
Power Constrained Autotuning using Graph Neural
Networks

Akash Dutta
Iowa State University

Iowa, USA

adutta@iastate.edu

Jee Choi
University of Oregon

Oregon, USA

jeec@uoregon.edu

Ali Jannesari
Iowa State University

Iowa, USA

jannesari@iastate.edu

Abstract—Recent advances in multi and many-core processors
have led to significant improvements in the performance of
scientific computing applications. However, the addition of a
large number of complex cores have also increased the overall
power consumption, and power has become a first-order design
constraint in modern processors. While we can limit power con-
sumption by simply applying software-based power constraints,
applying them blindly will lead to non-trivial performance
degradation. To address the challenge of improving the per-
formance, power, and energy efficiency of scientific applications
on modern multi-core processors, we propose a novel Graph
Neural Network based auto-tuning approach that (i) optimizes
runtime performance at pre-defined power constraints, and
(ii) simultaneously optimizes for runtime performance and energy
efficiency by minimizing the energy-delay product. The key idea
behind this approach lies in modeling parallel code regions as
flow-aware code graphs to capture both semantic and structural
code features. We demonstrate the efficacy of our approach by
conducting an extensive evaluation on 30 benchmarks and proxy-
/mini-applications with 68 OpenMP code regions. Our approach
identifies OpenMP configurations at different power constraints
that yield a geometric mean performance improvement of more
than 25% and 13% over the default OpenMP configuration on
a 32-core Skylake and a 16-core Haswell processor respectively.
In addition, when we optimize for the energy-delay product, the
OpenMP configurations selected by our auto-tuner demonstrate
both performance improvement of 21% and 11% and energy
reduction of 29% and 18% over the default OpenMP configuration
at Thermal Design Power for the same Skylake and Haswell
processors, respectively.

Index Terms—Auto-tuning, OpenMP, GNN, Power constraint

I. INTRODUCTION

High-performance computing (HPC) systems have exploded

in both capacity and complexity over the past decade, and this

has led to substantial improvement in performance of various

scientific applications. However, more complex larger systems

consume more power, and in the absence of expensive cool-

ing solutions, increased power consumption leads to higher

operational temperature and inefficient resource utilization

(via higher static power, shorter device lifespan, and more).

As a result, power consumption has become a first-order

hardware design constraint for modern multi- and many-core

systems. Unfortunately, focusing on hardware advancements

for reducing power consumption is insufficient, as inefficient

usage of the underlying hardware due to poor parallel coding

practices may negate any hardware improvements.

Many software solutions currently exist for controlling

power. At the processor level, vendor-provided tools can be

used to artificially lower power consumption. For example,

power consumption can be controlled in recent Intel processors

using the Running Average Power Limit (RAPL) interface

[1], which ensures that an application does not exceed a

predefined power budget. However, a common drawback of a

fixed power budget is that it slows down execution by lowering

the processor clock, and this can have adverse effects on real-

time or time-bound applications. At the data-center level, a

common approach to reducing power consumption is through

over-provisioning (i.e., have more hardware available than can

be powered simultaneously at any time) and constraining the

power limit for each node [2]. In such a setting, a static

algorithm for distributing power across nodes may lead to

degraded throughput, and a more sophisticated approach that

adjusts the execution dynamically is required to harness the

full potential of the underlying system.

One strategy to address both scenarios is to adjust the

execution of the application directly, such that they meet some

user-specified (e.g., individuals or data-centers) performance

and/or power constraints. This will allow users to tailor their

application to domain-specific environments (e.g., edge or

mobile computing) or design scheduling policies for data-

center power management. OpenMP, as the de-facto parallel

programming model for intra-node parallelism, provides a

number of tunable parameters that highly influence code

execution, which makes it highly suitable for this purpose.

While there is already a large body of work targeting perfor-

mance tuning, there are only a few studies that target power.

In addition, due to the large configuration search space for

OpenMP on modern multi- and many-core processors, most

of these studies require multiple executions to determine the

optimal configuration [3]–[7], which is both time consuming

and resource intensive.

As a motivating example, we consider the ApplyAcceler-
ationBoundaryConditionsForNodes kernel from the LULESH
[8] proxy application. On a 16-core dual-socket Haswell

processor with a Thermal Design Power (TDP) of 85W, an ex-

haustive search of the OpenMP configuration space yields the

highest speedups of 7.54×, 2.11×, 1.80× and 1.67× over the

typical (or default) OpenMP configuration at power constraints

of 40W, 60W, 70W and 85W, respectively. However, none

535

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00060

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

37
66

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

54
95

9.
20

23
.0

00
60

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

of these OpenMP configurations lead to the highest energy
efficiency. The most energy-efficient execution occurs at a

power constraint of 60W using a OpenMP configuration that

leads to a greenup (i.e., greenup = Energyold

Energynew
[9]) of 3.89×,

but a speedup of 0.95× (i.e., a slowdown) over the typical

OpenMP configuration at TDP (85W). This contradicts the

commonly held belief of race-to-halt [10] (i.e., the idea that

the lower energy consumption occurs at the highest speedup),

and shows that optimizing for time and optimizing for energy

may not yield the same OpenMP configuration. In addition,

for applications where a slowdown is unacceptable, we can

simultaneously optimize for time and energy by targeting

the energy-delay product (EDP) metric [11]. Through an

exhaustive search through the OpenMP configurations space,

we observe that minimizing EDP yields a speedup of 1.64×
and a greenup of 2.7×, at a yet another OpenMP configuration

and power constraint.

In summary, optimizing for performance, power, and energy

consumption all require different strategies for identifying

the optimal OpenMP configuration, and optimizing for one

metric (e.g., performance) does not necessarily optimize for

another (e.g., energy). To this end, we propose a graph neural

network (GNN)-based technique that can be used to (i) identify

OpenMP configurations at prescribed power constraints that

maximizes performance and (ii) optimize for the energy-delay
product to identify configurations for both energy-efficient and

performant execution.

