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A B S T R A C T   

Layer-wise in-process monitoring in Fused Filament Fabrication (FFF) 3D printing can facilitate the detection of 
defects introduced during manufacturing. In this work, optical imaging and infrared (IR) thermography were 
used simultaneously for the detection of embedded defects, such as point and line defects. The optical images 
helped in identifying the necessary variables that can lead to real-time defect detection through image corre
lation. Through temperature monitoring and thermal image analysis, defect detection was accomplished by 
comparing to a baseline. It was found that as the number of embedded defects increased in a specimen, the 
average specimen temperature, T̃specimen, increased. An increase in the number of defects by 2X and 5X led to an 
increase in T̃specimen that is ~18X and 37X the relative standard error. There was also a positive correlation be
tween the global average hotspot temperature, T̃hotspot , and the total number of embedded defects in the spec
imen. This study demonstrates that in-situ defect detection can be accomplished using optical and thermal 
imaging systems.   

1. Introduction 

Additive Manufacturing (AM) processes are affected by a vast num
ber of user-defined parameters, as well as many external variables that 
affect the quality of the print [1]. Non-destructive testing (NDT) 
methods such as micro-CT scan are now extensively used for charac
terizing the defects in AM specimens [2–4]. Although detection of de
fects in a finished part provides valuable quality information, in-process 
monitoring of part manufacturing provides possibility of intervention or 
repair so that the print can be salvaged. These in-situ NDT procedures 
can accomplish defect detection and process control and help in un
derstanding the effects of process parameters on build quality [5]. The 
effects of manufacturing defects on mechanical behaviors of printed 
polymer parts has been studied in great detail [6,7]. However, real-time 
detection of size, location and orientation of defects can also help in 
assessing their impact on mechanical properties of the part and assist in 
reducing material wastage, build time, and resource consumption [8,9]. 

Simultaneous use of multiple optical sensors for monitoring AM 
prints requires development of an optical system, which can be on-axis, 
off-axis, or coaxial [10–13]. The spatial resolution of an optical system 
can be improved by increasing camera resolution, fine-tuning sensor 

position, and adjusting field of view (FOV) [14,15]. As a result, the 
validity of acquired datasets and experimental results can be improved 
[13,16,17]. Several works have shown the possibility of real-time defect 
detection using optical and thermal imaging cameras [5,18–26]. These 
publications have laid the foundation for this work by providing direc
tion on the development of in-situ monitoring systems and analysis of 
acquired data. In other studies, image processing techniques have been 
established to assist with defect detection using optical cameras [27]. 
Abnormalities have been detected using edge detection filters for optical 
image processing, which will also be an approach in this work [28–31]. 
The development of defect correction strategies, however, remains 
scarce. Use of a digital twin for verification and validation may serve as a 
quality index and may also allow automatic intervention and defect 
correction in-situ [32]. 

Research studies on FFF have used optical and thermal cameras for 
extruder state monitoring, temperature monitoring, and abnormalities 
and error detection [5,27,33–35]. This has been accomplished with both 
stationary and kinetic monitoring systems. The utilization of acquired 
thermal data for defect detection purposes remains a topic of concern. In 
one study with a multi-sensor kinetic monitoring system, infrared (IR) 
thermal sensors were used to identify temperature deviations caused by 

* Corresponding author. 
E-mail address: ywa201@nyu.edu (Y. AbouelNour).  

Contents lists available at ScienceDirect 

Additive Manufacturing 

journal homepage: www.elsevier.com/locate/addma 

https://doi.org/10.1016/j.addma.2023.103483 
Received 5 November 2022; Received in revised form 2 March 2023; Accepted 5 March 2023   

mailto:ywa201@nyu.edu
www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2023.103483
https://doi.org/10.1016/j.addma.2023.103483
https://doi.org/10.1016/j.addma.2023.103483
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2023.103483&domain=pdf


Additive Manufacturing 67 (2023) 103483

2

intentionally embedded defects in an FFF print [36]. Voids as small as 
1.5 mm in width and over-extrusion defects were detected using the two 
IR sensors. In this work, a multi-sensor stationary monitoring system is 
uniquely installed and used to acquire data using simultaneous 
camera-based optical testing and IR thermography for real-time defect 
detection in an FFF process. The work combines temperature variations 
monitoring and a novel approach of abnormalities detection for the 
purpose of defect detection by comparing to a baseline. Random point 
and line defects are intentionally embedded in the G-code as voids using 
an algorithm. In-situ monitoring methods for image acquisition are 
introduced. Image analysis methods are used to detect abnormalities 
and a novel in-situ assisted defect detection strategy is developed 
through thermal imaging analysis. In the proposed approach, compro
mised AM prints are detected in-situ through the acquired raw dataset 
by creating a snapshot of temperature variations at a specific time stamp 
for each layer of the print. 

