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ABSTRACT

This work proposes Dynamic Linear Epsilon-Greedy, a novel con-
textual multi-armed bandit algorithm that can adaptively assign
personalized content to users while enabling unbiased statistical
analysis. Traditional A/B testing and reinforcement learning ap-
proaches have trade-offs between empirical investigation and max-
imal impact on users. Our algorithm seeks to balance these objec-
tives, allowing platforms to personalize content effectively while
still gathering valuable data. Dynamic Linear Epsilon-Greedy was
evaluated via simulation and an empirical study in the ASSIST-
ments online learning platform. In simulation, Dynamic Linear
Epsilon-Greedy performed comparably to existing algorithms and
in ASSISTments, slightly increased students’ learning compared
to A/B testing. Data collected from its recommendations allowed
for the identification of qualitative interactions, which showed
high and low knowledge students benefited from different content.
Dynamic Linear Epsilon-Greedy holds promise as a method to bal-
ance personalization with unbiased statistical analysis. All the data
collected during the simulation and empirical study are publicly
available at https://osf.io/zuwf7/.
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1 INTRODUCTION

Online learning platforms have become significantly more popular
in recent years due to the prevalence of technology in the classroom
and the transition to remote learning due to the global pandemic
[15]. This has allowed students that would have otherwise been
unable to attend class to receive instruction and enabled researchers
to perform large-scale investigations into various instructional
methods. However, these opportunities have come with challenges.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UMAP °23, June 26-29, 2023, Limassol, Cyprus

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9932-6/23/06.

https://doi.org/10.1145/3565472.3592955

Adam Sales
Worcester Polytechnic Institute
Worcester, Massachusetts, USA

asales@wpi.edu

Neil Heffernan

Worcester Polytechnic Institute
Worcester, Massachusetts, USA
nth@wpi.edu

There are countless choices to be made when structuring on-
line instruction. Should lessons be student-pace or teacher-paced?
Should the assignments have multiple-choice or open-ended ques-
tions? What criteria should be used to determine when a student
has mastered the material? When students are struggling, what
kind of assistance should be provided?

Researchers have attempted to answer many of these questions
using randomized experiments (A/B testing) integrated into online
learning platforms [20, 25], but these learning platforms must bal-
ance scientific inquiry with social responsibility. If researchers are
experimenting with new and potentially beneficial instructional
interventions, then the control students who do not receive the
beneficial intervention are being treated unfairly. In an attempt
to counteract this unfair treatment of students, researchers have
proposed using multi-armed bandit algorithms (MABs) to mediate
which interventions are given to students [18, 21, 26]. MABs learn
over time which interventions are most effective, and transition
from assigning interventions uniformly to recommending the most
effective interventions.

Using MABs has the potential to remedy the unfair treatment of
students, but doing so causes other problems. MABs adjust which
interventions they assign based on prior assignments. Therefore,
assignments are not independent of each other, which prevents
statistical methods such as t-tests or ANOVAs from being used
because they require samples to be independent of each other. Some
researchers have proposed modifications to MABs that make the
data they collect more similar to an experiment [30, 31], but these
modifications only help to identify the most effective treatment for
students on average.

To personalize students’ learning, the algorithm used to assign
treatments must be able to learn qualitative interactions between
students and interventions. A qualitative interaction exists when
different groups of students each benefit from different interven-
tions [19]. Qualitative interactions can exist for individual students
and interventions, e.g., Student A benefits most from Intervention
1, or on a student and intervention feature basis, e.g., Students that
take longer than average to answer questions benefit more from
multiple-choice problems. Researchers are particularly interested
in these feature-based qualitative interactions because they can
generalize beyond a specific experiment and have a much greater
impact on the pedagogy of online learning.

In order to find qualitative interactions while still gaining the
advantages of using MABs, contextual MABs (CMABs) can be used.
Unlike MABs, which learn the average effectiveness of each in-
tervention, CMABs learn how to estimate the effectiveness of an
intervention given information on a student, their learning environ-
ment, and the intervention itself. CMABs are capable of personaliz-
ing students’ experiences, but, like MABs, bias common statistical
methods by creating dependence between samples.
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In this paper, we propose Dynamic Linear e-Greedy (DLEG),
a novel adaptation of established CMAB methods that allows for
students to receive personalized interventions while identifying
valid, unbiased, generalizable qualitative interactions between fea-
tures of students and the interventions available to them. We first
demonstrate in simulation the effects of using DLEG compared to
the most widely used CMABs. Then, we evaluate DLEGs ability to
improve student learning while discovering generalizable qualita-
tive interactions in a three month long empirical study on 3,602
real students during regular instruction within an online learning
platform.

In this work, we make the following contributions.