In this study, OpenMP code regions are first transformed

to a flow-aware graphical representation. These code graphs

are then modeled by a GNN, and used for predicting the best

configurations for the appropriate target. In contrast to prior

studies, we use only these code graphs (i.e., static features) as

inputs to our model, which does not require expensive code
execution. The benefit of using a deep learning (DL)-based

approach is that it automatically helps reduce the search space

exploration by aggressively pruning non-beneficial points in

the search space.

The works in [6], [7] studied the impacts of power con-

straints and OpenMP configurations on time and energy and

are, to the best of our knowledge, most similar to the problem

considered in this paper. To demonstrate the effectiveness of

our static approach, we compare our results against a Bayesian

Optimization based tuner BLISS [5], and a search-based tuner

OpenTuner [4]. Through this study, we propose two separate

approaches for tuning performance and energy/power. The first

approach aims to identify the tuning configuration that can

produce the fastest execution at a predefined power constraint.

The second approach looks at both time and energy as target

metrics and aims to optimize for both at the same time by

identifying configurations that lead to the lowest energy-delay
product. The key contributions of our work are as follows:

• We build an RGCN network to model flow-aware

OpenMP code region graphs that captures both semantic

and structural features of code regions, and is portable

across different architectures.

• We build an auto-tuning framework that identifies

OpenMP configurations yielding near optimal execution

times at different power constraints. We achieve a geo-

metric mean speedup of 1.33× and 1.15× over default

OpenMP configurations at four power constraints across

30 applications on Skylake and Haswell systems.

• Our DL-based framework also optimizes for both time

and energy simultaneously by minimizing the EDP. We

achieve geometric mean speedup of 1.27× and 1.12×,

and greenup of 1.40× and 1.22× respectively on Sky-

lake and Haswell, over default OpenMP configurations

running at TDP (i.e., no power constraint).

• We compare our framework against the state-of-the-art

BLISS [5] tuner and OpenTuner [4] and demonstrate

better performance without the need for executing code.

II. BACKGROUND AND OTHER RELATED WORKS

This section outlines ideas and works relevant to this paper.

A. Autotuning for Performance Optimization

Autotuning is a widely-used technique employed in com-

piler and runtime optimization tasks for performance enhance-

ments. Automated techniques of autotuning have been the

focus of research over the past several decades. Autotuners

improve upon brute-force approaches by using/proposing sev-

eral search space optimization techniques which largely re-

duce the tuning overhead. Algorithm-based autotuners employ

multiple techniques for such tasks. Simplex based optimiza-

tion algorithms were used in ActiveHarmony [3]. More

recent algorithm-based tuners such as OpenTuner [4] have

used various techniques, including Nelder-Mead, Torczon hill-

climbers, AUC Bandit for optimizing search spaces.

A more recent trend has been the use Bayesian optimization

for search space optimization and pruning. Works such as

ytopt [12], HiPerBOt [13], BLISS [5] have successfully

adapted Bayesian optimization ideas to autotuning tasks. These

works usually define a (or sets of) probabilistic surrogate

model(s) which is usually a surrogate of the true objective

function. These surrogate functions are faster to compute and

are usually less resource intensive than previous approaches.

Machine learning (ML) has also been used frequently

used for such tuning tasks. Classical ML techniques such

as Decision Trees, Random Forests, SVMs have been used

for compiler-based tuning tasks [14]. Deep learning or Artifi-

cial Neural Networks (ANN) have also found favor amongst

researchers. Works such as [15], [16] have effectively used

deep learning for various tuning tasks. Recently, a few works

[17], [18] have also used reinforcement learning for targeted

optimization tasks.

In this paper, we use a deep learning based approach for

our tuning tasks, and compare our results with results obtained

from OpenTuner and BLISS.

B. Power Constraining and Energy Usage Reduction

As mentioned in Section I, power and energy are nowa-

days first-order design considerations. Power constraining is a

536

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

software based easy-to-use technique that can be used to limit

the power supply to various system components. Starting with

the SandyBridge μarchitecture, Intel introduced the RAPL

software tool that enables power/energy monitoring and power

capping through a simple interface. The power to several

subsytems of the processor, such as memory, DRAM, CPU,

etc. can be controlled via RAPL.

Most autotuning works in existing literature, however, do

not consider such power constraints in their work. A few

papers have focused on dynamic voltage frequency scaling

(DVFS) and dynamic concurrency throttling (DCT) techniques

for improving energy efficiency [19]–[21]. Wang et al. in

[22] proposed using CPU clock modulation and concurrency

throttling for improving the energy efficiency of OpenMP
loops. In [23], Nandamuri et al. analyzed the performance

and energy conumption of OpenMP programs under various

conditions using OpenMP Runtime API. The impact of CPU

parameters on performance and energy for OpenMP dense

linear algebra kernels was presented in [24]. Rountree et al.

in [25] provided a first insight into the impacts of power

capping or constraints on power and performance. Patki et al.

in [26] outlined how overprovisioning hardware and hardware

enforced power bounds leads to improved performance. Bari

et al. in [6] propose ARCS with the goal of automatically

selecting best runtime configurations for OpenMP parallel

regions at specified power constraints and in [7] analyzed

the impact of power constraints on performance and energy

consumption on five NAS benchmarks. To the best of our

knowledge, the works in [6], [7] are the closest to this paper. In

contrast to [6], [7], our approach uses an AI-assisted technique

based on GNNs to identify OpenMP runtime configurations

and power constraints.

C. Static Code Representations for Deep learning

Deep learning is being increasingly used in modeling code

for various tasks [27]. However, the use of deep learning ne-

cessitates the use of a code representation capable of capturing

its inherent features. A lot of prior studies have represented

programs as a sequence of lexical tokens [28]. But, these fail

to capture the structured nature of programs. To overcome this,

representations capturing syntactic as well as semantic features

have been proposed [27], [29] .