2. Materials and methods 

2.1. Layer slicing using Ultimaker Cura 

A CAD model of the ASTM D638 standard dog-bone specimen was 
created using SolidWorks and imported into Ultimaker Cura 4.9.1 for 
slicing. Printing process parameters were kept the same for all speci
mens. Layer height and print speed were set to 0.2 mm and 80 mm/s, 
respectively. Default settings were applied in Cura for other parameters 
such as walls, infill, extruder travel, and material flow and temperature. 
A three-layer raft was created to avoid warping. Using the modify G- 
code extension native to Cura, the timelapse feature was enabled to 
move the extruder to a specified location after completion of each layer, 
allowing for a direct line of sight to the deposited layer to acquire images 
of high quality and consistent position. Pause length was set to 5 s 

The specimen was sliced into 33 layers, including the three-layer raft 
labeled as layers 1–3. Each layer consisted of inner walls, an outer wall, 
and infill. Fig. 1a demonstrates the printing process for layers 4–7 and 
30–33 of the defect-free specimen, while Fig. 1b demonstrates the 
printing process for layers 8–29. 

2.2. G-code adjustments for embedding defects 

Dog-bone specimens with several variations of defect patterns were 
printed for monitoring. Generated G-code files with embedded defects, 

or specimen Types, were named alphabetically, ranging from Type A to 
Type F. Defects were seeded in the part by altering the extrusion pattern 
to create voids and delay extrusion commands while keeping the spec
imen weight unchanged. This modification takes place every α number 
of cycles or number of lines of G-code, where α is an integer that de
creases in value from Types A through F, which implies that the total 
number of defects increases in that order. Defects were not seeded in the 
first and last 25% of the print to ensure only invisible internal defects. 

Moreover, the frequency of adjustments and location of defects 
varies from layer to layer and from type to type due to the correlation 
between α and the size of a G-code file. Depending on the defects’ lo
cations in the G-code and due to the nature of printing pattern and 
extruder movement in any layer of the print (see Figs. 1a and 1b), it was 
later discovered that there are two types of defects that can be created in 
Types A through F. The first type of defect is a void that is formed on 
either the inner walls or outer wall of a layer. The sizes of these voids fall 
into two different ranges. For analysis purposes, these voids will be 
classified as either point defects (~1 mm in length) or line defects 
(≥30 mm in length). The second type of defect is the lack of extrusion of 
an infill line. The type of defect that occurs varies depending on α, as α 
ultimately decides the frequency of defect formation, and hence, the 
specific position of a defect in any particular layer. 

To determine the value of α for each type, a script was written in 
Python. G-code files were input into the script and analyzed to deter
mine the number of modifications that were made, or defects embedded, 
for each type. It was confirmed that α decreases from Type A through 
Type F, with values of 20, 10, 8, 5, 4, and 3, respectively. The number of 
defects found to exist in each type are shown in Table 1. 

Fig. 1. Typical sequence of extruder movement for formation of (a) layers 4–7 and 30–33 of the printed specimen: (i) inner wall #1 in green, (ii) outer wall in red, 
(iii) inner wall #2 in yellow, (iv) infill, and (v) complete layer with final extruder position, and (b) layers 8–29: (vi) infill in orange, (vii) inner wall in green, (viii) 
outer wall in red, and (ix) complete layer with final extruder position. 

Table 1 
Frequency of defect formation, α, and total number of embedded defects in 
Types A-F.  

Type α # of Defects 

A 20 146 
B 10 297 
C 8 369 
D 5 593 
E 4 736 
F 3 982  
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2.3. Visual inspection of models 

Inspection of the sliced models allowed for a clearer understanding 
of defect formation in the printed specimens, which helped to thor
oughly analyze the acquired in-situ monitoring data. Fig. 2 shows the 
different types of defects that can form in Types A through F. They 
consist of voids of different sizes and missing infill lines. The variation in 
the spatial location of defects is evident, which is expected to pose a 
challenge in their detection. 

It was found that no defects were present in the first 5 layers and last 
7 layers of the print. Further analysis of sliced layers of Types A-F with a 
focus on the frequency and locations of point defects led to the 
conclusion that the majority of these defects were formed at the fillets in 
the inner and outer walls. Other major locations with the greatest 
number of point defects were at the four corners of the specimen in both 
the inner and outer walls (see Fig. 3 for locations of corners and fillets).  
Table 2 assigns numbers to different combinations of point defects at the 
inner and outer walls, where fillet refers to the specimen’s four fillets 
(see Fig. 3) and throughout refers to all corners (4) and fillets (4) in the 
specimen. Combinations are then assigned to each of the six specimen 
types. Table 2 shows that voids at the fillets increased from Types A 
through F. This can also be seen in Fig. 4, where the number of voids, or 
point defects, at the fillets increased from Type A to C to F. 