(1) We propose Dynamic Linear e-Greedy (DLEG), a novel con-
textual multi-armed bandit algorithm (CMAB) designed to
balance the needs of students and researchers.

(2) We compared DLEG to the most well established existing
CMABsS in simulation.

(3) We empirically evaluated DLEG’s ability to help students in
a large-scale study.

(4) We empirically evaluated DLEG’s ability to discover oppor-
tunities to personalize students’ learning at-scale within this
study.

2 BACKGROUND

2.1 Multi-Armed Bandit Algorithms

Multi-Armed bandit algorithms (MABs) are a class of reinforce-
ment learning algorithm [27] in which the algorithm, or agent, is
presented with multiple actions it can take. The agent takes one
of the possible actions, and is given a numeric reward based on
criteria defined by the researcher. The agent learns over time the
relationship between the actions it can take and the reward it re-
ceives, and uses this knowledge to try and maximize the reward it
receives by taking actions it thinks will lead to a high reward [23].
MABs differ from other more complicated reinforcement learning
algorithms because they assume that the reward received for an
action is independent of the sequence of actions taken.

In previous work, researchers have shown that MABs were able
to increase students’ learning during randomized experiments per-
formed within an online learning platform, but that MABs added
bias and increased the false positive rate of the following experi-
ment analyses [21]. Some researchers have developed methods of
bounding the behavior of MABs [30, 31] in order to make them
behave more like a randomized experiment. However, this prior
work focused on making MABs more interpretable, but not on
identifying opportunities to personalize students’ learning.

2.1.1 Contextual Multi-Armed Bandit Algorithms. In this work
we focus on contextual multi-armed bandit algorithms (CMABs).
CMAB:s expand upon MABs by incorporating information about
the agent’s environment, or context, into its decision of what action
to take. This context allows users’ recommendations to be person-
alized [4] by learning the relationship between users context and
the expected reward.

One challenge when designing a CMAB is to choose a model
that can accurately identify relationships between features of the
context, the actions, and the reward. Some models, like neural
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networks, can be very powerful but difficult to interpret. A detailed
look at various neural-network based CMABs can be found in
[22]. Other models, like linear regressions, are easier to interpret
but must have non-linear interactions explicitly engineered into
the model. Two of the most well known CMABs, LinUCB [11]
and Linear Thompson Sampling [1], both use a ridge regression. A
major advantage of using a ridge regression is that it can be updated
from a stream of data, i.e., these CMABs do not need a complete
history of all the contexts, actions, and rewards they have observed
to update their models.

Another challenge is to balance learning about the relationships
between the context, actions, and reward with taking the actions
that the CMAB expects will lead to the highest reward. This balance
is often referred to as the exploration-exploitation trade-off [2]. A
naive approach to addressing this balance is to take a random action
a pre-determined percent of the time, and otherwise take the action
with the highest expected reward. This method is called e-greedy,
where € is the percent of time a random action is taken, and the
greedy action is the action with the highest expected reward. The e-
greedy method is not optimal because theoretically, the CMAB will
eventually collect enough data to know with certainty which actions
will lead to the highest reward at which point it is unnecessary to
take any more random actions. Often, the exploration-exploitation
trade-off is addressed using a variant of an Upper Confidence Bound
(UCB) [10], or Thompson Sampling (TS) [24, 28] algorithm.

Both UCB and TS use the estimated reward for each possible
action as well as a measure of the uncertainty of the estimate to
determine which action to take. UCB adds to the estimated reward
of an action inversely proportional to how many times previously
the action was taken, and calls this value the upper confidence
bound of that action. UCB then takes the action with the highest
upper confidence bound [10]. TS uses the estimated reward and the
variance of this estimate for each action to randomly sample from
each possible action’s prior reward distribution. TS then takes the
action corresponding to the highest-valued random sample [24].
Both UCB and TS start by making mostly random decisions, but as
the error of their estimates decreases, they converge to selecting
the action with the highest estimated reward.

The downside of using UCB or TS is that actions are always taken
based on prior observations, which biases the data collected during
these algorithms use, making it unsuitable for typical statistical
analyses to compare the effects of the actions. For this reason, in
this work we modify the e-greedy method such that it behaves
similarly to UCB and TS while still collecting some independently
sampled data for statistical analysis.

2.2 ASSISTments

In this work, both studies were performed using data from, or
within the ASSISTments online learning platform 1. ASSISTments
is an online learning platform with over 100,000 active student
users that focuses on middle-school mathematics. In ASSISTments,
teachers assign problem sets from open source mathematics curric-
ula. Students then complete the assignments in the ASSISTments
Tutor [8]. When students are struggling they can request to view a
video relevant to the skills required to solve the problem, or they
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can request a hint or explanation directly relevant to the specific
problem.

