as well as increased
energy usage from static power. Therefore, we aim to identify
those configurations that lead to speedups at predefined power
constraints. We propose a DL based technique for power-
constrained auto-tuning. As outlined in Section III-D1, we use
the flow-aware code graphs obtained from the parallel code
region IRs as inputs to the RGCN layers of our network. As
shown in Figure 2, the RGCN layers model each such graph
and feeds the output into a fully connected (dense) network.
The dense layers acts as a classifier and are trained as such
with the target of predicting the best configuration for a given
OpenMP code region.

3) Optimizing Energy and Time: For nodes and systems
without any predefined power constraint, time and energy
optimization are still of primary importance. However, simply
optimizing for performance or energy neglects the other crite-
ria. Thus, in this section, we propose using power constraints
as a tuning parameter along with the available OpenMP
runtime configurations for joint optimization of performance
and power. Simply using execution time or energy savings
for identifying such configurations is not enough. Thus, we
use the energy-delay product (EDP) metric [11] as a more
accurate measure of the impact of different configurations on
code performance. In this work, we assign equal importance to
time and energy and use the metric £'« 7', where E represents
the energy consumption, and 7' represents the execution time
for a parallel code region.

We again use the modeled code graphs from Section III-D1
as the static feature inputs to our model for this experiment and
train our model with a target of optimizing the EDP. As in the
previous subsection, a fully connected neural network serves
as a classifier to identify the best configurations for tuning
EDP. Using a DL-based approach for identifying the best one
out of 508 possible configurations is especially beneficial, as
such models are efficient at automatically pruning the under
performing configurations. This is in stark contrast to brute-
force approaches, where the tuning cost would explode with
increasing search space complexity.

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

m Default mPnPTuner (Static) mPnPTuner (Dynamic) BLISS mOpenTuner

1
”
2 08
2 0
°
2 0.6
23
oo
g Hil
eZ0.
H 0
2
& & nq,*‘-‘o 3‘@?}4‘\’*’\,\\\' & & &
e° S N -? & e} ~o\ & & F & <’§ e, S 6‘4 PSP ~\ & Q &
& *i_)%?’ o?\eé & S L};}b cho &9& «@ & Lo,bﬂ\ 5 < < B && & Q‘?\» <
&
" 1
2 08
=]
T 06
? =
Q.
&
:£0.2 I
£
s 0
o
4
& $ S & $ & S & & &
**&xo\-v&e ~é\’°\’° & &S S E o{\‘vx,* ~\<° K a8 &
ng;“ & & 0\-\'\6‘5‘ & S _7’(’0 @%& Qo@ ® 00@0 & & & SN s s\b‘ K&b %@» <
@
@
" 1
s 08
s 0.
2 ~06
S =
Q. B
)
: 202 I
£
s 0
o
2
R ¢ $ "—32‘ R . & » & > I &
& & S \’ I P I M \»&3 *\&"DQW&@‘S(\
& J;;z:"' & 0\,}\\5‘ &\o S & \ é\,,é‘ @(@\ ® &@o s PO S S $ @b Q%c,\‘r R
&
1
B “ “I
3
T 06
U~
Q
wn n
T %02 I I
£ 0
o
z > & D L & X . N N N <& > \
&) S, & & S A N B
Q,ef\ e é‘é‘ & ,\V@ & _e\ U K\@\ & 6\&“0 @ O\é’ & ¢ EF & & 6::9 & <° \'}é\
AR ~@° & s T e T ¢
<

Applications

Fig. 3: Power Constrained Tuning (Haswell): Each chart shows results for a specific power constraint. Each bar-group shows
geometric mean speedup for all OpenMP regions in an application over default OpenMP settings wrt the corresponding tuning
approach. Speedups are normalized by oracle(brute-force) speedups. Normalized oracle speedups are always 1.0x. The PnP
tuner outperforms BLISS in 82.5% and OpenTuner in 78% cases across all power constraints(see Section IV-B for details).