Fig. 5 shows that the number of line defects also increased from Type 
A to C to F. These line defects, or pauses in material extrusion along the 
inner and outer walls, ranged from the fillet to the next adjacent corner 
of the specimen. Defects that occurred in the infill due to a lack of 
extrusion of infill lines (defect type 2) could not be clearly depicted in 
Cura, however. This is due to the nature of the raster pattern, where the 
overlap of infill lines in deposited layers obscures the absence of any 
single infill line in the stack. 

Inspection of the sliced model served as a guide to analyze the in-situ 
monitoring data, which may be evolved into further use of a digital twin 
for assisted defect detection. Nonetheless, the procedures and tech
niques presented in this work can be replicated for other experiments 
where the frequencies and locations of defects are unknown. 

2.4. In-situ monitoring and image acquisition 

An off-axis multi-sensor monitoring system was developed, consist
ing of an IR thermal imaging camera and an optical camera mounted on 

a Prusa MK3 3D Printer. All specimens were printed using polylactic 
acid (PLA). 

A GoPro Hero 8 Black 12 MP CMOS Camera was used for optical 
imaging due to its desirable resolution, design, and image acquisition 
frequency. The camera offers an Auto mode capable of capturing up to 
30 photos/s. In addition, an IR camera (FLIR E5-XT) was integrated into 
the monitoring setup to capture thermal images. It acquires radiometric 
images at a frequency of 9 Hz and resolution of 19,200 (160 ×120) 
pixels with a spectral range of 7.5–13 µm, an extended temperature 
range of − 4–752◦F, and a resolution of 0.001◦F. The FLIR camera is 
capable of capturing both thermal and optical images, as well as pro
ducing fused images using its proprietary technology, FLIR MSX®, or the 
Multi-Spectral Dynamics Imaging tool. This tool is capable of capturing 
key elements of optical images such as outlines, edges, words, and 
numbers, and overlaying them onto the thermal images. 

Two different monitoring setups were used in the experiments. In the 
first setup, Fig. 6a, the optical camera was mounted on the outer frame 

Fig. 2. Layer #15 of four different ASTM dog-bone specimens as presented in Cura (a) no defects, (b) Type A, (c) Type C and (d) Type F, showing the variation in 
defects across specimens and the increasing number of defects from Type A to Type F. 

Fig. 3. Locations of fillets and corners on ASTM dog-bone specimen.  
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of the 3D printer. The camera was fastened to an arm extension clipped 
to the printer. The camera lens was pointed downwards, towards the 
center of the build plate, and the gridlines on the camera’s screen were 
aligned with those on the printer’s build plate. The IR camera was 
mounted onto a flexible stand and positioned to point downward at the 
build plate, aligned with the printer’s y-direction belt. To determine the 
distance between the IR camera and the build plate, FLIR’s online 
database was used to calculate the FOV of the E5-XT camera. This FOV 
coincided with that of the optical camera to allow for ease of data cor
relation and image overlaying. 

In the second monitoring setup, Fig. 6b, the optical camera was 
mounted to the side of the printer using an arm extension attached to the 
printer using an adhesive. The position of the IR camera remained the 
same. External lighting was added to the setup to eliminate glare and 
acquire better quality images. 

The second setup provided images with reduced noise at both ends of 
the specimen. Additionally, it was found that the high-definition macro 
lens optical camera attachment (minimum focus distance of 100 mm), 
pictured in Fig. 6a, provided more detailed images at the short depth of 
field and corrected for the optical camera’s default fisheye lens. 

Throughout the printing process, the print bed and nozzle were 
maintained at constant temperatures of 140◦F and 410◦F, respectively. 
Factory calibration of the IR camera’s temperature accuracy was 
confirmed by measuring the print bed temperature. This ensured that 
the captured thermal images represented accurate emissivity measure
ments and reflected actual temperature distributions in the build area. 

The thermal emissivity of the monitored part needs to be known to 
achieve absolute temperature measurements via IR imaging [37]. This 
coefficient is difficult to determine due to the physical transformations 
that the material undergoes during the AM process. The emissivity of the 
specimens can be affected by several factors, such as temperature, sur
face finish, moisture content, chemical composition, and part thickness. 
The material composition and moisture content are constant during 
testing. Thin films show different behavior compared to bulk sections. 
The present case resembles bulk specimens. Hence, temperature is the 
major contributor in the IR imaging. The calibration was conducted 
considering the emissivity of the material in its solid-state form [37]. For 
PLA, the emissivity was determined to be 0.95 [38]. The reflected 
apparent temperature was set to 68◦F. 

Both optical and thermal images were captured at the same instant 
and the images were stored in both JPEG and RAW formats. The spatial 
resolution of the in-situ monitoring system was determined to be 
< 1 mm through extensive experiments. Five trial runs were conducted 
to assess the reliability of the experimental procedure. Both the printer 
and the monitoring setup were calibrated upon system startup and prior 
to each new trial run by adjusting each camera’s position and angle to 
maintain consistency and repeatability of the experiment. Optical im
ages were processed and analyzed using ImageJ software [39]. 