2.2.1 Skill-Level Videos. When a student requests a skill-level
video, they are shown a YouTube video related to the skills re-
quired to solve their problem. In ASSISTments, each problem is
tagged with its most relevant Common Core State Standards for
Mathematics Skill Code [13], and five videos are available for each
skill code. The student will receive the same video for a specific
problem even if they press the button multiple times, but can receive
different videos on other problems of the same skill.

2.2.2  Problem-Level Support. Between two and four problem-level
supports are available for most of the mathematics question in
ASSISTments [16] in the form of sets of hints or explanations. Sets
of hints are composed of multiple small pieces of advice that the
student must request one at a time and do not reveal the answer.
Explanations contain a complete solution to the problem and the
correct answer. Based on what is available, the student can request
hints or an explanation, but never both for the same problem. Sets
of hints and explanations will impact a student’s score when they
are requested, but hints remove a fraction of a student’s score for
each hint requested, and explanations remove all of a student’s
score upon request [16].

2.2.3 The Automatic Personalized Learning Service. The ASSIST-
ments platform has developed the Automatic Personalized Learning
Service (APLS) in order to use MABs to recommend both skill-level
videos and problem-level supports to students [18]. The APLS oper-
ates in real-time by responding to requests from the ASSISTments
Tutor. In these requests, the tutor provides the APLS with unique
identifiers for the student, the problem, and the available content.
The APLS uses these identifiers to look up features of the student,
problem, and content, compiles these features into context, and
then uses a recommendation algorithm to select content for the
student. The APLS randomly chooses from multiple recommen-
dation algorithms each time it makes a recommendation, which
enables randomized experiments between algorithms [18]. In this
work, we used the APLS to compare random recommendations to
recommendations made by Dynamic Linear e-Greedy.

In the APLS, each recommendation algorithm receives a reward
of 1 when the student gets the next problem correct without any
additional support after viewing the algorithm’s recommended con-
tent, and 0 when they do not. When no information on the student’s
next-problem correctness is available, the recommendation is not
used to update the algorithm. The APLS calculates these rewards
every day in the evening during low load periods in order to not
interrupt users’ experience. After updating each algorithm with
the rewards it received for each recommendation it made since the
last update, the APLS uses logs of students’ actions within the AS-
SISTments Tutor to update the features of the students, problems,
and content. A complete list and descriptions of all the context
calculated by the APLS can be found at https://osf.io/zuwf7. The
subset of this context used during the empirical study in this work
is discussed later in Section 4.1.
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3 DYNAMIC LINEAR EPSILON-GREEDY

This work presents the Dynamic Linear e-Greedy (DLEG) algorithm,
shown in Algorithm 1. The source code for DLEG can be found
at https://0sf.io/q298c. DLEG is a contextual multi-armed bandit
algorithm that addresses the exploration-exploitation trade-off in
a way that enables statistically reliable, generalizable insight to
be gleaned from the data collected during its use. DLEG uses a
modification of the e-greedy method, because the data collected
from random decisions is akin to data collected during a randomized
experiment, and is thus unbiased, and available for use in common
statistical analyses.

DLEG estimates the reward from context using a ridge regression,
similarly to other linear CMABs [1, 11]. After a short period of
random recommendations used to give the regression initial data
to fit on, with probability e, DLEG will randomly select from the
possible actions it can take, observe a reward, and then update
the ridge regression with this sample. After updating the ridge
regression, the regression is used to estimate the reward of the
random recommendation that was just made. The error in this
estimate is used to track the mean squared error of the model’s
reward estimates for its random recommendations, mse;-.

After a short period of random recommendations used to give
the regression initial data to fit on, with probability 1—e€, DLEG will
use the ridge regression to estimate the reward for each possible
action, and then take the action with the highest estimated reward,
i.e., the greedy action. DLEG observes the reward for this greedy
recommendation, but does not update the ridge regression after a
greedy recommendation. The error of the greedy recommendation’s
reward estimate is used to track the mean squared error of the
model’s reward estimates for its greedy recommendations, msey.

The data collected from DLEG’s random recommendations are
independent of each other, and therefore can be used to analyze
the qualitative interactions in the data without inducing any bias
from dependence between samples. However, if € never changes,
then once the ridge regression has learned all it can from the data,
DLEG will be wasting opportunities to exploit these qualitative
interactions by continuing to make random recommendations. To
avoid this, € is updated dynamically on Line 31 of Algorithm 1
based on mse, and msey, as long as a small amount of data exists
for the calculation of mse, and msey. If these two mean squared
errors are equal, it means that the regression is just as good at
estimating the reward given context it was not trained on as it is
given context it was trained on, which implies that the model has
captured the underlying trends in the data. If this is the case, then
the model will stop making random recommendations. On the other
hand, the worse the model is at estimating the reward given context
it was not trained on compared to context it was trained on, the
higher e will be, resulting in more random recommendations. This
allows the model to improve its predictive accuracy by collecting
more training data. This method is also robust to changes in the
relationship between context and reward, because if the accuracy
of the reward estimates for greedy recommendations was very high,
but started getting worse, DLEG would begin to make more random
recommendations and continue to fit the regression. This simple
trick of adjusting € based on the ratio of the standard errors allows
this variant of the e-greedy method to be competitive with more
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optimal methods, while allowing for unbiased statistical analysis
on the random recommendations.
In Algorithm 1:

e A is the L2 penalty of the ridge regression, used during the
initialization of the regression.

e ¢ is the number of random recommendations that must be
made first before DLEG can begin to make greedy recom-
mendations.

o ¢ is the probability that the model will make a random rec-
ommendation after « random recommendations.

e n, and ny track the number of random and greedy recom-
mendations made by DLEG respectively.

o mse, and mse, track the mean squared error of the ridge
regression’s reward predictions for random and greedy rec-
ommendations respectively.

e A and b are the X' X + Al and XY components of the
ordinary least squares solution for ridge regressions: f§ =
(XTX +AI)~1XTY [29]. A and b can be updated iteratively
as more samples are collected.

e B is the vector of coefficients of the ridge regression, which
can be calculated each time a prediction needs to be made
from A and b.

e U(0,1) is a random value sampled from a uniform distribu-
tion in the range [0, 1).

® X; g is all the context for state s and action a at time ¢.

® p:s.a is the predicted reward received from taking action a
in state s at time t.

3.1 Design Constraints

For DLEG to operate at-scale within the ASSISTments APLS, its
model was required to 1) have a limited, fixed memory cost, i.e.,
DLEG could not grow in size over time, nor could it be too big to
begin with, and 2) be able to train from one sample at a time, i.e.,
not require the entire history of recommendations to fit the model.
Some CMABs like LinUCB [11] can be trained from one sample at a
time, but fit one model for each action the CMAB can take. Within
ASSISTments, new content is constantly being added to the system.
If DLEG created an additional model each time new content was
added, the system would quickly run out of memory. Additionally,
separate models for different actions prevents the insight learned
about the effectiveness of an action from being transferable to other
actions.

Some CMABs use more complicated models like random forests
[7] or deep neural networks [22] to learn the relationship between
context and reward, but these models not only take up a large
memory cost due to their structure, but they must also be re-fit
using previous data as new data is collected, making these methods
unsuitable for use within the APLS.

In order for DLEG to fit within the imposed constraints, a single
ridge regression predicting reward using the context of the students,
problems, and available content as input was used as DLEG’s model.
The ridge regression in DLEG is very similar to the model used in
LinUCB [11], but instead of fitting a separate regression for each
action, one regression that includes context of the actions was fit.
This single regression allows DLEG to identify transferable insight
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Algorithm 1 Dynamic Linear e-Greedy

1: Inputs: A € Ry, ¢ € N, € = 0.5 n, =0, ng = 0, mse, =
0, mseg = 0

2. A « Al; (d x d dimensional diagonal matrix where all values
on the principle diagonal are 1)

3: b« 041 (d x 1 dimensional zero matrix)

4: ﬁ — Ailb

5: fort=1,2,3,..,Tdo

6: R « 7/{(0, 1)

7. Observe features of state s and all actions a € A; : X; 54 €

Rl X d.
s: forallae A; do
9: if R < e or ny < a then
10: Pts,a < (LI(O, 1)
11: else X
12: Pts,a < Xt,s,aﬁ
13: end if

14:  end for

15:  Choose arm a; = arg max,e 4, Pts,a with ties broken arbi-
trarily.

16:  Observe reward ry € R.

172 if R < e or ny < a then

18: A—A+ Xzs,a,xt,sxaz
19: b—b+ XIS,atrt

20: B —A"b

21:  end if

220 e Xpgq,p—T1t
23:  if R < eorn, < a then

24: ny «—ny+1
2_
25: mse, — msep + “—
N
26:  else
27: ng < ng+ 1
ez—mseg
28: mseg «— mse; + ——2
g g ng

29:  end if
30 if n, > aand ngy > a then

mse,
mseg

31: €e—1-

32:  end if
33: end for

into opportunities to personalize content provided to students based
on features of the students, problems, and content in ASSISTments.