IV. EXPERIMENTS per core, and two sockets (Skylake) with a minimum and
To identify near optimum values of tuning parameters for TDP package power of 75W and 150VV" and an Intel(R)
both our experimental scenarios, we first explore every permu- ~ Xe€on(R) E5-2630 v3 CPU (Haswell), with 16 cores, two

tation of inputs and configurations considered in this study. ~ hyper-threads per core, and two sockets, and minimum and
We use this exhaustive exploration as an oracle to compare ~ 1DP package power of 401V and 85IV. We use Clang tools
the results from our work. We also compare our work against ~ for code compilation and transformation to IR, and PyTorch
BLISS [5] and OpenTuner [4]. All results presented in DL libraries for building our GNN models.

the following paragraphs represent speedups/greenups of each
code region. For applications with multiple OpenMP regions,
the geometric mean of speedups/greenups of all regions in
an application are reported. We have also verified that there
are sequences of serial code in between successive OpenMP
regions. This allows us to look at each region as a self-
contained unit, and makes them good candidates for tuning.
We assume that the performance of these intervening serial
sequences will not change and improving the performance
of each OpenMP region would translate to improvement in
application performance.

B. Power Constrained Auto-tuning

In this section, we evaluate the performance of our tuner
in determining the optimal configuration for minimizing ex-
ecution time given a specific power constraint (described in
Section III-D2). To validate the effectiveness of our approach,
we use leave-one-out cross-validation (LOOCV). For each
fold, code regions from one benchmark application is selected
and assigned to the validation set and the code regions from
all other applications are assigned to the training set. We
repeat this process for all applications in our approach. Such a
process is essential to evaluate the performance of our model
A. Experimental Setup on previously unobserved code regions.

For our experiments, we use two systems; one with Intel(R) The results for the Haswell system are shown in Figure
Xeon(R) Gold 6142 CPU with 32 cores, two hyper-threads 3. For each application, we calculate the geometric mean

540

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

m Default mPnPTuner (Static) = PnP Tuner (Dynamic) BLISS m OpenTuner
1
& 08
T _06
2304
220
il | |I | 0l A A
g~ 0
S X £ & o x~ S N &
z Qc_,\\&\@@é’\ & & £ L,‘ve’ ‘.,OO’ N
Q’e <f & & F QY ¥ \(\ @ <~ & e, 3¢ & ¥ st 5 & ,’b v \)& -3
& & € F & VS ,\?;9 7}(&" (9«’\ ® & © & s K° @‘b &
Dy
1
8
§ o
2 <0
2204
“802
-2 0.
E7 o
2
& F & 5 &
& N ‘v 5V 2 ,\o\ S . & & Q N & &
%0%“ @.\&b@ S \\\”"ooq’o;z o\e z,\"&‘o ee,\;,ﬂ”voé
& P 0‘\'\(4 & Y '{0" @@eo <,°<\e ¥ S & & 8 &
@
- 1
.o
S <0
2Z04 | |
1902
£= 0 I I I
2
& & S R N 4‘ NN N > é‘ SRS
Qo.\e & '\"fz'}'@‘\).\, BN &P @»Q & &
F & & & F ¥ S ‘Q\Q’o\(\of’ o\e}o 29&'9 @\&°W\>¢
& © 09\9 ((é‘ » gt 'ﬁb(' @&é‘ (9«& & &4’b & % i \bb %ef’
@
" 1
io
2 =0
2204
» 9 0.
I
o
z X < S > S ' 3 X . 5 Q>
9 3 @ S v R RSN & '?« .
<\ N -(\ EN & N S 2 S g .@0 q, N \e Q @ @
F F & & F & 5° & K Q"a o\ & @ & 9 ., S‘ & v ’é
Q‘p ,\‘:) 09\0 &\ W ‘_’Q,\ @ @é“’ (9(\ & é)@ gg & AN K& o‘f’
)
Applications

Fig. 4: Power Constrained Tuning (Skylake): Each chart shows results for a specific power constraint. Each bar-group shows
geometric mean speedup for all OpenMP regions in an application over default OpenMP settings wrt the corresponding
tuning approach. Speedups are normalized by oracle speedups. Normalized oracle speedups are always 1.0x. The PnP tuner
outperforms BLISS in 85% and OpenTuner in 83% cases across all power constraints(see Section IV-B for more details).

speedups for all OpenMP regions in each application achieved
by each tuner across four power constraints (i.e., 40W, 60W,
T0W, 85W).