These methods, however, often do not take into account

control, data, or call flows in the program. PROGRAML [28]

is a tool that represents the semantic and structural features

of code in a flow-aware multi-graph. These multi-graphs

have a vertex for each instruction and control-flow edges

between them. Data flow is represented by separate vertices

for variables and constants and associated data-flow edges to

instructions. Call flow is represented by edges between callee

functions and caller instruction vertices. We use this tool to

transform code region IRs to their corresponding graphs.

D. Graph Neural Network based Code Modeling

Recent advances in deep learning have now enabled the

application of DL on data generated from non-Euclidean

space [30]. The relations and dependencies between objects

in such data can more readily be represented as a graph.

Graph Neural Networks (GNNs) were proposed as a means

of modeling such data. Most such networks use message
passing to update the embeddings in neighboring nodes in

a graph. Graph Convolutional Networks (GCNs) are a form

of GNNs aimed at generalizing the common sliding window
convolution operation on grid data in regular Convolutional

Neural Networks to graphs [30]. A GCN network updates

its node representation by aggregating the features from the

node’s neighbors along with the node. Similar to CNNs,

GCNs stack multiple convolutional layers to extract high-level

node representation. We use Relational Graph Convolutional

Network (RGCN), a variation of GCN, to model our program

graphs. RGCNs were proposed to enable networks to better

model large-scale relational data [31]. RGCNs differ from

GCNs in that they work with relation specific transformations

annotated by the type and direction of edges. RGCNs accu-

mulate transformed feature vectors through a normalized sum.

Recently, researchers have started applying GNN-based

techniques to the task of code modeling [16], [32]. This, in

most cases, involves compiling source code into their graph

forms and then using these code graphs as inputs to the GNN

models. The greatest progress in this field has been seen

in software engineering tasks such as code clone detection,

code summarization, etc. Previous works such as [33], [34]

have achieved state-of-the-art results in various tasks using

GNN-based code modeling. However, GNNs have rarely been

used for the task of parallel code modeling with energy

and performance optimizations in mind. The works in [16],

[32] are examples from a very small set that have used

GNNs for the purpose of modeling parallel code with specific

performance optimizations in mind.

In this work, we have used RGCNs to model the code graphs

of OpenMP code regions. The results in the following sections

clearly shows that such an approach produces good results in

comparison to general purpose autotuners.

III. THE PNP AUTO-TUNER: A GNN BASED POWER AND

PERFORMANCE TUNER

In this section, we outline our two-pronged approach to

tuning performance and power. We consider two scenarios

with real-world implications: i) Because of cost and energy

considerations, clusters and data-centers must usually work

under strict power budgets. However, constraining power di-

rectly impacts performance by limiting the power delivered to

hardware components. Therefore, assuming no code changes

or compiler optimizations, tuning available runtime parameters

becomes essential for improving application performance. ii) It

is of utmost importance in most HPC systems to reduce energy

consumption. This has a direct monetary and environmental

impact. However, as shown in Section I, simply optimizing for

energy, can potentially lead to slower executions. Therefore,

we must optimize for a metric that considers both energy and

performance. To this end, we target the multi-obejctive metric

energy-delay product (EDP). We use GNNs to build a model

537

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: High-level view of code graphs used in this paper in JSON format. The left image shows the overall structure of a

graph. The figure in the middle shows the edge features in the graph. The flow attribute denotes the type of program flow. The

right-most image shows the node level feautures (each IR instruction forms a node).

Fig. 2: PnP Tuner Pipeline: An overview of tasks in our GNN based power and performance tuner

that will be used for the aforementioned tasks. The inputs to

the GNNs are code flow graphs of OpenMP regions. Using

such graphs allows us to model the semantics and structure of

source code. These convey relevant information to the model

about the code region being tuned. We refer to these input

code graphs as static features, as these are obtained statically

without any code executions. An overview of this pipeline is

shown in Figure 2, and outlined in the following paragraphs.

A. Representing the Code
In this study, we aim to optimize OpenMP code regions.

These code regions are usually the primary computational

bottlenecks in such applications. Instead of focusing on in-

dividual loops inside these parallel regions, we aim to opti-

mize the parallel region as a whole for larger performance

improvements. Tuning sub-regions within an OpenMP code

region adds additional overhead. Switching between config-

urations can improve the performance of each sub-region

(loops for example), but can degrade the performance of

each OpenMP region and the application as a whole. The

benchmark applications are initially compiled to their inter-

mediate representations (IR). Compiling OpenMP code to its

corresponding IR automatically encloses the parallel region

in an outlined function. We use the llvm-extract tool to

extract the outlined parallel region. As shown in Figure 2, to

represent the code regions in a form usable by DL models,

we use PROGRAML [28] to obtain the corresponding graph

embeddings. Each code graph has a structure as shown in

Figure 1. The features for each node in the graph and the

features for each edge are shown in the Figure. The type of

flow in these graphs are used to denote the different relations

for our RGCN model.

B. Configuring the Search Space
One of the primary motivations behind using a DL technique

for this work was to develop a method that can work with

large search spaces easily. Unlike most existing auto-tuners,

which have to extensively execute programs to identify the

best configurations, our DL-based framework will not need

to execute programs. For the proposed DL approach to scale

well to unseen code and inputs, it is necessary to feed the

model with code graphs with enough variability. Along with

variability in considered parallel code regions, it is essential

to model the effect of various tuning parameters on these

code regions. Different configurations impact code execution

by affecting the load balancing and cache behavior, which in

turn impacts performance.
As our goal is to target performance optimization and energy

efficiency, we must simultaneously consider the impact of

power constraints and OpenMP parameters on code execu-

tions. To this end, we have defined a search space (shown in

Table I) with 504 valid configurations. In addition, the default

OpenMP configurations for each of the four power limits have

also been considered as valid configurations leading to a total

of 508 configurations. The search space used in this study has

been selected based on ideas presented by Bari et al. in [7].

