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ABSTRACT

The use of Bayesian Knowledge Tracing (BKT) models in
predicting student learning and mastery, especially in math-
ematics, is a well-established and proven approach in learn-
ing analytics. In this work, we report on our analysis exam-
ining the generalizability of BKT models across academic
years attributed to ”detector rot.” We compare the gen-
eralizability of Knowledge Training (KT) models by com-
paring model performance in predicting student knowledge
within the academic year and across academic years. Models
were trained on data from two popular open-source curric-
ula available through Open Educational Resources. We ob-
served that the models generally were highly performant in
predicting student learning within an academic year, whereas
certain academic years were more generalizable than other
academic years. We posit that the Knowledge Tracing mod-
els are relatively stable in terms of performance across aca-
demic years yet can still be susceptible to systemic changes
and underlying learner behavior. As indicated by the evi-
dence in this paper, we posit that learning platforms lever-
aging KT models need to be mindful of systemic changes or
drastic changes in certain user demographics.
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1. INTRODUCTION

Modeling student knowledge and mastery of particular skills
is a foundational problem to the domain of learning analyt-
ics and its intersections with education and artificial intelli-
gence. The first proposed solution to the Knowledge Tracing
(KT) problem, dubbed Bayesian Knowledge Tracing (BKT)
by its creators [3], modeled knowledge as the mastery of
multiple independent knowledge concepts (KCs, or skills)
and estimated mastery through the use of a latent variable
in a Hidden Markov Model. Student mastery of a skill is
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assumed to be a noisy representation of this latent variable,
moderated by four parameters: a student’s prior knowledge,
the likelihood of mastering the skill through attempting a
problem, the chance a student answers correctly by guess-
ing, and the chance a student answers incorrectly by mis-
take. Future work augmenting BKT attempted to improve
model performance by modifying the assumptions of the ini-
tial model. For example, classical BKT models assume the
acquisition of knowledge is unidirectional, from a state of
non-mastery to a state of mastery. Relaxing this assump-
tion and allowing for student knowledge to move bidirec-
tionally between mastery and non-mastery resulted in mod-
els that more accurately predict student performance, and
thus more accurately model student knowledge [14]. Fur-
ther model extensions include allowing individual students
to have personal prior knowledge rates [10] and giving indi-
vidual questions their own guess and slip rates [11]. While
other statistical models such as Performance Factors Analy-
sis [12] showed initial promise, later advances in the domain
of machine learning resulted in the creation of deep learn-
ing models to solve the problem of KT, utilizing a recurrent
neural network in Deep Knowledge Tracing (DKT) [13] and
self-attention in Self Attentive Knowledge Tracing (SAKT)
[9]. However, BKT still serves as a useful way of model-
ing student knowledge due to the model’s interpretability,
especially in comparison to larger models [6]. BKT models
require far fewer parameters to train in comparison to the
deep-learning models even when BKT models incorporate
the available extensions. If the performance of the model is
a priority and the generalizability of the model is not guar-
anteed, then training new models in response to some pop-
ulation shift is advisable. Indeed, this is a common practice
in online learning platforms when such shifts occur, such as
the beginning of a new school year or the integration of a
new curriculum. However, how do we know how often our
KT models should be retrained?

More precisely, we wish to examine the performance of BKT
models across time. Our analysis was guided by the follow-
ing research questions:

RQ1. Do BKT models lose predictive power with time?

RQ2. Does the complexity of a KT model impact its gener-
alizability through time?

RQ3. Do sudden shifts in student populations or behavior



impact model performance?

To answer these questions, we gathered data collected through
the ASSISTments platform across four school years from
2018-2022. We then compare model performance on data
from the same year as training with model performance
across years. Additionally, we posit that the COVID-19
pandemic caused a shift in student and teacher perception of
technology for learning as there were no alternatives avail-
able to adopting technology in classrooms. As such we ex-
amine the shift in the learner behavior by examining the
generalizability KT models trained on pre-pandemic data
to predict learning during the pandemic and vice versa. We
begin by discussing the challenges to education posed by the
COVID-19 pandemic, focusing on the rapid adoption of on-
line learning tools during the pandemic. Next, we describe
the data generation and sampling process for our analysis.
The student data available from ASSISTments across the
four academic years establish a fair comparison of the KT
models that is not susceptible to the size of the dataset since
different academic years had varying number of users. We
then describe the KT models used in our analysis and the
approach we took in examining the generalizability of KT
models. We compare model performance of classical BKT
and BKT with forgetting models within the same academic
year, across different academic years, and across the begin-
ning of the pandemic, along with the impact of the forget-
ting parameter on model generalizability. We then discuss
the implications of our findings on the implementation of
KT models, and discuss the limitations of our analysis and
their implications for future research.

