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Layer-wise in-process monitoring in Fused Filament Fabrication (FFF) 3D printing can facilitate the detection of
defects introduced during manufacturing. In this work, optical imaging and infrared (IR) thermography were
used simultaneously for the detection of embedded defects, such as point and line defects. The optical images
helped in identifying the necessary variables that can lead to real-time defect detection through image corre-
lation. Through temperature monitoring and thermal image analysis, defect detection was accomplished by
comparing to a baseline. It was found that as the number of embedded defects increased in a specimen, the
average specimen temperature, ipecimen, increased. An increase in the number of defects by 2X and 5X led to an
increase in Tspecimm that is ~18X and 37X the relative standard error. There was also a positive correlation be-

tween the global average hotspot temperature, Thmpm, and the total number of embedded defects in the spec-
imen. This study demonstrates that in-situ defect detection can be accomplished using optical and thermal

imaging systems.

1. Introduction

Additive Manufacturing (AM) processes are affected by a vast num-
ber of user-defined parameters, as well as many external variables that
affect the quality of the print [1]. Non-destructive testing (NDT)
methods such as micro-CT scan are now extensively used for charac-
terizing the defects in AM specimens [2-4]. Although detection of de-
fects in a finished part provides valuable quality information, in-process
monitoring of part manufacturing provides possibility of intervention or
repair so that the print can be salvaged. These in-situ NDT procedures
can accomplish defect detection and process control and help in un-
derstanding the effects of process parameters on build quality [5]. The
effects of manufacturing defects on mechanical behaviors of printed
polymer parts has been studied in great detail [6,7]. However, real-time
detection of size, location and orientation of defects can also help in
assessing their impact on mechanical properties of the part and assist in
reducing material wastage, build time, and resource consumption [8,9].

Simultaneous use of multiple optical sensors for monitoring AM
prints requires development of an optical system, which can be on-axis,
off-axis, or coaxial [10-13]. The spatial resolution of an optical system
can be improved by increasing camera resolution, fine-tuning sensor
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position, and adjusting field of view (FOV) [14,15]. As a result, the
validity of acquired datasets and experimental results can be improved
[13,16,17]. Several works have shown the possibility of real-time defect
detection using optical and thermal imaging cameras [5,18-26]. These
publications have laid the foundation for this work by providing direc-
tion on the development of in-situ monitoring systems and analysis of
acquired data. In other studies, image processing techniques have been
established to assist with defect detection using optical cameras [27].
Abnormalities have been detected using edge detection filters for optical
image processing, which will also be an approach in this work [28-31].
The development of defect correction strategies, however, remains
scarce. Use of a digital twin for verification and validation may serve as a
quality index and may also allow automatic intervention and defect
correction in-situ [32].

Research studies on FFF have used optical and thermal cameras for
extruder state monitoring, temperature monitoring, and abnormalities
and error detection [5,27,33-35]. This has been accomplished with both
stationary and kinetic monitoring systems. The utilization of acquired
thermal data for defect detection purposes remains a topic of concern. In
one study with a multi-sensor kinetic monitoring system, infrared (IR)
thermal sensors were used to identify temperature deviations caused by
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intentionally embedded defects in an FFF print [36]. Voids as small as
1.5 mm in width and over-extrusion defects were detected using the two
IR sensors. In this work, a multi-sensor stationary monitoring system is
uniquely installed and used to acquire data using simultaneous
camera-based optical testing and IR thermography for real-time defect
detection in an FFF process. The work combines temperature variations
monitoring and a novel approach of abnormalities detection for the
purpose of defect detection by comparing to a baseline. Random point
and line defects are intentionally embedded in the G-code as voids using
an algorithm. In-situ monitoring methods for image acquisition are
introduced. Image analysis methods are used to detect abnormalities
and a novel in-situ assisted defect detection strategy is developed
through thermal imaging analysis. In the proposed approach, compro-
mised AM prints are detected in-situ through the acquired raw dataset
by creating a snapshot of temperature variations at a specific time stamp
for each layer of the print.

2. Materials and methods
2.1. Layer slicing using Ultimaker Cura

A CAD model of the ASTM D638 standard dog-bone specimen was
created using SolidWorks and imported into Ultimaker Cura 4.9.1 for
slicing. Printing process parameters were kept the same for all speci-
mens. Layer height and print speed were set to 0.2 mm and 80 mm/s,
respectively. Default settings were applied in Cura for other parameters
such as walls, infill, extruder travel, and material flow and temperature.
A three-layer raft was created to avoid warping. Using the modify G-
code extension native to Cura, the timelapse feature was enabled to
move the extruder to a specified location after completion of each layer,
allowing for a direct line of sight to the deposited layer to acquire images
of high quality and consistent position. Pause length was set to 5 s

The specimen was sliced into 33 layers, including the three-layer raft
labeled as layers 1-3. Each layer consisted of inner walls, an outer wall,
and infill. Fig. 1a demonstrates the printing process for layers 4-7 and
30-33 of the defect-free specimen, while Fig. 1b demonstrates the
printing process for layers 8-29.