While training the model on the data from the Skylake
system, we borrow ideas from transfer/inductive learning and
perform an optimization step to speed up the training process.
Because the code graphs are statically generated, the code
graphs obtained on different systems using the same compiler
are identical. For this reason, we save the weights and model
states of the GNN model obtained while training our model on
the Haswell system. While training the model on the Skylake
data, we load the saved weights and model and only re-train
the dense layers. This leads to 4.18x faster training (or reduces
training time by 76%).

Results for each power constraint (75W, 100W, 120W,
150W) is shown in Figure 4 for the Skylake system. Each
speedup is normalized by the speedup achieved by the ora-
cle (i.e., exhaustive exploration). In 74% cases (across both
systems and power constraints), our PnP tuner identifies con-
figurations that lead to >= 0.95x of the oracle speedups (as-
suming oracle as 1.0x). These results are obtained without ex-
ecuting the code. In contrast, BLISS and OpenTuner needs

541

to execute code multiple times and achieves >= 0.95x of the
oracle speedups in 51% and 34% cases respectively. The PnP
tuner produces better results than BLISS and OpenTuner
in 83% and 78% cases. Overall, the configurations predicted
by our model lead to geometric mean speedups of 1.19x,
1.12x, 1.13x, and 1.14 x for power limits 40W, 60W, 70W,
and 85W on the Haswell system. In contrast, BLISS leads
to speedups of 1.11x, 1.09x, 1.09x, and 1.11x across
these power constraints respectively. OpenTuner produces
corresponding speedups of 1.06x, 1.0x, 1.04x, and 1.02x.
On Skylake, our approach achieves geometric mean speedups
of 1.5x, 1.25x%, 1.26x%, and 1.34x across power constraints
75W, 100W, 120W, and 150W respectively, compared to
speedups of 1.29x, 1.2x, 1.18%, and 1.17x produced by
BLISS, and speedups of 1.27x, 1.13x, 1.07x, and 1.1X
produced by OpenTuner.

Can performance counters further improve results? Although
our approach leads to >= 0.95x of the oracle speedups
in most cases, in approximately 8% of cases, our approach
produces results which are < 0.8x of the oracle speedups.
Previous works such as [43], [44] have used performance
counters for tuning tasks. We borrow from these ideas to see if

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

the results from our approach can be improved by using these
as features (dynamic features). For this experiment, we update
our model definition. We make no changes to the GNN layers.
We repurpose the fully connected layers to accept as inputs
five performance counters along with the ouputs from the GNN
layers. We use PAPI [45] to collect counters related to L1, L2,
L3 cache misses, number of instructions, and the number of
mispredicted branches for each OpenMP region. These were
selected as these have direct impact on code execution and
performance.

We perform the same experiments as outlined in the pre-

vious paragraphs. However, we only validate on those appli-
cations whose speedups are < 0.95x on the oracle speedups.
We see that by including performance counters, this approach
identifies configurations that lead to >= 0.95x in 87.5% cases
(up from 74%). We show these results and comparisons in
Figures 3 and 4. Therefore, a case can definitely be made
for including performance counters for DL-based performance
tuning. However, this comes at the additional cost of profiling.
Profiling is necessary for generating the dataset to train the
model. However, during inference, this approach (using both
static and dynamic features) only needs to execute applications
twice (to collect counters which serve as inputs to the model),
which is less than other execution based tuners. To conclude,
although this produces better results, it adds a profiling over-
head. But during inference, in spite of this overhead it only
needs two executions.
Can we extend this approach to unknown power constraints?
There might be scenarios where adding/removing new nodes
to/from clusters, or other factors, might necessitate changing
power constraints on nodes. Thus, our approach should also
be generalizable to power constraints that our model has not
been trained on, since data center policy changes may result
in different power constraints being applied. To evaluate this
scenario, we conduct four tests - two tests for each system
- one test each for the lowest and highest power constraints
considered in this paper. For each test, we first exclude all mea-
surements for the target power constraint (e.g., for the 150W
test on Skylake, for training, we use measurements from 75W,
100W, and 120W only). We then train and validate our model
using leave-one-out cross-validation as before. This allows us
to generalize for both unseen applications and unseen power
constraints. However, unlike the initial experiments which uses
a static-only approach, we use performance counters as part
of the feature set in this experiment. This is to account for
the variation in runtime behavior of parallel regions under
varying power constraints. Static features cannot encapsulate
such divergence in behavior. The input features and model is
similar to the one described in Section IV-B. In addition to
these features, we also input as feature the normalized power
constraints for each feature set. This helps to associate runtime
behavior (performance counters) with power limits.