2.5. Image processing 

2.5.1. Optical image analysis 
During the in-situ monitoring process, the optical camera captured 

images of the entire build plate, which were then cropped to retain only 
the printed specimens. This also reduced image size and improved 
further processing times. A macro was written in ImageJ to automati
cally crop and save the JPEG images in a new folder. As pictured in  
Fig. 7, images were reduced in size from 4000 × 3000 pixels to 
375 × 1659 pixels. File size was reduced from 46 MB to 2.4 MB. Crop
ped images were then processed to improve brightness and contrast 
followed by background subtraction and color thresholding. Then, 
colocalization analyses and other comparison methods based on image 
feature extraction were performed. 

Image analysis for edge detection can facilitate defect detection 
through comparison of size information, such as perimeter or surface 
area, for both defect-free and defective specimens. It can also help in 
understanding discontinuities in the depth of a layer. Several different 
filters available in ImageJ can be used for edge detection, such as the 
Sobel filter (used by ImageJ to establish the Find Edges algorithm), the 
Canny filter, and the Laplacian filter [40–43]. A Laplacian filter is a 
finite impulse response (FIR) filter used as a first-order approximation to 
the Laplacian of an underlying continuous-space function x(t1, t2) [40]: 

Table 2 
Assigned numbers for the combinations of point defects in the inner and outer 
walls for Types A-F.  

Combination 
Assigned Numbers Type 

Inner Wall (Green) Outer Wall (Red) 

2/3 voids @ fillets 2/3 voids @ fillets 1 

A 
2 voids @ fillets 4/5 voids throughout 2 
3 voids throughout 2 voids @ fillets 3 
5 voids throughout 2 voids @ fillets 4 

4 voids @ fillets 4–6 voids @ fillets 5 

B 

4 voids @ fillets 7/8 voids throughout 6 
5/6 voids throughout 4 voids @ fillets 7 
8 voids throughout 4 voids @ fillets 8 
6 voids @ fillets 4 voids @ fillets 9 
4/5 voids @ fillets 6 voids throughout 10 

5 voids @ fillets 5 voids @ fillets 11 

C 

8 voids throughout 5/6 voids throughout 12 
7 voids throughout 5 voids @ fillets 13 
6 voids throughout 6/7 voids @ fillets 14 
6 voids throughout 8 voids throughout 15 
7 voids @ fillets 6 voids throughout 16 

8 voids @ fillets 9 voids throughout 17 

D 

9 voids throughout 11 voids throughout 18 
9 voids throughout 12 voids throughout 19 
12 voids throughout 8 voids @ fillets 20 
12 voids throughout 10 voids throughout 21 

13/14 voids throughout 14 voids throughout 22 

E 
11 voids throughout 11 voids throughout 23 
13/14 voids throughout 13 voids throughout 24 
11 voids throughout 12 voids throughout 25 

15 voids throughout 17 voids throughout 26 
F 17 voids throughout 17 voids throughout 27 

18 voids throughout 16 voids throughout 28  

Fig. 4. Section views of three different ASTM dog-bone specimens as presented in Cura (a) Type A, (b) Type C, and (c) Type F, showing increasing number of point 
defects at fillets. 
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∇2x(t1, t2) =
∂2x(t1, t2)

∂2t1
+

∂2x(t1, t2)

∂2t2
(1) 

The Laplacian provides an isotropic measure of the 2nd spatial de
rivative of an image. The Laplacian of an image can be used for edge 
detection as it emphasizes regions with large discrepancies in intensity 
[44]. A smoothing scale, or filter, can be applied prior to use of the 
Laplacian filter to reduce sensitivity to noise and minimize gray-level 
difference among neighboring pixels [40]. The smoothing scale acts as 
a low-pass filter, while the Laplacian filter acts as a high-pass filter [40]. 

Several factors that affect the image comparison methods used for 
defect detection include the location of the printed sample relative to the 
build plate, frequency of image acquisition, and temporal resolution of 
the monitoring system. Sample size, number of layers, and print dura
tion are all variables that affect frequency of image acquisition due to 
the cooling cycle following material deposition. For this work, images 
were acquired within 2 s after completion of a layer. Apart from the raft 
(~657 s), layers 4–7 (~72 s each), and layers 30–33 (~71 s each), all 
other layers (8−29) registered about 22.7 s each of elapsed time. 

Fig. 5. Isometric views of three different ASTM dog-bone specimens as presented in Cura (a, d) Type A, (b, e) Type C, and (c, f) Type F, showing line defects across the 
outer walls. 

Fig. 6. Off-axis monitoring system consisting of an IR camera with a SwitchBot attachment mounted on a microphone stand and an optical camera with a macro lens 
attachment installed via a lens housing (a) mounted to the top frame of the 3D printer using a swivel clip and arm extension and (b) mounted to the side of the 3D 
printer using an arm extension and adhesive. 