538

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Search space for performance and power tuning on

Skylake and Haswell nodes.

Search Space Parameter Values
Power Limits 75W, 100W, 120W, 150W (Skylake)

40W, 60W, 70W, 85W (Haswell)
Number of threads 1, 4, 8, 16, 32, 64 (Skylake)

1, 2, 4, 8, 16, 32 (Haswell)
Scheduling Policy STATIC, DYNAMIC, GUIDED
Chunk Sizes 1, 8, 32, 64, 128, 256, 512

C. Power Constraining and Dataset Creation

In this work, we used the Variorum [35] tool for constrain-

ing power levels on each of the experimental systems. We used

Variorum APIs to interface with RAPL and device MSRs to

constrain power to the values described in Table I.

To validate our hypothesis, we chose to work with multiple

OpenMP applications with varied complexity. These OpenMP
regions consists of parallel regions with simple do-all loops

to regions with multiple loops with varying levels of nesting

and diverse programmatic constructs. We have worked with

25 applications from the PolyBench suite [36], and mini

and proxy applications XSBench [37], RSBench [38], miniFE

[39], miniAMR [40], Quicksilver [41], and LULESH [8] with

combined total of 68 OpenMP regions.

At each power level, parallel OpenMP regions in all consid-

ered applications were executed for each runtime configuration

in Table I and default OpenMP configurations (all threads,

static scheduling, and compiler defined chunk sizes) on each

system. The execution times obtained as such are then ana-

lyzed to identify the best configuration for each code region.

The best configurations are used as labels during training.

D. Performance and Power Modeling

This section outlines our GNN-based approach towards

performance and power optimizations. We propose two tuning

scenarios with different objectives:

• In the first scenario, we aim to identify the OpenMP
configuration that lead to the fastest executions at a given

power constraint.

• In the second scenario, we aim to identify both the

OpenMP configuration and the power level that mini-

mizes the EDP. By minimizing the EDP, we hope to

improve the execution time and energy efficiency in

comparison to default OpenMP configuration at TDP.

1) Code Graph Modeling using GNNs: For both scenarios,

the code modeling technique is similar. Modeling code graphs

allows us to model code semantics and structure. Analyzing

code structure allows us to better capture the interdependence

between code blocks. Simply looking at code as a sequence

of text does not afford this information. The code graphs

generated in Section III-A are initially passed through a GNN

network for modeling the code graphs. Specifically, Relational

Graph Convolutional Networks (RGCNs) are used as these

allow modeling relation specific features. Each code graph

consists of three types of edges denoting the type of flow

(Section III-A). The type of edges are used as edge features

during modeling. For each node in a graph, the node features

are the type of node, and the associated IR code block.

Before modeling, the code region IRs are used to generate an

embedding. This embedding maps IR text to tensors. These

tensors are then passed to the model as node features along

with the type of the node. Based on these features, the GNN

layers model these by passing “messages” between neighbor-

ing nodes, aggregation, and subsequent weight updations [42].

The output tensors from the GNN layers then fed into fully

connected neural network layers with the aim of identifying

the best configurations.

2) Power Constraint Specific Auto-tuning: As noted in

Section I, one way of meeting power consumption goals

is to enforce a specific power constraint. Such power con-

straints can help limit the power drawn by a node or its

subsystems. However, simply using default OpenMP runtime

configurations at different power constraints for code execution

may lead to performance degradation, as well as increased

energy usage from static power. Therefore, we aim to identify

those configurations that lead to speedups at predefined power

constraints. We propose a DL based technique for power-

constrained auto-tuning. As outlined in Section III-D1, we use

the flow-aware code graphs obtained from the parallel code

region IRs as inputs to the RGCN layers of our network. As

shown in Figure 2, the RGCN layers model each such graph

and feeds the output into a fully connected (dense) network.

The dense layers acts as a classifier and are trained as such

with the target of predicting the best configuration for a given

OpenMP code region.

3) Optimizing Energy and Time: For nodes and systems

without any predefined power constraint, time and energy

optimization are still of primary importance. However, simply

optimizing for performance or energy neglects the other crite-

ria. Thus, in this section, we propose using power constraints

as a tuning parameter along with the available OpenMP
runtime configurations for joint optimization of performance

and power. Simply using execution time or energy savings

for identifying such configurations is not enough. Thus, we

use the energy-delay product (EDP) metric [11] as a more

accurate measure of the impact of different configurations on

code performance. In this work, we assign equal importance to

time and energy and use the metric E ∗T , where E represents

the energy consumption, and T represents the execution time

for a parallel code region.

We again use the modeled code graphs from Section III-D1

as the static feature inputs to our model for this experiment and

train our model with a target of optimizing the EDP. As in the

previous subsection, a fully connected neural network serves

as a classifier to identify the best configurations for tuning

EDP. Using a DL-based approach for identifying the best one

out of 508 possible configurations is especially beneficial, as

such models are efficient at automatically pruning the under

performing configurations. This is in stark contrast to brute-

force approaches, where the tuning cost would explode with

increasing search space complexity.

539

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Power Constrained Tuning (Haswell): Each chart shows results for a specific power constraint. Each bar-group shows

geometric mean speedup for all OpenMP regions in an application over default OpenMP settings wrt the corresponding tuning

approach. Speedups are normalized by oracle(brute-force) speedups. Normalized oracle speedups are always 1.0×. The PnP

tuner outperforms BLISS in 82.5% and OpenTuner in 78% cases across all power constraints(see Section IV-B for details).