Figures 5 and 6 shows that our model performs well in such
scenarios for both the Skylake and Haswell systems, predicting
configurations that are within 5% (i.e., > 0.95 normalized
speedup) of the best possible speedup in 64% cases and within

542

m Default (150W) PnP Tuner (150W)

il

3
£
S
£
g
®

Default (75W)

Applications

PP Tuner (75W)

El

Normalized Speedups
coooooooo

it

Fig. 5: Power Constrained Tuning on unseen power constraints
(Skylake): Geometric mean speedup over default OpenMP
settings. Results normalized by the oracle speedup.

PnP Tuner (40W)

Fig. 6: Power Constrained Tuning on unseen power constraints
(Haswell): Geometric mean speedup over default OpenMP
settings. Results normalized by the oracle speedup.

oRrNwRNONLOR

RSBench
XSBench
miniFE
miniAMR
LULESH
seidel2d
adi
jacobi2d
bicg

atax
gemm
syrk
cholesky
gemver
durbin
trisoly S
serk
symm
fdtd-2d
fdtd-apml
2mm
gesummy
trmm

Quicksilver
covariance

m Default (85W) M PP Tuner (85W) Default (40W)

¥
3

Normalized Speedups
cooooo000
chhbRnOURDR

5
B

miniFE
atax
gemm
syrk
mvt
durbin
trisolv
s\/er
symm
fdtd-2d
fdtdapm\
trmm

LULESH
seidel-2d

c
7
&

il

RSBench
XSBench
Quicksilver
miniAMR
jacobi-2d
gramschmidt
correlation
covariance
cholesky
gemver
gesummy

Applications

20% of the best possible speedups in 85% cases across both
systems and four power constraints. On the Skylake systems,
these tuning efforts lead to geometric mean speedups of 1.29x
and 1.36x versus oracle speedups of 1.44x and 1.59x for
power constraints of 150W and 75W respectively. On the
Haswell system, these experiments produce speedups of 1.13 %
and 1.17x compared to oracle speedups of 1.16x and 1.27x
for power constraints of 85W and 40W respectively.

TABLE II: Deep Learning Model Hyperparameters.

Hyperparameter Hyperparameter Values

Layers RGCN (4), FCNN (3)

Activ. func. Leaky ReLU, ReLU

Optimizer AdamW (amsgrad) (Sec IV-B), Adam (Sec
IV-C)

Learning Rate 0.001

Batch Size 16

Loss function Cross Entropy Loss

The hyperparameters of the models used in these exper-
iments are shown in Table II. Other parameter values may
have minor differences between experiments.

C. Power and Performance Tuning

With increasing financial and environmental impacts of
high energy usage, energy efficiency is now as important as
performance in the current HPC landscape. However, simply
optimizing for energy consumption, as shown in Section I,
may lead to lower performance.

Thus, in this section, we outline the second scenario men-
tioned at the beginning of this section. To this end, we build

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

m Default

PnP Tuner(Static) | PnP Tuner (Dynamic)

Applications

(a) Skylake

BLISS m OpenTuner

]

ocoooooooo
ochNwhULON®OR

Normalized EDP Improvements
RSBench
XSBench
miniFE
Quicksilver
miniAMR

LULESH =

seidel-2d
ad
jacobi-2d ===
bmg
atax
gramschmidt
correlation
doitgen
covariance
gemm
syrk
cholesky ===
gemver
durbin
trisolv £
syer
symm
fdtd-2d
fdtdAapm\
gesummv

Fig. 7: Improvement in EDP over default OpenMP configurations for

trmm

W Default

PnP Tuner (Static)