2.2. G-code adjustments for embedding defects

Dog-bone specimens with several variations of defect patterns were
printed for monitoring. Generated G-code files with embedded defects,
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or specimen Types, were named alphabetically, ranging from Type A to
Type F. Defects were seeded in the part by altering the extrusion pattern
to create voids and delay extrusion commands while keeping the spec-
imen weight unchanged. This modification takes place every @« number
of cycles or number of lines of G-code, where « is an integer that de-
creases in value from Types A through F, which implies that the total
number of defects increases in that order. Defects were not seeded in the
first and last 25% of the print to ensure only invisible internal defects.

Moreover, the frequency of adjustments and location of defects
varies from layer to layer and from type to type due to the correlation
between a and the size of a G-code file. Depending on the defects’ lo-
cations in the G-code and due to the nature of printing pattern and
extruder movement in any layer of the print (see Figs. 1a and 1b), it was
later discovered that there are two types of defects that can be created in
Types A through F. The first type of defect is a void that is formed on
either the inner walls or outer wall of a layer. The sizes of these voids fall
into two different ranges. For analysis purposes, these voids will be
classified as either point defects (~1 mm in length) or line defects
(>30 mm in length). The second type of defect is the lack of extrusion of
an infill line. The type of defect that occurs varies depending on a, as a
ultimately decides the frequency of defect formation, and hence, the
specific position of a defect in any particular layer.

To determine the value of « for each type, a script was written in
Python. G-code files were input into the script and analyzed to deter-
mine the number of modifications that were made, or defects embedded,
for each type. It was confirmed that a decreases from Type A through
Type F, with values of 20, 10, 8, 5, 4, and 3, respectively. The number of
defects found to exist in each type are shown in Table 1.

Table 1
Frequency of defect formation, a, and total number of embedded defects in
Types A-F.

Type o # of Defects
A 20 146
B 10 297
C 8 369
D 5 593
E 4 736
F 3 982

(b)

Fig. 1. Typical sequence of extruder movement for formation of (a) layers 4-7 and 30-33 of the printed specimen: (i) inner wall #1 in green, (ii) outer wall in red,
(iii) inner wall #2 in yellow, (iv) infill, and (v) complete layer with final extruder position, and (b) layers 8-29: (vi) infill in orange, (vii) inner wall in green, (viii)

outer wall in red, and (ix) complete layer with final extruder position.
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2.3. Visual inspection of models

Inspection of the sliced models allowed for a clearer understanding
of defect formation in the printed specimens, which helped to thor-
oughly analyze the acquired in-situ monitoring data. Fig. 2 shows the
different types of defects that can form in Types A through F. They
consist of voids of different sizes and missing infill lines. The variation in
the spatial location of defects is evident, which is expected to pose a
challenge in their detection.

It was found that no defects were present in the first 5 layers and last
7 layers of the print. Further analysis of sliced layers of Types A-F with a
focus on the frequency and locations of point defects led to the
conclusion that the majority of these defects were formed at the fillets in
the inner and outer walls. Other major locations with the greatest
number of point defects were at the four corners of the specimen in both
the inner and outer walls (see Fig. 3 for locations of corners and fillets).
Table 2 assigns numbers to different combinations of point defects at the
inner and outer walls, where fillet refers to the specimen’s four fillets
(see Fig. 3) and throughout refers to all corners (4) and fillets (4) in the
specimen. Combinations are then assigned to each of the six specimen
types. Table 2 shows that voids at the fillets increased from Types A
through F. This can also be seen in Fig. 4, where the number of voids, or
point defects, at the fillets increased from Type A to C to F.

Fig. 5 shows that the number of line defects also increased from Type
A to C to F. These line defects, or pauses in material extrusion along the
inner and outer walls, ranged from the fillet to the next adjacent corner
of the specimen. Defects that occurred in the infill due to a lack of
extrusion of infill lines (defect type 2) could not be clearly depicted in
Cura, however. This is due to the nature of the raster pattern, where the
overlap of infill lines in deposited layers obscures the absence of any
single infill line in the stack.

Inspection of the sliced model served as a guide to analyze the in-situ
monitoring data, which may be evolved into further use of a digital twin
for assisted defect detection. Nonetheless, the procedures and tech-
niques presented in this work can be replicated for other experiments
where the frequencies and locations of defects are unknown.

2.4. In-situ monitoring and image acquisition

An off-axis multi-sensor monitoring system was developed, consist-
ing of an IR thermal imaging camera and an optical camera mounted on

Line
Defect

Point
Defects

No Defects Type A
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Corner

Fillets

Fig. 3. Locations of fillets and corners on ASTM dog-bone specimen.

a Prusa MK3 3D Printer. All specimens were printed using polylactic
acid (PLA).