4 METHODOLOGY

4.1 Feature Selection

4.1.1 Simulation Study. Before conducting an empirical study of
DLEG using the ASSISTments Automatic Personalized Learning
Service (APLS), a simulation study was done comparing DLEG to
similar variants of existing CMABs. The simulation study was per-
formed using the ASSISTments Student Support Dataset (SSD) [18].
This dataset contains samples from thousands of experiments in
which students were randomized between different problem-level
supports. The features used from the SSD were chosen to be as sim-
ilar as possible to the features chosen for the empirical study. For
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students, the user_avg_correctness, user_avg_support_requested,
and user_med_In_first_response_time features were used. While
these features are not calculated identically to the features in the
APLS, they attempt to measure the same thing. The difference being
that the features in the APLS are normalized versions of the features
included in the SSD. For problems, the problem_avg_correctness,
problem_avg_support_requested, problem_med_In_first_response-
_time, problem_type_1, problem_subject_g, problem_subject_rp,
problem_subject_ns, problem_subject_ee, problem_subject_f, and
problem_subject_sp features were used. The problem_type_1 fea-
ture in the SSD is similar to the problem_type_choice feature in the
APLS, which is an indication of whether the question is of any type
that requires the user to choose from options, as opposed to prob-
lem_type_1, which is an indication of whether or not the question
is a multiple-choice question. For the problem-level supports, the
student_support_is_explanation, student_support_message_count,
student_support_contains_image, and student_support_contains-
_video features were included. The student_support_is_explanation
feature in the SSD is equivalent to the answer_given feature in the
APLS. The SSD provides the next problem correctness for each
sample, which the APLS uses as the CMAB reward, Therefore, the
simulation also used this as the reward. A complete description of
the features in the SSD is available through [18]. In total, 1 con-
stant, i.e., the intercept, 17 features, and 52 interactions between
features of the supports and features of the users and problems
were included in DLEG’s regression for the problem-level support
simulation study.

4.1.2  Empirical Study. Prior to this work, no CMABs had been
evaluated using ASSISTments’ APLS. Prior research has shown
the negative impact that including too many features in a CMAB
has on the CMAB’s ability to benefit users [12]. Therefore, for the
study in this work, the CMAB used a smaller subset of the fea-
tures available in the APLS, as well as the interactions between the
features of the content and features of the student and problem.
The interactions between features was a necessary inclusion be-
cause without interactions, the ridge regression used by DLEG to
estimate reward would not be able to find opportunities for per-
sonalization. For students, the correctness, support_requested, and
In_first_response_time features were chosen. For problems, the cor-
rectness, support_requested, In_first_response_time, type_choice,
subject_g, subject_rp, subject_ns, subject_ee, subject_f, and sub-
ject_sp features were chosen. For the skill-level videos, only per-
cent_likes, percent_dislikes, and percent_comments were included
in the context provided to DLEG. The definitions for all the above
features can be fount at https://osf.io/zuwf7/. In total, 1 constant, i.e.,
the intercept, 16 features, and 39 interactions between features were
included in DLEG’s regression for the skill-level video empirical
study.

4.2 Study Design

4.2.1 Simulation Study Design. The simulation study was con-
ducted identically to previous simulation studies done using medical
and educational data from randomized studies [18, 21]. To simulate
how effectively CMABs would have recommended support to stu-
dents in the SSD, samples from the SSD were randomly selected
with replacement using the following strategy [18].
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(1) Initialize a CMAB.

(2) Randomly sample with replacement a single instance of a
student receiving support from the SSD.

(3) Provide context from the sample to the CMAB algorithm for
all possible supports the student could have received.

(4) Given this context, receive a support recommendation from
the CMAB.

(5) If the support recommended by the CMAB matches the sup-
port that was actually given to the student, update the bandit
algorithm using the next problem correctness value in the
SSD, otherwise ignore the recommendation and go back to
step 2.

(6) Repeat steps 2-5 to simulate the CMAB making a series of
recommendations.

This study ran for 1,000,000 recommendations to observe the
long-term effects of the different algorithms. In the simulation study,
DLEG was compared to random selection, Linear Thomson Sam-
pling [1], and Pooled-LinUCB, which is similar to LinUCB [11] but
with only one regression that shares context across actions. These
CMABs were selected for comparison because they are well estab-
lished algorithms that meet the memory and time requirements of
the ASSISTments APLS.

4.2.2  Empirical Study Design. Once the simulation study demon-
strated the effectiveness of DLEG compared to existing CMAB algo-
rithms (results discussed in Section 5.1) the next step was to evaluate
DLEG in a real setting, at-scale, within an online learning platform.
Both a random selection model and a DLEG model were created in
the APLS for recommending skill-level videos. Each time a student
requested a video, the student’s request was randomly sent to either
the random model or DLEG with equal probability. The random
model randomly recommended one of the available videos with
equal probability, and DLEG recommended a video using Algorithm
1. Essentially, this study is a randomized experiment between two
conditions (Random vs. CMAB recommendations), and the random
selection model performed a randomized experiment between the
different videos. Only one model was compared to DLEG in order
to collect as much data as possible for each model’s analysis. The
random model was chosen because it provided a control to measure
both DLEG’s performance and interpretability.