IV. EXPERIMENTS

To identify near optimum values of tuning parameters for

both our experimental scenarios, we first explore every permu-

tation of inputs and configurations considered in this study.

We use this exhaustive exploration as an oracle to compare

the results from our work. We also compare our work against

BLISS [5] and OpenTuner [4]. All results presented in

the following paragraphs represent speedups/greenups of each

code region. For applications with multiple OpenMP regions,

the geometric mean of speedups/greenups of all regions in

an application are reported. We have also verified that there

are sequences of serial code in between successive OpenMP
regions. This allows us to look at each region as a self-

contained unit, and makes them good candidates for tuning.

We assume that the performance of these intervening serial

sequences will not change and improving the performance

of each OpenMP region would translate to improvement in

application performance.

A. Experimental Setup
For our experiments, we use two systems; one with Intel(R)

Xeon(R) Gold 6142 CPU with 32 cores, two hyper-threads

per core, and two sockets (Skylake) with a minimum and

TDP package power of 75W and 150W , and an Intel(R)

Xeon(R) E5-2630 v3 CPU (Haswell), with 16 cores, two

hyper-threads per core, and two sockets, and minimum and

TDP package power of 40W and 85W . We use Clang tools

for code compilation and transformation to IR, and PyTorch
DL libraries for building our GNN models.

B. Power Constrained Auto-tuning

In this section, we evaluate the performance of our tuner

in determining the optimal configuration for minimizing ex-

ecution time given a specific power constraint (described in

Section III-D2). To validate the effectiveness of our approach,

we use leave-one-out cross-validation (LOOCV). For each

fold, code regions from one benchmark application is selected

and assigned to the validation set and the code regions from

all other applications are assigned to the training set. We

repeat this process for all applications in our approach. Such a

process is essential to evaluate the performance of our model

on previously unobserved code regions.

The results for the Haswell system are shown in Figure

3. For each application, we calculate the geometric mean

540

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Power Constrained Tuning (Skylake): Each chart shows results for a specific power constraint. Each bar-group shows

geometric mean speedup for all OpenMP regions in an application over default OpenMP settings wrt the corresponding

tuning approach. Speedups are normalized by oracle speedups. Normalized oracle speedups are always 1.0×. The PnP tuner

outperforms BLISS in 85% and OpenTuner in 83% cases across all power constraints(see Section IV-B for more details).

speedups for all OpenMP regions in each application achieved

by each tuner across four power constraints (i.e., 40W, 60W,

70W, 85W).

While training the model on the data from the Skylake

system, we borrow ideas from transfer/inductive learning and

perform an optimization step to speed up the training process.

Because the code graphs are statically generated, the code

graphs obtained on different systems using the same compiler

are identical. For this reason, we save the weights and model

states of the GNN model obtained while training our model on

the Haswell system. While training the model on the Skylake

data, we load the saved weights and model and only re-train

the dense layers. This leads to 4.18× faster training (or reduces

training time by 76%).

Results for each power constraint (75W, 100W, 120W,

150W) is shown in Figure 4 for the Skylake system. Each

speedup is normalized by the speedup achieved by the ora-

cle (i.e., exhaustive exploration). In 74% cases (across both

systems and power constraints), our PnP tuner identifies con-

figurations that lead to >= 0.95× of the oracle speedups (as-

suming oracle as 1.0×). These results are obtained without ex-

ecuting the code. In contrast, BLISS and OpenTuner needs

to execute code multiple times and achieves >= 0.95× of the

oracle speedups in 51% and 34% cases respectively. The PnP

tuner produces better results than BLISS and OpenTuner
in 83% and 78% cases. Overall, the configurations predicted

by our model lead to geometric mean speedups of 1.19×,

1.12×, 1.13×, and 1.14× for power limits 40W , 60W , 70W ,

and 85W on the Haswell system. In contrast, BLISS leads

to speedups of 1.11×, 1.09×, 1.09×, and 1.11× across

these power constraints respectively. OpenTuner produces

corresponding speedups of 1.06×, 1.0×, 1.04×, and 1.02×.

On Skylake, our approach achieves geometric mean speedups

of 1.5×, 1.25×, 1.26×, and 1.34× across power constraints

75W , 100W , 120W , and 150W respectively, compared to

speedups of 1.29×, 1.2×, 1.18×, and 1.17× produced by

BLISS, and speedups of 1.27×, 1.13×, 1.07×, and 1.1×
produced by OpenTuner.

Can performance counters further improve results? Although

our approach leads to >= 0.95× of the oracle speedups

in most cases, in approximately 8% of cases, our approach

produces results which are < 0.8× of the oracle speedups.

Previous works such as [43], [44] have used performance

counters for tuning tasks. We borrow from these ideas to see if

541

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

the results from our approach can be improved by using these

as features (dynamic features). For this experiment, we update

our model definition. We make no changes to the GNN layers.

We repurpose the fully connected layers to accept as inputs

five performance counters along with the ouputs from the GNN

layers. We use PAPI [45] to collect counters related to L1, L2,

L3 cache misses, number of instructions, and the number of

mispredicted branches for each OpenMP region. These were

selected as these have direct impact on code execution and

performance.

We perform the same experiments as outlined in the pre-

vious paragraphs. However, we only validate on those appli-

cations whose speedups are < 0.95× on the oracle speedups.

We see that by including performance counters, this approach

identifies configurations that lead to >= 0.95× in 87.5% cases

(up from 74%). We show these results and comparisons in

Figures 3 and 4. Therefore, a case can definitely be made

for including performance counters for DL-based performance

tuning. However, this comes at the additional cost of profiling.

Profiling is necessary for generating the dataset to train the

model. However, during inference, this approach (using both

static and dynamic features) only needs to execute applications

twice (to collect counters which serve as inputs to the model),

which is less than other execution based tuners. To conclude,

although this produces better results, it adds a profiling over-

head. But during inference, in spite of this overhead it only

needs two executions.