A GoPro Hero 8 Black 12 MP CMOS Camera was used for optical
imaging due to its desirable resolution, design, and image acquisition
frequency. The camera offers an Auto mode capable of capturing up to
30 photos/s. In addition, an IR camera (FLIR E5-XT) was integrated into
the monitoring setup to capture thermal images. It acquires radiometric
images at a frequency of 9 Hz and resolution of 19,200 (160 x120)
pixels with a spectral range of 7.5-13 um, an extended temperature
range of — 4-752°F, and a resolution of 0.001°F. The FLIR camera is
capable of capturing both thermal and optical images, as well as pro-
ducing fused images using its proprietary technology, FLIR MSX®, or the
Multi-Spectral Dynamics Imaging tool. This tool is capable of capturing
key elements of optical images such as outlines, edges, words, and
numbers, and overlaying them onto the thermal images.

Two different monitoring setups were used in the experiments. In the
first setup, Fig. 6a, the optical camera was mounted on the outer frame

Line

Missing
Infill Line

Point
Defects

7

Type F

Type C

Fig. 2. Layer #15 of four different ASTM dog-bone specimens as presented in Cura (a) no defects, (b) Type A, (c) Type C and (d) Type F, showing the variation in
defects across specimens and the increasing number of defects from Type A to Type F.
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Table 2

Assigned numbers for the combinations of point defects in the inner and outer

walls for Types A-F.

Combination
Assigned Numbers Type

Inner Wall (Green) Outer Wall (Red)

2/3 voids @ fillets 2/3 voids @ fillets 1

2 voids @ fillets 4/5 voids throughout 2

3 voids throughout 2 voids @ fillets 3 A
5 voids throughout 2 voids @ fillets 4

4 voids @ fillets 4-6 voids @ fillets 5

4 voids @ fillets 7/8 voids throughout 6

5/6 voids throughout 4 voids @ fillets 7

8 voids throughout 4 voids @ fillets 8 B
6 voids @ fillets 4 voids @ fillets 9

4/5 voids @ fillets 6 voids throughout 10

5 voids @ fillets 5 voids @ fillets 11

8 voids throughout 5/6 voids throughout 12

7 voids throughout 5 voids @ fillets 13

6 voids throughout 6/7 voids @ fillets 14 C
6 voids throughout 8 voids throughout 15

7 voids @ fillets 6 voids throughout 16

8 voids @ fillets 9 voids throughout 17

9 voids throughout 11 voids throughout 18

9 voids throughout 12 voids throughout 19 D
12 voids throughout 8 voids @ fillets 20

12 voids throughout 10 voids throughout 21

13/14 voids throughout 14 voids throughout 22

11 voids throughout 11 voids throughout 23

13/14 voids throughout 13 voids throughout 24 E
11 voids throughout 12 voids throughout 25

15 voids throughout 17 voids throughout 26

17 voids throughout 17 voids throughout 27 F
18 voids throughout 16 voids throughout 28

of the 3D printer. The camera was fastened to an arm extension clipped
to the printer. The camera lens was pointed downwards, towards the
center of the build plate, and the gridlines on the camera’s screen were
aligned with those on the printer’s build plate. The IR camera was
mounted onto a flexible stand and positioned to point downward at the
build plate, aligned with the printer’s y-direction belt. To determine the
distance between the IR camera and the build plate, FLIR’s online
database was used to calculate the FOV of the E5-XT camera. This FOV
coincided with that of the optical camera to allow for ease of data cor-
relation and image overlaying.

In the second monitoring setup, Fig. 6b, the optical camera was
mounted to the side of the printer using an arm extension attached to the
printer using an adhesive. The position of the IR camera remained the
same. External lighting was added to the setup to eliminate glare and
acquire better quality images.

The second setup provided images with reduced noise at both ends of
the specimen. Additionally, it was found that the high-definition macro
lens optical camera attachment (minimum focus distance of 100 mm),
pictured in Fig. 6a, provided more detailed images at the short depth of
field and corrected for the optical camera’s default fisheye lens.

Type A

Type C

Voids at filet = ‘
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Throughout the printing process, the print bed and nozzle were
maintained at constant temperatures of 140°F and 410°F, respectively.
Factory calibration of the IR camera’s temperature accuracy was
confirmed by measuring the print bed temperature. This ensured that
the captured thermal images represented accurate emissivity measure-
ments and reflected actual temperature distributions in the build area.

The thermal emissivity of the monitored part needs to be known to
achieve absolute temperature measurements via IR imaging [37]. This
coefficient is difficult to determine due to the physical transformations
that the material undergoes during the AM process. The emissivity of the
specimens can be affected by several factors, such as temperature, sur-
face finish, moisture content, chemical composition, and part thickness.
The material composition and moisture content are constant during
testing. Thin films show different behavior compared to bulk sections.
The present case resembles bulk specimens. Hence, temperature is the
major contributor in the IR imaging. The calibration was conducted
considering the emissivity of the material in its solid-state form [37]. For
PLA, the emissivity was determined to be 0.95 [38]. The reflected
apparent temperature was set to 68°F.