B“

5

PnP Tuner (Dynamic) mBLISS ~ m OpenTuner

cooocooo000
ochNwhLONLORr

Normalized EDP Improvement

RSBench
XSBench
miniFE
Quicksilver
miniAMR
LULESH
seidel-2d
jacobi-2d
atax
gramschmidt
correlation
doitgen
covariance
gemm
syrk
cholesky =
gemver
durbin
trisoly S
syrzk
symm
fdtd-2d
fdtdAapm\
gesummy

Applications

(b) Haswell

each application for the Haswell system. EDP

improvements normalized in terms of best achievable EDP improvement.

a GNN-based tuner that uses only static features, with the
aim of identifying a combination of power constraints and
OpenMP runtime configurations that can lead to performance
improvement while reducing energy consumption. As in the
previous experiments, we model our flow-aware code graphs
using an RGCN network. The outputs from the GNN layers
are fed into the dense layers. These layers are trained with
the target of finding configurations that produce the best
energy-delay product (EDP). Again, we use leave-one-out
cross validation to validate our model, and the process of
assigning benchmark applications to the training and validation
set is similar to that described in Section IV-B.

The configurations predicted in these experiments lead to
within 5% of the oracle EDP improvements in 45% cases,
and within 20% of the oracle improvements in 69% cases
across the two systems. In comparison, BLISS reaches these
numbers in 35% and 45% cases (Figure 7). OpenTuner
reaches these numbers in 22% and 40% cases. Overall, the
configurations predicted by our static-only approach leads
to geometric mean improvements of 1.37x and 1.85x on
the Haswell and Skylake systems compared to 1.31x and
1.69x respectively achieved by BLISS and 1.21x and 1.49x%
achieved by OpenTuner.

We have also analyzed the impact on execution time perfor-
mance and energy consumption individually. Figure 8 shows
the impact of tuning for EDP on execution time for both
the Skylake and Haswell systems. Tuning for EDP leads to
performance (time) improvement in 84% cases, and leads to
slower execution than default settings in around 16% cases
across both systems. On Skylake, all slowdowns are within
20% of the corresponding execution with all threads, while the
geometric mean of all slowdows are within 14% of the default
executions. On the Haswell system, there are fewer slow-
downs, but the slowdowns are more significant with the largest
slowdown within 30% of the default all-threaded execution,
with the geometric mean within 23% of the default settings.
Overall, excluding the cases that lead to slowdowns, tuning
for EDP leads to 1.16x and 1.3x speedups on the Haswell
and Skylake. In comparison, BLISS and OpenTuner leads
to slowdowns in 28% and 46% cases respectively, with the
largest slowdowns within 17% and 15% for BLISS and within
30% and 22% for OpenTuner on Haswell and Skylake.

543

We also show in Figure 8 the impact of tuning for EDP on
energy. Across both systems, our approach predicts configu-
rations that lead to reduction in energy consumption in 94%
cases. In the remaining 6% cases, it predicts configurations that
consume more energy than the default setting. However, the
increase is minimal. On the Haswell, there is a 3% geometric
mean increase in energy usage for those predictions. On the
Skylake, the corresponding number is 1%. For the predictions
that do lead to reduction in energy usage, there is a geometric
mean greenup of 1.25x and 1.42x on the Haswell and
Skylake respectively. In comparison, 2% of the predictions
made by BLISS lead to increase in energy consumption.
But, the overall greenups are slightly worse than the PnP
Tuner (1.24x on the Haswell and 1.39x on the Skylake). The
predictions made by OpenTuner lead to increase in energy
consumption in 20% cases with overall greenups at 1.25% and
1.29% on the Haswell and Skylake respectively.

Similar to the experiment in Section IV-B, we also evaluate
the effect of performance counters on EDP. As shown in
Figure 7, adding performance counters to the feature set leads
to improved results (predictions where the EDP is within
5% of the oracle moves up to 57% from 45% across both
systems). Using performance counters leads to 77% cases
where there is improvement in execution speed (down from
84%). This dichotomous behavior is the result of using a fused
metric; because it is a product of both time and energy, the
PnP tuner aims to tune for the best EDP. It might lead to
scenarios where the reduction in energy might compensate for
the increase in time. In this experiment, using performance
counters leads to 95% cases where there are improvements in
energy consumption. Overall, by using performance counters,
the EDP predictions improve from 1.37x to 1.52x on the
Haswell system, and from 1.85x to 2.31x on the Skylake.
This lead to overall speedups of 1.13x and 1.39x on the
Haswell and Skylake and greenups of 1.35x and 1.60x on
the Haswell and Skylake systems.