Can we extend this approach to unknown power constraints?
There might be scenarios where adding/removing new nodes

to/from clusters, or other factors, might necessitate changing

power constraints on nodes. Thus, our approach should also

be generalizable to power constraints that our model has not

been trained on, since data center policy changes may result

in different power constraints being applied. To evaluate this

scenario, we conduct four tests - two tests for each system

- one test each for the lowest and highest power constraints

considered in this paper. For each test, we first exclude all mea-

surements for the target power constraint (e.g., for the 150W

test on Skylake, for training, we use measurements from 75W,

100W, and 120W only). We then train and validate our model

using leave-one-out cross-validation as before. This allows us

to generalize for both unseen applications and unseen power

constraints. However, unlike the initial experiments which uses

a static-only approach, we use performance counters as part

of the feature set in this experiment. This is to account for

the variation in runtime behavior of parallel regions under

varying power constraints. Static features cannot encapsulate

such divergence in behavior. The input features and model is

similar to the one described in Section IV-B. In addition to

these features, we also input as feature the normalized power

constraints for each feature set. This helps to associate runtime

behavior (performance counters) with power limits.

Figures 5 and 6 shows that our model performs well in such

scenarios for both the Skylake and Haswell systems, predicting

configurations that are within 5% (i.e., ≥ 0.95 normalized

speedup) of the best possible speedup in 64% cases and within

Fig. 5: Power Constrained Tuning on unseen power constraints

(Skylake): Geometric mean speedup over default OpenMP
settings. Results normalized by the oracle speedup.

Fig. 6: Power Constrained Tuning on unseen power constraints

(Haswell): Geometric mean speedup over default OpenMP
settings. Results normalized by the oracle speedup.

20% of the best possible speedups in 85% cases across both

systems and four power constraints. On the Skylake systems,

these tuning efforts lead to geometric mean speedups of 1.29×
and 1.36× versus oracle speedups of 1.44× and 1.59× for

power constraints of 150W and 75W respectively. On the

Haswell system, these experiments produce speedups of 1.13×
and 1.17× compared to oracle speedups of 1.16× and 1.27×
for power constraints of 85W and 40W respectively.

TABLE II: Deep Learning Model Hyperparameters.

Hyperparameter Hyperparameter Values
Layers RGCN (4), FCNN (3)
Activ. func. Leaky ReLU, ReLU
Optimizer AdamW (amsgrad) (Sec IV-B), Adam (Sec

IV-C)
Learning Rate 0.001
Batch Size 16
Loss function Cross Entropy Loss

The hyperparameters of the models used in these exper-

iments are shown in Table II. Other parameter values may

have minor differences between experiments.

C. Power and Performance Tuning

With increasing financial and environmental impacts of

high energy usage, energy efficiency is now as important as

performance in the current HPC landscape. However, simply

optimizing for energy consumption, as shown in Section I,

may lead to lower performance.

Thus, in this section, we outline the second scenario men-

tioned at the beginning of this section. To this end, we build

542

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

(a) Skylake (b) Haswell

Fig. 7: Improvement in EDP over default OpenMP configurations for each application for the Haswell system. EDP

improvements normalized in terms of best achievable EDP improvement.

a GNN-based tuner that uses only static features, with the

aim of identifying a combination of power constraints and

OpenMP runtime configurations that can lead to performance

improvement while reducing energy consumption. As in the

previous experiments, we model our flow-aware code graphs

using an RGCN network. The outputs from the GNN layers

are fed into the dense layers. These layers are trained with

the target of finding configurations that produce the best

energy-delay product (EDP). Again, we use leave-one-out
cross validation to validate our model, and the process of

assigning benchmark applications to the training and validation

set is similar to that described in Section IV-B.
The configurations predicted in these experiments lead to

within 5% of the oracle EDP improvements in 45% cases,

and within 20% of the oracle improvements in 69% cases

across the two systems. In comparison, BLISS reaches these

numbers in 35% and 45% cases (Figure 7). OpenTuner
reaches these numbers in 22% and 40% cases. Overall, the

configurations predicted by our static-only approach leads

to geometric mean improvements of 1.37× and 1.85× on

the Haswell and Skylake systems compared to 1.31× and

1.69× respectively achieved by BLISS and 1.21× and 1.49×
achieved by OpenTuner.

We have also analyzed the impact on execution time perfor-

mance and energy consumption individually. Figure 8 shows

the impact of tuning for EDP on execution time for both

the Skylake and Haswell systems. Tuning for EDP leads to

performance (time) improvement in 84% cases, and leads to

slower execution than default settings in around 16% cases

across both systems. On Skylake, all slowdowns are within

20% of the corresponding execution with all threads, while the

geometric mean of all slowdows are within 14% of the default

executions. On the Haswell system, there are fewer slow-

downs, but the slowdowns are more significant with the largest

slowdown within 30% of the default all-threaded execution,

with the geometric mean within 23% of the default settings.

Overall, excluding the cases that lead to slowdowns, tuning

for EDP leads to 1.16× and 1.3× speedups on the Haswell

and Skylake. In comparison, BLISS and OpenTuner leads

to slowdowns in 28% and 46% cases respectively, with the

largest slowdowns within 17% and 15% for BLISS and within

30% and 22% for OpenTuner on Haswell and Skylake.

We also show in Figure 8 the impact of tuning for EDP on

energy. Across both systems, our approach predicts configu-

rations that lead to reduction in energy consumption in 94%
cases. In the remaining 6% cases, it predicts configurations that

consume more energy than the default setting. However, the

increase is minimal. On the Haswell, there is a 3% geometric

mean increase in energy usage for those predictions. On the

Skylake, the corresponding number is 1%. For the predictions

that do lead to reduction in energy usage, there is a geometric

mean greenup of 1.25× and 1.42× on the Haswell and

Skylake respectively. In comparison, 2% of the predictions

made by BLISS lead to increase in energy consumption.