Both optical and thermal images were captured at the same instant
and the images were stored in both JPEG and RAW formats. The spatial
resolution of the in-situ monitoring system was determined to be
< 1 mm through extensive experiments. Five trial runs were conducted
to assess the reliability of the experimental procedure. Both the printer
and the monitoring setup were calibrated upon system startup and prior
to each new trial run by adjusting each camera’s position and angle to
maintain consistency and repeatability of the experiment. Optical im-
ages were processed and analyzed using ImageJ software [39].

2.5. Image processing

2.5.1. Optical image analysis

During the in-situ monitoring process, the optical camera captured
images of the entire build plate, which were then cropped to retain only
the printed specimens. This also reduced image size and improved
further processing times. A macro was written in ImageJ to automati-
cally crop and save the JPEG images in a new folder. As pictured in
Fig. 7, images were reduced in size from 4000 x 3000 pixels to
375 x 1659 pixels. File size was reduced from 46 MB to 2.4 MB. Crop-
ped images were then processed to improve brightness and contrast
followed by background subtraction and color thresholding. Then,
colocalization analyses and other comparison methods based on image
feature extraction were performed.

Image analysis for edge detection can facilitate defect detection
through comparison of size information, such as perimeter or surface
area, for both defect-free and defective specimens. It can also help in
understanding discontinuities in the depth of a layer. Several different
filters available in ImageJ can be used for edge detection, such as the
Sobel filter (used by ImageJ to establish the Find Edges algorithm), the
Canny filter, and the Laplacian filter [40-43]. A Laplacian filter is a
finite impulse response (FIR) filter used as a first-order approximation to
the Laplacian of an underlying continuous-space function x(t;, tz) [40]:

Type F

Fig. 4. Section views of three different ASTM dog-bone specimens as presented in Cura (a) Type A, (b) Type C, and (c) Type F, showing increasing number of point

defects at fillets.
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(a)

Type A

(b)

Type C

(c)

Type F
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Fig. 5. Isometric views of three different ASTM dog-bone specimens as presented in Cura (a, d) Type A, (b, ) Type C, and (c, f) Type F, showing line defects across the

outer walls.

IR Camera
Swivel Clip
SwitchBot Bot |
Optical Camera §§ |
Build Plate

External Lighting

Microphone
Stand

IR Camera

Optical Camera

Fig. 6. Off-axis monitoring system consisting of an IR camera with a SwitchBot attachment mounted on a microphone stand and an optical camera with a macro lens
attachment installed via a lens housing (a) mounted to the top frame of the 3D printer using a swivel clip and arm extension and (b) mounted to the side of the 3D

printer using an arm extension and adhesive.

Fig. 7. Optical image (a) as acquired by the optical camera and (b) cropped
using ImagelJ.

Px(t,0) | Px(n,1) €]
) on

The Laplacian provides an isotropic measure of the 2nd spatial de-
rivative of an image. The Laplacian of an image can be used for edge
detection as it emphasizes regions with large discrepancies in intensity
[44]. A smoothing scale, or filter, can be applied prior to use of the
Laplacian filter to reduce sensitivity to noise and minimize gray-level
difference among neighboring pixels [40]. The smoothing scale acts as
a low-pass filter, while the Laplacian filter acts as a high-pass filter [40].

Several factors that affect the image comparison methods used for
defect detection include the location of the printed sample relative to the
build plate, frequency of image acquisition, and temporal resolution of
the monitoring system. Sample size, number of layers, and print dura-
tion are all variables that affect frequency of image acquisition due to
the cooling cycle following material deposition. For this work, images
were acquired within 2 s after completion of a layer. Apart from the raft
(~657 s), layers 4-7 (~72 s each), and layers 30-33 (~71 s each), all
other layers (8—29) registered about 22.7 s each of elapsed time.

Vix(t, 1) =
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Acquiring one image per layer was sufficient to capture accurate image
features and thermal information for image analyses.

2.5.2. Thermal image analysis

Acquired thermal images were processed and analyzed using FLIR
Thermal Studio Pro for color gradient adjustment, fusion alignment, and
isotherm management, as well as temperature measurements (i.e., re-
flected, atmospheric, reference), spatial measurements, object distance,
and emissivity measurement and adjustment. Analysis showed that
elevated temperatures were located at eight different locations on the
specimens as indicated in Fig. 3 — each of the four corners and fillets of
the specimen — locations at which point defects were embedded in the
specimens. Fig. 8 shows images of layers from each of the six specimen
types: layers 15, 19, 24, 12, 26, and 10, for Types A through F, respec-
tively. The hotspots were observed at 2 or more of the eight locations for
a variety of layers in each of Types A through F. The temperatures of
these particular hotspots in the images ranged from ~132-168 °F. Here,
a hotspot is identified as a spotmeter measurement greater than or equal
to 133°F because of the separation of colors (i.e., blue to green) in the
specimens at this temperature.