4.3 Study Analysis

4.3.1  Recommendation Algorithm Comparison. To compare the
different recommendation algorithms to each other in both the
simulation study and the empirical study, a logistic regression was
used to predict the reward given the following inputs:

(1) A constant.

(2) Three covariates: student, problem, and next-problem prior
correctness.

(3) A binary feature for each model except random selection
indicating if that model made this recommendation.

(4) The number of recommendations made thus far by the algo-
rithm that made this recommendation.

(5) A feature for the interactions between each of Input 3’s
features and Input 4.
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If any of Input 5’s features were positive and statistically significant,
then the corresponding algorithm out-performed random selection,
because over time, the chance of receiving a high reward increased
for that algorithm more than it did for random selection. Addi-
tionally, if any of Input 5’s features were statistically significantly
different from each other, then one non-random model out per-
formed another. This analysis was used instead of just comparing
the distribution of reward between the algorithms because the dis-
tribution of reward is not expected to be different at the beginning
of the algorithms’ use, when mostly random recommendations are
being made. However, once the non-random models have learned
something, the reward distributions should be different.

4.3.2 Identifying Effective Content. To determine if DLEG was ca-
pable of identifying any significant relationships between features
of the videos and students’ performance at-scale, a logistic regres-
sion was fit to estimate students’ next-problem correctness using
all the video features available in the APLS as well as covariates
for student, problem, and next-problem prior correctness. To en-
sure there was no bias in the estimates due to dependence between
samples, only the data from DLEG’s random recommendations dur-
ing the empirical study was used to fit the model. This model was
also fit using data from the random selection model used during
the study to see how much difference there was between what
DLEG’s random recommendations revealed and what a random-
ized experiment revealed. The p-values of the models’ coefficients
were corrected for multiple hypothesis testing using the Benjamini-
Hochberg procedure [3].

It is important to note that a lack of bias from dependent samples
does not mean that the results of this regression can be interpreted
as causal relationships. To identify causal relationships in the data,
all but one feature of the content provided to students would have
needed to be controlled [9]. However, the skill-level videos came
from publicly available YouTube videos. No efforts were made to
control for different features across videos, nor to make sure each
skill had a similar distribution of features in the videos available for
it. As such, the coefficients of this regression can only be interpreted
as correlations in the data. However, there is nothing preventing the
use of DLEG in a causal setting, as long as the content is appropriate
for causal inference.

4.3.3 Identifying Qualitative Interactions. The greatest value of
DLEG is in its ability to identify opportunities to personalize stu-
dents’ learning. For these opportunities to exist, qualitative inter-
actions must be present in the data. Using the data collected from
DLEG’s random recommendations, the same method used in [18]
to identify statistically significant qualitative interactions between
users and the content available to them was used. In order to iden-
tify generalizable interactions, students were binned into high and
low knowledge groups based on whether or not they had a higher
than average correctness feature in the APLS. Each video feature
was also binned into above and below average groups. The regres-
sion y = By + f1x1 + Paxz + P3(x1 ® x2) was then fit, where x; is a
binary variable for a binned video feature, x; is a binary variable
for a student’s binned prior correctness, and y is the student’s next
problem correctness. Using this model, a qualitative interaction
exists if ﬂg is greater than 2, which is derived with more detail in

Prihar, et al.

[18]. p-values for the statistical significance of these qualitative in-
teractions were calculated using a bootstrapping approach in which
a regression for each video feature was fit 10,000 times on subsets
of equal size to the original data sampled from the original data
with replacement. The distribution of ﬁ§ - ﬁf was used to perform
a one-sample t-test to determine the p-value of the null hypothesis:
ﬂ§ - ﬂf < 0. p-values were corrected for multiple hypothesis testing
using the Benjamini-Hochberg procedure [3].

5 RESULTS

5.1 Simulation Study

Figure 1 shows the cumulative reward received by the three CMABs
compared to random selection during the simulation. In Figure 1,
the total reward received through random selection was subtracted
from the total reward received by each algorithm after the same
number of recommendations were made. The random selection line
is a horizontal line at y = 0 because the cumulative reward received
through random selection was subtracted from itself. By comparing
each CMAB to random selection, we can see more clearly how each
CMAB compares to selecting at random from the available content.

The regression described in Section 4.3.1 found that DLEG and
Linear Thompson Sampling statistically significantly out-performed
random selection (p < 0.001 and p = 0.006 after correction respec-
tively), but Pooled-LinUCB did not. Although Figure 1 indicates
that DLEG and Pooled-LinUCB are the best, this is not the case
after adjusting for prior-knowledge covariates. Additionally, DLEG
statistically significantly out-performed Pooled-LinUCB (p = 0.012
after correction). Based on the simulation, we could expect DLEG
to perform better than random selection and at least as well as
existing CMABs, while enabling further statistical analysis of the
data.