V. DISCUSSION

Through this study, we have outlined a unique approach
to two important problems in the HPC community. We have
proposed a mechanism of tuning OpenMP configurations on
power constrained systems. This is beneficial to data centers

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

trmm

B PnP Tuner (Static): Haswell ~ m PnP Tuner (Dynamic): Haswell m BLISS: Haswell OpenTuner (Haswell)

m PnP Tuner (Static): Skylake m PnP Tuner (Dynamic): Skylake mBLISS: Skylake m OpenTuner (Skylake)
3
w25
E
T 15 |
[
o; i il Q0 TH TR 18 (U Y O
05
- Ll AU o R O P T
& ‘é‘\&« ®Q~é}2~ R R SR \&\.% & o & @&b\‘\& o \0@@96@@@@@&
qf?’z #%e &\;\,\ & & > %é\b ; o :\%&@é@\@ o g & c§’ S g,o°\® @f POSE S5 8 bb quzo& N
Qé’b < C
6
5
g 3
1 I sl |||
1
L o o 0w 00 0 e o e e T o o i
& Q&.{(@ '&«A & @Q\ R PR S '\°°.Q?°_¢°z & & o & @&» &g v & 2 Q@ é\@ & &
Qﬁ%'”“ & &i&&’§ é-\\o? S %;Q\e\ \%QS"\ © ?; éj&ié(\%& L& ° é\o\?' & SR v 8‘6‘\6 ¥° %ee\‘& <

Applications

Fig. 8: Speedups/Greenups over default OpenMP configurations at TDP. Configurations are predicted to optimize for EDP.

and systems working under strict power budgets. As shown in model the semantic and structural features of code regions. Our
previous sections, it is possible to considerably improve perfor- experiments show that the PnP Tuner can identify configura-
mance in such scenarios using our approach. Additionally, we tions that lead to improvements in execution time and energy
also describe a method of identifying OpenMP configurations consumption. In future, we aim to analyze the scalability of our
and power constraints that can lead to reduction in energy approach to heterogeneous platforms and handheld devices.
consumption with limited impact on execution time . To the

best of our knowledge, this is the first work that aims to use VII. ACKNOWLEDGEMENTS
GNN based techniques for these purposes.

As with all deep learning techniques, model training for sev- This research was supported by the National Science Foun-
eral target systems/experiments might be burdensome. How- ~ dation under Grant number 2211982. We would also like to

ever, by using transfer learning techniques, we have reduced ~ thank the ResearchlT team (https.//researchit.las.iastate.edu)
the training time on other systems by around 76% on a at Towa State University for their constant support.

dataset of similar size (explained in Section IV-B). These

optimizations can enable faster and easier deployment of such REFERENCES

approaches on multiple systems.
PP P y [1] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:

Additionally, being a static approach, our tuner requires no Memory power estimation and capping,” in 2010 ACM/IEEE Interna-
sampling executions. This is in contrast to other tuners that tional Symposium on Low-Power Electronics and Design (ISLPED).
need several sampling runs. Limiting these sampling runs, or IEEE, 2010, pp. 189-194.

. . phing . g plng [2] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supin-
setting a time-bound on the sampling phase to a small value ski, “Exploring hardware overprovisioning in power-constrained, high
leads to less than optimal results. Moreover, our approach was performance computing,” in Proceedings of the 27th International ACM
able to successfully identify most edge cases. For example, the Conference on International Conference on Supercomputing. New

. .) . . York, NY, USA: Association for Computing Machinery, 2013, p.