Spotmeter temperature measurements were taken at these eight lo-
cations shown in Fig. 8 and marked as Sp1, Sp2..., Sp8. For the first task,
using the Batch Processing tool on FLIR Thermal Studio Pro, algorithms
were created to take spotmeter measurements on defined locations Sp1-
Sp8 for each thermal image in a given trial. Each algorithm consisted of
11 steps as shown in Fig. 9.

The output of each algorithm was a folder with 33.csv files, one for
each processed thermal image. Each file contained temperature mea-
surements at the defined locations Sp1-Sp8. For Task 2, Python was used
to create a script that reads the.csv files and exports the measurements to
an external.csv file to complete the steps listed in Fig. 10.

As mentioned in Task 2 Step 4, in addition to Tspecimen, the output.csv
file was also used to determine the total number of hotspots per spec-
imen type and per layer. A correlation was then made between the total
number of hotspots and embedded defects in the specimen. Further-
more, to eliminate any bias in comparison, other threshold temperature
values were considered: 130, 131, and 132°F. For this correlation, the
end condition was considered - 22 layers were evaluated — as to elimi-
nate any layers with elevated spot temperature values.

Type A - Layer 15 Type B — Layer 19

Type C - Layer 24
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[ Step 1: Clear all measurements. }
i

[ Step 2: Set the temperature unit to °F. J
v

[ Step 3: Add a spotmeter measurement at the defined X, Y position for Sp1.
v

[ Step 4: Add a spotmeter measurement at the defined X, Y position for Sp2. }

[ Step 10: Add a spotmeter measurement at the defined X, Y position for SpB.}
v
[ Step 11: Export to .csv file. }

Fig. 9. Batch processing algorithm created in FLIR Thermal Studio Pro.

within any particular specimen type by averaging the 8 corresponding

‘ Step 1: Determine average layer temperature, T,aye,, for each layer ‘
spotmeter measurements.

i

Step 2: Determine average sp ature, T.
the average of T,uye,,’s. The number of layers considered for
determination of Tspm-me,, will vary in two different approaches.

by finding

Approach 1: Disregard the raft (layers 1-3). Evaluate Ts,,mmzmo using
average temperatures of layers 4-33 of the print, or of 30 total layers.

layers 4-7 and layers 30-33 due to their extended print durations (see

(Apgroach 2: Consider the following end condition: disregard the raft, ‘
Figures 11a and b). Use the remaining 22 layers to determine Tspec,-me,,}zz.

{ Step 3: Repeat Steps 1 and 2 for each of Types A through F. }
i
Step 4: Create a table that lists the two Tspm-mm values for each type
(i.e., 22 and 30 layers), the total number of hotspots, and Thm,,ot.

Fig. 10. Steps in python script for determination of ipeci,,,e,,, total number of
hotspots, and 7‘,,,,,:,,.,,.

Type D — Layer 12 Type F—Layer 10

Type E - Layer 26

Fig. 8. Thermal images of a variety of layers in each of Types A through F showing hotspots at two or more of the eight locations where point defects were embedded

in the specimens.
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3. Results

Large surface defects such as misalignments, over-extrusion, under-
extrusion, oozing and incomplete walls are visible in the optical images.
Thermal image analysis was used to determine the location of defects by
examination of temperature profiles. Locations Sp1-Sp8 could be clearly
identified as ones with discrepancies in temperature profiles, or hot-
spots. Optical images provided additional detail that could not be seen in
thermal images. Events leading up to defect formation can be identified
by comparing the temporal evolution of information in the images with
the baseline dataset. Results from optical and thermal imaging analyses
are presented in this section.(Fig. 11).

First, the processed optical images are compared with the repre-
sentation of the corresponding layers in Cura files to identify many of the
defects. The locations of defects in the images coincided with those in
the sliced layers. Furthermore, the accumulation of point defects, such
as those in Fig. 12b and c, at the same locations on subsequent layers
caused multilayer defects that were apparent as over-extrusions in the
optical images, as pictured in Fig. 12a.

Analysis of thermal images allowed for characterization of specimens
based on ipecimen and the presence of hotspots in thermal images of the
printed layers. Air, with a thermal conductivity of 2.6-6.7 x 102
W m~! K transfers heat at a lower rate compared to PLA, which has a
thermal conductivity of 16.0 x 10 2Wm 'K ! [45]. Therefore, due to
the low thermal conductivity of air, entrapped air in the cavities leads to
heat retention within the formed voids. This results in elevated tem-
peratures, or hotspots, at locations of void formation.

First, using the procedure mentioned in Section 2.5.2 , Tspmmen of
Types A-F were determined. Average temperatures were evaluated using
the two approaches mentioned; Tspecimen,go and Tspecimenzz were found by
assessing 30 and 22 layers, respectively. Using the table referenced in

B

.