1.1 COVID-19 Pandemic

The COVID-19 pandemic has presented many challenges to
the delivery of education to students [4]. As many schools
closed their doors, students were required to attend classes
and complete coursework using online tools. This resulted
in the rapid adoption of online learning platforms leading
to a significant growth in the user base of platforms such as
ASSISTments. This influx of new users likely introduces a
more diverse group of students into school populations, since
schools integrated various learning tools to support their
students. Additionally, the sudden shift in the perception
of technology and its use in teaching for many schools also
present an interesting opportunity to explore the robustness
and generalizability of KT models.

Given the wide-reaching changes to education caused by
the COVID-19 pandemic, the impact these changes had on
student learning requires more investigation. For the pur-
poses of our analysis, we divided data gathered into two
meta-groups: pre-pandemic and post-pandemic, with "post-
pandemic” data merely denoting data that was gathered af-
ter the initial transition into online learning in mid-March

2020.

2. RELATED WORK

Analysis of more complex inferential models used by MATHia
found that models intended to detect “gaming the system”
behaviors [2] trained on older data were significantly less pre-
cise on newer data [7]. It was found that more contemporary

machine learning models designed to detect gaming experi-
enced a greater performance decrease than classical, com-
putationally simpler models. This phenomenon was called
“detector rot” by its authors in reference to a similar phe-
nomenon called ”code rot” in which code performance de-
creases over time [5]. The analysis provided by [7] featured a
comparison of models trained on data collected more than a
decade apart, with models trained to solve a complex prob-
lem with a large feature space. We aim to contribute to
the understanding of detector rot by examining model per-
formance along more granular time steps, across dramatic
population shifts, and with models solving a problem with
a much smaller feature space.

3. METHODS
3.1 Data Collection

Data for each school year was gathered from problem logs
between the dates of September 1st and June 1st. Summer
months were excluded as the student population during the
summer can vary more drastically from year to year. The
student cohort during some summers primarily consists of
students requiring additional work to reach their credit re-
quirements while other summers are filled with high achiev-
ing students working on extra credit. Problem level data
from the typical academic year was then filtered based on
several criteria in order to ensure different academic years
were able to be directly compared. Comparison between
two populations with little intersection in the skills being
assessed would result in poor model generalizability based
solely on underfitting. To ensure direct comparisons were
possible and appropriate, we limited our underlying popula-
tions to problems sourced from the two most popular open-
source math curricula available through OER [8] on the AS-
SISTments platform: EngageNY /Eureka Math and Kendall
Hunt’s Illustrative Mathematics. From these two curricula,
we calculated the top five hundred most commonly assigned
problem sets across all four of our target years. The final
populations we constructed before sampling were filtered by
these top five hundred common problem sets, with the ex-
ception of the 2018-2019 school year. Data from this year
was significantly more sparse than other years due to the
introduction of a new implementation of the ASSISTments
tutor, and as such we only applied the curriculum filter to
this year. Since the introduction of the new tutor experience,
student behavior has been logged in a consistent fashion.