But, the overall greenups are slightly worse than the PnP

Tuner (1.24× on the Haswell and 1.39× on the Skylake). The

predictions made by OpenTuner lead to increase in energy

consumption in 20% cases with overall greenups at 1.25× and

1.29× on the Haswell and Skylake respectively.

Similar to the experiment in Section IV-B, we also evaluate

the effect of performance counters on EDP. As shown in

Figure 7, adding performance counters to the feature set leads

to improved results (predictions where the EDP is within

5% of the oracle moves up to 57% from 45% across both

systems). Using performance counters leads to 77% cases

where there is improvement in execution speed (down from

84%). This dichotomous behavior is the result of using a fused

metric; because it is a product of both time and energy, the

PnP tuner aims to tune for the best EDP. It might lead to

scenarios where the reduction in energy might compensate for

the increase in time. In this experiment, using performance

counters leads to 95% cases where there are improvements in

energy consumption. Overall, by using performance counters,

the EDP predictions improve from 1.37× to 1.52× on the

Haswell system, and from 1.85× to 2.31× on the Skylake.

This lead to overall speedups of 1.13× and 1.39× on the

Haswell and Skylake and greenups of 1.35× and 1.60× on

the Haswell and Skylake systems.

V. DISCUSSION

Through this study, we have outlined a unique approach

to two important problems in the HPC community. We have

proposed a mechanism of tuning OpenMP configurations on

power constrained systems. This is beneficial to data centers

543

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Speedups/Greenups over default OpenMP configurations at TDP. Configurations are predicted to optimize for EDP.

and systems working under strict power budgets. As shown in

previous sections, it is possible to considerably improve perfor-

mance in such scenarios using our approach. Additionally, we

also describe a method of identifying OpenMP configurations

and power constraints that can lead to reduction in energy

consumption with limited impact on execution time . To the

best of our knowledge, this is the first work that aims to use

GNN based techniques for these purposes.

As with all deep learning techniques, model training for sev-

eral target systems/experiments might be burdensome. How-

ever, by using transfer learning techniques, we have reduced

the training time on other systems by around 76% on a

dataset of similar size (explained in Section IV-B). These

optimizations can enable faster and easier deployment of such

approaches on multiple systems.

Additionally, being a static approach, our tuner requires no

sampling executions. This is in contrast to other tuners that

need several sampling runs. Limiting these sampling runs, or

setting a time-bound on the sampling phase to a small value

leads to less than optimal results. Moreover, our approach was

able to successfully identify most edge cases. For example, the

OpenMP region in trisolv has the fastest execution with

1 thread in all cases. This is an outlier. Our approach could

identify near optimal configurations in these cases as well with

no executions.

VI. CONCLUSION

In this work, we have outlined a twofold approach towards

tuning OpenMP configurations in power constrained systems,

as well tuning both OpenMP configurations and power con-

straints for execution time and energy consumption gains.

We have used GNNs to model flow-aware code graphs to

model the semantic and structural features of code regions. Our

experiments show that the PnP Tuner can identify configura-

tions that lead to improvements in execution time and energy

consumption. In future, we aim to analyze the scalability of our

approach to heterogeneous platforms and handheld devices.

VII. ACKNOWLEDGEMENTS

This research was supported by the National Science Foun-

dation under Grant number 2211982. We would also like to

thank the ResearchIT team (https://researchit.las.iastate.edu)

at Iowa State University for their constant support.

REFERENCES

[1] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED).
IEEE, 2010, pp. 189–194.

[2] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supin-
ski, “Exploring hardware overprovisioning in power-constrained, high
performance computing,” in Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing. New
York, NY, USA: Association for Computing Machinery, 2013, p.
173–182.

[3] C. Tapus, I.-H. Chung, and J. K. Hollingsworth, “Active harmony:
Towards automated performance tuning,” in Proceedings of the 2002
ACM/IEEE Conference on Supercomputing. IEEE, 2002, pp. 44–44.

[4] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation, 2014, pp. 303–
316.

[5] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Bliss: auto-tuning
complex applications using a pool of diverse lightweight learning
models,” in Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
2021, pp. 1280–1295.

544

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

[6] M. A. S. Bari, N. Chaimov, A. M. Malik, K. A. Huck, B. Chapman, A. D.
Malony, and O. Sarood, “Arcs: Adaptive runtime configuration selection
for power-constrained openmp applications,” in 2016 IEEE international
conference on cluster computing (CLUSTER). IEEE, 2016.

[7] M. A. S. Bari, A. M. Malik, A. Qawasmeh, and B. Chapman, “Perfor-
mance and energy impact of openmp runtime configurations on power
constrained systems,” Sustainable Computing: Informatics and Systems,
vol. 23, pp. 1–12, 2019.

[8] I. Karlin, J. Keasler, and J. R. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2013.

[9] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. IEEE, 2013, pp. 661–672.

[10] M. A. Awan and S. M. Petters, “Race-to-halt en-
ergy saving strategies,” Journal of Systems Architecture,
vol. 60, no. 10, pp. 796–815, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762114001295

[11] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Vandyke,
and C. Vaughan, “Energy delay product,” in Energy-Efficient High
Performance Computing. Springer, 2013, pp. 51–55.

[12] P. Balaprakash, R. Egele, and P. Hovland, “ytopt,”
https://github.com/ytopt-team/ytopt, 2022.

[13] H. Menon, A. Bhatele, and T. Gamblin, “Auto-tuning parameter choices
in hpc applications using bayesian optimization,” in 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2020, pp. 831–840.

[14] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[15] A. Mishra, S. Chheda, C. Soto, A. M. Malik, M. Lin, and B. Chapman,
“Compoff: A compiler cost model using machine learning to predict
the cost of openmp offloading,” in 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
2022, pp. 391–400.