Fig. 11. The accumulation of heat at the bottom half of the specimen due to
initial heat transfer to the build plate and extended print durations in (a) layers
4-7 and (b) layer 30-33 of the print leading to an end condition for determi-

nation of Tspecimen-
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Fig. 12. (a) Over-extrusion and insufficient layer deposition due to the accu-
mulation of point defects at the fillets are visible in optical images and
confirmed as (b, ¢) embedded defects in the sliced layers on Cura.

133.0
o [ ]
132.0 _
— [ 3
[ ]
131.0 $
— 130.0 -
o L)
<
o —_
129.0
9
£ * .
S - [ ]
S 128.0 d - B B
I[\h = Tspecimen30 T specimen,22
1270 A4 ~Batch 1 o Batch 1
. -Batch 2 e Batch 2
—Batch 3 e Batch 3
126.0 E Batch 4 Batch 4
Batch 5 Batch 5
125.0 T T T T T T
No TypeA TypeB TypeC TypeD TypeE TypeF
Defects
Specimen Type

Fig. 13. Average temperatures of printed ASTM test specimens Types A-F
assessed over 30 and 22 layers for multiple batches of prints showing an
increasing Tspeeimen as the number of embedded defects in the specimens in-
creases. A global average temperature of the printed ASTM test specimen with
no defects is included for reference.

Task 2 Step 4, a chart was created. Results are pictured in Fig. 13. The
average temperature of the print with no defects was determined
through extensive experimentation to obtain a global average temper-
ature over 30 and 22 layers, with a standard error (SE) of 0.15°F and a
relative standard error (RSE) of 0.12%.

All trials registered similar results. As seen in Fig. 13, Tspecimen
increased from Type A through Type F for both approaches used. As the
number of embedded defects in the specimen increased, ipecmn also
increased. Hence, there exists a positive correlation between ipecimm and
the number of embedded defects. For Types A through F, ipmmenm
ranged from 127.0°F to 131.8°F, while Tweeimmzz ranged from 127.0°F
to 132.4°F. A larger variation in temperatures was observed for
Tspecimen_zg. The largest increase in Tspecimen between any two consecutive
types (1.3% or 1.7°F on average) occurred between Types C and D.

Fig. 14 shows the total number of spotmeter measurements from
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Fig. 14. Total number of spotmeter measurements from Spl-Sp7 that are
greater than or equal to threshold temperature value in 22 layers of No Defects
and Types A-F specimens (average across all trials) showing an increasing
number of spotmeter measurements with elevated temperatures as the number
of embedded defects increases.

Spl-Sp7 that are greater than or equal to a threshold temperature value
(i.e., 130, 131, 132 or 133°F) in layers 8-29 of the no defects and Types A
through F specimens. An average of all trials is presented. It was found
that for all threshold temperature values, similar trends were registered:
the total number of spotmeter measurements greater than or equal to the
specified temperature increased from No Defects to Type A and from
Types A to B, Bto C, C to D, and E to F, but decreased slightly from Type D
to E. Nonetheless, there is a positive correlation from Types A through F.
This emphasizes that elevated temperatures are directly correlated to
the increasing number of embedded defects in the specimens, specif-
ically point defects.

The greatest increase in spotmeter measurements (75.3%) between
two consecutive types occurred between Types C to D over a threshold of

Type A Type B Type C
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133°F. The greatest increase in spotmeter measurements for all thresh-
olds (>100%) occurred between No Defects and Type A. For all trials,
Thmpot was greatest for Type E (144.67°F) followed by Type D (141.89°F)
then Type F (141.30°F). It was least for Type A (139.16°F).

As the number of multilayer defects increased from Types A through
F, the effects of over-extrusion became more evident in the optical im-
ages. As observed in Fig. 15, excess material occupied a larger surface
area around the fillets as the number of defects increased. As a result, the
specimens’ boundaries expanded from Types A through F, and the inner
and outer walls became less defined. Through inspection, it was
observed that empty infill area around the inner walls became increas-
ingly permeated by excess material as the number of embedded defects
increased.

Similarly, at the corners of the geometries, oozing and excess ma-
terial due to over-extrusion can be clearly identified in the optical im-
ages (see Fig. 16a) and verified on the sliced layers (see Fig. 16b).

Oozing

Incomplete
Walls

Large Void

Fig. 16. (a) Incomplete walls due to under-extrusion followed by over-
extrusion at the fillet, as well as oozing and accumulation of excess material
is observed in an optical image of a layer, (b) point defects at the corners of the
specimen leading to the observed defects in a are observed on the same layer in
Cura, and (c) isometric view of the specimen on Cura showing a large void that
led to the incomplete walls shown in a.

Type D Type E Type F

Increasing levels of excess material deposition across fillets

Fig. 15. Optical images of layer 20 for each of Types A through F showing the increasing levels of over-extrusion or excess material deposition across the fillets due to

the accumulation of point defects.
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Additionally, as pictured in Fig. 16a, under-extrusion due to a large void
(see Fig. 16c¢) led to incomplete walls at the left edge of the specimen,
which is then followed by over-extrusion at Sp2.