OpenMP region in trisolv has the fastest execution with 173-182.
1 thread in all cases. This is an outlier. Our approach could [3] C. Tapus, L-H. Chung, and J. K. Hollingsworth, “Active harmony:
identify near optimal configurations in these cases as well with Towards automated performance tuning,” in Proceedings of the 2002

. ACM/IEEE Conference on Supercomputing. 1EEE, 2002, pp. 44-44.

no executions. [4] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
VI. CONCLUSION work for program autotuning,” in Proceedings of the 23rd international
. . conference on Parallel architectures and compilation, 2014, pp. 303—

In this work, we have outlined a twofold approach towards 316}.0 ’ pp
tuning OpenMP configurations in power constrained systems, [5] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Bliss: auto-tuning
as well tuning both OpenMP configurations and power con- complex applications using a pool of diverse lightweight learning

. f . . d . . models,” in Proceedings of the 42nd ACM SIGPLAN International
straints for execution time and energy consumption gains. Conference on Programming Language Design and Implementation,
We have used GNNs to model flow-aware code graphs to 2021, pp. 1280-1295.

544

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. A. S. Bari, N. Chaimov, A. M. Malik, K. A. Huck, B. Chapman, A. D.
Malony, and O. Sarood, “Arcs: Adaptive runtime configuration selection
for power-constrained openmp applications,” in 2016 IEEE international
conference on cluster computing (CLUSTER). 1EEE, 2016.

M. A. S. Bari, A. M. Malik, A. Qawasmeh, and B. Chapman, “Perfor-
mance and energy impact of openmp runtime configurations on power
constrained systems,” Sustainable Computing: Informatics and Systems,
vol. 23, pp. 1-12, 2019.

I. Karlin, J. Keasler, and J. R. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2013.

J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. 1EEE, 2013, pp. 661-672.

M. A. Awan and S. M. Petters, ‘“Race-to-halt en-
ergy saving strategies,” Journal of Systems Architecture,
vol. 60, no. 10, pp. 796-815, 2014. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1383762114001295
J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Vandyke,
and C. Vaughan, “Energy delay product,” in Energy-Efficient High
Performance Computing. Springer, 2013, pp. 51-55.

P. Balaprakash, R. Egele, and P. Hovland,
https://github.com/ytopt-team/ytopt, 2022.

H. Menon, A. Bhatele, and T. Gamblin, “Auto-tuning parameter choices
in hpc applications using bayesian optimization,” in 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 1EEE,
2020, pp. 831-840.

A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, pp. 1-42, 2018.

A. Mishra, S. Chheda, C. Soto, A. M. Malik, M. Lin, and B. Chapman,
“Compoff: A compiler cost model using machine learning to predict
the cost of openmp offloading,” in 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 1EEE,
2022, pp. 391-400.

A. Tehranijamsaz, M. Popov, A. Dutta, E. Saillard, and A. Jannesari,
“Learning intermediate representations using graph neural networks
for numa and prefetchers optimization,” in IPDPS 2022-36th IEEE
International Parallel & Distributed Processing Symposium, 2022.

A. Haj-Ali, N. K. Ahmed, T. Willke, Y. S. Shao, K. Asanovic, and
I. Stoica, “Neurovectorizer: End-to-end vectorization with deep rein-
forcement learning,” in Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization, 2020, pp. 242-255.
M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,
“Mlgo: a machine learning guided compiler optimizations framework,”
arXiv preprint arXiv:2101.04808, 2021.

M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
De Supinski, and M. Schulz, “Prediction models for multi-dimensional
power-performance optimization on many cores,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 250-259.

D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopou-
los, “Hybrid mpi/openmp power-aware computing,” in 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS).
IEEE, 2010, pp. 1-12.

C. C. De Oliveira, A. F. Lorenzon, and A. C. S. Beck, “Automatic tuning
tlp and dvfs for edp with a non-intrusive genetic algorithm framework,”
in 2018 VIII Brazilian Symposium on Computing Systems Engineering
(SBESC). 1EEE, 2018, pp. 146-153.

W. Wang, A. Porterfield, J. Cavazos, and S. Bhalachandra, “Using per-
loop cpu clock modulation for energy efficiency in openmp applica-
tions,” in 2015 44th International Conference on Parallel Processing.
IEEE, 2015, pp. 629-638.