Fig. 7. Optical image (a) as acquired by the optical camera and (b) cropped 
using ImageJ. 
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Acquiring one image per layer was sufficient to capture accurate image 
features and thermal information for image analyses. 

2.5.2. Thermal image analysis 
Acquired thermal images were processed and analyzed using FLIR 

Thermal Studio Pro for color gradient adjustment, fusion alignment, and 
isotherm management, as well as temperature measurements (i.e., re
flected, atmospheric, reference), spatial measurements, object distance, 
and emissivity measurement and adjustment. Analysis showed that 
elevated temperatures were located at eight different locations on the 
specimens as indicated in Fig. 3 – each of the four corners and fillets of 
the specimen – locations at which point defects were embedded in the 
specimens. Fig. 8 shows images of layers from each of the six specimen 
types: layers 15, 19, 24, 12, 26, and 10, for Types A through F, respec
tively. The hotspots were observed at 2 or more of the eight locations for 
a variety of layers in each of Types A through F. The temperatures of 
these particular hotspots in the images ranged from ~132–168 ◦F. Here, 
a hotspot is identified as a spotmeter measurement greater than or equal 
to 133◦F because of the separation of colors (i.e., blue to green) in the 
specimens at this temperature. 

Spotmeter temperature measurements were taken at these eight lo
cations shown in Fig. 8 and marked as Sp1, Sp2…, Sp8. For the first task, 
using the Batch Processing tool on FLIR Thermal Studio Pro, algorithms 
were created to take spotmeter measurements on defined locations Sp1- 
Sp8 for each thermal image in a given trial. Each algorithm consisted of 
11 steps as shown in Fig. 9. 

The output of each algorithm was a folder with 33.csv files, one for 
each processed thermal image. Each file contained temperature mea
surements at the defined locations Sp1-Sp8. For Task 2, Python was used 
to create a script that reads the.csv files and exports the measurements to 
an external.csv file to complete the steps listed in Fig. 10. 

As mentioned in Task 2 Step 4, in addition to T̃specimen, the output.csv 
file was also used to determine the total number of hotspots per spec
imen type and per layer. A correlation was then made between the total 
number of hotspots and embedded defects in the specimen. Further
more, to eliminate any bias in comparison, other threshold temperature 
values were considered: 130, 131, and 132◦F. For this correlation, the 
end condition was considered – 22 layers were evaluated – as to elimi
nate any layers with elevated spot temperature values. 

Fig. 8. Thermal images of a variety of layers in each of Types A through F showing hotspots at two or more of the eight locations where point defects were embedded 
in the specimens. 

Fig. 9. Batch processing algorithm created in FLIR Thermal Studio Pro.  

Fig. 10. Steps in python script for determination of T̃specimen, total number of 
hotspots, and T̃hotspot. 
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3. Results 

Large surface defects such as misalignments, over-extrusion, under- 
extrusion, oozing and incomplete walls are visible in the optical images. 
Thermal image analysis was used to determine the location of defects by 
examination of temperature profiles. Locations Sp1-Sp8 could be clearly 
identified as ones with discrepancies in temperature profiles, or hot
spots. Optical images provided additional detail that could not be seen in 
thermal images. Events leading up to defect formation can be identified 
by comparing the temporal evolution of information in the images with 
the baseline dataset. Results from optical and thermal imaging analyses 
are presented in this section.(Fig. 11). 

First, the processed optical images are compared with the repre
sentation of the corresponding layers in Cura files to identify many of the 
defects. The locations of defects in the images coincided with those in 
the sliced layers. Furthermore, the accumulation of point defects, such 
as those in Fig. 12b and c, at the same locations on subsequent layers 
caused multilayer defects that were apparent as over-extrusions in the 
optical images, as pictured in Fig. 12a. 

Analysis of thermal images allowed for characterization of specimens 
based on T̃specimen and the presence of hotspots in thermal images of the 
printed layers. Air, with a thermal conductivity of 2.6–6.7 × 10−2 

W m−1 K−1 transfers heat at a lower rate compared to PLA, which has a 
thermal conductivity of 16.0 × 10−2 W m−1 K−1 [45]. Therefore, due to 
the low thermal conductivity of air, entrapped air in the cavities leads to 
heat retention within the formed voids. This results in elevated tem
peratures, or hotspots, at locations of void formation. 

First, using the procedure mentioned in Section 2.5.2 , T̃specimen of 
Types A-F were determined. Average temperatures were evaluated using 
the two approaches mentioned; T̃specimen,30 and T̃specimen,22 were found by 
assessing 30 and 22 layers, respectively. Using the table referenced in 

Task 2 Step 4, a chart was created. Results are pictured in Fig. 13. The 
average temperature of the print with no defects was determined 
through extensive experimentation to obtain a global average temper
ature over 30 and 22 layers, with a standard error (SE) of 0.15◦F and a 
relative standard error (RSE) of 0.12%. 