Fig. 17 shows optical images of layer 22 of Types A and E that were
processed by applying the FeatureJ Laplacian and other image processing
algorithms to develop a binary image. Discontinuities in the layer depth
along the specimen’s boundaries and excess material extrusion at the
fillets are apparent in the processed image through the use of the edge
detection strategy (see Fig. 17c and d). This is confirmed by applying the
same image processing method to an image of the same layer for a
specimen with 1/5 of the total embedded defects (see Fig. 17a and b) —
Type E compared to Type A. Processed images can then be compared
through evaluation of the specimen’s boundaries, where larger perim-
eters or surface areas are more likely to indicate out-of-control condi-
tions. Area percentage with respect to the number of pixels in a binary
image can be compared. This is one example of the use of edge detection
filters in ImageJ for the development of a defect detection strategy that
can be used in-situ. Other strategies can also be envisioned.

4. Discussion

Optical imaging and image analysis helped in identifying the
necessary variables that can lead to real-time defect detection through
image correlation. One of many byproducts of defects that were
observed in optical images were excess material deposition, both inte-
rior and exterior. These instances of over-extrusion were important to
note for the purpose of image correlation and assessment of the in-situ
monitoring system.

As presented in Section 3 , excess material surrounding the corners
and fillets were observed for all Types A through F, where the high
spatial resolution of the camera allowed for capturing the expanded
walls for all specimen types. The image processing methods allowed to
define edges and boundaries and trace perimeters, all of which could be
used to quantify the effects of an increasing number of multilayer defects
on the surface areas of printed layers. This was demonstrated through
the use of edge detection filters for acquiring specimen size information,
such as perimeter and surface area. Size information can then be
compared for image correlation by referring to a baseline, where larger
values are indicative of out-of-control conditions. In this work, out-of-
control conditions refer to the formation of embedded defects in the

Large Void

7

3

¥

(a) (b)
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specimens; however, the aforementioned method can be applied even if
the frequency and locations of defects are unknown. Moreover, the re-
sults obtained by optical images demonstrate that the algorithm used in
this work for embedding random defects can serve as a good measure for
validating the effectiveness of an in-situ monitoring system, regardless
of defect type or void size.

The results confirmed that sensor characteristics govern the temporal
resolution of an in-situ monitoring system, while processing parameters
such as layer height, printing speed, and time lapse features govern the
frequency of image acquisition needed. Furthermore, the spatial reso-
lution of the monitoring system must be measured to determine its ca-
pabilities in detecting embedded defects of different shapes and sizes. In
this work, the spatial resolution of the in-situ monitoring system was
determined to be < 1 mm, which was sufficient for monitoring the FFF
process on a bed size of 250 x 210 mm.

The results emphasize common trends in the datasets. As the number

135
f: 130 §
e % i
[a\]
[3\]
A
%)
£
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&
1
I~
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0 200 400 600 800 1000

Number of Embedded Defects

Fig. 18. TS,,ec,»,,,e,,_zg vs. the number of embedded defects in a specimen deter-
mined through an in-situ defect detection strategy.

Excess Material
Extrusion

Discontinuities
in Depth

) @)

Fig. 17. (a) Optical image of layer 22 of Type A and (b) processed image with the Laplacian filter applied. (c) Optical image of layer 22 of Type E and (b) processed
image with the Laplacian filter applied showing excess material extrusion at the fillets and discontinuities in depth at the boundary due to an embedded line defect.
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of embedded defects increased, Tjqy.r increased and, hence Tpecimen also

increased. Fig. 18 shows a positive correlation between Tspecimen,22 and
the number of embedded defects. The same trend can be seen for

Tpecimen,30- Additionally, the accumulation of embedded point and line
defects due to delayed extrusions over multiple layers also increased
leading to an increasing number of multilayer defects from Types A
through F. This led to slower cooling rates across the layers due to the
entrapment of air in the voids, which resulted in elevated temperature
values, specifically at the defined locations Sp1-Sp7. Elevated temper-
ature values were also due to the frequency and sizes of embedded de-
fects in layers 8-29 of the specimens. Moreover, the total number of
hotspots at Sp1-Sp7 in each specimen increased over all the printed
layers from Types A through F. This is directly correlated to an increase
in the formation of multilayer defects at the defined locations.

Another trend that was observed in the datasets was the constant
increase in average temperatures at each of Sp2-Sp8 from Types A
through F, which is likely also due to the increasing number of multi-
layer defects. The average temperature of Spl did not fit this trend. As
Spl represents the starting point of deposition for each layer, it is
allowed the most time to cool prior to image acquisition, and thus,
average temperatures relative to defect formation may have been
affected across all types. There was no correlation found between layer
number and Tlaye,.