A. Nandamuri, A. M. Malik, A. Qawasmeh, and B. M. Chapman, “Power
and energy footprint of openmp programs using openmp runtime api,”
in Energy Efficient Supercomputing Workshop. 1EEE, 2014, pp. 79-88.
J. V. Ferreira Lima, 1. Rais, L. Lefevre, and T. Gautier, ‘“Performance and
energy analysis of openmp runtime systems with dense linear algebra
algorithms,” The International Journal of High Performance Computing
Applications, vol. 33, no. 3, pp. 431-443, 2019.

B. Rountree, D. H. Ahn, B. R. De Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond dvfs: A first look at performance under a hardware-
enforced power bound,” in 2012 IEEE 26th International Parallel and

“ytopt,”

545

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]
[42]

[43]

[44]

[45]

Distributed Processing Symposium Workshops & PhD Forum. IEEE,
2012, pp. 947-953.

T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. De Supin-
ski, “Exploring hardware overprovisioning in power-constrained, high
performance computing,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing, 2013.

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1-37, 2018.

C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, M. F. O’Boyle, and
H. Leather, “Programl: A graph-based program representation for data
flow analysis and compiler optimizations,” in International Conference
on Machine Learning. PMLR, 2021, pp. 2244-2253.

A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon, “Compiler-based
graph representations for deep learning models of code,” in Proceedings
of the 29th International Conference on Compiler Construction, 2020.
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4-24, 2020.
M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, 1. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European semantic web conference. Springer, 2018, pp.
593-607.

A. Dutta, J. Alcaraz, A. TehraniJamsaz, A. Sikora, E. Cesar, and A. Jan-
nesari, “Pattern-based autotuning of openmp loops using graph neural
networks,” in 2022 [EEE/ACM International Workshop on Artificial
Intelligence and Machine Learning for Scientific Applications (AI4S),
2022, pp. 26-31.

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. LIU, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert:
Pre-training code representations with data flow,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=jLoC4ez43PZ

W. Ma, M. Zhao, E. Soremekun, Q. Hu, J. M. Zhang, M. Papadakis,
M. Cordy, X. Xie, and Y. L. Traon, “Graphcode2vec: generic code em-
bedding via lexical and program dependence analyses,” in Proceedings
of the 19th International Conference on Mining Software Repositories,
2022, pp. 524-536.

S. Brink, A. Marathe, T. Patki, and B. Rountree,
https://github.com/LLNL/variorum, 2022.

L.-N. Pouchet et al., “Polybench: The polyhedral benchmark suite,”
URL: http:/fwww. cs. ucla. edu/pouchet/software/polybench, vol. 437,
pp- 1-1, 2012.

J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “Xsbench-the de-
velopment and verification of a performance abstraction for monte carlo
reactor analysis,” The Role of Reactor Physics toward a Sustainable
Future (PHYSOR), 2014.

J. R. Tramm, A. R. Siegel, B. Forget, and C. Josey, ‘“Performance
analysis of a reduced data movement algorithm for neutron cross
section data in monte carlo simulations,” in International Conference
on Exascale Applications and Software. Springer, 2014, pp. 39-56.
S. Hammond, C. Trott, and N. Evans, “minife,” GitHub repository, 2022.
A. Sasidharan and M. Snir, “Miniamr-a miniapp for adaptive mesh
refinement,” 2016.

L. L. N. Lab, “Quicksilver,” https://github.com/LLNL/Quicksilver, 2022.
J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
Al Open, vol. 1, pp. 57-81, 2020.

J. Alcaraz, A. TehraniJamsaz, A. Dutta, A. Sikora, A. Jannesari,
J. Sorribes, and E. Cesar, ‘“Predicting number of threads using balanced
datasets for openmp regions,” Computing, pp. 1-19, 2022.

1. Sanchez Barrera, D. Black-Schaffer, M. Casas, M. Moretd, A. Stup-
nikova, and M. Popov, “Modeling and optimizing numa effects and
prefetching with machine learning,” in Proceedings of the 34th ACM
International Conference on Supercomputing, 2020, pp. 1-13.

P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proceedings of the department
of defense HPCMP users group conference, vol. 710. Citeseer, 1999.

“vyariorum,”

Authorized licensed use limited to: lowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