All trials registered similar results. As seen in Fig. 13, T̃specimen 

increased from Type A through Type F for both approaches used. As the 
number of embedded defects in the specimen increased, T̃specimen also 
increased. Hence, there exists a positive correlation between ̃Tspecimen and 
the number of embedded defects. For Types A through F, T̃specimen,30 

ranged from 127.0◦F to 131.8◦F, while T̃specimen,22 ranged from 127.0◦F 
to 132.4◦F. A larger variation in temperatures was observed for 
T̃specimen,22. The largest increase in T̃specimen between any two consecutive 
types (1.3% or 1.7◦F on average) occurred between Types C and D. 

Fig. 14 shows the total number of spotmeter measurements from 

Fig. 11. The accumulation of heat at the bottom half of the specimen due to 
initial heat transfer to the build plate and extended print durations in (a) layers 
4–7 and (b) layer 30–33 of the print leading to an end condition for determi
nation of T̃specimen. 

Fig. 12. (a) Over-extrusion and insufficient layer deposition due to the accu
mulation of point defects at the fillets are visible in optical images and 
confirmed as (b, c) embedded defects in the sliced layers on Cura. 

Fig. 13. Average temperatures of printed ASTM test specimens Types A-F 
assessed over 30 and 22 layers for multiple batches of prints showing an 
increasing T̃specimen as the number of embedded defects in the specimens in
creases. A global average temperature of the printed ASTM test specimen with 
no defects is included for reference. 
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Sp1-Sp7 that are greater than or equal to a threshold temperature value 
(i.e., 130, 131, 132 or 133◦F) in layers 8–29 of the no defects and Types A 
through F specimens. An average of all trials is presented. It was found 
that for all threshold temperature values, similar trends were registered: 
the total number of spotmeter measurements greater than or equal to the 
specified temperature increased from No Defects to Type A and from 
Types A to B, B to C, C to D, and E to F, but decreased slightly from Type D 
to E. Nonetheless, there is a positive correlation from Types A through F. 
This emphasizes that elevated temperatures are directly correlated to 
the increasing number of embedded defects in the specimens, specif
ically point defects. 

The greatest increase in spotmeter measurements (75.3%) between 
two consecutive types occurred between Types C to D over a threshold of 

133◦F. The greatest increase in spotmeter measurements for all thresh
olds (>100%) occurred between No Defects and Type A. For all trials, 
T̃hotspot was greatest for Type E (144.67◦F) followed by Type D (141.89◦F) 
then Type F (141.30◦F). It was least for Type A (139.16◦F). 

As the number of multilayer defects increased from Types A through 
F, the effects of over-extrusion became more evident in the optical im
ages. As observed in Fig. 15, excess material occupied a larger surface 
area around the fillets as the number of defects increased. As a result, the 
specimens’ boundaries expanded from Types A through F, and the inner 
and outer walls became less defined. Through inspection, it was 
observed that empty infill area around the inner walls became increas
ingly permeated by excess material as the number of embedded defects 
increased. 

Similarly, at the corners of the geometries, oozing and excess ma
terial due to over-extrusion can be clearly identified in the optical im
ages (see Fig. 16a) and verified on the sliced layers (see Fig. 16b). 

Fig. 14. Total number of spotmeter measurements from Sp1-Sp7 that are 
greater than or equal to threshold temperature value in 22 layers of No Defects 
and Types A-F specimens (average across all trials) showing an increasing 
number of spotmeter measurements with elevated temperatures as the number 
of embedded defects increases. 

Fig. 15. Optical images of layer 20 for each of Types A through F showing the increasing levels of over-extrusion or excess material deposition across the fillets due to 
the accumulation of point defects. 

Fig. 16. (a) Incomplete walls due to under-extrusion followed by over- 
extrusion at the fillet, as well as oozing and accumulation of excess material 
is observed in an optical image of a layer, (b) point defects at the corners of the 
specimen leading to the observed defects in a are observed on the same layer in 
Cura, and (c) isometric view of the specimen on Cura showing a large void that 
led to the incomplete walls shown in a. 
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Additionally, as pictured in Fig. 16a, under-extrusion due to a large void 
(see Fig. 16c) led to incomplete walls at the left edge of the specimen, 
which is then followed by over-extrusion at Sp2. 