The largest increase in Tspemen between any two consecutives types
(1.3% or 1.7°F on average) occurred between Types C and D. This may be
attributed to a large increase in the number of defects between the two
types (224). However, this may not be the case as between Types E and F,
there was a large increase in the number of defects (246), but the
smallest increase in Tspecimen (0.21% or 0.27°F on average). Instead, it is
likely due to the large differentiation in the distribution of point and line
defects along the specimen’s walls for these two types. As the number of
embedded defects in Types A through F is dependent on a, the total
number of defects at each of Sp1-Sp7 that overlap over successive layers
may not consistently increase from Types A through F. Therefore, there
may have been a larger increase in the number of multilayer defects
from Type C to D compared to Type E to F, leading to a larger increase in
ipecimen. Overall, a relationship can be determined between the number

of embedded defects and ipec,—mm, as shown in Table 3. An increase in the
number of defects by 2X and 5X led to a 2.1% and 4.3% increase in
Tspecime,,. With respect to RSE, an increase in the number of defects by 2X

and 5X led to a ~18X and 37X increase in ipecimen, respectively.

The total number of spotmeter measurements from Sp1-Sp7 greater
than or equal to a threshold temperature value increased from No Defects
to Types A through F for all threshold temperature values (i.e.,130, 131,
132, and 133°F). Considering ipecimen.zz of 125.9°F for the No Defects
specimen, assessing the spotmeter measurements over the different
thresholds emphasizes the consistency in the results. The greatest in-
crease in spotmeter measurements (75.3%) between two consecutive
types occurred between Types C to D over a threshold of 133°F, which is
consistent with the results found for ipecimen as mentioned above. The
total number of spotmeter measurements decreased slightly from Type D

Table 3
Relationship between the number of embedded defects and percent increase in

Tspecimen With respect to RSE.

# of defects % increase in Typecimen % increase w.r.t. to RSE

0 - -
y N N

2y 2.1 17.9
25y 2.3 19.7
4y 3.6 30.8
5y 4.3 36.8
6y 4.5 38.5

10
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to E, which may have been due to a differentiation in the distribution of
defects in the specimens allowing a greater number of elevated tem-
perature values to accumulate at the eight locations in Type D specimens
compared to Type E specimens. The greatest increase in spotmeter
measurements for all thresholds (>100%) occurred between No Defects
and Type A, which asserts that in-situ defect detection can be achieved
by assessing spotmeter measurements over a defined threshold and
comparing to a baseline. Furthermore, the sum of percentage increases
from No Defects to Type A up through Type F was highest for a threshold
of 133°F, which emphasizes that the definition of a hotspot stated in
Section 2.5.2 is viable. These trends are emphasized in Fig. 19, where the
total number of hotspots is correlated to a. It is apparent that the total
number of hotspots increases at a specific rate as a decreases, hence, the
correlation can be represented through a power trendline.

For all trials, Thmpm was greatest for Type E (144.67°F) followed by
Type D (141.89°F) then Type F (141.30°F). It was least for Type A
(139.16°F). Therefore, with the exception of Type F, there is a positive
correlation between the global Thospot and the total number of embedded

defects in the specimen. From Type A to Type E, Thmpm increased by 4%.

Overall, if the locations of defects were unbeknownst, this in-situ
defect detection process would still be applicable, as the process can
be repeated for any number of spotmeter temperature measurements per
layer. The accuracy of a determined average temperature value for a
printed specimen would increase with an increasing number of spot-
meter temperature measurements.

5. Conclusions

The multi-sensor in-situ monitoring system introduced in this work
allowed for in-situ defect detection through temperature variations
monitoring by comparing to a standard baseline. Random embedded
defects are observed in Cura to determine an approach for defect
detection that can be replicated for other geometries. Compromised AM
prints are detected in-situ through the acquired raw dataset by creating a
snapshot of temperature variations at a specific time stamp for each
layer of the print. It was found that as the number of embedded defects
increased in the specimens, ipecimen increased. A positive correlation
between the two variables is evident. An increase in the number of de-
fects by 2X and 5X led to a 2.1% and 4.3% increase in ipecimen, respec-
tively. With respect to RSE, an increase in the number of defects by 2X
and 5X led to a ~18X and 37X increase in Tspecimm, respectively.

Multilayer defects were formed in the specimens due to the accu-

50
45
40
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25
20
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Total # of Hotspots
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Fig. 19. Total number of hotspots from Sp1-Sp7 vs. the frequency of defect
formation, a. A power trendline is used to represent the correlation.
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mulation of embedded point and line defects in similar locations on
consecutive layers. This led to slower cooling rates across the layers due
to the entrapment of air in the voids, resulting in elevated temperature
values at the defined locations, as well as an increasing number of
spotmeter temperature measurements that were above the threshold
temperature values. The greatest increase in spotmeter measurements
(75.3%) between two consecutive types occurred between Types C to D
over a threshold of 133°F, which is consistent with the results found for

Tipecimen- It was also shown that the total number of hotspots increased at
a specific rate as a decreased, which was represented through a power
trendline. Furthermore, the greatest increases in spotmeter measure-
ments altogether (>100%) occurred between No Defects and Type A,
which asserts that in-situ defect detection can be achieved by assessing
spotmeter measurements over a defined threshold and comparing to a
baseline.
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