3.2 Student Modeling

Students in ASSISTments can make unlimited attempt when
answering a problem until they answer it correctly, with the
number of attempts a student takes to correctly answer a
problem being recorded in problem-level data. The prob-
lem level data also includes information on the number of
help requests and if the student requested for the answer
to the problem. BKT attempts to predict student perfor-
mance on attempts to apply a skill [3]. However, in the
original problem level data, each student/problem interac-
tion only has a single row. In an effort to encode informa-
tion about how many attempts a student took to complete
a problem, the original problem logs were used to create a
dataset with each row representing a student’s attempt to
apply a skill. Additionally, if a student’s final correct answer
for a question came from a bottomed-out hint, explanation,



Table 1: Dataset Information

Year Total Rows Total Assignments Unique Students % Correct
2018-2019 291,437 31,930 4,425 0.534
2019-2020 521,781 130,173 47,595 0.526
2020-2021 8,459,566 1,310,652 190,366 0.494
2021-2022 2,645,324 361,546 58,216 0.547

Table 2: Feature List
Feature Description
user Unique student identifier
asstgnment Unique identifier for an assignment
correct 0 if the student incorrectly applies skill, 1 otherwise
start_time Timestamp of when the problem was started by the student
problem Unique identifier for a problem
curriculum Curriculum the problem originated from
skall Skill being assessed by the current question

attempt_number

Counts which attempt on the problem this row represents

or simply requesting the answer, the student’s final correct
answer was treated as an incorrect application of the skill.
Information about the amount of data available for each
year at the end of the filtering and encoding process can be
found in Table 1, while a description of the available fea-
tures present in all datasets can be found in Table 2. Ten
samples of 25,000 assignment level data per year were gen-
erated for each year of the data. To investigate the effect
of additional model parameters on model generalizability,
two models were trained at each step: one with forgetting
and one without. Other than this additional parameter, all
training parameters were initialized in the same way. Models
were constructed using pyBKT, a Python library for creat-
ing BKT models described by [1]. For analysis of within-year
performance, a five-fold cross-validation was performed on
each sample from the 10 samples, resulting in fifty measure-
ments of AUC being taken for exploring model performance
within the training year. For the inter-year performance
analysis, the models were trained on one of the 10 random
samples from a target year and evaluated on the other corre-
sponding random samples from the other three years. This
resulted in the generation of thirty measurements of AUC,
since the model for each year was trained on 10 random
samples and tested on 10 random samples from other three
years resulting in 30 data points for the across year general-
izability analysis. Finally, data from the 18-19, 19-20, and
20-21 years was split around the beginning of the COVID-
19 pandemic (the precise date was March 12, 2020) and ten
samples each containing 50,000 assignment level data were
generated on each side of this split. The same process of
five-fold cross-validation followed by a cross-year train/test
analysis was performed on these pandemic samples.

4. RESULTS
4.1 Robustness Over Time (RQ1)

Data gathered from our evaluations across academic years
can be found in Tables 3 and 4, while the resulting means
from our five-fold cross-validations plotted along with their
95% confidence intervals can be found in Figure 4.2. Rather
unsurprisingly, the within year generalizability of the BKT

models was high with the BKT 4+ forgetting model always
outperforming the classical BKT model. However the model
generalizability when trained on one year and applied to
other years varied across academic years: by comparing the
training year averages provided in Tables 3 and 4, models
trained on the 20-21 and 21-22 school years had higher av-
erage AUCs, while the 18-19 school year produced the least
generalizable models. Similarly, different years were easier
to generalize to than others, with the 18-19 school year hav-
ing a much lower testing year average for both model types.

4.2 Complexity (RQ2)

One general observation seen from each of the analyses is
that BKT+Forgets consistently outperforms classical BKT
in terms of its predictive power as measured by mean AUC.
Our findings strongly suggest the introduction of a forgetting
parameter for each skill can be done with little chance of
significantly harming a model’s later generalizability.

4.3 Sudden Shifts: Pandemic Analysis (RQ3)
Data gathered from training and evaluating models before
and after the COVID-19 pandemic can be found in Table
5, while these means and relevant confidence intervals were
plotted in Figure 4.3. Models trained on data gathered
before the pandemic had difficulties generalizing to post-
pandemic data. Consider models evaluated on the post-
pandemic dataset. The delta means between models trained
on pre-pandemic data and post-pandemic data were 0.022
for classical BKT and 0.028 for BKT + forgets. This gener-
alization problem also occurs when considering models eval-
uated on the pre-pandemic data, suggesting that KT models
are susceptible to losses in predictive power following major
shifts in underlying user populations.

As was true with the year-by-year data, the addition of a for-
getting parameter to the classical BKT model significantly
improves performance, even across the population shift. The
use of model additions may improve generalizability in a way
that can withstand significant shifts in population and user
behavior.