5.2 Empirical DLEG Performance Analysis

From October 3rd 2022 to December 30th 2022, 3,602 students par-
ticipated in the skill-level video empirical study. Each time a stu-
dent requested a video, they were randomized at a problem-level
between receiving a randomly selected video, chosen from 5 skill-
related videos, or receiving the video recommended by DLEG from
the same set of 5 videos. 6,035 total recommendations were made,
2,982 of them made by DLEG, and 3,053 of them made by random
selection. 817 videos were shown to students across 217 skills. On
average, when DLEG was used to make recommendations, about 2.8
different videos were shown per skill, and each video was viewed
an average of 5.5 times. When random selection was used to make
a recommendation, about 3.3 different videos were shown per skill,
and each video was viewed around 4.5 times.

Figure 2 shows the trends in the recommendations made by
DLEG. As shown by left graph, DLEG made fewer random recom-
mendations over time, which indicates that it was able to learn the
relationship between context and reward. The right graph shows
that after an initial learning period, DLEG began to consistently
out-perform random selection. Using the regression described in
Section 4.3.1, no statistically significant differences between DLEG
and random selection were found. With a longer study, it is likely
that DLEG’s video recommendations would have a statistically
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Figure 1: The cumulative reward of each algorithm as a function of how many recommendations they have made compared to

the cumulative reward received through random selection.

significant positive effect on students’ propensity to get the next
problem correct.

Figure 3 shows how the state of DLEG changed as more rec-
ommendations were made during the study. The left graph shows
how at the beginning of the study, the standard error of DLEG’s
predictions of the reward for the random recommendations was
very low, this was because there were few recommendations made,
and the random recommendation data was used to train the regres-
sion, which caused DLEG’s regression to over-fit on the random
recommendation data. Due to this over-fitting, the standard error of
DLEG’s predictions of the reward for the greedy recommendations
was very high. This resulted in a high initial e. This is ideal because
a CMAB should explore more at the beginning of its use in order
to learn the trends in the data.

As DLEG made more recommendations, the standard error of
the random recommendation reward predictions climbed and the
standard error of the greedy recommendation reward predictions
fell. This is an indication that DLEG’s regression was trending
away from over-fitting. As a result of these shifts in standard error,
€ decreased. This is preferred because as a CMAB learns more about
the relationship between context and reward, it should explore less
and make more exploitative choices. At the end of the study, DLEG
was making random recommendations about 7% of the time. One
can observe that a sudden drop in reward around recommendation
3,000 caused e to slightly increase. This is desired because as trends
in the data change, DLEG should explore more to learn about these
new trends.

5.3 Empirically Identifying Effective Content

The purpose of using DLEG was not only to positively impact stu-
dents’ learning, but to also reveal statistically reliable relationships
between features of the context and reward. Using the methodology

discussed in Section 4.3.2, two logistic regressions were fit. One
using DLEG’s random recommendations and the other using the
random selection algorithm’s recommendations. The confidence
intervals of the coefficients of the logistic regression fit using data
from DLEG were about 43% larger on average than the confidence
intervals of the coefficients of the logistic regressions fit using data
from the random selection algorithm. The difference in confidence
intervals is likely due to DLEG only making random recommenda-
tions about 20% of the time. However, even though the confidence
intervals were larger, neither regression had any statistically sig-
nificant coefficients, meaning that the lack of data did not result in
DLEG missing any significant correlations.

5.4 Empirically Identifying Qualitative
Interactions

Even though there were no features of the videos that were statisti-
cally significantly predictive of student performance, there could
still be opportunities for personalization. The coefficients in the
previous regressions only indicated how predictive each feature
was of student performance on average, but it could be that higher
knowledge students benefited from different things than lower
knowledge students. To investigate for these qualitative interac-
tions, the approach discussed in Section 4.3.3 was used to determine
if there was a qualitative interaction between each feature of the
videos and students’ prior knowledge. The results of this analysis
revealed 5 statistically significant qualitative interactions, shown
in Table 1, all of which had p-values < 0.001 after correcting for
multiple hypotheses.

These results indicate that despite little evidence that features of
the content were predictive of students’ average performance, many
features had qualitative interactions with students’ prior knowledge.
These interactions can be used to personalize the videos provided
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Figure 2: The total percent of random and greedy recommendations made by DLEG (left) and the cumulative reward received
by DLEG compared to random selection (left) for the skill-level video empirical study.
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calculated by DLEG for the skill-level video study.