[16] A. Tehranijamsaz, M. Popov, A. Dutta, E. Saillard, and A. Jannesari,
“Learning intermediate representations using graph neural networks
for numa and prefetchers optimization,” in IPDPS 2022-36th IEEE
International Parallel & Distributed Processing Symposium, 2022.

[17] A. Haj-Ali, N. K. Ahmed, T. Willke, Y. S. Shao, K. Asanovic, and
I. Stoica, “Neurovectorizer: End-to-end vectorization with deep rein-
forcement learning,” in Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization, 2020, pp. 242–255.

[18] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,
“Mlgo: a machine learning guided compiler optimizations framework,”
arXiv preprint arXiv:2101.04808, 2021.

[19] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
De Supinski, and M. Schulz, “Prediction models for multi-dimensional
power-performance optimization on many cores,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 250–259.

[20] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopou-
los, “Hybrid mpi/openmp power-aware computing,” in 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS).
IEEE, 2010, pp. 1–12.

[21] C. C. De Oliveira, A. F. Lorenzon, and A. C. S. Beck, “Automatic tuning
tlp and dvfs for edp with a non-intrusive genetic algorithm framework,”
in 2018 VIII Brazilian Symposium on Computing Systems Engineering
(SBESC). IEEE, 2018, pp. 146–153.

[22] W. Wang, A. Porterfield, J. Cavazos, and S. Bhalachandra, “Using per-
loop cpu clock modulation for energy efficiency in openmp applica-
tions,” in 2015 44th International Conference on Parallel Processing.
IEEE, 2015, pp. 629–638.

[23] A. Nandamuri, A. M. Malik, A. Qawasmeh, and B. M. Chapman, “Power
and energy footprint of openmp programs using openmp runtime api,”
in Energy Efficient Supercomputing Workshop. IEEE, 2014, pp. 79–88.

[24] J. V. Ferreira Lima, I. Raı̈s, L. Lefevre, and T. Gautier, “Performance and
energy analysis of openmp runtime systems with dense linear algebra
algorithms,” The International Journal of High Performance Computing
Applications, vol. 33, no. 3, pp. 431–443, 2019.

[25] B. Rountree, D. H. Ahn, B. R. De Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond dvfs: A first look at performance under a hardware-
enforced power bound,” in 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops & PhD Forum. IEEE,
2012, pp. 947–953.

[26] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. De Supin-
ski, “Exploring hardware overprovisioning in power-constrained, high
performance computing,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing, 2013.

[27] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[28] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, M. F. O’Boyle, and
H. Leather, “Programl: A graph-based program representation for data
flow analysis and compiler optimizations,” in International Conference
on Machine Learning. PMLR, 2021, pp. 2244–2253.

[29] A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon, “Compiler-based
graph representations for deep learning models of code,” in Proceedings
of the 29th International Conference on Compiler Construction, 2020.

[30] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[31] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European semantic web conference. Springer, 2018, pp.
593–607.

[32] A. Dutta, J. Alcaraz, A. TehraniJamsaz, A. Sikora, E. Cesar, and A. Jan-
nesari, “Pattern-based autotuning of openmp loops using graph neural
networks,” in 2022 IEEE/ACM International Workshop on Artificial
Intelligence and Machine Learning for Scientific Applications (AI4S),
2022, pp. 26–31.

[33] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. LIU, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert:
Pre-training code representations with data flow,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=jLoC4ez43PZ

[34] W. Ma, M. Zhao, E. Soremekun, Q. Hu, J. M. Zhang, M. Papadakis,
M. Cordy, X. Xie, and Y. L. Traon, “Graphcode2vec: generic code em-
bedding via lexical and program dependence analyses,” in Proceedings
of the 19th International Conference on Mining Software Repositories,
2022, pp. 524–536.

[35] S. Brink, A. Marathe, T. Patki, and B. Rountree, “variorum,”
https://github.com/LLNL/variorum, 2022.

[36] L.-N. Pouchet et al., “Polybench: The polyhedral benchmark suite,”
URL: http://www. cs. ucla. edu/pouchet/software/polybench, vol. 437,
pp. 1–1, 2012.

[37] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “Xsbench-the de-
velopment and verification of a performance abstraction for monte carlo
reactor analysis,” The Role of Reactor Physics toward a Sustainable
Future (PHYSOR), 2014.

[38] J. R. Tramm, A. R. Siegel, B. Forget, and C. Josey, “Performance
analysis of a reduced data movement algorithm for neutron cross
section data in monte carlo simulations,” in International Conference
on Exascale Applications and Software. Springer, 2014, pp. 39–56.

[39] S. Hammond, C. Trott, and N. Evans, “minife,” GitHub repository, 2022.
[40] A. Sasidharan and M. Snir, “Miniamr-a miniapp for adaptive mesh

refinement,” 2016.
[41] L. L. N. Lab, “Quicksilver,” https://github.com/LLNL/Quicksilver, 2022.
[42] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and

M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[43] J. Alcaraz, A. TehraniJamsaz, A. Dutta, A. Sikora, A. Jannesari,
J. Sorribes, and E. Cesar, “Predicting number of threads using balanced
datasets for openmp regions,” Computing, pp. 1–19, 2022.

[44] I. Sánchez Barrera, D. Black-Schaffer, M. Casas, M. Moretó, A. Stup-
nikova, and M. Popov, “Modeling and optimizing numa effects and
prefetching with machine learning,” in Proceedings of the 34th ACM
International Conference on Supercomputing, 2020, pp. 1–13.

[45] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proceedings of the department
of defense HPCMP users group conference, vol. 710. Citeseer, 1999.

545

Authorized licensed use limited to: Iowa State University Library. Downloaded on July 27,2023 at 12:00:52 UTC from IEEE Xplore. Restrictions apply.