Table 3: BKT cross-year analysis
18-19 Data 19-20 Data 20-21 Data 21-22 Data Training Year Avg

18-19 Model 0.669 0.672 0.678 0.673

19-20 Model 0.682 0.729 0.714 0.709

20-21 Model 0.686 0.726 0.734 0.715

21-22 Model 0.690 0.724 0.748 0.721
Testing Year Avg 0.686 0.706 0.716 0.709

Table 4: BKT+Forgets cross-year analysis
18-19 Data 19-20 Data 20-21 Data 21-22 Data Training Year Avg

18-19 Model 0.687 0.683 0.694 0.688

19-20 Model 0.686 0.740 0.730 0.719

20-21 Model 0.706 0.739 0.757 0.734

21-22 Model 0.708 0.736 0.766 0.735
Testing Year Avg 0.700 0.721 0.730 0.727
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Table 5: Cross-Pandemic Analysis
Testing Period Training Period  Model Type  Mean AUC 95%CE

Pre-pandemic ~ Pre-Pandemic BKT 0.732 [0.731,0.733]
BKT+Forgets 0.774 [0.772,0.776]

Post-Pandemic BKT 0.697 [0.696,0.698]

BKT+Forgets 0.717 [0.715,0.720]

Post-pandemic =~ Pre-pandemic BKT 0.727 [0.726,0.729]
BKT+Forgets 0.742 [0.741,0.743]

Post-pandemic BKT 0.749 [0.748,0.750]

BKT+Forgets 0.770 [0.769,0.771]
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5. DISCUSSION

In this paper, we explored the generalizability of KT models
within and across academic years. The concept of "detector
rot” [7] is a recent addition to how we understand inferential
models and their applications in online tutoring platforms.
With this analysis of how KT models perform over time,
we intend to further explore the concept as it applies to
KT models. Our exploration began by collecting data in a
way that ensured the set of skills in each year’s worth of
data were comparable and then translating the raw problem
level data into attempt-level representations of student per-
formance. Models were evaluated both on the year in which
they were trained (by a five-fold cross-validation), and on the
other available years. We trained both classical BKT mod-
els and models with a forgetting parameter to investigate
how adding model parameters impacts model generalizabil-
ity. We also divided our available data around the beginning
of the COVID-19 pandemic to investigate the impact of sud-
den shifts in population size on model generalizability. We
have a few key findings to report from these investigations.
(a) In contrast to more sophisticated models, BKT’s perfor-
mance is relatively stable from year to year, indicating that
the problem of detector rot is far less prevalent within the
domain of KT. (b) The addition of forgetting parameters
to BKT models consistently improves performance across
multiple years of student population drift, and across more
sudden changes of population. (c) Drastic changes in an on-
line tutoring system’s user base can impact BKT models’
performance.

While our results indicate KT model stability over short-
term population changes, our work is limited by several fac-
tors which future research could address. Our attempts to
ensure each dataset contained a large overlap of skills could
result in our models showing higher AUCs across time than
comparable KT models would show in a product-scale sys-
tem. Also, the 18-19 school year was particularly difficult
for other models to generalize to. This is likely due to the
sparsity of data for that year limiting our ability to filter by
commonly assigned problem sets. Future work leveraging
more data as ASSISTments continues to be used through
time may give more insight as to why some years are eas-
ier for models to generalize to than others. Our analysis of
RQ2 was also limited by only exploring how forgetting pa-
rameters impact generalizability. Future work incorporating

more extensions to BKT, such as those described by [10] and
[11], or utilizing more complex KT models like PFA [12] and
DKT [13] is required to investigate trade-offs between model
complexity and generalizability found in previous detector
rot research [7]. Finally, while our analysis of RQ3 shows
that BK'T models had trouble generalizing across the begin-
ning of the COVID-19 pandemic, the reasons for this could
be numerous, including the sparsity of data pre-pandemic
compared to post-pandemic or differences in student behav-
ior after the pandemic began. Further analysis of how the
COVID-19 pandemic impacted student behavior, possibly
focusing on the transitional period from remote schooling
back to in-person learning, could provide more insight into
how student demographic changes affect KT models.
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