Table 1: Some Typical Commands

High Knowledge Lower Knowledge

Feature

Benefits From

Benefits From

Percent Likes
Length
Face Included
Reading Tone
Male Tone

Above Average
Above Average
Yes
Below Average
Below Average

Below Average
Below Average
No
Above Average
Above Average

to students to help each student achieve their maximum potential.
This analysis is possible because of the independent random rec-
ommendations that DLEG made during the study, without which
the coefficients and confidence intervals of these analyses would
be biased.

6 DISCUSSION

Using DLEG to recommend content to students had promising re-
sults. DLEG performed slightly, but significantly better than random
selection and another CMAB when recommending problem-level
supports in simulation, and also slightly out-performed random
selection at-scale within ASSISTments, though not significantly.
Overall it seems the CMABs explored in this work struggled to
have a large benefit on students’ learning. Most likely, this lack
of significant improvement was caused by the constraints placed
upon the algorithms. DLEG, Pooled-LinUCB, and Linear Thompson
Sampling all used a single ridge regression to model the relation-
ship between context and reward. Many models used in learning
sciences to understand students’ performance do not reduce all
content to a set of features, and instead model students or problems
as individuals [5, 6, 17]. Additionally, the relationship between con-
text and reward changes over time. In the skill-level video study,
after an initial learning period, DLEG appeared to steadily out-
perform random selection, but near the end of the study, DLEG’s
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performance dropped. Around this time, students were preparing
for winter break, and may have felt rushed to finish their work.
This could have changed what kind of videos were most effective.
Perhaps longer videos, which were previously more informative,
were now ignored because students were unwilling to spend time
watching them. This is just one hypothetical example of a change
in students’ preferences over time, but any number of factors could
have led to this shift. DLEG will eventually re-learn trends, but if
the trends in the data are often shifting, temporal features should
be included in the model so a CMAB can learn to anticipate these
trends. Lastly, it could be that DLEG had a difficult time significantly
out-performing random selection because all the content in AS-
SISTments was equally good. Even if there were slight differences
in quality, all the content was written or validated by mathematics
teachers. In domains where there are fewer consequences for low-
quality material, DLEG would likely have a larger benefit. However,
in education, there is a significant negative impact when students
are shown low-quality material. Therefore, all the content DLEG
could recommend was likely similarly high-quality.

Although DLEG had only a small benefit to students, its purpose
was not solely to benefit students, but to also glean statistically reli-
able and unbiased insight into the relationship between the context
and the reward. Although there were no features of educational
videos that were significantly predictive of students’ average per-
formance, multiple qualitative interactions between students’ prior
knowledge and features of the videos were significantly predictive
of students’ performance. Although these are only correlations, we
can look at the interactions, theorize why they occurred, and see if
there are causal studies to support our theories. For example, this
work found that higher knowledge students benefited more from
videos that were above average in length. Studies have shown that
students’ attention span is a key factor in their academic success
[14]. Therefore, it could be that students’ attention spans help them
to both achieve more academically and watch longer videos.

6.1 Limitations and Future Work

While the results of this work are promising, there are some limita-
tions to the scope of our analysis. Currently, DLEG has only been
tested on data from the ASSISTments platform. While this has pro-
vided the opportunity to evaluate the effectiveness of DLEG at scale
in a real-world environment, it also put strong restrictions on the
memory and time requirements of DLEG. A version of DLEG more
akin to LinUCB, where each action has a separate regression, could
be even more powerful while still allowing for some statistically re-
liable insight. In the future, exploring how DLEG performs in other
domains could both reveal interesting insight into the relationship
between the context and reward of those new domains, as well as
provide further opportunities to refine DLEG.

In addition to the limited scope, the empirical study ran for
only about three months, and DLEG was only able to make 2,982
recommendations. While this may seem like a lot, many CMAB
studies allow the algorithm to make millions of recommendations
before interpreting the results. The limited time available for this
study likely impacted the discovery of more significant results.
Longer versions of this study should be repeated to gather more
data and evaluate if the results are consistent.
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7 CONCLUSION

In this work, we introduced DLEG, a CMAB algorithm that enables
personalized content recommendations by learning and leverag-
ing the statistical relationships between context and reward. We
demonstrated through simulation and empirical studies that DLEG
can slightly improve student performance within an online learning
platform. Additionally, we found that unbiased random samples
from DLEG’s recommendations can reveal interesting qualitative
interactions between features of educational content and students’
prior knowledge. These results have implications for both DLEG’s
ability to enhance student performance and for researchers seeking
to design further studies or build upon existing pedagogy. In any
domain where reliable, generalizable insights from recommenda-
tions are desired, DLEG can be employed to identify opportunities
for personalization that benefit both researchers and recipients.
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