Fig. 17 shows optical images of layer 22 of Types A and E that were 
processed by applying the FeatureJ Laplacian and other image processing 
algorithms to develop a binary image. Discontinuities in the layer depth 
along the specimen’s boundaries and excess material extrusion at the 
fillets are apparent in the processed image through the use of the edge 
detection strategy (see Fig. 17c and d). This is confirmed by applying the 
same image processing method to an image of the same layer for a 
specimen with 1/5 of the total embedded defects (see Fig. 17a and b) – 
Type E compared to Type A. Processed images can then be compared 
through evaluation of the specimen’s boundaries, where larger perim
eters or surface areas are more likely to indicate out-of-control condi
tions. Area percentage with respect to the number of pixels in a binary 
image can be compared. This is one example of the use of edge detection 
filters in ImageJ for the development of a defect detection strategy that 
can be used in-situ. Other strategies can also be envisioned. 

4. Discussion 

Optical imaging and image analysis helped in identifying the 
necessary variables that can lead to real-time defect detection through 
image correlation. One of many byproducts of defects that were 
observed in optical images were excess material deposition, both inte
rior and exterior. These instances of over-extrusion were important to 
note for the purpose of image correlation and assessment of the in-situ 
monitoring system. 

As presented in Section 3 , excess material surrounding the corners 
and fillets were observed for all Types A through F, where the high 
spatial resolution of the camera allowed for capturing the expanded 
walls for all specimen types. The image processing methods allowed to 
define edges and boundaries and trace perimeters, all of which could be 
used to quantify the effects of an increasing number of multilayer defects 
on the surface areas of printed layers. This was demonstrated through 
the use of edge detection filters for acquiring specimen size information, 
such as perimeter and surface area. Size information can then be 
compared for image correlation by referring to a baseline, where larger 
values are indicative of out-of-control conditions. In this work, out-of- 
control conditions refer to the formation of embedded defects in the 

specimens; however, the aforementioned method can be applied even if 
the frequency and locations of defects are unknown. Moreover, the re
sults obtained by optical images demonstrate that the algorithm used in 
this work for embedding random defects can serve as a good measure for 
validating the effectiveness of an in-situ monitoring system, regardless 
of defect type or void size. 

The results confirmed that sensor characteristics govern the temporal 
resolution of an in-situ monitoring system, while processing parameters 
such as layer height, printing speed, and time lapse features govern the 
frequency of image acquisition needed. Furthermore, the spatial reso
lution of the monitoring system must be measured to determine its ca
pabilities in detecting embedded defects of different shapes and sizes. In 
this work, the spatial resolution of the in-situ monitoring system was 
determined to be < 1 mm, which was sufficient for monitoring the FFF 
process on a bed size of 250 × 210 mm. 

The results emphasize common trends in the datasets. As the number 

Fig. 17. (a) Optical image of layer 22 of Type A and (b) processed image with the Laplacian filter applied. (c) Optical image of layer 22 of Type E and (b) processed 
image with the Laplacian filter applied showing excess material extrusion at the fillets and discontinuities in depth at the boundary due to an embedded line defect. 

Fig. 18. T̃specimen,22 vs. the number of embedded defects in a specimen deter
mined through an in-situ defect detection strategy. 
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of embedded defects increased, T̃layer increased and, hence T̃specimen also 
increased. Fig. 18 shows a positive correlation between T̃specimen,22 and 
the number of embedded defects. The same trend can be seen for 
T̃specimen,30. Additionally, the accumulation of embedded point and line 
defects due to delayed extrusions over multiple layers also increased 
leading to an increasing number of multilayer defects from Types A 
through F. This led to slower cooling rates across the layers due to the 
entrapment of air in the voids, which resulted in elevated temperature 
values, specifically at the defined locations Sp1-Sp7. Elevated temper
ature values were also due to the frequency and sizes of embedded de
fects in layers 8–29 of the specimens. Moreover, the total number of 
hotspots at Sp1-Sp7 in each specimen increased over all the printed 
layers from Types A through F. This is directly correlated to an increase 
in the formation of multilayer defects at the defined locations. 

Another trend that was observed in the datasets was the constant 
increase in average temperatures at each of Sp2-Sp8 from Types A 
through F, which is likely also due to the increasing number of multi
layer defects. The average temperature of Sp1 did not fit this trend. As 
Sp1 represents the starting point of deposition for each layer, it is 
allowed the most time to cool prior to image acquisition, and thus, 
average temperatures relative to defect formation may have been 
affected across all types. There was no correlation found between layer 
number and T̃layer. 

The largest increase in T̃specimen between any two consecutives types 
(1.3% or 1.7◦F on average) occurred between Types C and D. This may be 
attributed to a large increase in the number of defects between the two 
types (224). However, this may not be the case as between Types E and F, 
there was a large increase in the number of defects (246), but the 
smallest increase in T̃specimen (0.21% or 0.27◦F on average). Instead, it is 
likely due to the large differentiation in the distribution of point and line 
defects along the specimen’s walls for these two types. As the number of 
embedded defects in Types A through F is dependent on α, the total 
number of defects at each of Sp1-Sp7 that overlap over successive layers 
may not consistently increase from Types A through F. Therefore, there 
may have been a larger increase in the number of multilayer defects 
from Type C to D compared to Type E to F, leading to a larger increase in 
T̃specimen. Overall, a relationship can be determined between the number 
of embedded defects and ̃Tspecimen, as shown in Table 3. An increase in the 
number of defects by 2X and 5X led to a 2.1% and 4.3% increase in 
T̃specimen. With respect to RSE, an increase in the number of defects by 2X 
and 5X led to a ~18X and 37X increase in T̃specimen, respectively. 

The total number of spotmeter measurements from Sp1-Sp7 greater 
than or equal to a threshold temperature value increased from No Defects 
to Types A through F for all threshold temperature values (i.e.,130, 131, 
132, and 133◦F). Considering T̃specimen,22 of 125.9◦F for the No Defects 
specimen, assessing the spotmeter measurements over the different 
thresholds emphasizes the consistency in the results. The greatest in
crease in spotmeter measurements (75.3%) between two consecutive 
types occurred between Types C to D over a threshold of 133◦F, which is 
consistent with the results found for T̃specimen as mentioned above. The 
total number of spotmeter measurements decreased slightly from Type D 

to E, which may have been due to a differentiation in the distribution of 
defects in the specimens allowing a greater number of elevated tem
perature values to accumulate at the eight locations in Type D specimens 
compared to Type E specimens. The greatest increase in spotmeter 
measurements for all thresholds (>100%) occurred between No Defects 
and Type A, which asserts that in-situ defect detection can be achieved 
by assessing spotmeter measurements over a defined threshold and 
comparing to a baseline. Furthermore, the sum of percentage increases 
from No Defects to Type A up through Type F was highest for a threshold 
of 133◦F, which emphasizes that the definition of a hotspot stated in 
Section 2.5.2 is viable. These trends are emphasized in Fig. 19, where the 
total number of hotspots is correlated to α. It is apparent that the total 
number of hotspots increases at a specific rate as α decreases, hence, the 
correlation can be represented through a power trendline. 

For all trials, T̃hotspot was greatest for Type E (144.67◦F) followed by 
Type D (141.89◦F) then Type F (141.30◦F). It was least for Type A 
(139.16◦F). Therefore, with the exception of Type F, there is a positive 
correlation between the global ̃Thotspot and the total number of embedded 
defects in the specimen. From Type A to Type E, T̃hotspot increased by 4%. 

Overall, if the locations of defects were unbeknownst, this in-situ 
defect detection process would still be applicable, as the process can 
be repeated for any number of spotmeter temperature measurements per 
layer. The accuracy of a determined average temperature value for a 
printed specimen would increase with an increasing number of spot
meter temperature measurements. 

5. Conclusions 

The multi-sensor in-situ monitoring system introduced in this work 
allowed for in-situ defect detection through temperature variations 
monitoring by comparing to a standard baseline. Random embedded 
defects are observed in Cura to determine an approach for defect 
detection that can be replicated for other geometries. Compromised AM 
prints are detected in-situ through the acquired raw dataset by creating a 
snapshot of temperature variations at a specific time stamp for each 
layer of the print. It was found that as the number of embedded defects 
increased in the specimens, T̃specimen increased. A positive correlation 
between the two variables is evident. An increase in the number of de
fects by 2X and 5X led to a 2.1% and 4.3% increase in T̃specimen, respec
tively. With respect to RSE, an increase in the number of defects by 2X 
and 5X led to a ~18X and 37X increase in T̃specimen, respectively. 

Multilayer defects were formed in the specimens due to the accu

Table 3 
Relationship between the number of embedded defects and percent increase in 
T̃specimen with respect to RSE.  

# of defects % increase in T̃specimen % increase w.r.t. to RSE 

0 - - 
y - - 
2 y 2.1 17.9 
2.5 y 2.3 19.7 
4 y 3.6 30.8 
5 y 4.3 36.8 
6 y 4.5 38.5  

Fig. 19. Total number of hotspots from Sp1-Sp7 vs. the frequency of defect 
formation, α. A power trendline is used to represent the correlation. 
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mulation of embedded point and line defects in similar locations on 
consecutive layers. This led to slower cooling rates across the layers due 
to the entrapment of air in the voids, resulting in elevated temperature 
values at the defined locations, as well as an increasing number of 
spotmeter temperature measurements that were above the threshold 
temperature values. The greatest increase in spotmeter measurements 
(75.3%) between two consecutive types occurred between Types C to D 
over a threshold of 133◦F, which is consistent with the results found for 
T̃specimen. It was also shown that the total number of hotspots increased at 
a specific rate as α decreased, which was represented through a power 
trendline. Furthermore, the greatest increases in spotmeter measure
ments altogether (>100%) occurred between No Defects and Type A, 
which asserts that in-situ defect detection can be achieved by assessing 
spotmeter measurements over a defined threshold and comparing to a 
baseline. 
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